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ABSTRACT
Recent success in reinforcement learning (RL) has brought renewed
attention to the design of reward functions by which agent behav-
ior is reinforced or deterred. Manually designing reward functions
is tedious and error-prone. An alternative approach is to specify
a formal, unambiguous logic requirement, which is automatically
translated into a reward function to be learned from. Omega-regular
languages, of which Linear Temporal Logic (LTL) is a subset, are a
natural choice for specifying such requirements due to their use in
veri�cation and synthesis. However, current techniques based on
omega-regular languages learn in an episodic manner whereby the
environment is periodically reset to an initial state during learning.
In some settings, this assumption is challenging or impossible to
satisfy. Instead, in the continuing setting the agent explores the
environment without resets over a single lifetime. This is a more
natural setting for reasoning about omega-regular speci�cations de-
�ned over in�nite traces of agent behavior. Optimizing the average
reward instead of the usual discounted reward is more natural in
this case due to the in�nite-horizon objective that poses challenges
to the convergence of discounted RL solutions.

We restrict our attention to the omega-regular languages which
correspond to absolute liveness speci�cations. These speci�cations
cannot be invalidated by any �nite pre�x of agent behavior, in
accordance with the spirit of a continuing problem. We propose a
translation from absolute liveness omega-regular languages to an
average reward objective for RL. Our reduction can be done on-the-
�y, without full knowledge of the environment, thereby enabling
the use of model-free RL algorithms. Additionally, we propose a
reward structure that enables RL without episodic resetting in com-
municating MDPs, unlike previous approaches. We demonstrate
empirically with various benchmarks that our proposed method of
using average reward RL for continuing tasks de�ned by omega-
regular speci�cations is more e�ective than competing approaches
that leverage discounted RL.
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1 INTRODUCTION
The area of reinforcement learning (RL) for sequential decision-
making has witnessed tremendous success in recent years. This
is evidenced by RL architectures with superhuman performance
in games of perception and precision such as Go [1, 2], general
board games [3], and Atari [4–6], among others. In these settings,
the reward signal by which agent experience is labeled for positive
or negative reinforcement need only account for the current state
observed by the agent and the action chosen by the same. However,
it is often necessary or useful to account for the history of the
agent when arbitrating the credit assignment computed by the
reward function of the underlying decision process. Examples of
this include learning in decision processes where rewards are sparse
[7], where states are partially observable [8], or where the objective
is temporally extended [9]. Moreover, it is often more natural to
express the goal of the agent as the language of desirable and
undesirable outcomes, with the reward signal re�ecting the pursuit
and avoidance, respectively, of such behaviors. The use of formal
language structures to de�ne such behavioral speci�cations has
been well-studied in the area of formal veri�cation and is gaining
traction in specifying reward signals for RL. These speci�cations
take the form of automata with various accepting conditions that
de�ne the language they capture. It is worth noting that there
exist techniques to translate natural language objectives to their
corresponding automata representations in some settings [10].

The recent development of reward machines provides a similar
structured representation of the underlying reward signal and can
capture non-Markovian, or history-dependent, behavior [11, 12].
These reward machines are automata whose transitions denote
the reward observed by an agent for traversing from the initial
node in the reward machine to some other node via a sequence
of transitions that capture semantically meaningful events in the
decision process. This naturally enables the de�nition of temporally
extended objectives in RL as well as the augmentation of the under-
lying decision process to include observed transitions in the reward
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machine, thereby transforming some non-Markovian objectives
into Markovian tasks over the augmented decision process [13, 14].
Traditional o�-the-shelf RL solutions can be employed for these
Markovian tasks.

The �eld of RL [15] studies sampling-based approaches to derive
decision-making policies that rely on scalar reward signals to opti-
mize for the underlying learning objective. Samples of behavior and
their associated rewards are used in a data-driven fashion to re�ne
state or action value functions and compute policies that maximize
expected cumulative reward. In episodic RL, the environment is
periodically reset to an initial state over the course of learning. In
continuing RL, the environment is not reset and the agent seeks
to maximize its performance over its lifetime. Additionally, the
environment in this setting should permit the agent to visit any
state from all other states, in order to allow the agent to correct
early mistakes. Such an environment is called communicating.

The foregoing notions of formal languages and RL have been
used to great e�ect in the formal synthesis of control policies, which
has garnered much interest in recent years [16–18]. This paradigm
enables developers to focus on de�ning the behavioral speci�ca-
tion of interest in some formal language as opposed to translating
and implementing said speci�cation as a reward signal or learning
objective manually, which is known to be error-prone and lacking
guarantees of behavior [19]. Formal synthesis algorithms leverage
the underlying speci�cation and compute a correct-by-construction
policy yielding the desired behavior. In this paper, we explore such
formal synthesis of policies through the use of average-reward
model-free reinforcement learning (RL) [20, 21] for a class of formal
speci�cations expressed in omega-regular languages [22]. These
languages provide a rich formalism to unambiguously express de-
sired properties of the system. These languages are accepted by
automata on in�nite words, where a word denotes a sequence of
semantically meaningful observations observed by the agent. We
introduce the notion of nondeterministic reward machines to cap-
ture reward inherent in l-regular automata. Then, by computing a
product Markov decision process (MDP) between the reward ma-
chine of an l-regular speci�cation and the MDP that models the
agent-environment dynamics, existing continuing RL algorithms
can be readily adopted to search for an optimal policy.

We focus our attention to the problem of translating omega-regular
objectives to average reward for model-free RL. This is justi�ed by
challenges facing the adoption of discounted RL for continuing
tasks, as discussed in the sequel. Consider the cumulative reward
that is often expressed as a discounted sum of the individual rewards
received by the agent at each step. The use of a discount factor
ensures that the cumulative reward is bounded even for an in�nite
sequence of actions and rewards, thereby facilitating convergence.
While mathematically convenient, discounting results in short-term
rewards being valued higher than the long-run performance of the
system. Thus, obtaining a suitable policy for long-run behavior
depends on choosing the right discount factor, which may have
to approach 1 as the size of the environment increases. However,
choosing a discount factor close to 1 results in a weak contraction
in RL algorithms, causing slow convergence and instability. This is
exacerbated in continuing task settings, where one has to choose
a very high discount factor to approximate the maximization of
long-run performance. Moreover, despite the success of discounted

RL for episodic tasks [5], the solution of discounted RL depends on
initial state distributions, which makes it an optimization that is not
compatible with function approximations in continuing settings
[23]. Such function approximation is critical for learning policies on
large-scale models as evidenced by the adoption of large learning
models in state-of-the-art RL solutions. Thus, a natural alternative
to discounting is to optimize the average reward of the agent in
these settings.

However, the adoption of average reward RL faces its own set of
challenges. While establishing the existence of an optimal policy
for discounted RL is relatively straightforward, analyzing MDPs
with the average reward objective is more di�cult and requires
some assumptions over the structure of the underlying MDP. Un-
like discounted RL approaches, where the discount factor plays
the role of the contraction parameter and enables convergence, in
average reward RL algorithms the contraction factor depends on
communicating assumptions of theMDP.When the communicating
assumption is satis�ed, there are model-free convergent average
reward RL algorithms. Satisfying the communicating assumption
presents a challenge to the adoption of average reward RL for the
formal synthesis of policies satisfying omega-regular speci�cations.
Indeed, the product MDP resulting from the property and the under-
lying MDP may not be communicating. When episodic resetting is
unavailable, communication is a natural assumption. The challenge
is then to ensure that this property is preserved in the product
MDP. We demonstrate that this communicating property is pre-
served in the product MDP for an important class of omega-regular
speci�cations by leveraging the proposed reward machines.

The main contribution of this paper is to provide an average-
reward model-free RL algorithm for the design of policies that
satisfy a given absolute liveness omega-regular speci�cation. Our
approach ensures that the communicating property is preserved
in the product, enabling the learning of optimal policies, while not
requiring episodic resetting. Despite the assumption of commu-
nicating MDPs, the naive synchronization of the MDP with the
automaton is not generally communicating. We propose a reward
machine and an augmented speci�cation such that the communi-
cating property of the synchronized MDP is preserved. Our work
is the �rst to provide a translation from omega-regular objectives
to average-reward RL with formal guarantees. We validate our ap-
proach with an implementation of the proposed construction and
demonstrate its e�ectiveness on several benchmarks.

The paper is organized as follows. Section 2 includes the pre-
liminaries and states the problem de�nition. Section 3 presents the
main results of the paper, which establish a novel algorithm for
producing optimal policies for an absolute liveness property with
average reward RL. In Section 4, we test the performance of our ap-
proach on di�erent case studies against prior techniques. Section 5
discusses related work in formal synthesis, average reward RL, and
related areas. We conclude with a summary in Section 6.

2 PROBLEM DEFINITION
Markov Decision Processes. Let D(() be the set of distributions
over a given set ( . A Markov decision process (MDP) M is a tuple
((, B0,�,) ,�%, !) where ( is a �nite set of states, B0 2 ( is the
initial state, � is a �nite set of actions, ) : ( ⇥ � �ö D(() is the
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probabilistic transition function,�% is the set of atomic propositions,
and ! : ( ! 2�% is the labeling function.

For any state B 2 ( , we let �(B) denote the set of actions that
can be selected in state B . An MDP is a Markov chain if �(B) is
singleton for all B 2 ( . For states B, B 0 2 ( and 0 2 �(B), ) (B,0) (B 0)
equals ? (B 0 |B,0). A run of M is an l-word hB0,01, B1, . . .i 2 ( ⇥
(� ⇥ ()l such that ? (B8+1 |B8 ,08+1)>0 for all 8 � 0. A �nite run is
a �nite such sequence. For a run A = hB0,01, B1, . . .i we de�ne the
corresponding labeled run as !(A ) = h!(B0), !(B1), . . .i 2 (2�% )l .
We write RunsM(FRunsM) for the set of runs (�nite runs) of the
MDPM and RunsM(B) (FRunsM(B)) for the set of runs (�nite runs)
of the MDP M starting from the state B . We write last (A ) for the
last state of a �nite run A .

A strategy in M is a function f : FRuns ! D(�) such that
supp(f (A )) ✓ �(last (A )), where supp(3) denotes the support of the
distribution3 . A memory skeleton is a tuple" = (",<0,UD ) where
" is a �nite set of memory states,<0 is the initial state, and UD :
"⇥⌃ ! " is the memory update function. We de�ne the extended
memory update function ÛD : "⇥⌃⇤ ! " in a straightforward
way. A �nite memory strategy forM over a memory skeleton"
is a Mealy machine (",UG ) where UG : (⇥" ! D(�) is the next
action function that suggests the next action based on the MDP and
memory state. The semantics of a �nite memory strategy (",UG )
is given as a strategy f : FRuns ! D(�) such that for every
A 2 FRuns we have that f (A ) = UG (last (A ), ÛD (<0, !(A ))).

A strategy f is pure if f (A ) is a point distribution for all runs
A 2 FRunsM and is mixed (short for strictly mixed) if supp(f (A )) =
�(last (A )) for all runs A 2 FRunsM . Let RunsMf (B) denote the subset
of runs RunsM(B) that correspond to strategy f with initial state
B . Let ⇧M be the set of all strategies. We say that f is stationary if
last (A ) = last (A 0) implies f (A ) = f (A 0) for all runs A , A 0 2 FRunsM .
A stationary strategy can be given as a function f : ( ! D(�). A
strategy is positional if it is both pure and stationary.

An MDPM under a strategy f results in a Markov chainMf . If
f is a �nite memory strategy, thenMf is �nite-state Markov chain.
The behavior of anMDPM under a strategy f and starting state B 2
( is de�ned on a probability space (RunsMf (B), FRunsMf (B) , Pr

M
f (B))

over the set of in�nite runs of f with starting state B . Given a
random variable 5 : RunsM ! R, we denote by EMf (B) {5 } the
expectation of 5 over the runs of M originating at B that follow f .

A sub-MDP of M is an MDP M 0 = (( 0,�0,) 0,�%, !0), where
( 0 ⇢ ( , �0 ✓ � is such that �0(B) ✓ �(B) for every B 2 ( 0, and
) 0 and !0 are analogous to ) and ! when restricted to ( 0 and �0.
Moreover M 0 is closed under probabilistic transitions. An end-
component [24] of an MDPM is a sub-MDPM 0 such that for every
state pair B, B 0 2 ( 0 there is a strategy that can reach B 0 from B
with positive probability. A maximal end-component is an end-
component that is maximal under set-inclusion. Every state B of an
MDPM belongs to at most one maximal end-component. An MDP
M is communicating if it is equal to its maximal end-component. A
bottom strongly connected component (BSCC) of a Markov chain is
any of its end-components.

Reward Machines. In the classical RL literature, the learning ob-
jective is speci�ed usingMarkovian reward functions, i.e. a function
d : ( ⇥� ! R assigning utility to state-action pairs. A rewardful

MDP is a tupleM = ((, B0,�,) , d) where (, B0,�, and) are de�ned
in a similar way as for MDPa, and d is a Markovian reward function.
A rewardful MDP M under a strategy f determines a sequence
of random rewards d (-8�1,.8 )8�1, where -8 and .8 are the ran-
dom variables denoting the 8-th state and action, respectively. For
_ 2 [0, 1[, the discounted reward Disct (_)Mf (B) is de�ned as

lim
#!1

EMf (B)
( ’
18#

_8�1d (-8�1,.8 )
)
,

while the average reward AvgMf (B) is de�ned as

lim sup
#!1

1
#
EMf (B)

( ’
18#

d (-8�1,.8 )
)
.

For an objective RewardM2{Disct (_)M ,AvgM} and state B , we
de�ne the optimal reward RewardM⇤ (B) as supf 2⇧M RewardMf (B).
A strategy f is optimal for RewardM if RewardMf (B)=RewardM⇤ (B)
for all B2( . The optimal cost and strategies for these objectives can
be computed in polynomial time [25].

Often, complex learning objectives cannot be expressed using
Markovian reward signals. A recent trend is to express learning
objectives using �nite-state reward machines [11]. We require
a more expressive variant of reward machine capable of n tran-
sitions and nondeterminisim. We call them nondeterministic re-
ward machines. A (nondeterministic) reward machine is a tuple
R = (⌃n ,* ,D0, XA , d) where * is a �nite set of states, D0 2 * is
the starting state, XA : * ⇥ ⌃n ! 2* is the transition relation, and
d : * ⇥ ⌃n ⇥* ! R is the reward function, where ⌃n = (⌃ [ {n})
and n is a special silent transition.

Given an MDP M = ((, B0,�,) ,�%, !) and a reward machine
R = (⌃n ,* ,D0, XA , d) over the alphabet ⌃ = 2�% , their product

M ⇥ R = ((⇥* , B0⇥D0, (�⇥* ) [ {n} ,)⇥, d⇥)
is a rewardful MDPwhere)⇥ : ((⇥* )⇥((�⇥* )[{n}) ! D((⇥* )
is such that )⇥ ((B,D),U) ((B 0,D 0)) equals

8>>><
>>>:

) (B,0) (B 0) if U = (0,D 0) and (D, !(B),D 0) 2 XA
1 if U = n and B = B 0 and X (D, n,D 0) 2 XA
0 otherwise.

and d⇥ : ((⇥* ) ⇥ ((�⇥* ) [ {n}) ⇥ ((⇥* ) ! R is de�ned such
that d⇥ ((B,D),U, (B 0,D 0)) equals(

d (D, !(B),D 0) if U = (0,D 0) and (D, !(B),D 0) 2 XA
d (D, n,D 0) if U = n .

For technical convenience, we assume that M⇥R contains only
reachable states from (B0,D0). For both discounted and average ob-
jectives, the optimal strategies of M⇥R are positional on M⇥R.
Moreover, these positional strategies characterize a �nite mem-
ory strategy (with memory skeleton based on the states of R and
the next-action function based on the positional strategy) over M
maximizing the learning objective given by R.

Omega-Regular Speci�cations. Formal speci�cation languages,
such asl-automata and logical based objectives, provide a rigorous
and unambiguous mechanism to express learning objective over
continuing tasks. There is a growing trend [26–30] in expressing
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learning objectives in RL using linear temporal logic (LTL) and
l-regular languages (that strictly generalize LTL). We will express
l-regular languages as good-for-MDP Büchi automata [31].

LTL [22] is a temporal logic whose formulae describe a subset of
the l-regular languages, which is often used to specify objectives
in human-readable form. Given a set of atomic propositions�% , the
LTL formulae over �% can be de�ned via the following grammar:

i := 0 2 �% | ¬i | i _ i | Xi | i Ui . (1)

Additional operators are de�ned as abbreviations: > def= 0 _ ¬0;
? def= ¬>; i ^ k

def= ¬(¬i _ ¬k ); i ! k
def= ¬i _ k ; Fi def= >Ui ;

and Gi
def= ¬ F¬i . We writeF |= i if l-wordF over 2�% satis�es

LTL formula i . The satisfaction relation is de�ned inductively [22].
Every LTL formula can be converted [32, 33] into a Good-for-MDP
Büchi automaton, de�ned later.

Nondeterministic Büchi automata are �nite state machines capa-
ble expressing all l-regular languages. Formally, a (nondetermin-
istic) Büchi automaton is a tuple A = (⌃,&,@0, X, � ), where ⌃ is a
�nite alphabet, & is a �nite set of states, @0 2 & is the initial state,
X : & ⇥ ⌃ ! 2& is the transition function, and � ⇢ & ⇥ ⌃ ⇥& is the
set of accepting transitions.

A run A of A onF 2 ⌃l is an l-word A0,F0, A1,F1, . . . in (& ⇥
⌃)l such that A0 = @0 and, for 8 > 0, A8 2 X (A8�1,F8�1). Each triple
(A8�1,F8�1, A8 ) is a transition of A. We write inf (A ) for the set of
transitions that appear in�nitely often in the run A . A run A of A is
accepting if inf (A )\� < ;. The language L(A) ofA is the subset of
words in ⌃l that have accepting runs inA. A language isl-regular
if it is accepted by a Büchi automaton.

Given an MDP M and an l-regular objective i given as an
l-automaton Ai = (⌃,&,@0, X, � ), we want to compute an opti-
mal strategy satisfying the objective. We de�ne the satisfaction
probability of f from starting state B as:

PSemM
A (B,f) = PrMf (B)

n
A 2 RunsMf (B) : !(A ) 2 L(A)

o
.

The optimal satisfaction probability PSemM
A (B) for speci�cation

A is de�ned as supf 2⇧M PrMf (B,f) and we say that f 2 ⇧M is an
optimal strategy for A if PSemM

A (B,f) (B) = PSemM
A (B).

Given an MDP M = ((, B0,�,) ,�%, !) and automaton A =
(2�% ,&,@0, X, � ), the productM⇥A = ((⇥&, (B0,@0),�⇥&,)⇥, �⇥)
is an MDP with initial state (B0,@0) and accepting transitions �⇥
where )⇥ : (( ⇥&) ⇥ (� ⇥&) �ö D(( ⇥&) is de�ned by

)⇥ ((B,@), (0,@0)) ((B 0,@0))=
(
) (B,0) (B 0) if (@, !(B,0, B 0),@0)2X
0 otherwise.

The �nal state �⇥ ✓ (( ⇥ &) ⇥ (� ⇥ &) ⇥ (( ⇥ &) is de�ned by
((B,@), (0,@0), (B 0,@0)) 2 �⇥ if, and only if, (@, !(B,0, B 0),@0) 2 �
and) (B,0) (B 0) > 0. A strategy f⇥ on the product de�nes a strategy
f on the MDP with the same value, and vice versa. Note that for a
stationary f⇥, the strategy f may need memory. End-components
and runs of the product MDP are de�ned just like for MDPs.

A run ofM⇥A is accepting if inf (A )\�⇥ < ;. We de�ne the syn-
tactic satisfaction probabilities PSatMA ((B,@),f⇥) as the probability
of accepting runs, i.e.

PrM⇥A
f⇥ (B,@)

�
A 2 RunsM⇥A

f⇥ (B,@) : inf (A ) \ �⇥ < ;
 

Similarly, we de�ne PSatMA (B) as the optimal probability over the
product, i.e. supf⇥

�
PSatMA ((B,@0),f⇥)

�
. For a deterministic A the

equality PSatMA (B) = PSemM
A (B) holds; however it is not guaran-

teed for nondeterministic Büchi automata as the optimal resolution
of nondeterministic choices may require access to future events.
This motivates for the de�nition of a good-for-MDP nondetermin-
isitc Büchi automata. A Büchi automatonA is good for MDPs (GFM),
if PSatMA (B0) = PSemM

A (B0) holds for all MDPs M and starting
states B0 [31]. Note that every l-regular objective can be expressed
as a GFM automaton [31]. A popular class of GFM automata is
suitable limit-deterministic Büchi automata [32, 34]. This paper
considers only GFM Büchi automata.

The satisfaction of anl-regular objective given as a GFM automa-
ton A by an MDP M can be formulated in terms of the accepting
maximal end-components of the productM⇥A, i.e. the maximal
end-component that contains an accepting transition from F⇥. The
optimal satisfaction probabilities and strategies can be computed by
computing the accepting maximal end-component of M ⇥A and
then maximizing the probability to reach states in such components.
The optimal strategies are positional on M ⇥A and characterize a
�nite memory strategy overM maximizing satisfaction probability
of the learning objective given by A.

Reinforcement Learning. Given an MDP M, reward machine R,
and an optimization objective (discounted or average reward), an
optimal strategy can be computed in polynomial time using linear
programming [25]. Similarly, graph-theoretic techniques to �nd
maximal end-components can be combined with linear program-
ming to compute optimal strategies for l-regular objectives [34].
However, when the transition/reward structure of the MDP is un-
known, such techniques are not applicable.

Reinforcement learning [15] (RL) is a sampling-based optimiza-
tion approach where an agent learns to optimize its strategy by
repeatedly interacting with the environment relying on the rein-
forcements (numerical reward signals) it receives for its actions.
We focus on model-free approach to RL where the learner com-
putes optimal strategies without explicitly estimating the transition
probabilities and rewards. These approaches are asymptotically
space-e�cient [35] than model-based RL and have been shown to
scale well [5, 36]. Some prominent model-free RL algorithms for
discounted and average reward objectives include Q-learning and
TD(_) [15] and Di�erential Q-learning [21, 37].

In some applications, such as running a maze or playing tic-tac-
toe—the interaction between the agent and the environment natu-
rally breaks into �nite length learning sequences, called episodes.
Thus the agent optimizes its strategy by combining its experience
over di�erent episodes. We call such tasks episodic. On the other
hand, for some applications—such as process control and reactive
systems—this interaction continues ad-in�nitum and the agent lives
and learns over a single lifetime. We call such tasks continuing.

Problem Statement and Assumptions. This paper develops a
model-free RL algorithm for continuing tasks where the learning
objective is given as an l-regular objective given as a GFM automa-
ton. Prior solutions [26–29] focused on episodic setting and have
proposed a model-free reduction (does not require access to the
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MDP) from l-regular objectives to discounted-reward objectives.
Recently several researchers [15, 23] made the case for adopting
average reward formulation for continuing tasks due to several
limitations of discounted-reward RL in continuing tasks. This paper
investigates a model-free reduction from l-regular objectives to
average-reward objectives in model-free RL.

P������ 1 (l�R������ �� A������ R����� T����������).
Given an unknown communicating MDPM = ((, B0,�,) ,�%, !) and
a GFM automaton A = (⌃,&,@0, X, � ), the reward translation prob-
lem is to design a reward machine R such that an optimal positional
strategy maximizing the average reward for M⇥R provides a �nite
memory strategy maximizing the satisfaction probability of A inM.

The existing average RL algorithms such asDi�erential Q-learning
provide convergence guarantees under the assumption that the
MDPM is communicating [21]. Thus, for the reward translation
to be e�ective, we need to make sure that the product M ⇥A is
communicating. Unfortunately, even when M is communicating,
the product M ⇥A may violate the communicating requirement.

We give a solution for the translation problem for an important
class of properties called absolute liveness [38]. Recall that a property
is absolute liveness if appending an arbitrary �nite pre�x to an
accepting word produces an accepting word. Formally, a language
! ✓ ⌃l is an absolute liveness property if for everyF 2 ! and 0 2 ⌃
we have that 0F 2 !. Note that for an absolute liveness language
! and for every G 2 ⌃⇤ we have that GF 2 !. This implies that
an LTL property i is absolute liveness property if i is satis�able
and i and Fi are expressively equivalent. For average reward
objectives adding a pre�x to a trace should not change the average
value associated with the trace. This is aligned with the satisfaction
of absolute liveness properties. Moreover, since absolute liveness
properties cannot be rejected for any �nite word, they preserve the
continual nature of the learning procedure. To solve Problem 1, we
make the following assumption.

A��������� 1. Given an MDP M and l-automaton A, we as-
sume that: 1)M is communicating; 2) A is a GFM automaton; and
3) A is an absolute liveness property.

3 CONSTRUCTION AND CORRECTNESS
Let us �x a communicating MDP M = ((, B0,�,) ,�%, !) and an
absolute liveness GFM property A = (⌃,&,@0, X, � ) for the rest of
this section. Our goal is to learn a reward machine R such that we
can use an o�-the-shelf average reward RL on M ⇥ R to compute
an optimal strategy of M against A.

Since the optimal strategies are not positional on M but rather
positional on M⇥A, it is natural to assume that the reward ma-
chine R takes the structure of A with a reward function providing
positive reinforcement with every accepting transition. Unfortu-
nately, even for absolute liveness GFM automata A, the product
M⇥A with a communicating MDPM may not be communicating.

E������ 1. Assume a communicating MDP" with at least one
state labeled 0 or 1, and the absolute liveness property i = F(G0 _
GF1) and its automaton shown in Fig. 1. Observe that any run that
visits one of the two accepting states cannot not visit the other one.
Hence, the product does not satisfy the communicating property.

@0@1 @2 @30
1

¬1

1
>0 1 ¬1

Figure 1: A Büchi automaton for i = F(G0 _ GF1)

Reward Machine Construction Let A = (⌃,&,@0, X, � ) be an
absolute liveness GFM automaton. Consider RA = (⌃n ,&,@0, X 0, d)
where X 0(@,0) = X (@,0) for all 0 2 ⌃ and n transitions reset to the
starting state, i.e. X 0(@, n) = @0. Note that by adding the reset (n)
action from every state ofR to its initial state, the graph structure of
M is strongly connected. The reward function d : &⇥⌃[{n}⇥&!R
is such that

d (@,0,@0) =
8>>><
>>>:

2 if 0 = n

1 if (@,0,@0) 2 �

0 otherwise.

L���� 1 (P����������� �� C������������). For a communi-
cating MDPM and reward machineRA for an absolute liveness GFM
automaton A, we have that the product M⇥RA is communicating.

P����. To show that M⇥RA is communicating, we need to
show that for arbitrary states (B,@), (B 0,@0) 2 ( ⇥& reachable from
the initial state (B0,@0), we have that there is a strategy that can
reach (B 0,@0) from (B,@) with positive probability. Note that since
M is communicating, it is possible to reach (B0,@0) from (B,@) for
some @0 of RA using a strategy to reach B0 from B in M. We can
then use a reset (Y) action in RA to reach the state (B0,@0). Since
(B 0,@0) is reachable from the initial state (B0,@0), we have a strategy
to reach (B 0,@0) from (B,@) with positive probability. ⇤

L���� 2 (A������ ��� P����������). There exists a 2⇤ < 0 such
that for all 2 < 2⇤, positional strategies that maximize the average
reward on M ⇥ RA will maximize the satisfaction probability of A.

P����. The proof is in three parts.
(1) First observe that if 2 < 0, then for any average-reward op-

timal strategy inM ⇥ RA , the expected average reward is
non-negative. This is so because all other actions except Y ac-
tions provide non-negative rewards. Hence, any strategy that
takes Y actions only �nitely often, results in a non-negative
average reward.

(2) Let ⇧⇤ be the set of positional strategies in M⇥RA such
that the Y actions are taken only �nitely often, i.e. no BSCC
of the corresponding Markov chain contains an Y transition.
Let ⇧n be the set of remaining positional strategies, i.e., the
set of positional strategies that visit an n transition in�nitely
often. Let 0<?min<1 be a lower bound on the expected long-
run frequency of the n transitions among all strategies in
⇧n . Let 2⇤ = �1/?min. Observe that for every policy f 0 2 ⇧n ,
the expected average reward is negative and cannot be an
optimal strategy in M ⇥ RA . To see that, let 0 < ?  1 be
the the long-run frequency of the n transitions for f and let
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0  @ < 1 be the long-run frequency of visiting accepting
transitions for f . The average reward for f is

AvgM⇥RA
f (B0,@0) = ? · 2 + @ · 1 + (1 � ? � @) · 0

 ? · 2 + @ · 1 + (1 � ? � @) · 1
= ? · 2 + (1 � ?)
 ? · 2⇤ + (1 � ?)
= �?/?min + (1 � ?)
 �1 + (1 � ?)  �? .

Since every optimal policy must have a non-negative average
reward, no policy in ⇧n is optimal for 2 < 2⇤.

(3) Now consider an optimal policy f⇤ in ⇧⇤. We show that this
policy also optimizes the probability of satisfaction of A.
There are two cases to consider.

(a) If the expected average reward of f⇤ is 0, then under no
strategy it is possible to reach an accepting transitions
(positive reward transition) in M ⇥ RA . Hence, every
policy is optimal in M against A, and so is f⇤.

(b) If the expected average reward of f⇤ is positive, then no-
tice that for every BSCC of the Markov chain ofM ⇥ RA
under f⇤, the average reward is the same. This is so be-
cause otherwise, there is a positional policy that reaches
the BSCC with the optimal average from all the other
BSCCs with lower averages, contradicting the optimality
of f⇤. Since for an optimal policy f⇤, every BSCC provides
the same positive average, every BSCCmust contain an ac-
cepting transition. Hence, every run of the MDPM under
f⇤ will eventually dwell in an accepting component and
in the process will see a �nitely many n (reset) transitions.
For any such given run A , consider the the su�x A 0 of the
run after the last n transition is taken and let A = FA 0 for
some �nite runF . Since !(A 0) is an accepting word in A,
and sinceA is an absolute liveness property any arbitrary
pre�xF 0 to this run A 0 is also accepting. This implies that
the original run A is also accepting for A. It follows that
for such a strategy f⇤, the probability of satisfaction of A
is 1, making f⇤ an optimal policy for M against A. ⇤

Since our translation from l-regular objective to reward ma-
chines is model-free, the following theorem is immediate.

T������ 1 (C���������� �� M��������� RL). Di�erential
&-learning algorithm for maximizing average reward objective on
M ⇥ RA will converge to a strategy maximizing the probability
of satisfaction of A for a suitable value of 2 . Moreover, the product
construction M ⇥ RA can be done on-the-�y and it is model-free.

As an example, consider the property FG0 and an MDP with
two states and all transitions between states are available as de-
terministic actions (Fig. 2). Only one of the states is labeled 0. An
in�nite memory strategy could see 0 for one step, reset, then see
two 0s, reset, then see three 0s and so forth. This strategy will pro-
duce the same average value as the positional strategy which sees
0 forever without resetting. However, the in�nite memory strategy
will fail the property while the positional one will not.

Shaping Rewards via Hard Resets. For a Büchi automaton A,
we say that its state @ 2 & is coaccessible if there exists a path

@0 @1 @2
0 ¬0

> 0 >

(a) Automaton of FG0, dashed lines represent reset transitions

0 ¬0

(b) MDP, each transition represents an action

Figure 2: The two state MDP and a persistence property

starting from that state to a accepting transition. If a state is not
coaccessible then any run of the product M ⇥A that ends in such
a state will never be accepting, and hence one can safely redirect all
of its outgoing transitions to the initial state with reward 2 (a hard
reset). Such hard resets will promote speedy learning by reducing
the time spent in such states during unsuccessful explorations, and
at the same time adding these resets does not make a non-accepting
run accepting or vice versa. Lemma 1, Lemma 2, and Theorem 1
continue to hold with such hard resets. Introducing hard resets is a
reward shaping procedure in that it is a reward transformation [39]
under which optimal strategies remain invariant.

4 EXPERIMENTAL RESULTS
We implemented the reduction1 with hard resets presented in Sec-
tion 3. As described, we do not build the product MDP explicitly, and
instead compose it on-the-�y by keeping track of the MDP and au-
tomaton states independently. We use Di�erential Q-learning [21]
to learn optimal, positional average reward strategies. For our ex-
periments, we have collected a set of communicating MDPs with
absolute liveness properties2.

We comparewith two previous approaches for translating omega-
regular languages to rewards: the method of [26] with Q-learning
and the method of [40] with Q-learning. The method of [26] trans-
lates a GFM Büchi automaton into a reachability problem through
a suitable parameter Z . This reachability problem can be solved
with discounted RL by rewarding reaching the target state and
using a large enough discount factor. The method of [40] uses a
state dependent discount factor W⌫ and a GFM Büchi automaton.
By using a suitable W⌫ and large enough discount factor, one can
learn optimal strategies for the omega-regular objective.

RQ1. How do previous approaches perform in the continu-
ing setting? The methods of [26, 40] may produce product MDPs
that are not communicating (see Example 1). This means that a
single continuing run of the MDP may not explore all relevant
states and actions. Thus, previous methods are not guaranteed to
converge in this setting. We studied if this behavior a�ects these

1The implementation is available at https://plv.colorado.edu/mungojerrie/.
2Case studies are available at https://plv.colorado.edu/mungojerrie/aamas22.
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prior methods in practice. As a baseline, we include our proposed
approach. Instead of tuning hyperparameters for each method,
where hyperparameters that lead to convergence may not exist,
we take a sampling approach. We select a wide distribution over
hyperparameters for each method and sample 200 hyperparameter
combinations for each method and example. We then train for 10
million steps on each combination. The selected hyperparameter
distribution is U ⇠ D(0.01, 0.5), Y ⇠ D(0.01, 1.0), 2 ⇠ D(1, 200),
[ ⇠ D(0.01, 0.5), Z ⇠ D(0.5, 0.995), W⌫ ⇠ D(0.5, 0.995), and
W ⇠ D(0.99, 0.99999) where D(0,1) is a log-uniform distribution
from 0 to 1. The end points of these distributions and the train-
ing amount was selected by �nding hyperparameters which led to
convergence in the episodic setting for these methods.

Figure 3 shows the resulting distribution over runs. A distribution
entirely at 0 (1) indicates that all sampled runs produced strategies
that satisfy the property with probability 0 (1). For many examples,
prior approaches had no successful hyperparameter combinations,
with distributions centered entirely at 0. However, our proposed
approach always had some hyperparameters that led to optimal,
probability 1, strategies, as indicated by the tails of the distributions
touching the probability 1 region of the plot.

Figure 3: Comparison of the distributions of probability of
satisfaction of learned policies across sampled hyperparam-
eters in the continuing setting. For each distribution, the
mean is shown as a circle, and the maximum and minimum
are shown as vertical bars. We compare our proposed reduc-
tion, the reduction of [26] with Q-learning, and the reduction
of [40] with Q-learning. Episodic resetting was not used.

RQ2. How does our method compare to previous approaches
when we allow episodic setting? By allowing episodic resetting,
we can now �nd hyperparameters for previous methods that lead
to convergence. We tuned all hyperparameters by hand to mini-
mize training time, while verifying with a model checker that the
produced strategies are optimal. Table 1 shows learning times, as
well as hyperparameters for our reduction. We report the number
of states reachable in the MDP and the product, learning times
averaged over 5 runs, the reset penalty 2 , the Y-greedy exploration
rate Y, the Di�erential Q-learning learning rates U and [, as well as
the number of training steps. Note that we do not do any episodic
resetting when training with our reduction. This means that the RL
agent must learn to recover from mistakes during training, while
previous approaches are periodically reset to a good initial state.
Our reduction using Di�erential Q-learning is competitive with previ-
ous approaches while not being reliant on episodic resetting.

5 RELATEDWORK
The development and use of formal reward structures for RL have
witnessed increased interest in recent years. For episodic RL, logics
have been developed over �nite traces of agent behavior, including
LTL5 and Linear Dynamic Logic (LDL5 ) [41, 42]. These logics have
equivalent automaton and reward machine representations that
have catalyzed a series of e�orts on de�ning novel reward shaping
functions to accelerate the convergence of RL algorithms subject to
formal speci�cations [9, 43, 44]. These methods leverage the graph
structure of the automaton to provide an arti�cial reward signal to
the agent. More recently, dynamic reward shaping using LTL5 has
been introduced as a means to both learn the transition values of a
given reward machine and leverage these values for reward shaping
and transfer learning [45]. There has also been work on learning
or synthesizing the entire structure of such reward machines from
agent interactions with the environment by leveraging techniques
from satis�ability and active grammatical inference [7, 8, 13, 14, 46].

For the in�nite-trace settings, LTL has been extensively used to
verify properties and synthesize policies formally using the mathe-
matical model of a system [22, 30, 47–51]. Considering the general-
ity of the results in terms of structure of the underlying MDP, most
of the research focuses on discounted reward structures. Despite the
simplicity of discounted Markov decision problems, the discounted
reward structure (unlike average reward) prioritizes the transient
response of the system. However, application of the average reward
objective because of the restriction over the structure of the MDP
is limited. The work [52] proposes a policy iteration algorithm for
satisfying properties of the form GFq ^k for a communicating
MDP almost surely. The work [53] proposes a value iteration algo-
rithm for solving the average reward problem for multichain MDPs,
where the algorithm �rst computes the optimal value for each of
strongly connected components and then weighted reachability to
�nd the optimal policy. The work [54] provides a linear program for
policy synthesis of multichain MDPs with steady-state constraints.

In the last few years, researchers have started developing data-
driven policy synthesis techniques in order to satisfy temporal
properties. There is a large body of literature in safe reinforcement
learning (RL) (see e.g. [55–57]). The problem of learning a policy to
maximize the satisfaction probability of a temporal property using
discounted RL is studied recently [27, 28, 40, 58–61]. The work [26]
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Name states prod. time time† time‡ 2 Y U [ train-steps
adverse 202 507 8.51 7.09 12.56 -150 0.2 10M
frozenSmall 16 64 0.99 20.23 9.88 500k
frozenLarge 64 256 4.07 3.88 8.79 0.02 0.02 3M
windy 123 366 1.40 1.81 2.61 0.95 0.5 0.05 1M
windyStoch 130 390 2.97 3.91 2.53 0.5 2M
grid5x5 25 100 0.62 1.12 1.02 0.5 200k
ishift 4 29 0.03 0.01 0.02 10k
doublegrid 1296 5183 16.43 3.45 3.09 -2 0.5 0.05 0.01 12M
busyRingMC2 72 288 0.03 0.03 0.03 0.01 10k
busyRingMC4 2592 15426 6.08 3.94 2.33 0.01 1.5M

Table 1: Learning results and comparison. Hyperparameters used for our reduction are shown. Blank entries indicate that
default values were used. The default parameters are 2 = �1, Y = 0.1, U = 0.1, and [ = 0.1. Times are in seconds. Superscript †
indicates results from Q-learning with reduction from [26], while superscript ‡ indicates Q-learning with reduction from [40].
Results for † and ‡ required episodic resetting. All hyperparameters were tuned by hand.

by using a parameterized augmented MDP provides an RL-based
policy synthesis for �nite MDPs with unknown transition probabil-
ities. It shows that the optimal policy obtained by RL for the reacha-
bility probability on the augmentedMDP gives a policy for the MDP
with a suitable convergence guarantee. In [40] authors provide a
path-dependent discounting mechanism for the RL algorithm based
on a limit-deterministic Büchi automaton (LDBA) representation
of the underlying omega-regular property, and prove convergence
of their approach on �nite MDPs when the discounting factor goes
to one. An LDBA is also leveraged in [28, 60, 61] for discounted-
reward model-free RL in both continuous- and discrete-state MDPs.
The LDBA is used to de�ne a reward function that incentivizes the
agent to visit all accepting components of the automaton. These
works use episodic discounted RL with discount factor close to one
to solve the policy synthesis problem. There are two issues with the
foregoing approaches. First, because of the episodic nature of the
algorithms they are not applicable in continuing settings. Second,
because of high discount factors in practice these algorithm are
di�cult to converge. On the other hand, recent work on reward
shaping for average reward RL has been explored based on safety
properties to be satis�ed by the synthesized policy [62]. In contrast
to the solution proposed in this paper, the preceding approach re-
quires knowledge of the graph structure of the underlying MDP
and does not account for absolute liveness properties.

There is a rich history of studies in average reward RL [20, 63].
Lack of stopping criteria for multichain MDPs a�ect the gener-
ality of model-free RL algorithms. In this way, all model-free RL
algorithms put some restrictions on the structure of MDP (e.g. er-
godicity [64, 65] or communicating property). The closest line of
work to this work is to use average reward objective for safe RL. The
work [66] proposes a model-based RL algorithm for maximizing
average reward objective with safety constraint for communicating
MDPs. It is worth noting that in multichain setting, the state-of-the-
art learning algorithms use model-based RL algorithms. The work
[67] studies satisfaction of l-regular properties using data-driven
approaches. The authors introduce an algorithm where the opti-
mality of the policy is conditioned to not leaving the corresponding
maximal end component which leads to a sub-optimal solution.
The authors provide PAC analysis for the algorithm as well. De-
spite all the e�orts of using data-driven approaches for satisfying

the l-regular properties, there is a gap in using average reward
model-free RL algorithms for satisfying temporal properties.

This paper is an attempt to close this gap by proposing a model-
free average reward RL algorithm for a subclass of LTL properties
called absolute liveness properties. We claim this subclass captures
a large class of interesting properties and are suitable for average
reward RL. Furthermore, the eventual satisfaction semantics of an
arbitrary omega-regular or LTL speci�cation q can be captured by
an absolute liveness property Fq .

6 CONCLUSION
This work addressed the problem of synthesizing policies that sat-
isfy a given absolute liveness omega-regular property in the con-
tinuing setting. Our key contribution is a model-free translation
from the omega-regular speci�cation to an average reward objec-
tive, enabling the use of o�-the-shelf average reward RL. This is in
contrast to existing methods in the literature that use discounted,
episodic learning, which require the ability to reset the underly-
ing environment and is restrictive in some settings. Our approach
avoids this episodic learning and learns the optimal policy in one
life-long episode without resetting. Furthermore, the proposed solu-
tion does not require access to a model of the environment nor to its
graph structure, thereby avoiding a common assumption made in
the literature on requiring the computation of end components for
synthesis of policies subject to some omega-regular speci�cation.

For our experiments, we applied Di�erential Q-learning to a
range of case studies and showed that the proposed approach is
successful in converging to optimal strategies under the raised as-
sumptions. In particular, our experiments showed that the proposed
approach is superior to previous methods in the continuing setting.
This lends credence to the important and understudied idea that
average reward RL is better-suited for continuing task settings than
the more popular discounted RL. For future work, we will explore
the use of function approximation in the hopes that average reward
RL can experience the same success for continuing tasks that its
discounted RL counterpart has witnessed in episodic settings.
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