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Abstract. We study the problem of finding optimal strategies in
Markov decision processes with lexicographic w-regular objectives, which
are ordered collections of ordinary w-regular objectives. The goal is to
compute strategies that maximise the probability of satisfaction of the
first w-regular objective; subject to that, the strategy should also max-
imise the probability of satisfaction of the second w-regular objective;
then the third and so forth. For instance, one may want to guarantee
critical requirements first, functional ones second and only then focus on
the non-functional ones. We show how to harness the classic off-the-shelf
model-free reinforcement learning techniques to solve this problem and
evaluate their performance on four case studies.

1 Introduction

In the basic setting of model-free reinforcement learning (RL), the goal is to
find a strategy that optimises the total accumulated (discounted) reward, given
a single reward structure. However, this setting is seldom sufficient to concisely
express real-world scenarios. On the one hand, it is often necessary to consider
objectives for which it is not obvious how they could be expressed by a reward
structure. On the other hand, in many cases multiple objectives are of interest,
and not all of them are equally important.

This paper studies model-free RL for the lexicographic optimization of w-
regular objectives. That is, we are given k different w-regular specifications,
ordered by importance. We then optimise the probabilities of these specifications
in the following way. An optimal strategy has to maximise the probability that
first objective is achieved. The strategy then also has to maximise the probability
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that second objective holds among those strategies that achieve the maximum
probability for the first objective. The next priority is then to maximise the third
objective, and so forth.
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Fig. 1. Robot case study: grid-world examples with multiple w-regular objectives.

Consider a robot that moves around in a grid world. We depict three such
scenarios of different sizes in Fig. 1. In each step, the robot can choose to go into
one of four directions. If there is enough space, the robot might move one or two
steps: With probability p, the robot moves two steps into the chosen direction,
while it moves only a single step into the selected direction with a probability of
1—p. If there is only room for one step, the robot deterministically moves one
step. If there is no room for a step, then the robot doesn’t move.

In the figure, the robot’s initial position is marked with R. Red fields are
dangerous for the robot, while the green ones allow the robot to recharge its
battery. Four fields are marked with 1 to 4. For these scenarios (a)—(c), we have
three different objectives expressed as LTL formulas. Among them 1. marks the
objective with the highest priority, while 3. marks the objective with the lowest.

In scenario (a), the first priority of the robot is to visit all four numbered
fields infinitely often, the second priority is never to enter a dangerous area, and
the third priority is to visit some charging field infinitely often. In this scenario,
it is possible to fulfil the primary objective with probability 1. However, the
secondary objective can then not be fulfilled with any probability larger than 0:
Due to its uncertain movements, the robot always has a chance to step into a
dangerous field when trying to fulfil the primary objective. The third priority,
however, can again be fulfilled with probability 1.

The objectives of scenario (b) are the same as for (a). However, because of
the larger grid, the robot can stay out of danger while satisfying its primary
objective; it can meet all three objectives with probability 1.

In scenario (c), the primary objective is to visit fields 1 and 2 infinitely often
or to visit fields 3 and 4 infinitely often. The secondary objective is to avoid
dangerous fields. The tertiary one is to eventually visit a charging field. Here,
the robot can again fulfil its primary objective with probability 1. The secondary
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one can only be fulfilled with probability 1 — (p - (1 — p)): To fulfil its primary
objective and then the secondary one, the best the robot can do is to move
upwards and then to the right. If, by moving to the right, the robot first moves
one field but then two fields, it will run into a dangerous field. When maximising
the primary and secondary objectives, the tertiary objective can then only be
fulfilled with probability p - (1 — p), because trying to reach the charging field
cannot be done without entering a dangerous field with at least probability 1 —p
(the chance of not “jumping” over the left barrier of red fields). Therefore, the
tertiary objective is only pursued when the secondary objective has been missed.

The priorities play a key role here: For scenario (c), if the safety objective
G—danger were the most important, the robot would be able to completely avoid
unsafe fields, fulfilling this objective with probability 1. However, the probabil-
ity to fulfil the recurrence objective (GF1 A GF2) v (GF3 A GF4) would be p,
because the robot can only reach the lower-right corner of the grid with proba-
bility p if it is to avoid danger at all cost.

Our Approach. Our approach is based on the following idea. We assume that
each objective is given as a Good-for-MDPs (GFM) Biichi automaton [12]. We
compose our model with the product of these Biichi automata. We obtain a
Markov decision process (MDP) whose transitions are labeled with multiple
separate Biichi conditions. Then, generalizing a method described in previous
work [13], we transform different combinations of Biichi conditions into different
rewards in a reduction to a weighted reachability problem that depends on the
prioritisation. We end up with an MDP equipped with a standard scalar reward,
to which general RL algorithms can be applied.

Naturally, in practice, we do not perform the composition of the MDP with
the automata and the transformation into rewards before the RL process starts;
indeed, the two steps are intertwined, such that we perform the composition
on-the-fly, avoiding the costly construction of parts of the product automaton
that would never be visited during RL.

Related Work. The study of the optimal control problems for MDPs under
various performance objectives is the subject of [20]. For a given MDP and
performance objective (total reward, discounted reward, and average reward),
the optimal expected cost can be characterised using Bellman equations and an
optimal strategy can be computed using dynamic programming (value iteration
or policy iteration) or linear programming [20]. Chatterjee, Majumadar, and
Henzinger [6] considered MDPs with multiple discounted reward objectives. In
the presence of multiple objectives, the trade-off between different objectives can
be characterised as Pareto curves. The authors of [6] showed that every Pareto-
optimal point can be achieved by a memoryless strategy and the Pareto curve
can be approximated in polynomial time. Moreover, the problem of checking the
existence of a strategy that realises a value vector can be decided in polynomial
time. These multi-objective optimization problems were studied in the context
of multiple long-run average objectives by Chatterjee [5]. He showed that the
Pareto curve can be approximated in polynomial time in the size of the MDP for
irreducible MDPs and in polynomial space in the size of the MDP for general
MDPs. Additionally, the problem of checking the existence of a strategy that
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guarantees values for different objectives to be equal to a given vector is in
polynomial time for irreducible MDPs and in NP for general MDPs.

Verification of stochastic systems against w-regular requirements has received
considerable attention [2,17]. For systems modeled as MDPs and requirements
expressed using w-regular specifications, the key verification problem “probabilis-
tic model-checking” is to compute optimal satisfaction probabilities and strate-
gies. The probabilistic model checking problem can be solved [1] using graph-
theoretic techniques (by computing so-called accepting end-component and then
maximising the probability to reach states in such components) over the product
of MDPs and w-automata. Etessami et al. [7] were the first to study the multi-
objective model-checking problem for MDPs with w-regular objectives. Given
probability intervals for the satisfaction of various properties, they developed a
polynomial-time (in the size of the MDP) algorithm to decide the existence of
such a strategy. They also showed that, in general, such strategies may require
both randomization and memory. That paper also studies the approximation of
the Pareto curve with respect to a set of w-regular properties in time polynomial
in the size of the MDP. Forejt et al. [9] studied quantitative multi-objective opti-
mization over MDPs that combines w-regular and quantitative objectives. Those
algorithms are implemented in the probabilistic model checker PRISM [17].

RL is concerned with the optimal control of MDPs when the transition table
and the reward structures are not known to the agents, but can be learned by
interacting with the environment. In such a case, the aforementioned dynamic
programming solutions are not applicable. RL [23] provides a framework to learn
optimal strategies from repeated interactions with the environment. There are
two main approaches to RL in MDPs: model-free approaches and model-based
approaches. In a model-based approach, the learner interacts with the system to
first estimate the transition probabilities and corresponding rewards, and then
uses dynamic programming algorithms to compute optimal values and strategies.
On the other hand, model-free RL [22] refers to a class of techniques that are
asymptotically space-efficient because they do not construct a full model of the
environment. These techniques include classic algorithms like Q-learning [24] as
well as their extensions that use neural networks, like deep Q-learning [19].

RL has recently been applied to finding optimal control for w-regular objec-
tives [4,10-12,14-16,21], but all of theses papers deal with a single objective.
Recently [3], the problem of maximising the probability of satisfying a safety
condition together with an single w-regular objective was considered and, as a
secondary objective, the controller aims at maximising a discounted reward. Our
approach is more flexible than [3] as we do not require that safety objectives be
prioritised over liveness objectives.

2 Preliminaries

Nondeterministic Biichi Automata. A nondeterministic Biichi automaton
is a tuple A = (¥, Q, qo, 4, '), where X' is a finite alphabet, Q is a finite set of
states, qo € Q is the initial state, A € @ x X x @ is the set of transitions, and
I''c Q x XY x Q is the transition-based acceptance condition.
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A run r of Aon w e X% is an w-word 19, wp, 71, w1, ... in (Q x X)¥ such
that ro = go and, for ¢ > 0, it is (r,_1,w;—1,7;) € A. We write inf(r) for the set
of transitions that appear infinitely often in the run r. A run r of A is accepting
if inf(r) n I' # . The language, L 4, of A (or, recognised by A) is the subset
of words in X that have accepting runs in A. A language is w-regular if it is
accepted by a Biichi automaton.

An automaton A = (X, Q,qo, A, I') is deterministic if (q,0,q¢'),(q,0,q") €
A implies ¢ = ¢” and is complete if, for all 0 € X and ¢ € Q, there is a
transition (¢, o, ¢’) € A. A word has exactly one run in a deterministic, complete
automaton.

Markov Decision Processes. A Markov decision process (MDP) M is a tuple
(S, 80, A, T, X, L) where S is a finite set of states, s is a designated initial state, A
is a finite set of actions, T : S x A — D(S), where D(S) is the set of probability
distributions over S, is the probabilistic transition (partial) function, X is an
alphabet, and L : S x Ax S — X is the labeling function of the set of transitions.
For a state s € S, A(s) denotes the set of actions available in s. For states s, s’ € S
and a € A(s), we have that T'(s,a)(s") equals Pr (s'|s, a).

A run of M is an w-word Sp,a1,... € S x (A x S)* such that
Pr(si+1]si,ai41) > 0 for all 4 > 0. A finite run is a finite such sequence. For
a run r = Sp,ai,s1,... we define the corresponding labeled run as L(r) =

L(sg,a1,81), L(s1,a2,82),... € X% We write Runs(M) (FRuns(M)) for the
set of runs (finite runs) of M and Runss(M) (FRunss(M)) for the set of runs
(finite runs) of M starting from state s. When the MDP is clear from the context
we drop the argument M.

A strategy in M is a function p : FRuns — D(A) such that for all finite
runs 7 we have supp(u(r)) € A(last(r)), where supp(d) is the support of d and
last(r) is the last state of r. Let Runs” (M) denote the subset of runs Runss(M)
that correspond to strategy p and initial state s. We say that a strategy u is:
pure if p(r) assigns probability 1 to just one action in A(last(r)) for all runs
r € FRuns; stationary if last(r) = last(r’) implies u(r) = p(r’) for all finite runs
r,7’" € FRuns; and finite-state if there exists an equivalence relation ~ on FRuns
with a finite index, such that p(r) = u(r’) for all finite runs r ~ /.

The behavior of an MDP M under a strategy p with starting state s is
defined on a probability space (Runs”, F* Prt') over the set of infinite runs of y
from s. Given a random variable over the set of infinite runs f : Runs — R, we
write E# {f} for the expectation of f over the runs of M from state s that follow
strategy pu. A Markov chain is an MDP whose set of actions is a singleton. For
any MDP M and stationary strategy p, let M,, be the Markov chain resulting
from choosing the actions in M according to p.

An end-component of an MDP is a set C' € S such that for every s € C' we can
pick an action as € A(s) in such a way that {s’ | T'(s,as)(s’) > 0} = C and the
graph with vertices in C' and edges in E = {(s,s') | s € C and T(s,as)(s") > 0}
is strongly connected. An end-component is accepting if at least one of such
edges correspond to an accepting transition and is mazimal if there does not
exist an end-component C’ D C. It is well-known (see, e.g., [1]) that for every
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strategy the union of the end-components is visited with probability 1 and once
an end-component, C’, is entered there is a pure finite-state strategy that visits
its every edge infinitely many times while never leaving C’.

Syntactic and Semantic Satisfaction. Given an MDP M and an automaton
A= (X,Q,q,A,I'), we want to compute an optimal strategy satisfying the
objective that the run of M is in the language of A. We define the semantic
satisfaction probability for A and a strategy p from state s as:

PSem’!(s, 1) = Pr#{reRunst (M) : L(r) € La} and
PSem?’!(s) = sup (PSemﬁ(l (s,10))-
m

A strategy . is optimal for A if PSem” (s, 1) = PSem’!(s).

When using automata for the analysis of MDPs, we need a syntactic variant
of the acceptance condition. Given an MDP M = (S,so,A,T,X, L) and an
automaton A = (X,Q,qo, 4, '), the product M x A = (S x @, (s0,q0), A X
Q,T*,I'*) is an MDP augmented with an initial state (sg,qp) and accepting
transitions I"*. The function 7% : (S X Q) x (A x Q) — D(S x Q) is defined by

/ 4 / /
T (5.0). (0.0))((5'. ') = {T(S’“)(S ) @ L e i) q) e
0 otherwise.

Finally, I'* € (SxQ)x (AxQ)x(SxQ) is defined by ((s, q), (a,q¢'),(s',¢")) € I'*
if, and only if, (¢, L(s,a,s’),q’) € I and T(s,a)(s’) > 0. A strategy p* on the
product defines a strategy p on the MDP with the same value, and vice versa.
Note that for a stationary p*, the strategy p may need memory. We define the
syntactic satisfaction probabilities as

PSat)'((s,q),u”) = Pr¥{re Runsé‘:q)(/\/l x A) :inf(r) n I # &}

PSat’!(s) = sup (PSatf}(‘((s, ), 1)) -
X

Note that PSat’y'(s) = PSem’(s) holds for a deterministic A. In general,
PSat%(s) < PSemﬁA(s) holds, but equality is not guaranteed because the opti-
mal resolution of nondeterministic choices may require access to future events.

An automaton A is good for MDPs (GFM), if PSat’!(so) = PSem’(so)
holds for all MDPs M [12]. For an automaton to match PSem?’!(so), its non-
determinism is restricted not to rely heavily on the future; rather, it must be
possible to resolve the nondeterminism on-the-fly. In this paper we only consider
GFM automata, which have this ability. Note that every LTL property and,
more generally, every w-regular objective can be expressed as a suitable GFM
automaton [12].

For w-regular objectives, optimal satisfaction probabilities and strategies can
be computed using graph-theoretic techniques over the product structure. How-
ever, when the MDP transition structure is unknown, such techniques are not
applicable. Model-free reinforcement learning overcomes this limitation.
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3 From Lexicographic Objectives to Learning in 3.5 Steps

In this section, we provide a reduction from lexicographic w-regular objectives to
a payoff function (with hyperparameter) that can be wrapped for Q-learning (the
additional half-step) in three steps. We assume that all properties are provided as
good-for-MDP automata [12] based on which we construct an extended product
automaton P in Subsect. 3.4.

3.1 Lexicographic w-regular Objectives

For two k-dimensional vectors v = (v1,...,v;) and v’ = (v],...,v},), we say that
v is larger in the lezicographic order than v’, denoted by v > v, if there exists
1 <i < k such that v; > v] and v; = vj for all j < i. We write v > v if v > v/
or v = v’. The problem we address is the following:
Given MDP M with unknown transition structure and k GFM Bichi
automata Aq, ..., A accepting w-regular objectives 1, ...,pr, compute a
strategy optimal for the lexicographic w-regular objective (Ay,...,Ax), that
18, a strategy that maximises according to the lexicographic order the vector
(p1,---,pr) where p; = PSemﬁ{i(so) is the probability that M satisfies ;.

We adapt the model-free reinforcement learning (RL) framework to solve this
problem. Bridging the gap between w-regular specifications and model-free RL
requires a translation from specifications to scalar rewards, such that a model-
free RL algorithm maximising scalar rewards produces a strategy that maximises
the probability to satisfy the specification. In this section we show how this can
also be done for lexicographic w-regular objectives.

3.2 Optimal Strategies for Lexicographic Objectives

Before turning to the reduction, we consider optimal strategies for the product of
the MDP M and the automaton P that combines all the individual objectives.
We also recapitulate what we need to achieve in M x P and what we can
assume about optimal strategies (such that some optimal strategies will satisfy
these assumptions).

Broadly speaking, the goal for each individual Biichi objective is to reach
an end-component with an accepting transition for this objective, and to stay
in this end-component forever, realizing this Biichi condition. maximising the
probability of reaching such an end-component is the key objective, while, in the
end-component, the strategy needs to make sure that some accepting transition
is (almost surely) visited infinitely often.

For Biichi objectives with a lexicographic order, the reachability of a “good”
end-component is the part that becomes lexicographic: the main objective is to
maximise the chance of reaching an end-component, where the main objective
is satisfied. Among all strategies that achieve this, we then maximise the chance
of satisfying the secondary objective, and so forth.
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R N

1 — C +R(T0)

Fig. 2. Adding transitions to the target (T") in the augmented product MDP. The only
edges that give non-zero reward are marked with a transition dependent +R(-) reward.
In the original translation [11], all such rewards were equal to 1.

As we have Biichi objectives, it is in principle possible to only consider maxi-
mal end-components for this. While this cannot be a learning objective—as there
is neither a concept of maximality in reinforcement learning, nor is learning such
solutions a natural goal—it means that, whenever a state of M x P is in two
end-components that satisfy the main and the secondary Biichi condition, then
it is also in an end-component that satisfies both—for example, the union of
the former two end-components. This prevents the interplay between these goals
from becoming complex.

Once we have reached an end-component in M x P we want to stay in, the
principle strategy is again to cover it, and thus to satisfy all objectives that this
end-component satisfies almost surely.

3.3 Outline of Our Reduction

The reduction generalises the reduction from [11] for w-regular objectives to
reachability. The difference in the reduction is that it uses a weighted extension
of reachability, i.e., different transitions to the target may be assigned different
rewards. These weights are determined by the transition taken by an extended
product automaton, which takes into account which set of individual objectives
have recently been progressed towards by traversing accepting transitions of their
corresponding GFM Biichi automata.

Broadly speaking, if we used this approach directly with a lexicographic
order, it would translate a positional strategy that satisfies the individual prop-
erties with probabilities (p1,p2, ..., pr) to a “reachability” vector (p}, p5, ..., p)),
such that p; < p; < p; + &, holds, where ¢ is bounded from above by (1 —¢) - E,
where ¢ is the parameter from the reduction (Fig.2), and E is the maximal
(among pure positional strategies) expected number of accepting transitions vis-
ited before reaching an end-component that the strategy remains in.

Note that one cannot simply optimise the lexicographic value of (p/,p5, ...,
P).), as the noise in the assessment of the probability to meet the main objective, no
matter how small, would outweigh all real differences in the probability of meeting
the less relevant objectives. However, as the set of positional strategies is finite,
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there is a minimal difference p,;n > 0 between the probabilities to achieve an
individual objective by any two positional strategies with a different probability
of meeting this objective.

Let fir = 1, pick any f; = (1 + 1/pmin)fit1 for all i < k, and let
f = (f1,f2,---, fx)- Now, consider any two (pure and stationary) strategies
that obtain probability vectors of satisfying the properties p = (p1,p2, ..., pr)
and p’ = (p},ph,...,D}), respectively, such that p > p’. We claim that the

— —
value of 7 - f 7T is at least pmin higher than - f 7. This is because, assuming
that the i-th position is the first one where p and p” differ, we get:

— —
?' fT_?/'fT>pminfi_ij

7>
= pmin<1 + 1/pmin)fi+l - Z f]
7>
=pminfi+1 - Z fj = ... >pminfk = Pmin-
j>it+1

N
Moreover, if Zle fi - € < Dmin, then using the weights of f for the reacha-

bility will guarantee that a strategy with a better performance obtains a better

value and, in particular, only optimal strategies can obtain the highest value.

3.4 From Lexicographic Objectives to Lexicographic Biichi

In a first step, we discuss reductions from lexicographic w-regular objectives,
given as GFM Biichi automata, to GFM automaton with lexicographic Biichi
objectives. In what follows, let B = {0,1} be the set of Boolean values.

Lexicographic Biichi Objectives. We first have to give semantics for lexi-
cographic Biichi objectives. For convenience in the proofs, we provide two: the
independent semantics and the infimum semantics. We will show that we obtain
the correct results, irrespective of which semantics we use, for the translations
we suggest: both semantics provide the same value for the extended product
automaton we define.

For this, we extend the usual product automaton by equipping the ‘accepting
transitions’ I" with a valuation function v : I' — B*, which maps each accepting
transition to a k dimensional Boolean (0/1) vector different from the 0 vector,
where each dimension refers to one of the & individual Biichi objectives.

The infimum semantics assigns to any run, r, the value according to the
‘worst accepting transition’ seen infinitely many times in r. Namely, to the set
I4 = inf(r) n I" of accepting transitions visited infinitely many times along r, it
assigns the 0 vector if T4 is empty, and otherwise the lexicographically minimal
vector in {v(t) |t € I4}.

The independent semantics intuitively treats all Biichi conditions indepen-
dently: using it, a run would be assigned a Boolean vector (by, ba, ..., b), where
b; = 1 if there is a transition ¢ € I4 such that the ' component of v(t) is 1.
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Reductions. We assume that the individual w-regular objectives are given by
k GFM Biichi automata Ay, ..., Ak, with A; = (2, Q%, ¢, A", I'*). From these
automata, we discuss a construction to an equivalent extended product automa-
ton P, where equivalence means that, for all finite-state strategies, the value that
can be obtained using the k¥ GFM automata for the properties, and the infimum
and independent semantics for the two automata we construct provide the same
results. Our construction builds an automaton P = (X, Q, qo, 4, I',v), where

- Q = szl(Ql X B)
~ qo = (43,0;43,0;...545,0)
— A = T'UA’ where the non-accepting transitions A’ are defined independently
for the k components: for the i*" component,
e ((¢,0),0,(¢',0)) is possible iff (¢,0,¢') € A*\ I'* (ie., iff (¢,0,q) is a
non-accepting transition of A;),
e ((¢,0),0,(¢',1)) is possible iff (¢,0,q') € I'* (i.e. iff, (¢,0,¢') is an accept-
ing transition of A4;),
e ((¢,1),0,(¢,1)) is possible iff (¢,0,¢") € A (i.e., iff (¢, 0,¢’) is a transition
of A;), and
— for all transitions (g1,b1;...;qk, bx; 03¢4, b5 .45, b)) € A with Zle b, #
0, I' contains a transition ¢t = (g1,b1;...;qx,bk;05¢1,0;...;¢;,0) (obtained
by replacing all Boolean values in the target state by 0), with v(¢t) =
(b}, b5,...,0}); I' contains no further transitions.

That is, A’ simply collects the information, which of the individual accepting
transitions has been seen since the last transition from I has been taken. Taking
a transition from I" then ‘cashes in’ on these transitions, while resetting the
tracked values to 0.

As a minor optimisation, we remove the states Xi:ol Q' x {1} together with
the transitions that lead to them. This can be done as there is never a point in
delaying to cash in on these transitions. Offering such additional choices that
should never be taken would likely impede, rather than help, learning.

Equivalence. Recalling that pure finite-memory strategies suffice for MDPs
with lexicographic Biichi objectives (follows from [7]), we now show equivalence.

Theorem 1. Given an MDP M and k w-regular objectives given as GFM Biichi
automata Ai,..., Ay, it holds that maximising these k objectives with lezico-
graphic order, and mazximising them with the automaton P from above with infi-
mum or independent semantics provides the same result.

Proof. We make use of the fact that pure finite-memory strategies suffice to
obtain optimal control. We therefore fix an arbitrary finite-memory strategy u
for the control of the MDP M with lexicographic Biichi objectives, obtaining
a Markov chain M. Note that this is only a control for the MDP, not of the
witness automaton P.

We first turn any pure strategy for P with independent semantics into a
strategy for the individual A;, which yields the same expected vector for every
run (and thus the same expected probability vector). This is quite simple: every
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individual A; can simply behave like its component in P. On every run, if the
it" component of the lexicographic vector is 1, then A; has seen infinitely many
accepting transitions.

Next, we turn k individual pure finite-memory strategies for the individual
A; into a strategy for P and evaluate it with the infimum semantics. For this,
the automaton essentially follows the component strategies, and only has to
additionally decide when to ‘cash in.” P will make this choice whenever all indi-
vidual automata have reached an end-component on the product of M, and the
automaton and, for all 4; that are in an accepting end-component, the Boolean
store in the i*® component is set to 1, or would have been set in this move. Note
that this means that v(¢) in this case indicates all those components, for whom
the individual A; is in an accepting end-component whenever an accepting tran-
sition occurs. (In case that none of the A; is in an accepting end-component, we
do not use accepting transitions.)

Apart from this, it only uses accepting transitions when all Boolean values
would otherwise be 1 (because then cashing in is forced).

With this strategy, the valuation can only differ from the individual valua-
tions of the A; if either (at least) one of the A;-s never reaches an end-component,
or if it eventually reaches an accepting end-component, but only visits accepting
transitions finitely often. As both of these events have probability 0, the expected
vectors are the same for the individual 4; and for P with this strategy.

Finally, for every strategy the expected value for the independent semantics
is at least as high as the value for the infimum semantics. O

3.5 From Lexicographic Biichi to Weighted Biichi

We first observe that the previous theorem translates smoothly to a scalar ver-
sion of the previous translation: we call a Biichi automaton weighted if it has a
positive weight function w : I' — R instead of the lexicographic value function v.
Similar to lexicographic Biichi, the value of a run is then 0 if no accepting tran-
sition occurs infinitely often. If accepting transitions do occur infinitely often,
and they do occur in the order tq,ts,t3,... € I'“, than the value of the run is
liminf,, . (1/n) >0 w(t;).

For any given linear function f : R¥ — R with positive coefficients (i.e.,
linear functions that grow strictly monotonically in each dimension) that maps
the k dimensional vectors to real numbers, we define Py = (X, Q, g0, A, I, fov)
just like the automaton P from the previous subsection. The proof of Theorem
1 then trivially extends to the following theorem.

Theorem 2. Given an MDP M and k lexicographic w-regular objectives given
as GFM Biichi automata Ay, ..., A, it holds that maximising these k objectives,
weighted by some f : R¥ — R with only positive coefficients, and mazimising
them with the automaton Py provides the same result.

Proof. The proof of Theorem 1 merely needs to be extended by the observation
that, for every run r, with value b in the independent semantics, b~ in the infi-
mum semantics, and wy in the weighted semantics, f(b") = wy > f(b~) holds.
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Recalling that the same expected vectors can be obtained using the individual
A;, P with independent semantics, and P with infimum semantics, all these
maximisations provide the same result. a

Lemma 1. Let p be any optimal finite-memory strategy for M xPy. Then (M x
Py)u never has two transitions t,t' € I' with v(t) # v(t') in a end-component
reachable from its initial state.

Proof. Assuming such transitions ¢ and t’, the strategy can be improved by
playing an adjusted strategy that mimics the strategy in the end-component
(once reached), except that it only plays an accepting transition when all Boolean
values that occur in this end-component in the independent semantics, are set.
As this increases the expected reward, it contradicts the optimality of the end-
component. O

This lemma also entails the existence of memoryless optimal strategies.

Observation. We now observe that, for carefully chosen f, optimizing the
expected reward provides an optimal strategy for P (for both semantics). For a
given MDP M and k GFM Biichi automata Aq, ..., Ak, there is a linear func-
tion f such that an optimal pure strategy for M x P; is also optimal on M x P.
(Note that M x P and M x P; have the same states and strategies, and that
Lemma 1 entails that the value for both semantics of P is the same.) How to
choose such weights was described in Sect. 3.3.

3.6 From Weighted Biichi to Weighted Reachability

Generalizing the construction for GFM Biichi automata from [11,12], we replace
the fized payoff of +R(-) = 1 used in the gadget (cf. Fig.2) by a transition
dependent payoff f (v(t)) The gadget is otherwise unchanged: it takes the orig-
inal transition with probability ¢, and moves, with a probability of 1 — (, to a
sink state T—providing a payoff of f(v(t))—where the run ends. The payout
on these transitions is the only reward that exists in this game, while ( is a
hyperparameter.

This has reduced the problem into a generalised reachability game, where a
payout occurs only in the last step.

Theorem 3. Given an MDP M and k lexicographic w-regular objectives given
as GFM Biichi automata A1, ..., A, and an f that satisfies the condition from
the observation above, there is a (o < 1 such that, for all € [(p,1), the optimal
(pure positional) strategies obtained from replacing the accepting transitions in
M x Py by the gadget, are optimal for M x Pg.

Proof. We start with expanding the observation from Lemma 1 about end-
components in optimal solutions to the weighted reachability objective obtained
using this gadget: in both MDPs under consideration, M x Py and the varia-
tion where accepting transitions are replaced by the gadget, there cannot be two
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t,t' € I' with v(t) # v(t')—if there were, the expected payoff could be improved
as described in the proof of Lemma 1.

This leaves the expected difference to be purely down to the part before
reaching an end-component. Moreover, for every positional strategy, the expected
value of the undiscounted payoff is between the value obtained by removing the
payoff for the gadgets not in an end-component, and increasing the payoff for
these gadgets to the maximal payoff. As the expected difference between these
extremes goes to 0 when ( goes to 1, for sufficiently large { < 1, optimal strategies
for weighted reachability in the model with gadgets are also optimal for the mean
payoff objective of M x Py. O

Note that weighted reachability objectives always have optimal positional
strategies. The theorems and the observation in this section show that, for suit-
able parameters, such an optimal positional strategy optimises the prioritised
w-regular objectives with lexicographic order.

Theorem 4. Given an MDP M and k lexicographic w-regular objectives given
as GFM Bichi automata Ay, ..., Ag, a suitable linear function f, and a ¢ < 1
sufficiently close to 1, an optimal pure positional strategies for the MDP with
weighted reachability objective obtained from replacing the accepting transitions
in M x Py by the gadget from this subsection provide an optimal control for M
for the individual A; with lexicographic order of relevance.

3.7 Wrapping Up Weighted Reachability

We note that weighted reachability lacks the contraction property [20,23], which
makes it theoretically unsuitable for Q-learning. Learners often wrap reachability
(and undiscounted payoff) into a discounted version thereof. This adds another
parameter v (the discount factor), which should be chosen significantly closer to

1 than ¢ (e.g., 1 — (1 —¢)?).

4 Experimental Results

We refer to the gadget that keeps track of the accepting edges seen for each prop-
erty as the tracker. We implemented the construction described in Sect. 3 on-the-
fly, where we keep track of the states of the MDP, the automata, and the tracker,
separately and compose them together at each timestep. The agent has additions
actions to ‘cash in’ and to control any nondeterminism in the automata.

We ran Q-learning on a series of case studies that can be seen in Table1.
In Table 1, we list the name of the example, the property prioritisation order,
the number of states in the MDP, the number of states in the product, the
probability of satisfaction for each property under the learned strategy, and the
time in seconds. We also report the values of the parameter f (which encodes

the linear function for ? = (f,1) from Sect. 3.3 when we have two objectives,
—
and for f = (f2,f,1) when we have three), the parameter ¢, the exploration
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Table 1. Multiobjective Q-learning results. Blank entries indicate that the default
value were used. The default values are: f = 10, ( =0.99, ¢ = 0.1, « = 0.1, v = 0.999,
tol= 0.01, ep-1= 30, and ep-n= 20000. Parameters that were linearly decayed to zero
over training are indicated with . For Bridges the sum of the probability of satisfaction
of all properties is 6. Times are in seconds.

Name | Prop. ord. | States | Prod. Prob. Time |f |¢ e la tol | ep-1| ep-n

R4x4 ]1,2,3 16 1024 |1,0,1 6.37 0.7 65 k
R4x4 (21,3 16 1024 | 1,0,1 1.95 0.7 0.03 75 k
R5x5 [1,2,3 25 1600 | 1,1,1 12.49 0.5 [0.2/0.4* |0 |250 200 k
R4x7 1,23 28 3584 11,0.75,0.25| 23.1820/0.9 [0.2/0.9* |0 | 400|100 k
R4x7 (21,3 28 3584 11,0.5,0 10.62|20|0.7 | 0.2/0.15 200 | 200 k
Virus |1,2 809 58248 | 1,0 41.43 0.97/0.5/0.2 50 | 150 k
Virus |2,1 809 58248 |1,0.25 191.97 0.97/0.5/ 0.9 50 | 700 k
UAV 1,2 11448 | 732672 | 1,1 93.57 | 20 0.2 40 1120 k
Bridges |1,...,7 19 | 5318784 | — 3.55| 1/0.9 0.2 30 k

rate ¢, the learning rate «, the discount factor -y, the fraction under which action
values are considered the same during model checking of the learned strategy, the
value of the episode reset timer, and the number of training episodes. Parameters
were tuned manually to minimise training time. In each case, the runtime for
the experiment stays below 4 min. Next, we discuss these case studies.

4.1 Robot

For the robot example from the introduction in Fig. 1 with p = 0.5, we have con-
sidered instances for the three scenarios discussed there, with different priorities
of them. On examples R 4x4 and R 5 x5 we initialise learning episodes randomly
within the model to deepen exploration in order to achieve better performance.
The results are in line with the analysis provided in the introduction.

Figure 3 shows an optimal strategy learned for the 4 x 7 Robot grid with
property prioritisation order 2, 1, 3.

=
3 »* .
) *
N s
1| 1 T » 3
0| 2 L) » T
o 1 2 3 4 5 6

Fig. 3. Learned strategy on the 4 x 7 Robot grid with property prioritisation order 2,
1, 3. We show only reachable states and project the states in the product to the MDP.
The ‘cash in’ action is not shown for clarity.
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To avoid clutter, we show only states that are reachable under the learned
strategy and do not show the ‘cash in’ action. Additionally, we project states in
the product to the MDP. The robot starts in Row 0, Column 3 and moves up the
column. Then, in Row 3, Column 3 it attempts to go across. With probability
0.5, it gets stuck in Row 3, Column 4. There are no safe actions from this field
except to move north — keeping the robot in the same field. If it gets across to
Row 3, Column 5, it moves down and visits the fields labeled 3 and 4.

4.2 Computer Virus

This case study (based on [18],}) considers the Q @ @

spread of a virus in a computer network. The

structure of the model is sketched in Fig. 4. Cir-

cles represent network nodes, and lines between @ @ @
them indicate network connections, between

which the virus can spread. An attack gets past

the firewall with probability pgetect = 0.5. If past

the firewall, an attack can then infect with prob- @ @
ability pinfect = 0.5. The control of the attacks

is centralised. A no operation action is always infected

available. The instance coordinating the attack
has the following objectives:

(v1) Fsgo = 2/\G((83’2 =2As831 #2) = XXsz1 = 2): eventually, node
(3,2) gets infected; and when (3,2) is infected and (3,1) is not, (3,1) is
infected within 2 steps.

(v2) Fs1,1 =2 \ G(s2,2 # 21823 # 2): eventually node (1, 1) gets infected while
nodes (2,2) and (2, 3) never get infected.

Fig. 4. Virus case study

When the prioritisation order is 1, 2, then the optimal strategy crosses the
barrier formed by nodes (2,2) and (2, 3) in order to infect node (3, 1) before node
(3,2). When the prioritisation order is 2, 1, then the optimal strategy respects
the barrier formed by nodes (2,2) and (2, 3), and follows the path through node
(3,1) to (1,1). This reduces the probability of satisfying v; from 1 to 0.25.
This problem is particularly challenging because it requires discovering a long
sequence of actions and the properties interfere with each other during learning.

4.3 Human-in-the-Loop UAV Mission Planning

This model (originally from [8],%) considers the control of an unmanned aerial
vehicle (UAV) interacting with a human operator. The UAV operates on a net-
work of roads. In this network, waypoints (w;) are specified as well as restricted
operation zones (roz;). In specifications, waypoints serve as places that shall be
visited (once or repeatedly), while restricted operation zones shall be avoided.
In our experiments, we have used the following properties.

! http://prismmodelchecker.org/casestudies /virus.php.
2 http://prismmodelchecker.org/casestudies /human-uav.php.
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(u1) N\; G—roz;: UAV never visits a restricted operation zone
(uz) Fw; A Fws A Fwg: UAV eventually visits wy, wg, and wg

4.4 Seven Bridges of Konigsberg

As a final example, we consider the classic problem of the seven bridges of
Konigsberg?, in which one seeks a path that crosses each bridge exactly once.
The model is deterministic and we have 7 properties of the form

(u;) Fbo; A G(b; — XG # b;): cross bridge 7 exactly once.

where b; indicates if one is on bridge i. Instead of applying a preference for
each property, we set f = 1. In this setting, payoff is maximised when the sum
of the probability of satisfaction of all properties is maximised, e.g., the agent
maximises the expected number of bridges crossed exactly once. The RL agent
successfully finds strategies to cross 6 bridges exactly once, the maximum number
possible.

5 Conclusion

We have generalised recent work on applying model free reinforcement learning
to finding optimal control for MDPs with w-regular objectives to address the
problem of controlling MDPs with multiple w-regular objectives, and with a
lexicographic order of importance: a main objective, a secondary objective, etc.

Starting with good-for-MDPs automata, the extension is surprisingly simple:
it suffices to add a ‘tracker’ to the product of the individual automata, which
memorises which of the individual Biichi conditions have occurred, and to allow
the automaton to ‘cash in’ on these occurrences (while resetting the memory).
How valuable the return is depends on the objectives, for which a good event
(the passing of an individual Biichi transition) has been witnessed, where the
main objective attracts a high reward and each consecutive objective obtains a
small fraction of the reward assigned to the previous more important one.

Such a reward structure can be proven to work for reinforcement learning in
essentially the same way as they have been proven to work for the simpler case
of having a single objective (which is also a special case of our results).

This reduction is beautifully straightforward, and our experimental results
show that it is also effective. This might look surprising: after all, the correct-
ness proofs rely heavily on well chosen hyperparameters. Yet, in practice, the
techniques have yet again shown to be robust: we could learn correct strategies
reliably and efficiently.

3 https://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg.
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