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In this paper, three-dimensional numerical simulations of ballooning in spiders using multiple silk threads
are performed using the discrete elastic rods method. The ballooning of spiders is hypothesized to be
caused by the presence of the negative electric charge of the spider silk threads and the positive electric potential
field in the Earth’s atmosphere. The numerical model presented here is first validated against experimental data
from the open literature. After which, two cases are examined, in the first it is assumed that the electric charge is
uniformly distributed along the threads while in the second, the electric charge is located at the thread tip. It is
shown that the normalized terminal ballooning velocity, i.e., the velocity at which the spiders balloon after they
reach steady-state, decrease linearly with the normalized lift force, especially for the tip located charge case. For
the uniform electric charge case, this velocity shows a slightly weaker dependence on the normalized lift force.
Moreover, it is shown in both cases that the normalized terminal ballooning velocity has no dependence on the
normalized elastic bending stiffness of the threads and on the normalized viscous forces. Finally, the multithread
bending process shows a three-dimensional conical sheet. Here we show that this behavior is caused by the
Coulomb repelling forces owing to the threads electric charge which leads to dispersing the threads apart and
thus avoid entanglement.
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I. INTRODUCTION

Ballooning is the mechanism of dispersal of wingless
arachnids, mainly spiders, to which a silk thread is attached
[1]. Even though spiders do not have wings to fly, two cen-
turies ago, Charles Darwin observed hundreds of ballooning
spiders landing on the HMS Beagle located 60 miles offshore
[2]. This peculiar observation, at that time, was also reported
earlier in the 17th and 19th centuries [3,4] and it was com-
monly occurring on relatively calm days with low wind speed,
below 3 m/s [5–9].

Since these observations [3,4], two competing theories
were associated to explain the ballooning of spiders. In the
first, ballooning of spiders is associated to natural convec-
tion currents caused by the thermal gradients in the Earth’s
boundary layer. It is assumed that these rising currents create
drag forces on the light spider threads which induce lift forces
when they overcome the weight of the spider. This hypothesis
was extensively studied by several authors [7,10–13]. For
instance, Zhao et al. [14] used a fully coupled fluid-structure
interaction two-dimensional numerical model with the im-
mersed boundary method (IBM) to analyze the effect of spider
mass and thread length on the ballooning dynamics. They also
analyzed the effect of vortex shedding, mainly at the trailing
edge of the thread, on the oscillations and deformation of the
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spider silk threads during ballooning. This study is based on
several assumptions neglecting the thread mass and thickness
as well as representing the spider by a point mass. Suter [15]
studied the condition of airflow on spider ballooning, and
highlighted the possibility that atmospheric turbulence may
affect the ballooning and dispersal of spiders. Other authors
studied the effect of atmospheric turbulence on the ballooning
of spiders and on the bending of the silk threads [16,17]. For
instance, Reynolds et al. [16] modeled the dynamics of fully
elastic silk thread in isotropic and homogeneous turbulent
flows. The thread is modelled by a chain of spheres attached
by springs. In their study they highlight the fact that the
threads are highly twisted and bent due to turbulent structures
which impede the aerodynamic control of ballooning. This
fact was not captured earlier by Humphrey [10] who modeled
the spider thread by rigid inextensible massless cylindrical
rod aligned with the wind direction. Meanwhile, the effect of
the electric charge of spider silk threads [18] on the thread
unfolding dynamics is not included in these aforementioned
studies [13]. This electric charge may induce Coulomb re-
pelling forces which can have an important role in keeping
the threads apart to avoid entanglement which may explain
the three-dimensional conical sheet shape of the silk threads.

In the second hypothesis, ballooning of spiders is asso-
ciated to the electrostatic force caused by the interaction
between the Earth’s electric field and the electric charge of
spider silk threads. This electrostatic buoyancy creates a lift
force on the threads which may cause spiders ballooning
under certain conditions [19–21]. While, the first hypothesis
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discussed in the previous section is extensively analyzed in the
open literature, the effect of electrostatic force on ballooning
of spiders is still not fully studied and it was first introduced
recently by Gorham [19]. Gorham [19] developed a simplified
theoretical model of a spider with a single thread showing
that the electrostatic force caused by the atmospheric potential
gradient and the charged threads could be responsible for
spiders takeoff and ballooning. For instance, it is found [19]
that a single silk thread electric charge of 100 nC is needed
to lift a spider weighing 1 mg under standard atmospheric
electric potential over flat field of 120 V/m [19]. From ex-
perimental observation Morley and Robert [21] showed that
spider mechanosensory hairs can detect electric fields which
in its turn triggers the ballooning behavior. This could ex-
plain why spiders prefer to balloon from prominence, such as
trees, where the electric field is higher than that on flat fields
[21]. Recently, Morley and Gorham [22] conducted experi-
mental measurements on ballooning behavior inside a closed
chamber in which they control the electric field with no sig-
nificant air motion. Coupling their experimental data to a
physical one-dimensional model, they estimated that the total
thread charge required for ballooning is around 1.15 nC for
spiders weighing 0.9 mg, i.e., 1.28 nC/mg. In their experi-
ment, they consider Erigone spiders on the tip of a conductive
launch point subjected to an electric field strength of about
1 kV/m, similar to those observed around the tips of tree
branches.

Meanwhile, in all these studies, there is no investigation
on multithread spider ballooning process neither on the effect
of the electrostatic repelling force on the terminal shape of
the threads and the ballooning velocity [13]. Thus, in the
current paper we develop a new three-dimensional numerical
model including the viscous forces, weight, and dimensions
of the thread and spider, electrostatic lift force and repelling
forces, and the elastic bending force to explore the ballooning
and unfolding dynamics of spider silk threads. This can help
for instance in designing new types of ballooning sensors to
explore the atmospheric properties [23].

This paper is organized as follows, in Sec. II A we state
the problem and the physical parameters such as the spider
weight, electric field, silk thread charge, viscous forces, and
silk thread properties. In Sec. II B we present the numerical
method and governing equations for the ballooning spider.
Section III is devoted to the results and discussions and in
Sec. IV we present the concluding remarks.

II. METHODOLOGY

A. Problem definition

It is still unclear on how spiders can emit silk threads
loaded with static electric charge. According to the literature,
this could be done during the spinning process where the
threads are rapidly loaded with the electric charge, or this
could happen after the spinning process due to friction with
the air flow [18,19].

In the present study, the spider is approximated by a
sphere attached to nt silk threads initially extended vertically
and very close to each other with a distance of 100 μm. A

FIG. 1. Schematic of the spider represented by a sphere of radius
rs and several threads of length lt and radius rt .

schematic of the spider with its threads during typical balloon-
ing is shown in Fig. 1.

The size and mass of the spider are chosen based on
Erigone spiders studied by Morley and Gorham [21,22] where
the spider mass is considered ms = 1 mg and its size is rs =
1 mm. The typical electric charge of the spider body Qs is as-
sumed 3 pC [22]. The acceleration of gravity is g = 9.81 m/s2

pointing downward. The spider silk thread density is taken
ρt = 1200 kg/m3 [24] with a radius rt = 300 nm [17,22].

The forces acting on the spider and threads are listed in
this section. The weight of the spider and threads are given
respectively by

Ws = msg, (1)

Wt = ntρtπr
2
t lt , (2)

where lt is the length of one thread, ms the spider mass, nt
the number of threads, ρt the thread density, and rt the thread
radius.

The characteristic elastic bending force of the threads is
expressed as

Eb = Y I

l2
t

, (3)

whereY is the thread’s Young modulus and I = πr4
t

4 is the area
moment of inertia of the silk thread.

The Coulomb repulsion force acting on the threads is given
by the Coulomb’s inverse-square law:

Fr = ke
|q1q2|
r2

, (4)

where ke = 9 × 109 Nm2C−2 is the Coulomb constant, q1 and
q2 are the signed magnitudes of the charges of the spider
threads, and r is the distance between the threads.
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FIG. 2. (a) Discrete representation of a spider with two threads.
(b) Three nodes, two edges, and the associated material and reference
frames. Bending energy is related to the turning angle φk , twisting
energy is related to (θ k − θ k−1), and stretching energy is related to
the elongation of the edges.

The electrostatic force of the threads and the spider is given
by the following expression:

Fl = E (Qt + Qs), (5)

where E is the Earth’s electric field, Qt and Qs are the total
charges of the silk threads and spider, respectively.

Finally the hydrodynamic forces Fv on the spider and
threads are computed using the resistive force theory (RFT)
as explained in the next section.

In this paper we run parametric sweep simulations by
varying the forces acting on the spider and analyzing the nor-
malized terminal ballooning velocity, which is the normalized
speed at which the spider is ballooning when it reaches steady
state. Moreover, the unfolding dynamics of the spider threads
under the coupled effect of electrostatic and viscous forces are
studied.

B. Numerical method for ballooning spiders

The numerical method adopted to study the fluid-structure-
electric field interaction combines three components. The first
component concerns the discrete elastic rod (DER) method
to compute the elastic deformation of the threads [25], i.e.,
bending, twisting, and stretching, with the primary mode of
deformation being bending. The second component is the
RFT adopted to compute the hydrodynamic viscous forces on
the spider and threads [26], and finally the third component
is the electrostatic forces caused by the atmospheric potential
gradient and the silk electric charge.

The numerical simulations in this paper employ a discrete
kinematic representation of the spider following the DER
algorithm [25,27,28]. In Fig. 2(a), the spider is modeled as
a network of elastic rods with one node, x0, representing the
spider body and Nt nodes per thread. For a spider with nt
threads, the total number of nodes is ntNt + 1. The vector
between two consecutive nodes is an “edge” and each thread
is composed of Nt edges. The edges, e, on the jth thread are

eNt ( j−1)+0 = xNt ( j−1)+1 − x0,

eNt ( j−1)+1 = xNt ( j−1)+2 − xNt ( j−1)+1,

eNt ( j−1)+2 = xNt ( j−1)+3 − xNt ( j−1)+2,

. . . ,

eNt j−1 = xNt j − xNt j−1.

Note that an edge can be usually defined as ei = xi+1 − xi
(i.e., vector connecting two consecutively numbered nodes),
except the first edge on each thread. The total number of edges
for a spider with nt threads is ntNt .

To keep track of the rotation of the edges, the kth edge
in Fig. 2(b) is decorated with an orthonormal material frame,
(mk

1,m
k
2, t

k ), where tk is the unit normal vector parallel to ek

(i.e., tangent along the kth edge). Since this frame always has
the third director parallel to the tangent, it is an “adapted”
frame. A reference frame (ak1, a

k
2, t

k )—another orthonormal
adapted frame—is also associated with each edge. At time
t = 0, the reference frame and the material frame are iden-
tical. During the time marching scheme of the simulation
(Algorithm 1), the reference frame is updated through parallel
transport in time. Parallel transport is the most natural or
twist free way of moving an adapted frame from one edge
to another; details can be found in Refs. [25,28]. Using the
reference frame, the material frame can be fully described
using a single scalar quantity—the twist angle, θ k—which is
the signed angle from ak1 to mk

1 about the tangent tk . As the
reference frame is changing with time by time parallel trans-
port, twist may accumulate in the reference and this so-called
reference twist has to be accounted for when calculating the
twist of the material frame.

The degrees of freedom (DOF) vector ξ of the spider
with ntNt + 1 nodes and ntNt edges has a size of ndof =
3 × (ntNt + 1) + ntNt and is defined as

ξ = [
x0, x1, x2, . . . , xntNt , θ

0, θ1, . . . , θntNt−1
]T

, (6)

where the superscript T denotes transpose. The equation of
motion at each DOF is

mi
∂2ξi

∂t2
+ ∂Eelastic

∂ξi
− f ext

i = 0, (7)

where i = 1, . . . , ndof, Eelastic is the elastic energy responsi-
ble for the stretching and bending, f ext

i is the external force
(or moment for twist angles), e.g., gravity, and mi is the
lumped mass at each DOF. The lumped mass at the head
node which represents the spider mass is ms; the mass on the
other nodes is computed using the density of thread ρt , its
cross-sectional radius rt and the length of the discrete edges.
For the DOFs representing rotation (twist angles), the lumped
mass is 1

2�mr2
t , where �m is the mass of an edge and rt is the

silk thread radius. The simulation discretizes time into small
steps and �t is the time step size. The equation of motion to
march from t = t j to t = t j+1 = t j + �t is

fi ≡ mi

�t

[
ξi(t j+1) − ξi(t j )

�t
− ξ̇i(t j )

]
+ ∂Eelastic

∂ξi
− f ext

i = 0,

(8)
where fi is the force exerted on each node. The old DOF ξi(t j )
and velocity ξ̇i(t j ) from the previous time step are known,
Eelastic is the elastic energy evaluated at ξi(t j+1), and f ext

i is
the external force evaluated at ξi(t j+1).

In the simulations reported in this paper, number of nodes
per threads is Nt = 102 and the time step size, �t , is always
less than 10−1s. We use an adaptive time stepping scheme
where the time step size is automatically reduced by a factor
of 10 if the simulation fails to converge and is increased by a
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factor of 10 (but always less than 10−1s) if the simulation runs
successfully for approximately 10 time steps.
The Jacobian for Eq. (8) is

Ji j = ∂ fi
∂ξ j

= J inertia
i j + J elastic

i j + J ext
i j , (9)

where

J inertia
i j = mi

�t2
δi j, (10)

J elastic
i j = ∂2Eelastic

∂qi∂q j
, (11)

J ext
i j = −∂ f ext

i

∂q j
. (12)

Here, δi j represents Kronecker δ. We can solve the ndof
equations of motion in Eq. (8) to obtain the new DOF ξ (t j+1).
The new velocity is simply

ξ̇ (t j+1) = ξ (t j+1) − ξ (t j )

�t
. (13)

Evaluation of the gradient of the elastic energy ( ∂Eelastic
∂ξi

)

as well as its Hessian ( ∂2Eelastic
∂ξi∂ξ j

) are well documented in
Refs. [25,28,29]. Bending energy is associated with the turn-
ing angle (φk in Fig. 2) at the internal nodes on each thread,
e.g., in case of the jth thread, the associated nodes are
x( j−1)Nt+1, x( j−1)Nt+2, . . . , x j Nt−1. Twisting energy is associ-
ated with the same nodes. Stretching energy is associated with
each edge.

Unique to the problem of ballooning of spiders is the ex-
ternal forces, described next. Four types of external forces are
acting on the rod network such that the ndof-sized external
force vector [cf. Eq. (8)] is

fext = W + Fv + Fr + Fl , (14)

where the term W is the weight vector which can be trivially
computed from the weight of the spider body, the density
of the threads, and their cross-sectional radius. The viscous
force term Fv exerted by the surrounding air on the kth node
[cf. Fig. 2(b)] to march from t = t j to t = t j+1 = t j + �t .
Following Gray and Hancock’s RFT [30,31], the force on the
node is

Fv,k = (−η‖ + η⊥)tk tTk �lvk − η⊥�lvk, (15)

where �l is the Voronoi length ( lt
Nt

for the internal nodes on

the thread and lt
2Nt

for the terminal nodes), tk is the node-based
tangent (average of the tangents on the edge before and the
edge after the kth node), vk = xk (t j+1 )−xk (t j )

�t is the velocity of
the kth node, and the Resistive Force coefficients are

η‖ = 2πμ

log
( lt
rt

) − 1
2

, (16)

η⊥ = 4πμ

log
( lt
rt

) + 1
2

, (17)

where μ is the dynamic viscosity of air.
Note that η⊥ is approximately twice of η‖, i.e., the resis-

tance from drag is lower when the motion is along the tangent
and higher when the motion is perpendicular to the tangent.

The force calculated at each node using Eq. (15) is used to
populate the ndof-sized viscous force vector, Fv .

The spider body is assumed spherical, and thus the drag
force at x0 is computed using Stokes law given as follows:

Fv,0 = 6πμrsvs, (18)

where rs is the sphere radius and vs is the spider body speed.
It should be noted that RFT is a simplification that ignored

the hydrodynamic interaction induced by distant parts of one
or multiple threads. This is in contrast with more accurate
slender body theories (SBT) [32] that capture this interaction.
While recent works [33] have combined DER with SBT, RFT
seems to be reasonably accurate when the rod has a low
curvature [32]. Further, RFT can be included in the simulation
using the backward Euler’s method [i.e., the gradient of the
external force with respect to the DOFs in Eq. (12) is known].
This is not the case when SBT is used and the SBT-derived
force has to be incorporated using the forward Euler’s method.
Moreover, SBT requires solving a dense linear system of size
ndof; this worsens the time complexity of the algorithm. The
interaction between the flows induced by the head and the
threads has also been ignored in our setup. It is possible to in-
corporate this interaction [34] at the expense of computational
efficiency. However, in this study, the aim is to explore the
essential physics of the ballooning phenomenon by parameter
space exploration in numerical simulations and therefore a
computationally efficient framework with DER and RFT has
been chosen. A more comprehensive model is an interesting
direction for future research.

The term Fr in Eq. (14) is the Coulomb repulsion force on
the kth node given as

Fr,k = ke
∑

i �=0,i �=k

qiqk
r3
i,k

ri,k, (19)

where ri,k = ‖xi − xk‖ is the Euclidean norm of the distance
between two nodes, ke = 9 × 109 Nm2C−2 is the Coulomb
constant, and qi is the charge located at the ith node. At the
first node (spider body), the charge is q0 = Qs, where Qs is
the spider body electric charge. For all the other nodes (nodes
on the thread of the spider), qi can be computed from the total
thread charge Qt . Two cases will be discussed in Sec. III B.
In the first case, the electric charge is located at the thread tip
and qi = Qt at the tip nodes (xNt and x2Nt in Fig. 2); qi = 0
otherwise. In the second case, the electric charge is uniformly
distributed along the thread and qi = Qt�l/lt , where �l is
the length of each edge and lt is the length of each thread. The
force calculated at each node using Eq. (19) then constitutes
the Coulomb repulsion vector, Fr , of size ndof.

Finally the electrostatic lift term Fl which only acts along
the z-axis. At the kth node on the rod network, the lift force
vector (size 3) is

Fl,k =
⎡
⎣ 0,

0,

Ekqk

⎤
⎦, (20)

where Ek is the electric potential evaluated at z-coordinate of
the node, xk , at t = t j+1 from Eq. (22), and qk is the charge
located at the kth node. The charge located on the head node,
x0, is different than the charges located on the thread nodes.
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Algorithm 1 Discrete Elastic Rods

Require: ξ (t j ), ξ̇ (t j ) � DOFs and velocities at t = t j
Require: (ak1(t j ), ak2(t j ), tk (t j )), k ∈ [0, ntNt − 1] � Reference frame at t = t j
Ensure: ξ (t j+1), ξ̇ (t j+1) � DOFs and velocities at t = t j+1

Ensure: (ak1(t j+1), ak2(t j+1), tk (t j+1)), k ∈ [0, ntNt − 1] � Reference frame at t = t j+1

1: function Discrete_Elastic_Rods ξ, ξ̇ (t j ), (ak1(t j ), ak2(t j ), tk (t j ))
2: Guess: ξ (1)(t j+1) ← ξ (t j )
3: n ← 1
4: while error > tolerance do
5: Compute reference frame (ak1(t j+1), ak2(t j+1), tk (t j+1))(n) using ξ (n)(t j+1)
6: Compute reference twist �m(n)

k,ref at each internal node
7: Compute material frame (mk

1(t j+1),mk
2(t j+1), tk (t j+1))(n)

8: Compute f and J � Eqs. (8) and (9)
9: �ξ ← J\f � Newton-Raphson method
10: ξ (n+1) ← ξ (n) − �ξ � Update DOFs
11: error ← sum(abs( f ))
12: n ← n + 1
13: end while

14: ξ (t j+1) ← ξ (n)(t j+1)
15: ξ̇ (t j+1) ← ξ (t j+1 )−ξ (t j )

�t
16: (ak1(t j+1), ak2(t j+1), tk (t j+1)) ← (ak1(t j+1), ak2(t j+1), tk (t j+1))(n)

17: returnξ (t j+1), ξ̇ (t j+1), (ak1(t j+1), ak2(t j+1), tk (t j+1))
18: end Function

After calculating the forces on each node, the ndof-sized
electrostatic lift force, Fl , can be constructed.

In the force expressions above, we did not explicitly write
down the Jacobian terms (e.g., derivative of the forces with
respect to the DOFs). However, derivation of the Jacobian
terms related to these external forces require is rather trivial.

The main steps of the algorithm are outlined below in
Algorithm 1.

C. Validation for single thread

In this section we validate the results computed numeri-
cally for a single thread case with those obtained by Gorham
[19] and Morley and Gorham [22]. In their studies, a spider
with a single thread was assumed, thus, the repelling forces
between the threads are not considered in their models.

In the first validation study, the electric potential field given
in Eq. (21) is adopted as in the theoretical analysis of Gorham
[19]. Gorham [19] used an approximated analytical model for
the atmospheric electric field as it varies with the altitude from
flat earth surface on a normal day:

E = E0e
−αz, (21)

where E0 = −120Vm−1 is the reference electric field at zero
altitude, α = 3 × 10−4m−1 and z is the altitude in m.

Simulations are carried out by spanning spiders with
masses from 0.1 to 2 mg and thread electric charge from 10 to
200 nC. We observe the vertical velocity of the spider; if this
velocity is positive this means that ballooning will eventually
take place. If the velocity is negative, then it means that the
spider will be in a free fall. Figure 3 shows the contour of
vertical velocity versus spider mass and electric charge in
addition to the required thread charge to obtain ballooning
found theoretically by Gorham [19] and which corresponds

to 100 nC/mg of spider mass. From this figure, it is observed
that the terminal ballooning velocity reaches up to 1.2 m/s for
small spiders weighing 0.1 mg and having a thread charge of
200 nC. From the present numerical simulations the required
ballooning for single thread spider is around 86 nC/mg which
is 14 % different than that obtained by Gorham [19] theoret-
ical analysis which was simplified by assuming a ballooning
acceleration of 3 m/s2 and neglected viscous effects.

FIG. 3. Contour of vertical velocity versus spider mass and
charge electric charge. The black solid line corresponds to the re-
quired charge for ballooning per 1 mg of spider mass obtained
theoretically by Gorham [19]. The hatched region in the plot corre-
sponds to the 86 nC/mg of required charge for ballooning obtained
from present numerical simulations.
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FIG. 4. Comparison of the electric potential obtained using
Eq. (22) and that adopted in Morley and Gorham [22].

Thus, in the second validation we consider the experi-
mental measurement coupled to 1D numerical simulations of
ballooning spiders performed by Morley and Gorham [22]
inside a controlled closed chamber. In their study, the electric
potential field is computed using a commercial electromag-
netic simulation software. The resulting electric potential
obtained in Ref. [22] is fitted here using the following expo-
nential function and implemented in our simulations:

E = E1 exp(−z/z1) + E2 exp(−z/z2) + E0, (22)

where E0 = 7.41 × 103 V/m, E1 = 2.52 × 105 V/m
and z1 = 1.51 × 10−3 m,E2 = 5.07 × 104 V/m, and
z2 = 7.93 × 10−3 m. Following this linear regression model
adopted in Eq. (22), the R2 value is around 0.9973, which is
evidence of the good fitting.

It is worthy to note that Morley and Gorham [22] used an
aluminum-foil covered prominence to concentrate the electric
field near the tip. The electric potential obtained from Eq. (22)
is compared to that adopted by Morley and Gorham [22]
in Fig. 4. This figure shows a good agreement between the
electric potential obtained from Eq. (22) with that used by
Morley and Gorham [22]. The Earth’s electrostatic field is
on average much weaker than the one presented in Eq. (22);
however, Morley and Gorham [22] pointed out the large varia-
tions in electrostatic field strength due to atmospheric activity
that can generate the necessary lift for ballooning. The lift
necessary for ballooning will be explored later in this paper
(Fig. 6).

According to Morley and Gorham [22], the total required
ballooning charge is around 1.28 nC/mg which is much
smaller than that obtained by Gorham [19] due to higher
electric potential field at the tip of the prominence that builds
the electric field. In this simulation we consider a single 1
thread of length 0.5 m as in Ref. [22].

Figure 5 shows the comparison of the actual computed re-
sults for the vertical spider ballooning distance and the vertical
spider ballooning velocity with those obtained experimentally
by Morley and Gorham [22]. In Fig. 5(a), it is observed that

FIG. 5. (a) Vertical coordinate of the spider and (b) its vertical
velocity compared to those obtained from Morley and Gorham [22].

FIG. 6. Variation of the normalized terminal ballooning veloc-
ity versus normalized lift for a given value of normalized bending
stiffness.
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the ballooning distance obtained in the present study corre-
sponds well to that obtained experimentally. The comparison
with the velocity in Fig. 5(b) shows a fair agreement between
the present computed results and those obtained experimen-
tally by Morley and Gorham [22]. It is observed that the spider
is ejected promptly from the prominence where its velocity
stabilizes at 8.5 cm/s after around 0.1 s.

III. RESULTS

In this section we present the results for ballooning velocity
and thread unfolding dynamics. The electric field given in
Eq. (22) is adopted.

A. Normalized quantities

From principles of dimensional analysis, the ballooning
phenomenon can be represented as a function of a number
of nondimensional (i.e., normalized) parameters. Hereon, we
present our results in terms of normalized parameters. First,
we introduce the relevant normalized quantities.

1. Normalized terminal velocity. Let us formulate a char-
acteristic velocity, vcharac, from a scaling analysis based on
the balance of forces along the z axis. The force along the
positive z axis is QtE0 −Ws, with QtE0 the lift force and Ws

the spider weight (weight of the threads is negligible), and the
viscous force along the negative z scales as ∼μnt ltvcharac. Note
that this viscous force is simply an estimate; the exact value
depends on the deformed configuration of the threads and the
resistive force coefficients. Balancing these forces, we get

QtE0 −Ws = μnt ltvcharac;

this leads to

vcharac = QtE0 −Ws

μlt nt
.

Since the above characteristic velocity is derived from a sim-
ple scaling analysis, the terminal velocity of the spider, vt , is
expected to be on the same order of magnitude as (but not ex-
actly equal to) vcharac. The terminal velocity is normalized by
this characteristic velocity to obtain the normalized terminal
velocity,

vt = vt

vcharac
= μvt nt lt

QtE0 −Ws
. (23)

2. Normalized viscous force. The viscous force scales as
Fv = μl2

t /tcharac and we use tcharac = √
lt/g as the characteris-

tic time. Physically, the time taken by a spider to fall a distance
of lt in a viscosity-free environment under the influence of
gravity is the characteristic time, tcharac. This follows from
the kinematic equation of free fall: lt ∼ gt2

charac. An estimate
of the magnitude of the Coulomb repulsion force is Fr =
keQ2

t /[n2
t l

2
t ]. This estimate is obtained from Eq. (19) under

the assumption that two point charges of Qt/nt magnitude are
located at a distance equal to the spider silk length, lt . Nor-
malizing the viscous force by the Coulomb repulsion force,
we get the normalized viscous force,

F̄v = Fv

Fr
= μn2

t
√
gl7/2

t

keQ2
t

. (24)

3. Normalized lift force. As sufficiently high altitude [z 

z0 in Eq. (22)], the lift force scales as QtE0. We normalize this
by the weight of the spider to get the normalized lift force,

Fl = QtE0

Ws
. (25)

Lift is equal to weight when Fl = 1, assuming that the altitude
is sufficiently high. If lift is larger than weight so that Fl > 1,
then the spider is expected to move up in altitude. However, if
Fl < 1, then its altitude will decrease.

4. Normalized bending stiffness. The characteristic bend-
ing force Y I/l2

t is normalized by the characteristic Coulomb
repulsion force Fr = keQ2

t /[n2
t l

2
t ] to get the normalized bend-

ing stiffness,

Y I = n2
t Y I

keQ2
t
. (26)

If the normalized bending stiffness is very small compared
with 1 (Y I � 1), then the elastic stiffness of the threads offers
no resistance against deformation due to Coulomb repulsion
force. The threads behave almost like a viscous fluid in this
case without any noticeable effect of elastic stiffness on the
final shape. The other extreme is Y I 
 1 when the threads are
too rigid to have any deformation under Coulomb repulsion
force.

The normalized lift force is varied by varying the total
threads electric charge between 0.5 and 5 nC. The number
of threads nt considered in this study are 1, 2, 4, and 8.
Biologically, the number of threads observed in ballooning
spiders range from 2 to 100 [17,35,36]. However, to be able to
explore the main physics of the spiders ballooning by parame-
ter space exploration, and due to the associated computational
limitations, the number of threads is limited to 8. Moreover,
it is found that beyond 8 threads, there is no significant effect
on the normalized terminal ballooning velocity of the spider
as well as on the normalized lift and viscous forces.

B. Ballooning velocity

In this section we present the variation of the normalized
terminal ballooning velocity v̄t in terms of normalized lift
force F̄l , normalized viscous force F̄v and normalized bending
stiffnessY I for different number of threads and for two cases:

1. Electric charge located at the thread tip, as suggested by
Morley and Gorham [22]

2. Electric charge is uniformly distributed along the
threads

In Fig. 6 we compare the variation of v̄t in terms of the
normalized lift force for varying number of threads. This
figure shows how the spider elicit ballooning once the nor-
malized lift force exceeds 1. When the lift force is below
1, the ballooning velocity is zero since the spider cannot fly
when the lift force generated by the electric potential field
is smaller than the spider weight. For the tip located electric
charge, the normalized terminal velocity slightly falls linearly
with increasing normalized lift force. Referring to Eq. (23),
this implies that the dimensional velocity vt increases linearly
with the dimensional lift force QtE0. However, for the uniform
distributed thread charge the normalized velocity shifts from
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that for the tip located charge and decreases when the nor-
malized lift force exceeds 1.5 with a slope around to −1/3,
i.e., the dimensional velocity will increase with the dimen-
sional lift force with a slope of approximately 2/3 according
to Eq. (23). This dependence is caused by an intricate in-
terplay between the Coulomb repulsion force, electrostatic
lift force and the viscous drag. The repulsion force causes
the threads to spread far apart from one another, i.e., all the
threads would assume a horizontal configuration if the repul-
sion force was the only force acting on them. However, the
shape of the thread influences the amount of viscous drag.
According to the RFT, drag is the lowest when velocity is
parallel to the tangent on the thread (i.e., the threads are
vertical) and it is the highest when velocity is perpendicular
to the tangent (i.e., the threads are horizontal). These com-
peting forces cause the threads to deform to eventually find a
configuration where all the forces sum to zero. Our simulation
tool essentially solves this balance of forces and updates the
configuration of the threads over time.

It is observed in this figure that for the one thread case
and for F̄l > 1, the normalized terminal velocity stabilizes
at around 2.2 while for the other cases with higher number
of threads, the normalized terminal velocity reaches values
around 2 for the tip located charge, and values around 1.7 for
the uniformly distributed charge, especially for higher F̄l . This
further highlights the role of the deformed shape of the threads
in common spider ballooning process. When there is only
one thread, it is oriented vertically and thus experiences the
least amount of drag. When multiple threads are introduced,
the threads deform due to the Coulomb repulsion force and
the threads are no longer oriented parallel to the direction of
velocity. As such, more drag is exerted by air on the threads
and the velocity is reduced in the case of still air. Meanwhile,
the 3D conical thread net shape would lead to an increase in
the ballooning speed in case of updraft wind caused by natural
convection for instance.

In the present study we considered Erigon spiders which
are relatively small where their mass is about 1 mg and a
size around 1 cm. Meanwhile, Schneider et al. [36] observed
the ballooning of Stegodyphus dumicola (Eresidae) Pocock
spiders weighing 100 mg and of size 7 to 14 mm. These
spiders were found to balloon using 100 threads forming a
triangular sheet with a length and width of about 1 m at the
distal end. In the present study, we limited the number of silk
threads to 8 due to computational limitations. However, refer-
ring to Fig. 6, we can see that the normalized terminal velocity
becomes somehow independent from the number of threads
when they exceed 8. And thanks to the normalized analysis,
we can generalize our study to verify the Schneider et al. [36]
observation regarding the ballooning of large spiders.

Using Fig. 6 and data from Schneider et al. [36], we can
deduce that if the spiders were on flat earth ground, where the
electric field is 100 V/m, the electrostatic charge required for
ballooning is around 100 nC per thread. From our simulations,
it is observed that this very large electrostatic charge on the
silk thread will lead to high Coulomb repelling forces which
will cause the threads to repel diametrically in a plane which
is in contradiction to the observations of Schneider et al. [36].
Meanwhile, assuming the spiders are hanging on the top of
tree branches where the electric field can reach 100 kV/m,

the spider needs 0.1 nC per thread to balloon. It is worthy to
note that the studies by Schneider et al. [36] were done in
Omdraai, Namibia which has very few trees. Moreover, the
air temperature was reaching 33.8◦ with almost no wind, a
situation in favor for rising thermal currents. Thus, based on
our conclusion and the observations of Schneider et al. [36],
for large spiders to balloon, rising thermal currents seem to
be essential. In our study, we do not eliminate the fact that
wind, turbulence and thermal currents could cause balloon-
ing, however, we shed light on that these electrostatic forces
could be alone used to balloon small spiders and that they are
responsible on repelling the threads to avoid entanglement.

Referring to Eq. (23), and assuming that the following
parameters are unchanged during typical ballooning: thread
electric charge, Qt , the atmospheric electric field, E0, the air
viscosity, μ and the spider weight,Ws, the spider could control
its ballooning velocity by varying the thread length, lt and the
number of threads. In the presence of significant wind speed,
the spider could also control the flight altitude and direction
by varying the number and length of ballooning threads. For
instance, longer threads can result in larger drag forces and
thus higher altitude in case of updrift wind. Reducing the
length and number of threads could then be used during land-
ing process.

The variation of the normalized terminal ballooning ve-
locity, v̄t , versus normalized viscous force, F v for Qt =
2.5 nC and Y = 20 × 109 Pa was also analyzed. The vis-
cous force was varied by varying the viscosity between 10−7

and 10−3 Pa s. It is observed that the normalized terminal
ballooning velocity is always equal approximately to 2.12.
This indicates that the normalized viscous forces do not play
a major role in the ballooning of spiders once it reaches
steady state.

The variation of the normalized ballooning velocity, v̄t ,
versus normalized bending stiffness, Y I for Qt = 2.5 nC and
μ = 18.37 × 10−6 Pa s shows also that the normalized termi-
nal ballooning velocity is always equal to approximately 2.12.
The normalized bending stiffness was varied by varying the
Young’s modulus of elasticity Y between 5 and 50 GPa where
the average known silk modulus of elasticity is around 25 GPa
[37]. This indicates that the bending stiffness, representative
of the elasticity of the thread, does not play a major role in
the ballooning of spiders. This is also anticipated from the
ratio of characteristic bending force to characteristic Coulomb
repulsion force. This ratio is defined as the normalized bend-
ing stiffness in Eq. (26) and its value in the regime relevant
to ballooning is on the order of 10−9 to 10−8 and, there-
fore, it is expected that the bending stiffness of the threads
offers little resistance against deformation due to Coulomb
repulsion force. We also observed in our simulations that the
twisting and stretching deformation is negligible compared
with bending mode. In summary, once the spider reaches a
steady velocity after the transient dynamics, the velocity and
the shape of the threads do not depend on the elastic bending,
stretching, and twisting stiffness.

C. Thread unfolding dynamics

The spider threads unfolding dynamics is shown in Fig. 7
for the 2 threads case for better visibility. For the uniformly
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FIG. 7. Unfolding dynamics of two spider threads with uniformly distributed (a–d) and tip located (e–h) electric charge. Insets show the
top view (x-z plane) of the threads.

distributed thread charge it can be observed that the bending
occurs along the threads which move apart gradually with
an increase in their curvature until they reach a steady-state
position with a v-shape as observed in real ballooning spiders.

For the case with tip located charge, the repelling force acts
on the tips of the threads pushing them apart while maintained
in close contact in the bottom region. After a short time, the
threads make a v-shape similar to that of the previous case.
The results are also accompanied with animations showing the
time evolution of the unfolding dynamics (see Supplemental
Material [38]).

Figure 8 shows the ballooning process and spider threads
bending for two, four and eight threads. The threads are
pushed apart due to the Coulomb electrostatic forces while
the spider is moving upward due to the atmospheric electric
field. The Supplemental Material also shows an anima-
tion of the multithreaded spider ballooning and unfolding
dynamics [38].

IV. CONCLUSION

Three-dimensional numerical simulations are performed
for spider ballooning due to electrostatic forces. Spiders with
multi silk threads are considered in this study. The numerical
method of the fluid-structure-electric field interaction com-
bines the DER algorithm to compute the elastic deformation
of the spider threads. Moreover, the RFT is used to compute
the hydrodynamic viscous forces on the spider and on the
threads. The electrostatic forces caused by the atmospheric
potential gradient and the thread electric charge is computed
based on the Coulomb theory. The spider is approximated by
a sphere attached to one or multiple silk threads. The numer-
ical results computed in this paper are first validated against
theoretical and experimental data from the open literature for
one-thread case showing a good agreement.

Two cases were studied in this paper. In the first one, we
assume that the thread charge is uniformly distributed along

the threads. In the second, we assume that the charge is located
at the thread tip.

The results show that for one thread case, the normalized
velocity is around 2.2 and independent of the normalized lift
and normalized viscous forces while it is slightly less for the
multithread cases. In the uniformly distributed charge case,
the normalized ballooning velocity deviates from that for the
tip located charge and decreases slightly when the normalized
lift force exceeds 2 with a slope equal to −1/3.

Finally, the Coulomb repelling forces cause the threads to
bend and form a three-dimensional conical sheet very similar
to observations from open literature. This bending behavior is
very fast and occurs in the beginning of the ballooning process
before it stabilizes at a steady-state shape.

It should be noted that the wind speed and its fluctua-
tions could affect the behavior of trichobothria. In fact, the
spiders use the deformation of trichobothria signal to de-
termine whether they will balloon or not. Hence, for high
wind speeds and fluctuations the signals of electric field could
be buried and the spider may not be able to distinguish
whether the deformation of trichobothria is caused by wind
or by electric field. Therefore, spiders usually balloon on
relatively calm days as explained earlier in the Introduction
section.

Moreover, in this study, the aim is to explore the essential
physics of the spiders ballooning by parameter space explo-
ration and therefore a computationally efficient framework
with DER and RFT has been chosen. A more comprehensive
model coupling for instance SBT and DER is an interesting
direction for future research.
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