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Modeling the locomotion of articulated soft robots
in granular medium

Yayun Du, Jacqueline Lam, Karunesh Sachanandani, and M. Khalid Jawed

Abstract—We introduce a numerical tool for modeling articu-
lated soft robots that couples discrete differential geometry-based
simulation of elastic rods, our model for the articulated structure,
and other external forces. Parallel to simulations, we build an
untethered robot testbed, in the granular medium, comprised
of multiple flexible flagella that are rotated about an axis by a
motor. Drag from the granules causes the flagella to deform and
the deformed shape generates a net forward propulsion. External
drag depends on the flagellar shape, while the change in flagellar
shape is the result of the competition between the external loading
and elastic forces. We find reasonable quantitative agreement
between experiments and simulations. Owing to a rod-based
kinematic representation of the robot, the simulation can run
faster than real-time in some cases, and, therefore, we can use it
as a design tool for this class of soft robots. We find that there
is an optimal rotational speed at which maximum efficiency is
achieved. Moreover, both experiments and simulations show that
increasing the number of flagella from two to three decreases the
speed of the robot. This indicates that our simulator is potentially
applicable for unknown physics exploration. We also gain insight
into the mechanics of granular medium - while resistive force
theory can successfully describe the propulsion at low number
of flagella, it fails when more flagella are added to the robot.

Index Terms—Soft robotics, biomimetics, locomotion, design
and modeling, bacteria, flagella, discrete elastic rod, granular
medium, resistive force theory.

I. INTRODUCTION

SOFT robots and continuum robots inspired by nature
that mimic echinoderms, bacteria, and fish, are primarily

composed of intrinsically soft matter and fluids, enabling them
to deform elastically into reversible shapes [1]–[3]. Their
modeling and control are particularly challenging due to the
geometric nonlinearity induced by the structural flexibility and
the nontrivial coupling among elasticity, contact, and other
external forces such as hydrodynamic and magnetic forces.

Compared with well studied underwater locomotion [4], [6],
the mechanisms behind underground locomotion are far less
understood. Slender flexible animals have evolved to apply
various locomotion modes depending on their physiology
and environmental factors [7]–[9]. Unlike the Navier-Stokes
equations for fluids, no validated theories for locomotions
on or inside terrestrial surfaces exist until recently, when the
granular flow is shown to be functionally equivalent to low
Reynolds fluid [10]. Flagellar propulsion, widely studied since
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1955 [11] for application in low Reynolds fluids, is effective
in granular media (GM) as well [12]. This builds a remarkable
connection between the microscopic world of bacteria [13] and
meter-sized snakes in sand. Moreover, the design and control
of soft robots usually require painstaking trials due to the
limitations of current simulators. Previous work on soft robot
modeling has focused on the Finite Element Method [14],
voxel-based discretization [15], and modeling of slender soft
appendages with Cosserat rod theory [6] (including the piece-
wise constant strain method [33], piecewise variable strain
method, differential kinematics [34], the constant curvature
model, and piecewise constant curvature model [35]). A real-
time simulator that can conveniently incorporate geometry
and external forces will accelerate robot design and explore
unknown physics in a complicated environment. Moreover, a
simple-to-deploy testbed can greatly benefit theoretical and
computational verification.

In this paper, we draw inspiration from the bacterial loco-
motion and introduce a palm-sized untethered robot comprised
of 𝑛 ≥ 2 naturally straight elastic rods and a rigid head with an
embedded motor and battery. As shown in Fig. 1, the rotation
of these tails generates drag from the GM, deforming the soft
material. The tails provide a net propulsive force as a result
of their nonlinear deformation. This net propulsion is only
feasible in flexible structures; propulsion is zero in the case
of rigid straight tails. We introduce a numerical method for
simulating the dynamics of a collection of Kirchhoff elastic
rods [17] subjected to viscous drag described by Resistive
Force Theory (RFT) [11]. This computational tool is used to
simulate the multi-limbed robot and quantitatively compared
against experiments. We conduct parametric studies on the
speed of the robot as a function of the number of tails and
rotational speed, and determine the optimal rotational speed
for maximum efficiency. We test the applicability of RFT to
GM and indicate regimes in which it can fail.

This paper is organized as follows. Section II introduces the
background and related work. Section III provides a detailed
description of the robotic platform and the experimental setup.
Next, the numerical model we employ for simulating the
locomotion of multi-limbed robot is introduced in Section IV.
The results from simulations and experiments are presented
in Section V. Finally, conclusions are summarized and future
research directions are suggested in Section VI.

II. BACKGROUND AND RELATED WORK

Simulating the dynamics of soft robots is complex and slow
because of the numerous degrees of freedom and nonlinear
material properties. Modeling soft robot locomotion can be
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Fig. 1. Snapshots from simulation. The shape of a robot with (a) 𝑛 = 2 tails (Rotational speed of the motor 𝜔𝑇 = 100.00 rpm, head rotational speed
𝜔ℎ = 95.47 rpm, tail rotational speed 𝜔𝑡 = 4.53 rpm) and (b) 𝑛 = 3 tails (𝜔𝑇 = 100.00 rpm, 𝜔ℎ = 97.49 rpm, 𝜔𝑡 = 2.51 rpm) between 𝑡 = 0 and 𝑡 = 200
seconds. The speed of the robot is 𝑣 = 0.22 mm/s (and 𝑣 = 0.13 mm/s) for 𝑛 = 2 (and 𝑛 = 3).

divided into two components: (1) external loading on the flex-
ible structure from the surrounding medium and (2) articulated
slender bodies composed of multiple thin elastic rods.

Model of external loading from GM: GM, such as sand, soil,
muddy sediments, and other mechanically unstable terrestrial
substrates, display solid-like behavior in bulk and fluid-like
behavior when disturbed. A major challenge of modeling the
nonlinear dynamics of soft robots in GM is modeling the
external forces on thin filaments. Modeling the motion of soft
robots in purely fluidic medium is possible by solving Navier-
Stokes hydrodynamics in the presence of moving boundary
conditions. However, the computational cost is prohibitive for
application in design and control of soft robots. For rods –
mechanical structures with one dimension much larger than the
other two – moving in low Reynolds flow, RFT is widely used
to connect the hydrodynamic force from viscous environment
and the velocity along the rod’s centerline [11], [18]. Despite
differences in the physical mechanisms involved, a solid
friction analog to RFT in viscous fluid has been successfully
applied in the context of GM to describe the undulatory motion
of sand lizards and snakes [19], [20]. Several studies have
shown that the frictional forces perpendicular to the body per
unit length are greater than those along the body [12], [21].

Mechanics of articulated elastic rod structures: As with
bacteria, the head and tails of our untethered articulated robot
rotate in opposite directions [13]. The external force induced
by GM can result in geometrically nonlinear deformation of
tails, as displayed in Fig. 1. Notable prior works investigated
the force on thin rigid rods in viscous fluid [18] or GM [4],
[5], [12]. Here, we use Discrete Elastic Rods (DER) [22]–[24]
to capture the nonlinear deformation of thin elastic rods in the
presence of external forces. The accuracy of DER has been
established several times through prior works [25], [27], [36].
Previous studies combined DER with hydrodynamic models in
viscous fluids to investigate the deformation and instability of
a single helical elastic rod [25], [26]. Recently, we developed
a model of multi-flagellated robots operating near the air-fluid
interface [32].

A wide variety of soft robots can be modeled as a network
of elastic rods, optionally connected to rigid bodies. Structures
comprised of multiple elastic rods, e.g. elastic gridshell (also
known as Cosserat net) [27] and flexible rod mesh [28],
have also been modeled with DER. The multi-rod gridshell
simulator [27] used stiff springs at the joints between two
rods to impose constraints and computed the spring forces

explicitly. This requires a smaller time step compared with
an implicit approach and ignores the coupling of twisting and
bending modes [28] between two rods at the joints. In this
study, we present an algorithm that treats all the elastic and
external forces implicitly in a network of rods and accounts for
the presence of a rigid head. We demonstrate that a seemingly
complex robot can be kinematically represented by a network
of rods; this rod-based presentation can be used to leverage
the computational efficiency of cutting edge tools like DER.
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Fig. 2. The compositive view of the experimental setup. (a) The robot with
𝑛 = 3 tails. The head is comprised of (b) a battery and (c) a motor. (d) A
circular disc with a circular array of holes (holes A1-A3) for gluing the tails
with Gorilla glue super glue, gel, and a centered hole (hole B) for inserting the
motor shaft. (e) The robot is placed inside a cylindrical tube full of granular
medium (transparent water beads in this work).

III. EXPERIMENTAL DESIGN

Effective soft flagella-propelled locomotion in GM needs a
complex interplay between the robot and GM, requiring back-
and-forth iterations of robot design and GM selection. This
section will detail the final robot design, GM, and the induced
locomotion experiments.

A. Robot design

Fig. 2(a) shows a photograph of the soft robot which is
a small, lightweight (14 cm, 35 g) structure actuated by 𝑛

number of soft elastic tails that are made of Vinyl Polysilox-
ane (ZHERMACK Elite Double 32). It includes (1) a head
with two 3.7V 200mAh rechargeable 502025 LiPo batteries
(Fig. 2(b)) and one DC geared motor (uxcell) with 3V nominal
voltage (Fig. 2(c)), 0.35W nominal power and 0.55A stall
current, (2) multiple elastic tails, and (3) one 3D-printed plate
((Fig. 2(d))) to hold those tails. The elastic tails are fabricated
straight using the molding and casting technique in [29]. The
changeable inner and outer diameters of PVC tube molds make
the scale-up or scale-down of our robot platform effortless.
Inside the head, two batteries are connected in parallel, making
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the entire structure symmetric. We design the robot head as
cuboidal to increase its ability to fluidize the GM in front
of it. The tails are inserted and glued (using Gorilla super
glue, gel) into a circular array of holes on a 3D-printed plate
and are driven by a motor via the shaft protruding from
the robot head. We vary the number of tails to explore its
effect on the translational speed, 𝑣, of our robot. The control
parameter is the rotational speed of the tails relative to the
head, 𝜔𝑇 . To modify it, we build robots with different motors
but identical other components. The motor’s rotational speed
decreases as the voltage supplied drops. To ensure that the
motor rotates at a constant speed, we fully charge the batteries
before and after each 10-minute experiment. Moreover, the
size and weight of all motors are almost the same, 13−15g and
(1.5 − 1.7) × 1.2 × 1.0 cm even though they provide different
rotational speeds. When necessary, we wrap electrical tape
around the motor to account for the minor differences in size
and weight among different motors.
B. Granular medium & locomotion experiments

We choose water crystal beads as the GM to test the
locomotion due to their transparency. The robot can be seen
from outside the medium and its movement is recorded using
a conventional digital camera (Nikon D3400) with a frame
rate of 29.98fps. The diameter of the beads in dry state is
2.5 mm, which increases to 𝑑𝑏 = 9.4 ± 0.4 mm after fully
absorbing water. The size of beads is determined by the
amount of time they are placed inside water and reversible
after dehydration. When performing experiments, we use the
beads fully absorbing water to keep their size consistent.
Before experiments are carried out, we dry their surfaces to
decrease the possibility of slippage between the GM and the
robot. The volume fraction [21] – the ratio between the solid
volume and the occupied volume – is about 0.52. As illustrated
in Fig. 2(a), the diameter of the beads is on the same order
of magnitude as the diameter of the tails. RFT is intended
for grains considerably smaller than the size of the robot; our
choice of rather large grains is to test the limits of RFT.

As the reservoir for GM, we use a clear cylindrical tube
with an inner radius of 5.3 cm and an axial length of 122
cm, as shown in Fig. 2(e). The tube is filled with GM and
placed at a 2◦ angle to the horizontal plane to keep the GM
compact while still allowing the robot to move. The robot is
initially positioned at one end near the center of the cross-
section of the tube, meant to cancel the wall effect. Since
the robot is placed at the center of the tube, surrounded by
compact granules against the tube wall, the drag-induced lift
mentioned in [30] is suppressed. Hence, the rotation of tails
propels the robot forward in a roughly straight line through the
GM. A bright yellow marker is attached to the black colored
head and a black marker is attached to one of the green colored
elastic tails in order to count the rotational speed of the robot
head (𝜔ℎ) and tail (𝜔𝑡 ).

IV. NUMERICAL MODEL DESCRIPTION
Following experiments, we develop a simulator in Sec-

tions IV(A-E) to simulate the movement of the robot, with
DDG simulating the structure by incorporating RFT for the
drag force on the flagllum and Stokes’s law for the force
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Fig. 3. Schematic of the discrete representation of a robot with 𝑛 = 2 tails.
(a) Geometric parameters of the robot in undeformed state. Here, 𝐿1 = 2𝑎 is
the diameter of the robot head, 𝐿2 is the diameter of the disc connecting the
head and the tails, and 𝐿3 is the length of each tail. Dashed lines represent
rigid structure whereas solid lines correspond to flexible structure. Node xℎ
represents the location of the head. (b) A close-up of the “joint” node x𝑎 that
connects the head with tails. In this figure, d.b.E. indicates discrete bending
and twisting energy between adjacent edges,i.e., xℎx𝑎 , x𝑎x𝑐 , and x𝑎x𝑏 . This
is the only node that is connected to more than two nodes. (c) A close-up
of three nodes, x 𝑗−1, x 𝑗 , and x 𝑗+1, and two edges, e 𝑗−1 = x 𝑗 − x 𝑗−1 and
e 𝑗 = x 𝑗+1 − x 𝑗 . The turning angle from edge e 𝑗−1 to e 𝑗 is 𝜙 𝑗 . The reference
frame on e 𝑗 is

{
d 𝑗

1 , d 𝑗

2 , t 𝑗
}

and the material frame is
{
m 𝑗

1 , m 𝑗

2 , t 𝑗
}
. The twist

angle on edge e 𝑗 is 𝜃 𝑗 .

and torque on the robot head. The material and geometric
parameters of the robot are given in Section IV(F).

A. Kinematics

Referring to Fig. 3(a), the first step in modelling the robot is
to represent it as a “stick figure”. A number of nodes (circles
in Fig. 3) are located along the stick figure. Fig. 3(b) shows the
nodes at the “joint” between the head and tails (𝑛 = 2 in the
figure). Node x𝑎 is unique since it is connected to 𝑛+1 nodes.
All other nodes are connected to two nodes or a single node in
case of terminal nodes (open circles in Fig. 3(a)). As illustrated
in Fig. 3(c), a node x 𝑗 is typically connected with two nodes
x 𝑗−1 and x 𝑗+1. Details of concepts “edge” (e.g. e 𝑗 = x 𝑗+1−x 𝑗 ),
reference frame

{
d 𝑗

1, d
𝑗

2, t
𝑗
}
,and material frame

{
m 𝑗

1,m
𝑗

2, t
𝑗
}

are given in our previous work [32]. Reference frame is
initialized at time 𝑡 = 0 and then updated at each time step
of the simulation using time-parallel transport. Detailed DER
can be found [22]–[24]. A scalar quantity, 𝜃 𝑗 , is necessary per
edge to obtain the material frame from the reference frame
as outlined in Fig. 3(c). Angle 𝜃 𝑗 is the “twist angle”. We
follow the convention of using subscripts to denote node-based
quantities and superscripts for edge-based quantities.

The locations of the nodes, x 𝑗 (0 ≤ 𝑗 < 𝑁 where 𝑁 is
the number of nodes), and the twist angles, 𝜃 𝑗 (0 ≤ 𝑗 <

𝑁𝑒 where 𝑁𝑒 is the number of edges), completely describe
the configuration of the robot. For the robot studied in this
paper, 𝑁𝑒 = 𝑁 − 1 (see Fig. 3(a)). The DOF vector for the
robot is q =

[
x0, x1, x2, . . . , x𝑁−1, 𝜃

0, 𝜃1, . . . , 𝜃𝑁𝑒−1]𝑇 , where
the superscript 𝑇 denotes transpose. If a robot has 𝑁 nodes,
the size of q is ndof = 3𝑁 + 𝑁𝑒. Since the robot deforms
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with time, the DOF vector is a function of time, i.e. q ≡ q(𝑡).
Knowing the configuration of the robot at 𝑡 = 0 (i.e. q(0) is
known), the task at hand is to compute q(𝑡).
B. Macroscopic strains & Elastic energies

At time 𝑡 = 0, the robot is undeformed with zero strains
and the DOF vector is q(0) ≡ q̄; hereafter, ¯( ) represents
evaluation of a quantity in its undeformed configuration. Axial
stretch, curvature, and twist are the macroscopic strains along
the structure. The axial stretch, 𝜖 𝑗 , in the 𝑗-th edge is

𝜖 𝑗 =
∥e 𝑗 ∥
∥ē 𝑗 ∥ − 1. (1)

Curvature binormal is a vector representing the turn whose
proof is given in Fig. 3.2 and Eqs. 3.6 - 3.11 in [24]:

(𝜅b) 𝑗 =
2e 𝑗−1 × e 𝑗

∥e 𝑗−1∥∥e 𝑗 ∥ + e 𝑗−1 · e 𝑗
. (2)

It turns out that ∥(𝜅b) 𝑗 ∥ = 2 tan
(
𝜙 𝑗

2

)
, where 𝜙 𝑗 (in Fig. 3(c))

is the turning angle. No curvature is associated with the
terminal nodes. The curvature of the osculating circle passing
through x 𝑗−1, x 𝑗 , and x 𝑗+1 is ∥(𝜅b) 𝑗 ∥/Δ𝑙 where Δ𝑙 = ∥e 𝑗 ∥ =

∥e 𝑗−1∥. The scalar curvatures along the first and second
material directors are

𝜅
(1)
𝑗

=
1
2
(m 𝑗−1

2 + m 𝑗

2) · (𝜅b) 𝑗 , (3a)

𝜅
(2)
𝑗

=
1
2
(m 𝑗−1

1 + m 𝑗

1) · (𝜅b) 𝑗 . (3b)

Eqs. 3a and 3b and following equations were derived by [23]
and a pedagogical exposition is available in [24]. In Fig. 3(c),
the twist at the 𝑗-th node is

𝜏𝑗 = 𝜃 𝑗 − 𝜃 𝑗−1 + Δ𝑚 𝑗 ,ref, (4)

where Δ𝑚 𝑗 ,ref is the reference twist, i.e. the twist of the
reference frame as it moves from the ( 𝑗 − 1)-th edge to the
𝑗-th edge [22].

The total elastic energy of the structure is the linear sum of
stretching 𝐸𝑠 , bending 𝐸𝑏, and twisting 𝐸𝑡 energies such that

𝐸elastic = 𝐸𝑠 + 𝐸𝑏 + 𝐸𝑡 , (5)

where 𝐸𝑠 , 𝐸𝑏, and 𝐸𝑡 are the quadratic functions of strains

𝐸𝑠 =
∑︁ 1

2
𝐸𝐴

(
𝜖 𝑗
)2 ∥ē 𝑗 ∥, (6)

𝐸b =
∑︁ 1

2
𝐸𝐼

Δ𝑙 𝑗

[(
𝜅
(1)
𝑗

− 𝜅
(1)
𝑗

)2
+
(
𝜅
(2)
𝑗

− 𝜅
(2)
𝑗

)2
]
, (7)

𝐸𝑡 =
∑︁ 1

2
𝐺𝐽

Δ𝑙 𝑗

(
𝜏𝑗 − 𝜏𝑗

)2
. (8)

Here,
∑

in Eq. 6 represents summation over all the edges and
curvatures in Eqs. 7 and 8. 𝐸 is the Young’s modulus, 𝐴 =

𝜋𝑟2
0 is the cross-sectional area, and 𝑟0 is the cross-sectional

radius. 𝐸𝐼 = 𝜋
4 𝐸𝑟

4
0 is the bending stiffness. 𝐺 is the shear

modulus and 𝐺𝐽 = 𝜋
2 𝐺𝑟2

0 is the twisting stiffness. For edges
that are located on rigid parts (i.e. head and disc denoted by
dashed lines in Fig. 3(a)), the stiffness parameters 𝐸𝐴, 𝐸𝐼 and
𝐺𝐽 are set sufficiently large to ensure negligible deformation.
The Voronoi length Δ𝑙 𝑗 =

1
2

(
∥ē 𝑗−1∥ + ∥ē 𝑗 ∥

)
is associated with

the 𝑗-th node. The material of tails is nearly incompressible
(i.e. Poisson’s ratio 𝜈 = 0.5) and therefore 𝐺 = 𝐸/3. Each
internal node of a single elastic rod is associated with a discrete
bending and twisting energy. However, a “joint” node (x𝑎 in
Fig. 3(b)) has multiple associated discrete bending (d.B.E. in
Fig. 3(b)) and twisting energies. This observation is important
during the implementation of the simulation algorithm.
C. External forces using Resistive Force Theory

x
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j
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Fig. 4. Schematic representation of RFT.

In Fig. 4, we schematically represent a slender rod in the
discrete setting moving in the GM. The velocity, v 𝑗 ≡ ¤x 𝑗 at
point x 𝑗 can be decomposed into two parts: the parallel term
v𝑡 = (v 𝑗 · t 𝑗 )t 𝑗 and the perpendicular term v𝑝 = v 𝑗 −v𝑡 , where
the tangent at the 𝑗-th node t 𝑗 = 1

2 (t
𝑗−1 + t 𝑗 ) is the average

of the tangents along the two associated edges. The external
force on the flagellar 𝑗-th node is F 𝑗 = F𝑡 + F𝑝 , where the
tangential and perpendicular forces that resist v𝑡 and v𝑝 are

F𝑡 = −𝜂𝑡v𝑡Δ𝑙 𝑗 , (9a)
F𝑝 = −𝜂𝑝v𝑝Δ𝑙 𝑗 , (9b)

the drag coefficients along the tangential and perpendicular
directions [11] are

𝜂𝑡 = 2𝜋𝜇/
[
log( 2𝐿

𝑟0
) − 1

2

]
, (10a)

𝜂𝑝 = 4𝜋𝜇/
[
log( 2𝐿

𝑟0
) + 1

2

]
, (10b)

𝜇 is the constant used to quantify the body-granule friction
coefficient, and 𝐿 is the tail length(𝐿 = 𝐿3 in Fig. 3(a)).

The head rotates and translates as the robot moves. The
rotational speed of the head (𝜔ℎ in Fig. 3) can be extracted
from the time derivative of the twist angle, 𝜃ℎ, of the edge
connecting x0 and xℎ, i.e. 𝜔ℎ ≡ ¤𝜃ℎ. The velocity of the head
is vℎ ≡ ¤xℎ. If the head is spherical with radius 𝑎, the viscous
drag on it according to Stokes’s law is Fℎ = −6𝜋𝜇𝑎vℎ and an
external torque on the edge is 𝑇ℎ = −8𝜋𝜇𝑎3𝜔ℎ. In our case,
the robot head shape is not a sphere so we use numerical
coefficients, 𝐶1 and 𝐶2, to account for the shape. As a result,
the drag and torque are updated as follows

Fℎ = −(6𝜋𝐶1)𝜇𝑎vℎ, (11)

𝑇ℎ = −(8𝜋𝐶2)𝜇𝑎3𝜔ℎ . (12)

Overall, the GM is characterized by parameters 𝐶1, 𝐶2, and
𝜇. If any of the physical properties of the medium, e.g., grain
size, changes, these parameters will need to be updated.
D. Simulation loop, equations of motion

In the simulation scheme, time is discretized into small time
steps (Δ𝑡) and the DOF vector, q, is updated at each time step.
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The equation of motion at the 𝑖-th DOF to march from 𝑡 = 𝑡𝑘
to 𝑡 = 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡 is

𝑓𝑖 ≡
𝑚𝑖

Δ𝑡

[
𝑞𝑖 (𝑡𝑘+1) − 𝑞𝑖 (𝑡𝑘)

Δ𝑡
− ¤𝑞𝑖 (𝑡𝑘)

]
+ 𝜕𝐸elastic

𝜕𝑞𝑖
− 𝑓 ext

𝑖 = 0,
(13)

where 𝑖 = 1, . . . , ndof, the old DOF 𝑞𝑖 (𝑡𝑘) and velocity ¤𝑞𝑖 (𝑡𝑘)
are known, 𝐸elastic is the elastic energy evaluated at 𝑞𝑖 (𝑡𝑘+1),
𝑓 ext
𝑖

is the external force (or moment for twist angles) on the
𝑖-th DOF, and 𝑚𝑖 is the lumped mass at each DOF. Since
the dynamics of the system is dominated by viscosity with
negligible influence of inertia, the results presented in this
paper do not vary with the mass parameters as long as low
Reynolds number is maintained. Eq. 13 represents a system of
ndof equations that has to be solved to obtain the new DOF
𝑞𝑖 (𝑡𝑘+1). Once the new DOF is obtained, the new velocity is
simply ¤𝑞𝑖 (𝑡𝑘+1) = (𝑞𝑖 (𝑡𝑘+1) − 𝑞𝑖 (𝑡𝑘)) /Δ𝑡.

Newton-Raphson method is used to solve the equations of
motion. This involves solving the linear system JΔq = f, where
f is a vector of size ndof, the 𝑖-th component of this vector can
be computed from Eq. 13, and J is a square Jacobian matrix
for Eq. 13. The (𝑖, 𝑗)-th component (𝑖, 𝑗 = 1, . . . , ndof) of the
Jacobian is

J𝑖 𝑗 =
𝜕 𝑓𝑖

𝜕𝜉 𝑗
= Jinertia

𝑖 𝑗 + Jelastic
𝑖 𝑗 + Jext

𝑖 𝑗 , (14)

where
Jinertia
𝑖 𝑗 =

𝑚𝑖

Δ𝑡2
𝛿𝑖 𝑗 , (15)

Jelastic
𝑖 𝑗 =

𝜕2𝐸elastic

𝜕𝑞𝑖𝜕𝑞 𝑗

, (16)

Jext
𝑖 𝑗 = −

𝜕 𝑓 ext
𝑖

𝜕𝑞 𝑗

. (17)

Here, 𝛿𝑖 𝑗 represents Kronecker delta. Evaluation of the gra-
dient of the elastic energy ( 𝜕𝐸elastic

𝜕𝑞𝑖
) as well as its Hessian

( 𝜕
2𝐸elastic
𝜕𝑞𝑖𝜕𝑞 𝑗

) are well documented in [23], [24].
E. Main contributions & observations in the algorithm

An important contribution of this study is the observation
that the actuation (e.g. rotation of motor) can be readily
accounted for in the above framework by updating the un-
deformed configurations with time. Typically, undeformed
configuration of a structure is fixed and assumed to be
invariant through the simulation. The strains in undeformed
configuration (e.g. 𝜅

(1)
𝑗
, 𝜅

(2)
𝑗
, 𝜏𝑗 ) are used in calculation of

elastic energies, their gradient (i.e. elastic forces), and Hessian.
However, in case of this robot, the rotation of the motor causes
the undeformed twist at the head node (xℎ) to vary with time.
If the rotational speed of the motor is 𝜔𝑇 , we assume that
the undeformed twist at the head node is 𝜏ℎ (𝑡𝑘) = 𝜔𝑇 𝑡𝑘 . This
results in rotations of the head (𝜔ℎ) and the tails (𝜔𝑡 ) along
opposite directions such that |𝜔𝑇 | = |𝜔ℎ | + |𝜔𝑡 |. The total
rotational speed, 𝜔𝑇 , is a control parameter in this study.

The most computationally expensive part of the algorithm
is solving the linear system. Observing and exploiting the
sparsity of the Jacobian matrix, J, is important to reduce
computing time. Referring to Fig. 3(c), the entire structure is
modelled as a series of stretching (e.g. one stretching spring
is between x 𝑗 and x 𝑗+1) and bending-twisting springs (e.g.

one bending-twisting spring is constructed by x 𝑗−1, x 𝑗 , and
x 𝑗+1). The stretching energy of each spring (Eq. 6) depends
only on six DOFs (nodal coordinates of two nodes). For the
stretching spring on edge e 𝑗 , these DOFs are x 𝑗 and x 𝑗+1. The
gradient vector

(
𝜕
𝜕q

[
1
2𝐸𝐴

(
𝜖 𝑗
)2 ∥ē 𝑗 ∥

] )
has only six non-zero

terms and the Hessian matrix
(

𝜕2

𝜕q𝜕q

[
1
2𝐸𝐴

(
𝜖 𝑗
)2 ∥ē 𝑗 ∥

] )
has

only 6× 6 non-zero terms. The bending and twisting energies
of each spring (Eqs. 7 - 8) depend only on eleven DOFs, i.e.
x 𝑗−1, 𝜃

𝑗−1, x 𝑗 , 𝜃
𝑗 , and x 𝑗+1 in case of the spring located at x 𝑗

in Fig. 3(c). The gradient vector and the Hessian matrix of
these two energies therefore have only eleven and 11 × 11
non-zero terms. The full expressions for the gradient and
Hessian terms are released [22], [24]; software implementation
is also available [31]1. The simulation requires the gradient
of external forces (Eq. 17) expressed in Eqs. 9, 11, and 12.
Their gradients with respect to the DOFs can be trivially
obtained. Note that Jext

𝑖 𝑗
is sparse. Since the expressions of

all the Jacobian terms can be analytically evaluated and
incorporated into the software, the simulation can use implicit
method. In comparison with the explicit method, the implicit
method typically can converge at larger Δ𝑡 and requires less
computation time. This is our second contribution.

Unlike the banded Jacobian in simulating a single elastic
rod [23], the Jacobian here is only sparse but not banded
due to the “joint” node. Another difference is the implemen-
tation of the gradient and Hessian of bending and twisting
energies. As in Fig. 3, the gradient and Hessian in [23]
assume that the tangent t 𝑗−1 points towards x 𝑗 and the second
tangent t 𝑗 points forward from x 𝑗 . The assumption does not
always hold in this paper. For example, as represented in
Fig. 3(b), we can have cases where both tangents (dashed
arrows) point away from x𝑎, the “joint” node. In this case,
we can simply flip the first tangent (tloc = −t 𝑗−1) and use{
dloc

1 = −d 𝑗−1
1 , dloc

2 = d 𝑗

2, t
loc = −t 𝑗−1

}
as the “local” reference

frame on edge eloc = x 𝑗 − x 𝑗−1. The reference frame on the
other edge e 𝑗 remains unchanged as

{
d 𝑗

1, d
𝑗

2, t
𝑗
}
. Flipping the

edge also implies that the twist angle on eloc in this local frame
is 𝜃loc = −𝜃 𝑗−1. This local representation in Fig. 3(b) can be
used to compute the gradient and Hessian of the bending and
twisting energies at x 𝑗 with respect to

{
x 𝑗−1, 𝜃

loc, x 𝑗 , 𝜃
𝑗 , x 𝑗+1

}
following the analytical expressions in [23]. Prior to including
these gradient and Hessian terms in f (Eq. 13) and J (Eq. 14),
we have to be mindful that 𝜕

𝜕𝜃 𝑗−1 ( ) = − 𝜕

𝜕𝜃 loc ( ).
F. Physical parameters

The material and geometric parameters of the robot during
experiments are: Young’s modulus 𝐸 = 1.2 × 106 N/m2,
Poisson’s ratio 𝜈 = 0.5, density of the robot is 1000kg/m3

(this is used to compute 𝑚𝑖 in Eq. 13), and cross-sectional
radius of tails 𝑟0 = 3.2 mm. The length of each flagellum
is 𝐿3 = 0.111 m, radius of the robot head is 𝑎 = 0.02 m,
and the diameter of 3D-printed circular disc is 𝐿2 = 0.04 m.
Time step is Δ𝑡 = 10−2 s and the length of each edge on
tails (in undeformed state) is ∥ē 𝑗 ∥ = 4.11 mm. We performed
convergence studies to ensure that the size of temporal and

1https://github.com/QuantuMope/imc-der
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spatial discretization (Δ𝑡, ∥ē 𝑗 ∥) has negligible effect on the
simulation results. The parameters 𝜇, 𝐶1, and 𝐶2 will be fitted
later in Section V-C.

V. RESULTS AND DISCUSSION

MATLAB reads images extracted from the recorded videos
in Section III-B in sequence to track the positions of the robot,
𝑠, versus corresponding time points, 𝑡, and the speed of the
robot 𝑣 = 𝑠/𝑡. The number of turns the head and tails of the
robot rotate (𝑁ℎ, 𝑁𝑡 ) are counted brute force, and used to
calculate 𝜔ℎ = 𝑁ℎ/𝑡, 𝜔𝑡 = 𝑁𝑡/𝑡. Recall from Fig. 1 that the
motor embedded in the head generates a rotational speed, 𝜔𝑇 .
The head and tails rotate in opposite directions with rotational
speeds of 𝜔ℎ and 𝜔𝑡 such that 𝜔𝑇 = 𝜔ℎ + 𝜔𝑡 (𝜔𝑇 , 𝜔ℎ, and
𝜔𝑡 are all non-negative). The total rotational speed, 𝜔𝑇 , is
considered as a control parameter in our study. The rotation
of the tails generates an axial propulsive force (see Fig. 3).
The entire system uses this propulsive force to move forward
at a speed of 𝑣.

A. Threshold angular speed to move

Experiments reveal that there is a threshold below which
the robot stays still (𝑣 = 0) and above which it starts to move.
This is explicable in terms of granular mechanics. A threshold
angular speed is necessary to convert the medium’s behavior
from solid to fluid. This threshold 𝜔𝑇 in our experiments is
≈ 50 rpm and thus there are no data points at 𝜔𝑇 ≲ 50 rpm.
When 𝜔𝑇 ≲ 50 rpm, the tails and head still rotate relative to
one another; however, the robot does not change its location.
In this study, the maximum total angular speed is 𝜔𝑇 ≈ 250
rpm and the aforementioned regime (𝜔𝑇 ≈ 50) is a relatively
small part of the the overall parameter space. In simulations,
we use RFT that does not consider this threshold. Nonetheless,
the simulation can capture the motion of the robot when 𝑣 > 0.
It is straightforward to include this threshold in Section IV-D
by imposing boundary conditions on the head. However, this
will introduce new fitting parameters without significantly
improving the overall predictive ability of the simulation.

B. Speed of the robot

During experiments, we used a digital camera to capture
videos of the motion of the robot. Figs 5(a1) and (a2) show
two snapshots of a robot with 𝑛 = 2 tails and total rotational
speed 𝜔𝑇 = 250 rpm at 𝑡 = 0 and 𝑡 = 300 sec. The green
tails were marked with black markers, and the black head was
marked with a bright yellow marker. Aided by the transparency
of the GM and the markers on the robot, these videos were
processed to extract the position of the robot, 𝑠, as a function of
time. Fig. 5(b) presents the position of the robot as a function
of time. Closed triangles denote data from experiments, and
the solid line represents a linear fit of the form 𝑠 = 𝑣𝑡. We
observe that the robot moves at an almost constant velocity
of 𝑣 ∼ 0.6 mm/s. This is expected from a solid body moving
inside a medium governed by RFT.

Fig. 5(c) shows the position of a robot with 𝑛 = 4 tails and
rotational speed 𝜔𝑇 = 208 rpm. The motion of the robot is now
qualitatively different from the one presented in Fig. 5(b). The
robot continuously moves forward in general but intermittently
stays at the same position. This phenomenon is reminiscent

of stick-slip – sudden motion that occurs when two multiple
bodies are sliding past one another. At a larger number of tails
(e.g., 𝑛 = 4 and 𝑛 = 5), experimental observations indicate
that the GM can get jammed (i.e., increase in viscosity) and
the robot frequently gets stuck. Interestingly, our experiments
(see Fig. 5(b)) indicate the robot can resolve the jamming
on its own through rotation (i.e., creating disturbance) for a
few seconds. The periodic jamming or stick-slip cannot be
captured by RFT and we do not include this behavior in our
simulations. We focus only on robots with 𝑛 = 2 and 𝑛 = 3
tails that move at a constant speed with time. Nonetheless,
this indicates room for expanding the theories for locomotion
inside GM beyond RFT. Integrating such theories that describe
the viscosity as a function of the robot configuration and time
into the algorithm in Section IV-D should be relatively trivial.

C. Parameters fitting for simulations

Recall from Eqs. 11 and 12 that 𝐶1 and 𝐶2 are fitting
parameters to account for the shape and surface roughness of
the head. In addition, 𝜇 is the 3rd fitting parameter. As detailed
next, experimental data with a 2-tailed robot (𝑛 = 2) are used to
estimate 𝐶1, 𝐶2, and 𝜇. Simulations are performed with these
parameters for 𝑛 = 3; simulation results are then compared
against experiments for validation of the fitting process.

Figs. 6(a) and (b) present the speed of the robot, 𝑣, and
the rotational speed of the head, 𝜔ℎ, respectively, as functions
of the total rotational speed, 𝜔𝑇 . The data for 𝑛 = 2 and
𝑛 = 3 are shown in the figures. The data (𝑣 vs. 𝜔𝑇 and 𝜔ℎ

vs. 𝜔𝑇 ) for 𝑛 = 2 are used to obtain the best fit values of the
fitting parameters: 𝐶1 = 2.420, 𝐶2 = 0.039, and 𝜇 = 6.828.
These parameters are then used to simulate the locomotion of
a robot with three tails. In Fig. 6(a), speed vs. total rotational
speed data show good agreement between experiments and
simulations. Fig. 6(b) shows the rotational speed of the head
as a function of total rotational speed and we find that, in both
experiments and simulations, a robot with 𝑛 = 3 has a slightly
larger head rotational speed than the one with 𝑛 = 2.

The slight mismatch between the experimental and simula-
tion data can be partially attributed to the assumptions made
in the model. The fluid model assumes that the drag force
exerted by the GM can be expressed using RFT. The structure
model assumes that the tails are infinitesimally thin elastic
rods. The drag force and torque on the head are assumed to be
linearly proportional to its velocity and angular speed, respec-
tively. Moreover, invariably there are experimental errors, e.g.
structural defects introduced during fabrication. Nonetheless,
the reasonably good agreement between experiments and
simulations support the validity of RFT in this case.

D. Speed vs. number of tails

A counterintuitive discovery from Fig. 6(a) is that at a fixed
value of the rotational speed of the motor, 𝜔𝑇 , the robot with
2 tails moves faster than the one with 3 tails. Additionally,
the speed vs. total rotational speed curve is nonlinear. These
observations point to the large structural deformation and
strong coupling between the head and tails. As the number
of tails, 𝑛, increases, the rotational speed of the head, 𝜔ℎ,
increases (at a fixed value of 𝜔𝑇 ). Since 𝜔𝑇 = 𝜔ℎ + 𝜔𝑡 , this
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Fig. 5. Position of the robot with time. (a1-a2) Snapshots from experiments showing the location of a robot with 𝑛 = 2 and 𝜔total = 250 rpm at time 𝑡 = 0
and 𝑡 = 300 s. (b) Position, 𝑠, of the same robot as a function of time, 𝑡 . Solid line corresponds to the linear fit 𝑠 = 𝑣 𝑡 where 𝑣 is the speed. (c) Position vs.
time of a robot with 𝑛 = 4 and 𝜔total = 208 rpm, where stick-slip dynamics is prominent.
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Fig. 6. Comparison between experiment data and
simulation results for the relationship between(a)
total rotation speed of head and tail and robot
moving speed; (b)total rotation speed of head
and tail and rotation speed of head. The red
triangles and blue circles with error bars are
experiment data when the tail number is 2 and
3 respectively. The solid red line is the simulated
outcome associated with the fitting parameters,
𝐶1, 𝐶2, and 𝜇 whereas the dashed blue line
represents the simulation result predicted by the
same fitting parameters.

implies that the rotational speed of the tails, 𝜔𝑡 , decreases as 𝑛
increases. The propulsive force generated by each tail (denoted
as 𝑓𝑡 ) therefore also decreases. However, two additional factors
to be considered to understand the overall speed, 𝑣, of the
robot. First, the total propulsive force available is 𝑛 𝑓𝑡 and even
though increasing 𝑛 reduces 𝑓𝑡 , it may (or may not) ultimately
increase 𝑛 𝑓𝑡 . Second, the total propulsive force is spent to
overcome the drag on the head and the tail. As 𝑛 increases, the
amount of propulsive force spent on moving the tails forward
also increases, and the propulsive force budgeted for the head
decreases. All of these factors above combined dictate the
dependence between the robot speed and the number of tails.
Furthermore, our simulator predicts that for a small parameter
space, an intersection exists between the relationship between
the robot speed and the total rotational speed of the motor,
such that the robot with more flagella can run faster than the
robot with fewer flagella without experiencing “stick slip”.

In the experiments presented herein, the set of physical
parameters are chosen in such a way that the speed decreases
with the number of tails. However, this is not universally true
for this system. For example, consider a robot with 𝐶2 → ∞
in which the head never rotates (i.e. 𝜔ℎ = 0) and the rotational
speed of the tail is always equal to the total rotational speed.
Thus, 𝑓𝑡 is a function of only 𝜔𝑇 (rather than 𝑛). Then, the
total propulsive force, 𝑛 𝑓𝑡 , increases with 𝑛 (assuming 𝜔𝑇 is
fixed) and the speed of the robot is also expected to increase.

E. Efficiency

The efficiency, 𝜂, of the robot is defined as the ratio of
propulsive force to propulsive torque. Since 𝜂 is a non-

dimensional quantity, we choose the radius of the head, 𝑎,
as the length scale. The expression for 𝜂 is

𝜂 =
|Fℎ |
|Tℎ |

𝑎 =
6𝜋𝐶1𝜇𝑎

2𝑣

8𝜋𝐶2𝜇𝑎3𝜔ℎ

, (18)

where | · | denotes absolute value and expressions for Fℎ

and Tℎ can be found in Eqs. 11 and 12, respectively. The
numerator represents the drag force exerted on the robot by
the medium, whilst the denominator gives the overall torque
generated by the rotation of the motor. We use the simulator
to predict the variation of efficiency, 𝜂, with the rotational
speed, 𝜔𝑇 , as exhibited in Fig. 7. The efficiency of a robot
with 𝑛 = 2 is non-monotonic and peaks at 𝜔𝑇 ≈ 150 rpm.
At this optimal rotational speed, the robot moves the farthest
per unit motor torque. Such a clear presence of an optimal
rotational speed in the operating range of the motor highlights
the need of a numerical simulator that can be used to design
robots. Moreover, for 𝜔𝑇 ≲ 200rpm, the efficiency of a two-
tailed robot is greater than the one of a three-tailed robot.
Beyond 𝜔𝑇 ≳ 200rpm, the three-tailed robot outperforms the
two-tailed robot. These findings underline the high degree
of nonlinearity in the functional dependence between the
efficiency and the physical parameters (e.g. 𝑛 and 𝜔𝑇 ).

VI. CONCLUSION
In this work, a discrete differential geometry(DDG)-based

simulation framework was introduced where the robot is
discretized into a number of mass-spring systems, with discrete
elastic (bending, twisting, stretching) energies associated with
each spring. The total elastic energy of the robot is the sum
of all the discrete elastic energies. At each DOF, the sum of
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elastic force (i.e. negative gradient of the elastic energy) and
external force is equal to the lumped mass times acceleration
of that DOF. The actuation of the robot (i.e. rotational speed
of the motor) is represented by a time varying natural strain.
This approach allows us to simulate the shape of the robot in
a fully implicit manner.

We explore the physics of locomotion in GM with our simu-
lation tool and an articulated robot testbed with multiple elastic
tails. RFT – originally developed to model the hydrodynamics
of low Reynolds fluid flow – was used to model the external
force exerted by the GM. This force can be easily integrated
into the simulation framework. Comparison between experi-
ments and simulations showed that RFT is reasonably valid for
flagellated robots discussed here. However, when the number
of tails is large, “stick-slip” was observed and the underlying
assumption behind RFT was no longer valid. Note that other
types of external forces, such as gravity, hydrodynamics, and
magnetic forces, can be easily incorporated to our simulation
framework.

The simulation tool, supported by experiments, shed light
on the highly nonlinear functional dependence between the
performance of the robot (e.g. speed or efficiency) and the rele-
vant physical parameters (e.g. number of tails). Some counter-
intuitive observations include the inverse relation between the
speed and number of tails of the robot. This happens when
the robot is in a tube with different titled angles, e.g. 8◦, 90◦,
the results of which are not displayed here because of the
page limit. The non-monotonic dependence of efficiency on
the rotational speed of the motor highlighted the necessity of a
design tool for optimal control of the robot. The computational
speed of the simulator can be exploited to run parametric
studies and identify the optimal design and control of general
articulated soft robots.
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