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ABSTRACT

Recent success in reinforcement learning (RL) has brought renewed
attention to the design of reward functions by which agent behav-
ior is reinforced or deterred. Manually designing reward functions
is tedious and error-prone. An alternative approach is to specify
a formal, unambiguous logic requirement, which is automatically
translated into a reward function to be learned from. Omega-regular
languages, of which Linear Temporal Logic (LTL) is a subset, are a
natural choice for specifying such requirements due to their use in
verification and synthesis. However, current techniques based on
omega-regular languages learn in an episodic manner whereby the
environment is periodically reset to an initial state during learning.
In some settings, this assumption is challenging or impossible to
satisfy. Instead, in the continuing setting the agent explores the
environment without resets over a single lifetime. This is a more
natural setting for reasoning about omega-regular specifications de-
fined over infinite traces of agent behavior. Optimizing the average
reward instead of the usual discounted reward is more natural in
this case due to the infinite-horizon objective that poses challenges
to the convergence of discounted RL solutions.

We restrict our attention to the omega-regular languages which
correspond to absolute liveness specifications. These specifications
cannot be invalidated by any finite prefix of agent behavior, in
accordance with the spirit of a continuing problem. We propose a
translation from absolute liveness omega-regular languages to an
average reward objective for RL. Our reduction can be done on-the-
fly, without full knowledge of the environment, thereby enabling
the use of model-free RL algorithms. Additionally, we propose a
reward structure that enables RL without episodic resetting in com-
municating MDPs, unlike previous approaches. We demonstrate
empirically with various benchmarks that our proposed method of
using average reward RL for continuing tasks defined by omega-
regular specifications is more effective than competing approaches
that leverage discounted RL.
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1 INTRODUCTION

The area of reinforcement learning (RL) for sequential decision-
making has witnessed tremendous success in recent years. This
is evidenced by RL architectures with superhuman performance
in games of perception and precision such as Go [1, 2], general
board games [3], and Atari [4-6], among others. In these settings,
the reward signal by which agent experience is labeled for positive
or negative reinforcement need only account for the current state
observed by the agent and the action chosen by the same. However,
it is often necessary or useful to account for the history of the
agent when arbitrating the credit assignment computed by the
reward function of the underlying decision process. Examples of
this include learning in decision processes where rewards are sparse
[7], where states are partially observable [8], or where the objective
is temporally extended [9]. Moreover, it is often more natural to
express the goal of the agent as the language of desirable and
undesirable outcomes, with the reward signal reflecting the pursuit
and avoidance, respectively, of such behaviors. The use of formal
language structures to define such behavioral specifications has
been well-studied in the area of formal verification and is gaining
traction in specifying reward signals for RL. These specifications
take the form of automata with various accepting conditions that
define the language they capture. It is worth noting that there
exist techniques to translate natural language objectives to their
corresponding automata representations in some settings [10].
The recent development of reward machines provides a similar
structured representation of the underlying reward signal and can
capture non-Markovian, or history-dependent, behavior [11, 12].
These reward machines are automata whose transitions denote
the reward observed by an agent for traversing from the initial
node in the reward machine to some other node via a sequence
of transitions that capture semantically meaningful events in the
decision process. This naturally enables the definition of temporally
extended objectives in RL as well as the augmentation of the under-
lying decision process to include observed transitions in the reward



Main Track

machine, thereby transforming some non-Markovian objectives
into Markovian tasks over the augmented decision process [13, 14].
Traditional off-the-shelf RL solutions can be employed for these
Markovian tasks.

The field of RL [15] studies sampling-based approaches to derive
decision-making policies that rely on scalar reward signals to opti-
mize for the underlying learning objective. Samples of behavior and
their associated rewards are used in a data-driven fashion to refine
state or action value functions and compute policies that maximize
expected cumulative reward. In episodic RL, the environment is
periodically reset to an initial state over the course of learning. In
continuing RL, the environment is not reset and the agent seeks
to maximize its performance over its lifetime. Additionally, the
environment in this setting should permit the agent to visit any
state from all other states, in order to allow the agent to correct
early mistakes. Such an environment is called communicating.

The foregoing notions of formal languages and RL have been
used to great effect in the formal synthesis of control policies, which
has garnered much interest in recent years [16-18]. This paradigm
enables developers to focus on defining the behavioral specifica-
tion of interest in some formal language as opposed to translating
and implementing said specification as a reward signal or learning
objective manually, which is known to be error-prone and lacking
guarantees of behavior [19]. Formal synthesis algorithms leverage
the underlying specification and compute a correct-by-construction
policy yielding the desired behavior. In this paper, we explore such
formal synthesis of policies through the use of average-reward
model-free reinforcement learning (RL) [20, 21] for a class of formal
specifications expressed in omega-regular languages [22]. These
languages provide a rich formalism to unambiguously express de-
sired properties of the system. These languages are accepted by
automata on infinite words, where a word denotes a sequence of
semantically meaningful observations observed by the agent. We
introduce the notion of nondeterministic reward machines to cap-
ture reward inherent in w-regular automata. Then, by computing a
product Markov decision process (MDP) between the reward ma-
chine of an w-regular specification and the MDP that models the
agent-environment dynamics, existing continuing RL algorithms
can be readily adopted to search for an optimal policy.

We focus our attention to the problem of translating omega-regular
objectives to average reward for model-free RL. This is justified by
challenges facing the adoption of discounted RL for continuing
tasks, as discussed in the sequel. Consider the cumulative reward
that is often expressed as a discounted sum of the individual rewards
received by the agent at each step. The use of a discount factor
ensures that the cumulative reward is bounded even for an infinite
sequence of actions and rewards, thereby facilitating convergence.
While mathematically convenient, discounting results in short-term
rewards being valued higher than the long-run performance of the
system. Thus, obtaining a suitable policy for long-run behavior
depends on choosing the right discount factor, which may have
to approach 1 as the size of the environment increases. However,
choosing a discount factor close to 1 results in a weak contraction
in RL algorithms, causing slow convergence and instability. This is
exacerbated in continuing task settings, where one has to choose
a very high discount factor to approximate the maximization of
long-run performance. Moreover, despite the success of discounted
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RL for episodic tasks [5], the solution of discounted RL depends on
initial state distributions, which makes it an optimization that is not
compatible with function approximations in continuing settings
[23]. Such function approximation is critical for learning policies on
large-scale models as evidenced by the adoption of large learning
models in state-of-the-art RL solutions. Thus, a natural alternative
to discounting is to optimize the average reward of the agent in
these settings.

However, the adoption of average reward RL faces its own set of
challenges. While establishing the existence of an optimal policy
for discounted RL is relatively straightforward, analyzing MDPs
with the average reward objective is more difficult and requires
some assumptions over the structure of the underlying MDP. Un-
like discounted RL approaches, where the discount factor plays
the role of the contraction parameter and enables convergence, in
average reward RL algorithms the contraction factor depends on
communicating assumptions of the MDP. When the communicating
assumption is satisfied, there are model-free convergent average
reward RL algorithms. Satisfying the communicating assumption
presents a challenge to the adoption of average reward RL for the
formal synthesis of policies satisfying omega-regular specifications.
Indeed, the product MDP resulting from the property and the under-
lying MDP may not be communicating. When episodic resetting is
unavailable, communication is a natural assumption. The challenge
is then to ensure that this property is preserved in the product
MDP. We demonstrate that this communicating property is pre-
served in the product MDP for an important class of omega-regular
specifications by leveraging the proposed reward machines.

The main contribution of this paper is to provide an average-
reward model-free RL algorithm for the design of policies that
satisfy a given absolute liveness omega-regular specification. Our
approach ensures that the communicating property is preserved
in the product, enabling the learning of optimal policies, while not
requiring episodic resetting. Despite the assumption of commu-
nicating MDPs, the naive synchronization of the MDP with the
automaton is not generally communicating. We propose a reward
machine and an augmented specification such that the communi-
cating property of the synchronized MDP is preserved. Our work
is the first to provide a translation from omega-regular objectives
to average-reward RL with formal guarantees. We validate our ap-
proach with an implementation of the proposed construction and
demonstrate its effectiveness on several benchmarks.

The paper is organized as follows. Section 2 includes the pre-
liminaries and states the problem definition. Section 3 presents the
main results of the paper, which establish a novel algorithm for
producing optimal policies for an absolute liveness property with
average reward RL. In Section 4, we test the performance of our ap-
proach on different case studies against prior techniques. Section 5
discusses related work in formal synthesis, average reward RL, and
related areas. We conclude with a summary in Section 6.

2 PROBLEM DEFINITION

Markov Decision Processes. Let D(S) be the set of distributions
over a given set S. A Markov decision process (MDP) M is a tuple
(S,s0,A, T,AP,L) where S is a finite set of states, sy € S is the
initial state, A is a finite set of actions, T: S X A — D(S) is the
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probabilistic transition function, AP is the set of atomic propositions,
and L: S — 24% is the labeling function.

For any state s € S, we let A(s) denote the set of actions that
can be selected in state s. An MDP is a Markov chain if A(s) is
singleton for all s € S. For states s,s” € S and a € A(s), T(s,a)(s")
equals p(s’|s,a). A run of M is an w-word (sg, a1,s1,...) € S X
(A x 8)“ such that p(si+1]si, ai+1)>0 for all i > 0. A finite run is
a finite such sequence. For a runr = (s¢, a1, s1, . . .) we define the
corresponding labeled run as L(r) = (L(so),L(s1),...) € (24P,
We write Runs™M (FRunsM) for the set of runs (finite runs) of the
MDP M and Runs™ (s) (FRuns™!(s)) for the set of runs (finite runs)
of the MDP M starting from the state s. We write last(r) for the
last state of a finite run r.

A strategy in M is a function o: FRuns — 9D(A) such that
supp(o(r)) € A(last(r)), where supp(d) denotes the support of the
distribution d. A memory skeleton is a tuple M = (M, mg, a,) where
M is a finite set of memory states, my is the initial state, and a, :
MX3 — M is the memory update function. We define the extended
memory update function &, : MXZ* — M in a straightforward
way. A finite memory strategy for M over a memory skeleton M
is a Mealy machine (M, ay) where ax : SXM — D(A) is the next
action function that suggests the next action based on the MDP and
memory state. The semantics of a finite memory strategy (M, ax)
is given as a strategy o : FRuns — D(A) such that for every
r € FRuns we have that o(r) = ax(last(r), &, (mo, L(r))).

A strategy o is pure if o(r) is a point distribution for all runs
r € FRuns™ and is mixed (short for strictly mixed) if supp(o(r)) =
A(last(r)) forall runs r € FRuns™. Let Runs{,vl (s) denote the subset
of runs RunsM (s) that correspond to strategy ¢ with initial state
s. Let IT 54 be the set of all strategies. We say that o is stationary if
last(r) = last(r’) implies o(r) = o(r") for all runs r, 7’ € FRunsM.
A stationary strategy can be given as a function o : S — D(A). A
strategy is positional if it is both pure and stationary.

An MDP M under a strategy o results in a Markov chain M. If
o is a finite memory strategy, then M, is finite-state Markov chain.
The behavior of an MDP M under a strategy o and starting state s €
S is defined on a probability space (Runsz/,w (s), ﬂunsy (s Prc/,w (s))
over the set of infinite runs of ¢ with starting state s. Given a
random variable f: RunsM — R, we denote by E(/,V[ (s) {f} the
expectation of f over the runs of M originating at s that follow o.

A sub-MDP of M is an MDP M’ = (S’,A’,T’,AP,L’), where
S’ ¢ S, A’ C Ais such that A’(s) C A(s) for every s € S’, and
T’ and L’ are analogous to T and L when restricted to S” and A’.
Moreover M’ is closed under probabilistic transitions. An end-
component [24] of an MDP M is a sub-MDP M’ such that for every
state pair s,s” € S’ there is a strategy that can reach s’ from s
with positive probability. A maximal end-component is an end-
component that is maximal under set-inclusion. Every state s of an
MDP M belongs to at most one maximal end-component. An MDP
M is communicating if it is equal to its maximal end-component. A
bottom strongly connected component (BSCC) of a Markov chain is
any of its end-components.

Reward Machines. In the classical RL literature, the learning ob-
jective is specified using Markovian reward functions, i.e. a function
p : S X A — R assigning utility to state-action pairs. A rewardful
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MDP is a tuple M = (S, s0, A, T, p) where S, so, A, and T are defined
in a similar way as for MDPa, and p is a Markovian reward function.
A rewardful MDP M under a strategy ¢ determines a sequence
of random rewards p(Xj-1,Y;);>, where X; and Y; are the ran-
dom variables denoting the i-th state and action, respectively. For
A € [0, 1], the discounted reward Disct(/l)(/,w (s) is defined as

D AT p(Xim, m},

lim EM(s) {
N—>oo
1<i<N

while the average reward Avgc’,v( (s) is defined as

LB { > p(xi_l,m}.

1<i<N
For an objective RewardMe{Disct()L)M,Ang} and state s, we
define the optimal reward Reward,ﬁw (s) as sup, ¢y " Rewardéw (s).

lim sup
N—oo

A strategy o is optimal for Reward M if Reward (/7\4 (s) :Rewardiw (s)
for all s€S. The optimal cost and strategies for these objectives can
be computed in polynomial time [25].

Often, complex learning objectives cannot be expressed using
Markovian reward signals. A recent trend is to express learning
objectives using finite-state reward machines [11]. We require
a more expressive variant of reward machine capable of € tran-
sitions and nondeterminisim. We call them nondeterministic re-
ward machines. A (nondeterministic) reward machine is a tuple
R = (Ze, U, ug, 8, p) where U is a finite set of states, ug € U is
the starting state, 6, : U X X¢ — 2U is the transition relation, and
p:UXZe XU — Ris the reward function, where 3¢ = (Z U {€})
and € is a special silent transition.

Given an MDP M = (S,s9,A, T, AP, L) and a reward machine
R = (Ze, U, ug, 8, p) over the alphabet 3 = 24P their product

M xR = (SXU, soXug, (AxU) U {e},T*, p™)

is a rewardful MDP where T : (SxU)x ((AxU)U{e}) — D(SxU)
is such that T*((s,u), a)((s’,u’)) equals

T(s,a)(s’) ifa=(au’)and (u,L(s),u’) € &
1 ifa =€eands =s"and §(u,€,u’) € 5,
0 otherwise.

and p* : (SxU) x ((AxU) U {€}) X (§xU) — R is defined such
that p*((s,u), a, (s’,u’)) equals

{p(u,L(s),u’) ifa = (a,u’) and (u, L(s),u’) € &,

p(u,e,u’) ifa =e.

For technical convenience, we assume that MXR contains only
reachable states from (s, ug). For both discounted and average ob-
jectives, the optimal strategies of MXR are positional on MxR.
Moreover, these positional strategies characterize a finite mem-
ory strategy (with memory skeleton based on the states of R and
the next-action function based on the positional strategy) over M
maximizing the learning objective given by R.

Omega-Regular Specifications. Formal specification languages,
such as w-automata and logical based objectives, provide a rigorous
and unambiguous mechanism to express learning objective over
continuing tasks. There is a growing trend [26-30] in expressing
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learning objectives in RL using linear temporal logic (LTL) and
w-regular languages (that strictly generalize LTL). We will express
w-regular languages as good-for-MDP Biichi automata [31].

LTL [22] is a temporal logic whose formulae describe a subset of
the w-regular languages, which is often used to specify objectives
in human-readable form. Given a set of atomic propositions AP, the
LTL formulae over AP can be defined via the following grammar:

1

aV —a;

p=acAP|=p|pVe|Xep|eUg.

Additional operators are defined as abbreviations: T £

J_déf—‘T;(p/\(ﬁdéf—‘(—‘(pv—uﬁ);(p — Ipd:Ef—.(pV(ﬁ;F(p d:ef'I'UqD;
and G ¢ “oF —¢. We write w = ¢ if w-word w over 24% satisfies
LTL formula ¢. The satisfaction relation is defined inductively [22].
Every LTL formula can be converted [32, 33] into a Good-for-MDP
Biichi automaton, defined later.

Nondeterministic Biichi automata are finite state machines capa-
ble expressing all w-regular languages. Formally, a (nondetermin-
istic) Biichi automaton is a tuple A = (, Q, qo, J, F), where X is a
finite alphabet, Q is a finite set of states, qo € Q is the initial state,
5: O x> — 29 is the transition function, and F C Q X % x Q is the
set of accepting transitions.

A runr of Aonw e 2% is an w-word ro, wo, r1, W1, . .. in (Q X
3)® such that ro = qo and, for i > 0, r; € §(ri—1, wi—1). Each triple
(ri—1, wi—1,ri) is a transition of A. We write inf(r) for the set of
transitions that appear infinitely often in the run r. A run r of A is
accepting if inf(r)NF # 0. The language L(A) of A is the subset of
words in X that have accepting runs in A. A language is w-regular
if it is accepted by a Biichi automaton.

Given an MDP M and an w-regular objective ¢ given as an
w-automaton A, = (2,0, 90,9, F), we want to compute an opti-
mal strategy satisfying the objective. We define the satisfaction
probability of o from starting state s as:

PSem%(s, o) = Préw(s) {r € Runséw(s): L(r) € .[:(.?l)} .

The optimal satisfaction probability PSemé\; (s) for specification
A is defined as sup;cry,, PrM(s, o) and we say that o € IT 5 is an
optimal strategy for A if PSem% (s,0)(s) = PSem% (s).

Given an MDP M = (S,s0,A, T, AP,L) and automaton A =
(24F 0, qo, 8, F), the product MxA = (5xQ, (s0, qo), AXQ, T, FX)
is an MDP with initial state (sg, qo) and accepting transitions F*
where T : (S x Q) X (A X Q) — D(S x Q) is defined by

T(s,a)(s”) if (¢ L(s,as’),q")€d

0 otherwise.

T*((s.9). (a.4")((s".q")= {

The final state FX C (S x Q) X (A x Q) x (S x Q) is defined by
((s,q),(a,q"), (s',q")) € F*if, and only if, (q,L(s,a,5'),q') € F
and T (s, a)(s”) > 0. A strategy o™ on the product defines a strategy
o on the MDP with the same value, and vice versa. Note that for a
stationary o, the strategy ¢ may need memory. End-components
and runs of the product MDP are defined just like for MDPs.

Arun of MxA is accepting if inf (r) NF* # 0. We define the syn-
tactic satisfaction probabilities PSat% ((s,q), o) as the probability
of accepting runs, i.e.

Pr é\;(xﬂ (s, q){r € RunsM*A (s,q) :inf(r) N F* # (2)}

O-X
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Similarly, we define PSaté:‘/l (s) as the optimal probability over the
product, i.e. sup = (PSat% ((s, qo), 0)). For a deterministic A the
equality PSat% (s) = PSem% (s) holds; however it is not guaran-
teed for nondeterministic Biichi automata as the optimal resolution
of nondeterministic choices may require access to future events.
This motivates for the definition of a good-for-MDP nondetermin-
isitc Biichi automata. A Biichi automaton A is good for MDPs (GFM),
if PSat% (so) = PSem%(so) holds for all MDPs M and starting
states so [31]. Note that every w-regular objective can be expressed
as a GFM automaton [31]. A popular class of GFM automata is
suitable limit-deterministic Biichi automata [32, 34]. This paper
considers only GFM Biichi automata.

The satisfaction of an w-regular objective given as a GFM automa-
ton A by an MDP M can be formulated in terms of the accepting
maximal end-components of the product MxA, i.e. the maximal
end-component that contains an accepting transition from F*. The
optimal satisfaction probabilities and strategies can be computed by
computing the accepting maximal end-component of M X A and
then maximizing the probability to reach states in such components.
The optimal strategies are positional on M x A and characterize a
finite memory strategy over M maximizing satisfaction probability
of the learning objective given by A.

Reinforcement Learning. Given an MDP M, reward machine R,
and an optimization objective (discounted or average reward), an
optimal strategy can be computed in polynomial time using linear
programming [25]. Similarly, graph-theoretic techniques to find
maximal end-components can be combined with linear program-
ming to compute optimal strategies for w-regular objectives [34].
However, when the transition/reward structure of the MDP is un-
known, such techniques are not applicable.

Reinforcement learning [15] (RL) is a sampling-based optimiza-
tion approach where an agent learns to optimize its strategy by
repeatedly interacting with the environment relying on the rein-
forcements (numerical reward signals) it receives for its actions.
We focus on model-free approach to RL where the learner com-
putes optimal strategies without explicitly estimating the transition
probabilities and rewards. These approaches are asymptotically
space-efficient [35] than model-based RL and have been shown to
scale well [5, 36]. Some prominent model-free RL algorithms for
discounted and average reward objectives include Q-learning and
TD(A) [15] and Differential Q-learning [21, 37].

In some applications, such as running a maze or playing tic-tac-
toe—the interaction between the agent and the environment natu-
rally breaks into finite length learning sequences, called episodes.
Thus the agent optimizes its strategy by combining its experience
over different episodes. We call such tasks episodic. On the other
hand, for some applications—such as process control and reactive
systems—this interaction continues ad-infinitum and the agent lives
and learns over a single lifetime. We call such tasks continuing.

Problem Statement and Assumptions. This paper develops a
model-free RL algorithm for continuing tasks where the learning
objective is given as an w-regular objective given as a GFM automa-
ton. Prior solutions [26—-29] focused on episodic setting and have
proposed a model-free reduction (does not require access to the
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MDP) from w-regular objectives to discounted-reward objectives.
Recently several researchers [15, 23] made the case for adopting
average reward formulation for continuing tasks due to several
limitations of discounted-reward RL in continuing tasks. This paper
investigates a model-free reduction from w-regular objectives to
average-reward objectives in model-free RL.

PROBLEM 1 (w-REGULAR TO AVERAGE REWARD TRANSLATION).
Given an unknown communicating MDP M = (S, so, A, T, AP, L) and
a GFM automaton A = (2, Q, qo, 6, F), the reward translation prob-
lem is to design a reward machine R such that an optimal positional
strategy maximizing the average reward for M xR provides a finite
memory strategy maximizing the satisfaction probability of A in M.

The existing average RL algorithms such as Differential Q-learning
provide convergence guarantees under the assumption that the
MDP M is communicating [21]. Thus, for the reward translation
to be effective, we need to make sure that the product M X A is
communicating. Unfortunately, even when M is communicating,
the product M x A may violate the communicating requirement.

We give a solution for the translation problem for an important
class of properties called absolute liveness [38]. Recall that a property
is absolute liveness if appending an arbitrary finite prefix to an
accepting word produces an accepting word. Formally, a language
L C 3% is an absolute liveness property if for every w € Landa € X
we have that aw € L. Note that for an absolute liveness language
L and for every x € 2* we have that xw € L. This implies that
an LTL property ¢ is absolute liveness property if ¢ is satisfiable
and ¢ and F ¢ are expressively equivalent. For average reward
objectives adding a prefix to a trace should not change the average
value associated with the trace. This is aligned with the satisfaction
of absolute liveness properties. Moreover, since absolute liveness
properties cannot be rejected for any finite word, they preserve the
continual nature of the learning procedure. To solve Problem 1, we
make the following assumption.

AssumPTION 1. Given an MDP M and w-automaton A, we as-
sume that: 1) M is communicating; 2) A is a GFM automaton; and
3) A is an absolute liveness property.

3 CONSTRUCTION AND CORRECTNESS

Let us fix a communicating MDP M = (S, s, A, T, AP, L) and an
absolute liveness GFM property A = (2, Q, qo, 3, F) for the rest of
this section. Our goal is to learn a reward machine R such that we
can use an off-the-shelf average reward RL on M X R to compute
an optimal strategy of M against A.

Since the optimal strategies are not positional on M but rather
positional on MXAA, it is natural to assume that the reward ma-
chine R takes the structure of A with a reward function providing
positive reinforcement with every accepting transition. Unfortu-
nately, even for absolute liveness GFM automata (A, the product
M x A with a communicating MDP M may not be communicating.

ExXAMPLE 1. Assume a communicating MDP M with at least one
state labeled a or b, and the absolute liveness property ¢ = F(Ga Vv
G Fb) and its automaton shown in Fig. 1. Observe that any run that
visits one of the two accepting states cannot not visit the other one.
Hence, the product does not satisfy the communicating property.
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Figure 1: A Biichi automaton for ¢ = F(GaVv GFb)

Reward Machine Construction Let A = (2,0, qo,d, F) be an
absolute liveness GFM automaton. Consider R 4 = (Z¢, O, g0, 8", p)
where §’(q, a) = 8(g, a) for all a € ¥ and € transitions reset to the
starting state, i.e. §'(g, €) = qo. Note that by adding the reset ()
action from every state of R to its initial state, the graph structure of
M s strongly connected. The reward function p : QxZU{e}xQ—R
is such that

c ifa=e¢

p(gaq)=11 if(qaq)eF
0 otherwise.

LEMMA 1 (PRESERVATION OF COMMUNICATION). For a communi-
cating MDP M and reward machine R # for an absolute liveness GFM
automaton A, we have that the product MXR 4 is communicating.

Proor. To show that MXR # is communicating, we need to
show that for arbitrary states (s, q), (s’,¢’) € S X Q reachable from
the initial state (s, go), we have that there is a strategy that can
reach (s’,q’) from (s, q) with positive probability. Note that since
M is communicating, it is possible to reach (so, ¢’) from (s, g) for
some g’ of R4 using a strategy to reach s from s in M. We can
then use a reset (¢) action in R # to reach the state (so, qo). Since
(s’, q’) is reachable from the initial state (sg, o), we have a strategy
to reach (s’, ") from (s, q) with positive probability. O

LEMMA 2 (AVERAGE AND PROBABILITY). There exists ac™ < 0 such
that for all ¢ < ¢*, positional strategies that maximize the average
reward on M x R # will maximize the satisfaction probability of A.

Proor. The proof is in three parts.

(1) First observe that if ¢ < 0, then for any average-reward op-
timal strategy in M X R #, the expected average reward is
non-negative. This is so because all other actions except ¢ ac-
tions provide non-negative rewards. Hence, any strategy that
takes ¢ actions only finitely often, results in a non-negative
average reward.

Let II* be the set of positional strategies in MXxR # such
that the ¢ actions are taken only finitely often, i.e. no BSCC
of the corresponding Markov chain contains an ¢ transition.
Let II€ be the set of remaining positional strategies, i.e., the
set of positional strategies that visit an € transition infinitely
often. Let 0<ppin<1 be a lower bound on the expected long-
run frequency of the € transitions among all strategies in
II€. Let ¢x = —1/ppin. Observe that for every policy ¢’ € II€¢,
the expected average reward is negative and cannot be an
optimal strategy in M X R #. To see that, let 0 < p < 1 be
the the long-run frequency of the € transitions for o and let
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0 < g < 1 be the long-run frequency of visiting accepting
transitions for . The average reward for o is

Avg(/,MXR"(so,qo) p-c+q-1+(1-p—-¢q) -0

< p-c+q-1+4(1-p—-q)-1
= pct(l-p)

< prat(l-p)

= —p/pnin+(1-p)

< -1+(1-p)<—p.

Since every optimal policy must have a non-negative average
reward, no policy in II€ is optimal for ¢ < c..

(3) Now consider an optimal policy ¢* in IT*. We show that this
policy also optimizes the probability of satisfaction of ‘A.
There are two cases to consider.

(a) If the expected average reward of ¢* is 0, then under no
strategy it is possible to reach an accepting transitions
(positive reward transition) in M X R #. Hence, every
policy is optimal in M against A, and so is ™.

(b) If the expected average reward of o™ is positive, then no-
tice that for every BSCC of the Markov chain of M X R #
under o, the average reward is the same. This is so be-
cause otherwise, there is a positional policy that reaches
the BSCC with the optimal average from all the other
BSCCs with lower averages, contradicting the optimality
of o,. Since for an optimal policy o, every BSCC provides
the same positive average, every BSCC must contain an ac-
cepting transition. Hence, every run of the MDP M under
o will eventually dwell in an accepting component and
in the process will see a finitely many € (reset) transitions.
For any such given run r, consider the the suffix r” of the
run after the last e transition is taken and let r = wr’ for
some finite run w. Since L(r”) is an accepting word in A,
and since A is an absolute liveness property any arbitrary
prefix w’ to this run r’ is also accepting. This implies that
the original run r is also accepting for A. It follows that
for such a strategy o, the probability of satisfaction of A
is 1, making oy an optimal policy for M against A. O

Since our translation from w-regular objective to reward ma-
chines is model-free, the following theorem is immediate.

THEOREM 1 (CONVERGENCE OF MODEL-FREE RL). Differential
Q-learning algorithm for maximizing average reward objective on
M x Ra will converge to a strategy maximizing the probability
of satisfaction of A for a suitable value of c. Moreover, the product
construction M X R g can be done on-the-fly and it is model-free.

As an example, consider the property F G a and an MDP with
two states and all transitions between states are available as de-
terministic actions (Fig. 2). Only one of the states is labeled a. An
infinite memory strategy could see a for one step, reset, then see
two as, reset, then see three as and so forth. This strategy will pro-
duce the same average value as the positional strategy which sees
a forever without resetting. However, the infinite memory strategy
will fail the property while the positional one will not.

Shaping Rewards via Hard Resets. For a Biichi automaton A,
we say that its state ¢ € Q is coaccessible if there exists a path
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—a

(a) Automaton of F G a, dashed lines represent reset transitions

(b) MDP, each transition represents an action

Figure 2: The two state MDP and a persistence property

starting from that state to a accepting transition. If a state is not
coaccessible then any run of the product M x A that ends in such
a state will never be accepting, and hence one can safely redirect all
of its outgoing transitions to the initial state with reward c (a hard
reset). Such hard resets will promote speedy learning by reducing
the time spent in such states during unsuccessful explorations, and
at the same time adding these resets does not make a non-accepting
run accepting or vice versa. Lemma 1, Lemma 2, and Theorem 1
continue to hold with such hard resets. Introducing hard resets is a
reward shaping procedure in that it is a reward transformation [39]
under which optimal strategies remain invariant.

4 EXPERIMENTAL RESULTS

We implemented the reduction! with hard resets presented in Sec-
tion 3. As described, we do not build the product MDP explicitly, and
instead compose it on-the-fly by keeping track of the MDP and au-
tomaton states independently. We use Differential Q-learning [21]
to learn optimal, positional average reward strategies. For our ex-
periments, we have collected a set of communicating MDPs with
absolute liveness properties?.

We compare with two previous approaches for translating omega-
regular languages to rewards: the method of [26] with Q-learning
and the method of [40] with Q-learning. The method of [26] trans-
lates a GFM Biichi automaton into a reachability problem through
a suitable parameter {. This reachability problem can be solved
with discounted RL by rewarding reaching the target state and
using a large enough discount factor. The method of [40] uses a
state dependent discount factor yg and a GFM Biichi automaton.
By using a suitable yp and large enough discount factor, one can
learn optimal strategies for the omega-regular objective.

RQ1. How do previous approaches perform in the continu-
ing setting? The methods of [26, 40] may produce product MDPs
that are not communicating (see Example 1). This means that a
single continuing run of the MDP may not explore all relevant
states and actions. Thus, previous methods are not guaranteed to
converge in this setting. We studied if this behavior affects these

! The implementation is available at https://plv.colorado.edu/mungojerrie/.
%Case studies are available at https://plv.colorado.edu/mungojerrie/aamas22.
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prior methods in practice. As a baseline, we include our proposed
approach. Instead of tuning hyperparameters for each method,
where hyperparameters that lead to convergence may not exist,
we take a sampling approach. We select a wide distribution over
hyperparameters for each method and sample 200 hyperparameter
combinations for each method and example. We then train for 10
million steps on each combination. The selected hyperparameter
distribution is & ~ 9(0.01,0.5), ¢ ~ 9(0.01,1.0), ¢ ~ D(1,200),
n ~ D(0.01,05), { ~ D(0.50.995), yg ~ D(0.5,0.995), and
Y ~ D(0.99,0.99999) where D (a, b) is a log-uniform distribution
from a to b. The end points of these distributions and the train-
ing amount was selected by finding hyperparameters which led to
convergence in the episodic setting for these methods.

Figure 3 shows the resulting distribution over runs. A distribution
entirely at 0 (1) indicates that all sampled runs produced strategies
that satisfy the property with probability 0 (1). For many examples,
prior approaches had no successful hyperparameter combinations,
with distributions centered entirely at 0. However, our proposed
approach always had some hyperparameters that led to optimal,
probability 1, strategies, as indicated by the tails of the distributions
touching the probability 1 region of the plot.

Learning comparison without episodic resetting

{n . 1
adverse A
H{ - 1
L — . ]
frozenSmall
{0 1
{m . ]
frozenLarge -
{1
v 1 1
windy
Y] )
. 10 ° 1
windyStoch 1 EEE Average (ours)
Hahn et al.
L. o — ]
gridsxs 4 I Bozkurt et al.
g [
ishift
g o
411 ° 1
doublegrid
{1e
L e 1
busyRingMC2 -
L . - 1
busyRingMC4 -
0.00 0.25 0.50 0.75 1.00

Probability of satisfaction

Figure 3: Comparison of the distributions of probability of
satisfaction of learned policies across sampled hyperparam-
eters in the continuing setting. For each distribution, the
mean is shown as a circle, and the maximum and minimum
are shown as vertical bars. We compare our proposed reduc-
tion, the reduction of [26] with Q-learning, and the reduction
of [40] with Q-learning. Episodic resetting was not used.
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RQ2. How does our method compare to previous approaches
when we allow episodic setting? By allowing episodic resetting,
we can now find hyperparameters for previous methods that lead
to convergence. We tuned all hyperparameters by hand to mini-
mize training time, while verifying with a model checker that the
produced strategies are optimal. Table 1 shows learning times, as
well as hyperparameters for our reduction. We report the number
of states reachable in the MDP and the product, learning times
averaged over 5 runs, the reset penalty c, the e-greedy exploration
rate ¢, the Differential Q-learning learning rates « and 7, as well as
the number of training steps. Note that we do not do any episodic
resetting when training with our reduction. This means that the RL
agent must learn to recover from mistakes during training, while
previous approaches are periodically reset to a good initial state.
Our reduction using Differential Q-learning is competitive with previ-
ous approaches while not being reliant on episodic resetting.

5 RELATED WORK

The development and use of formal reward structures for RL have
witnessed increased interest in recent years. For episodic RL, logics
have been developed over finite traces of agent behavior, including
LTLy and Linear Dynamic Logic (LDLy) [41, 42]. These logics have
equivalent automaton and reward machine representations that
have catalyzed a series of efforts on defining novel reward shaping
functions to accelerate the convergence of RL algorithms subject to
formal specifications [9, 43, 44]. These methods leverage the graph
structure of the automaton to provide an artificial reward signal to
the agent. More recently, dynamic reward shaping using LTL ¢ has
been introduced as a means to both learn the transition values of a
given reward machine and leverage these values for reward shaping
and transfer learning [45]. There has also been work on learning
or synthesizing the entire structure of such reward machines from
agent interactions with the environment by leveraging techniques
from satisfiability and active grammatical inference [7, 8, 13, 14, 46].

For the infinite-trace settings, LTL has been extensively used to
verify properties and synthesize policies formally using the mathe-
matical model of a system [22, 30, 47-51]. Considering the general-
ity of the results in terms of structure of the underlying MDP, most
of the research focuses on discounted reward structures. Despite the
simplicity of discounted Markov decision problems, the discounted
reward structure (unlike average reward) prioritizes the transient
response of the system. However, application of the average reward
objective because of the restriction over the structure of the MDP
is limited. The work [52] proposes a policy iteration algorithm for
satisfying properties of the form G F ¢ A ¢ for a communicating
MDP almost surely. The work [53] proposes a value iteration algo-
rithm for solving the average reward problem for multichain MDPs,
where the algorithm first computes the optimal value for each of
strongly connected components and then weighted reachability to
find the optimal policy. The work [54] provides a linear program for
policy synthesis of multichain MDPs with steady-state constraints.

In the last few years, researchers have started developing data-
driven policy synthesis techniques in order to satisfy temporal
properties. There is a large body of literature in safe reinforcement
learning (RL) (see e.g. [55-57]). The problem of learning a policy to
maximize the satisfaction probability of a temporal property using
discounted RL is studied recently [27, 28, 40, 58—61]. The work [26]
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Name states prod. time time'  time* c £ a n train-steps
adverse 202 507 8.51 7.09  12.56 | -150 0.2 10M
frozenSmall 16 64 0.99 20.23 9.88 500k
frozenLarge 64 256 4.07 3.88 8.79 0.02 0.02 3M
windy 123 366 1.40 1.81 2.61 095 0.5 0.05 1M
windyStoch 130 390 297 391 2.53 0.5 2M
grid5x5 25 100 0.62 1.12 1.02 0.5 200k
ishift 4 29 0.03  0.01 0.02 10k
doublegrid 1296 5183 16.43 3.45 3.09 -2 0.5 0.05 0.01 12M
busyRingMC2 72 288 0.03  0.03 0.03 0.01 10k
busyRingMC4 | 2592 15426 6.08  3.94 2.33 0.01 1.5M

Table 1: Learning results and comparison. Hyperparameters used for our reduction are shown. Blank entries indicate that

default values were used. The default parameters are c = —1, ¢ = 0.1, & = 0.1, and 5 = 0.1. Times are in seconds. Superscript
indicates results from Q-learning with reduction from [26], while superscript * indicates Q-learning with reduction from [40].
Results for T and ¥ required episodic resetting. All hyperparameters were tuned by hand.

by using a parameterized augmented MDP provides an RL-based
policy synthesis for finite MDPs with unknown transition probabil-
ities. It shows that the optimal policy obtained by RL for the reacha-
bility probability on the augmented MDP gives a policy for the MDP
with a suitable convergence guarantee. In [40] authors provide a
path-dependent discounting mechanism for the RL algorithm based
on a limit-deterministic Biichi automaton (LDBA) representation
of the underlying omega-regular property, and prove convergence
of their approach on finite MDPs when the discounting factor goes
to one. An LDBA is also leveraged in [28, 60, 61] for discounted-
reward model-free RL in both continuous- and discrete-state MDPs.
The LDBA is used to define a reward function that incentivizes the
agent to visit all accepting components of the automaton. These
works use episodic discounted RL with discount factor close to one
to solve the policy synthesis problem. There are two issues with the
foregoing approaches. First, because of the episodic nature of the
algorithms they are not applicable in continuing settings. Second,
because of high discount factors in practice these algorithm are
difficult to converge. On the other hand, recent work on reward
shaping for average reward RL has been explored based on safety
properties to be satisfied by the synthesized policy [62]. In contrast
to the solution proposed in this paper, the preceding approach re-
quires knowledge of the graph structure of the underlying MDP
and does not account for absolute liveness properties.

There is a rich history of studies in average reward RL [20, 63].
Lack of stopping criteria for multichain MDPs affect the gener-
ality of model-free RL algorithms. In this way, all model-free RL
algorithms put some restrictions on the structure of MDP (e.g. er-
godicity [64, 65] or communicating property). The closest line of
work to this work is to use average reward objective for safe RL. The
work [66] proposes a model-based RL algorithm for maximizing
average reward objective with safety constraint for communicating
MDPs. It is worth noting that in multichain setting, the state-of-the-
art learning algorithms use model-based RL algorithms. The work
[67] studies satisfaction of w-regular properties using data-driven
approaches. The authors introduce an algorithm where the opti-
mality of the policy is conditioned to not leaving the corresponding
maximal end component which leads to a sub-optimal solution.
The authors provide PAC analysis for the algorithm as well. De-
spite all the efforts of using data-driven approaches for satisfying

the w-regular properties, there is a gap in using average reward
model-free RL algorithms for satisfying temporal properties.

This paper is an attempt to close this gap by proposing a model-
free average reward RL algorithm for a subclass of LTL properties
called absolute liveness properties. We claim this subclass captures
a large class of interesting properties and are suitable for average
reward RL. Furthermore, the eventual satisfaction semantics of an
arbitrary omega-regular or LTL specification ¢ can be captured by
an absolute liveness property F ¢.

6 CONCLUSION

This work addressed the problem of synthesizing policies that sat-
isfy a given absolute liveness omega-regular property in the con-
tinuing setting. Our key contribution is a model-free translation
from the omega-regular specification to an average reward objec-
tive, enabling the use of off-the-shelf average reward RL. This is in
contrast to existing methods in the literature that use discounted,
episodic learning, which require the ability to reset the underly-
ing environment and is restrictive in some settings. Our approach
avoids this episodic learning and learns the optimal policy in one
life-long episode without resetting. Furthermore, the proposed solu-
tion does not require access to a model of the environment nor to its
graph structure, thereby avoiding a common assumption made in
the literature on requiring the computation of end components for
synthesis of policies subject to some omega-regular specification.
For our experiments, we applied Differential Q-learning to a
range of case studies and showed that the proposed approach is
successful in converging to optimal strategies under the raised as-
sumptions. In particular, our experiments showed that the proposed
approach is superior to previous methods in the continuing setting.
This lends credence to the important and understudied idea that
average reward RL is better-suited for continuing task settings than
the more popular discounted RL. For future work, we will explore
the use of function approximation in the hopes that average reward
RL can experience the same success for continuing tasks that its
discounted RL counterpart has witnessed in episodic settings.
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