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Abstract. Disentangling the drivers of diversity gradients can be challenging. The Mea- 

surement of Biodiversity (MoB) framework decomposes scale-dependent changes in species 
diversity into three components of community structure: species abundance distribution 
(SAD), total community abundance, and within-species spatial aggregation. Here we extend 
MoB from categorical treatment comparisons to quantify variation along continuous geo- 
graphic or environmental gradients. Our approach requires sites along a gradient, each consist- 
ing of georeferenced plots of abundance-based species composition data. We demonstrate our 
method using a case study of ants sampled along an elevational gradient of 28 sites in a mixed 
deciduous forest of the Great Smoky Mountains National Park, USA. MoB analysis revealed 
that decreases in ant species richness along the elevational gradient were associated with 
decreasing evenness and total number of species, which counteracted the modest increase in 
richness associated with decreasing spatial aggregation along the gradient. Total community 
abundance had a negligible effect on richness at all but the finest spatial grains, SAD effects 
increased in importance with sampling effort, and the aggregation effect had the strongest 
effect at coarser spatial grains. These results do not support the more-individuals hypothesis, 
but they are consistent with a hypothesis of stronger environmental filtering at coarser spatial 
grains. Our extension of MoB has the potential to elucidate how components of community 
structure contribute to changes in diversity along environmental gradients and should be use- 
ful for a variety of assemblage-level data collected along gradients. 

Key words: beta diversity; biodiversity change; more-individuals hypothesis; patchiness; scaling; species- 
abundance distribution. 

 
 

INTRODUCTION 

A critical limitation of most studies examining pat- 
terns of biodiversity along ecological or biogeographic 
gradients is that the most common measure of biodiver- 
sity—species richness—is limited in its utility for differ- 
entiating between several competing hypotheses that 
contribute to spatial variation in biodiversity. This limi- 
tation arises for two related reasons: (1) estimates of spe- 
cies richness are sensitive to the relative abundances of 
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different species, the absolute numbers of individuals in a 
community, as well as their spatial distribution; (2) spe- 
cies richness depends on spatial scale in a nonlinear way 
(Rahbek 2005, Chase et al. 2018, McGlinn et al. 2019). 

Examining variation in the total and relative abun- 
dance, as well as the spatial distribution of species along 
environmental gradients, provides information that 
allows for distinguishing among drivers of biodiversity. 
For example, species richness is typically a positive func- 
tion of the amount of energy that enters an ecosystem. 
One prominent hypothesis for this relationship is that 
the energy input into an ecosystem leads to increases in 
the numbers of individuals, which in turn supports 
higher species richness (Wright 1983, Evans et al. 2008). 
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Under this “more-individuals hypothesis” (Srivastava 
and Lawton 1998) changes in species richness would be 
expected to be closely linked to changes in total numbers 
of individuals but not changes in species relative abun- 
dances or their spatial distributions if only sampling 
effects are operating (Storch et al. 2018). In contrast, if 
higher energy decreased competitive exclusion, then 
changes in richness could be linked to changes in the rel- 
ative abundance of species rather than the total number 
of all individuals (Evans et al. 2005, Hurlbert and Jetz 
2010). Additionally, if energy changes the spatial pattern 
or relevance of environmental heterogeneity, then species 
spatial structure would be expected to change. As a 
result, data and analyses that explicitly incorporate 
abundances of species and their spatial distribution 
across scales, rather than just a single scale-agnostic 
measure, can provide deeper insights into the potential 
underlying causes of variation in biodiversity. 

The Measurement of Biodiversity (MoB) framework 
(Chase et al. 2018, McGlinn et al. 2019) was developed to 
dissect the abundance and distribution patterns that 
underlie changes in species richness explicitly. Specifi- 
cally, MoB decomposes variation in richness into the con- 
tributions from three components of community 
structure: 

 
1. Species abundance distribution (SAD; including 

evenness and the size of the species pool). Communi- 
ties that are sampled from species pools with higher 
evenness and/or more total species will have higher 
richness all else being equal. 

2. The community-level density of individuals (N); sim- 
ply by sampling more individuals from a species pool, 
more species will be found. 

3. Within-species spatial aggregation (aggregation). 
When individuals of particular species are clustered 
(clumped) in the community, local species richness 
will typically be lower compared to a community in 
which individuals are randomly or overdispersed on 
the landscape. 

 
These three components are largely sufficient for pre- 

dicting many macroecological patterns of species rich- 
ness (McGill 2010) and thus provide an important 
starting point for deciphering biodiversity patterns (see 
also He and Legendre 2002, Chase and Knight 2013). If 
species richness differs from one site to another, it does 
so because the SAD, N, and/or aggregation of species 
changes between those sites. It is important to note that 
directionality of causality between richness and these 
community components cannot necessarily be assumed 
a priori, however (Storch et al. 2018). 

As it was originally developed (Chase et al. 2018, 
McGlinn et al. 2019), MoB consists of two complemen- 
tary analyses for examining if a discrete explanatory vari- 
able (e.g., an experimental treatment like the presence or 
absence of a top predator) influences biodiversity: the 
two-scale, multimetric analysis and the multiscale, 

richness analysis. However, discrete variables are not the 
only variables that influence variation in species richness. 
Species richness often varies along continuous gradients 
as well, such as gradients in temperature, latitude, or ele- 
vation. It is straightforward to extend the two-scale, mul- 
timetric MoB, which uses a collection of traditional 
diversity metrics to gradients using regression analyses 
(Blowes et al. 2017). However, these discrete-scale, multi- 
metric MoB analyses ignore potentially complex patterns 
of scale dependence, and they do not provide a direct 
quantitative decomposition of component contributions 
to changes in species richness. Moreover, interpreting a 
collection of metrics is challenging even when those met- 
rics are carefully chosen to reflect different components 
of community structure (Chase et al. 2018). In contrast, 
multiscale MoB provides a framework for uncovering 
complex patterns of scale dependence in species richness 
by using a range of scales rather than just two. These 
scale-dependent changes can be related to specific com- 
ponents of community structure by considering what 
information about the community is used in the defini- 
tion of a specific rarefaction curve. Lastly, the interpreta- 
tion of multiscale MoB analysis is more straightforward 
because the relative magnitude of the relationships 
between the different components of richness can be com- 
pared since they have the same units (number of species). 

Here, we outline an extension of multiscale MoB for 
decomposing species richness along continuous geo- 
graphical or environmental gradients. We provide a con- 
ceptual overview and exposition within the mobr v2.0.0 
R package (McGlinn et al. 2020) to dissect the influence 
of the components of species richness (N, SAD, and 
aggregation) across ecological gradients. We apply the 
approach to a case study on spatial variation in ant diver- 
sity along an elevational gradient in the southern Appala- 
chian mountains (USA; from Sanders et al. 2007). We 
demonstrate that the application of multiscale MoB 
quantifies how changes in the SAD, N, and aggregation 
contribute to the multiscale pattern of richness change 
along gradients. 

 
METHODS 

To illustrate the motivation and the method of extend- 
ing the multiscale MoB framework, it is helpful to con- 
sider three simple scenarios (Fig. 1) where a single 
component of community structure is responsible for 
variation in species richness along a gradient. For exam- 
ple, richness may decline along a gradient because of a 
decrease in evenness (Fig. 1A, referred to as the SAD 
effect), a decrease in the number of individuals (Fig. 1B; 
N effect), or increased aggregation (Fig. 1C; aggregation 
effect). In reality, changes in species richness along a gra- 
dient are likely caused by changes in more than one of 
these components of community structure. Nevertheless, 
this simple example illustrates three key points: (1) spe- 
cies richness can change at one scale (plot scale) but not 
another (site scale), (2) species richness can change in 
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FIG 1. Cartoon communities from three sites arranged 
along a gradient (color gradient from dark blue to light blue) in 
three simple scenarios in which only the (A) SAD, (B) N, or (C) 
aggregation shifts along the gradient. The large boxes represent 
sites, the small boxes represent plots, and the different symbols 
represent individuals of different species. 

apparently similar ways due to very different changes in 
the underlying components, and (3) a more direct focus 
on changes in these components across scales can eluci- 
date their underlying contributions to changes in species 
richness. 

Each of our simple scenarios show a decrease in plot- 
scale species richness along the gradient, and next we 
show how our extension of the multiscale MoB frame- 
work can quantify how each component of community 
structure contributes to changes in S across scales 
(Fig. 2). We define scale as the number of samples (i.e., 
“plots”) or the number of individuals accumulated 
(McGill 2011). Multiscale MoB takes advantage of the 
unique information captured by three different types of 
rarefaction curves (Fig. 2): 

 
1. Spatial, sample-based rarefaction (sSBR) is the accu- 

mulation of species by collecting the closest plots first. 
All possible focal samples are considered and the 
resulting curves are averaged over (Fig. 2). The sSBR 
reflects information on aggregation, N, and the SAD, 
and it can be thought of as a nested species–area rela- 
tionship over a contiguous or noncontiguous area. 

2. Nonspatial, sample-based rarefaction (nsSBR) is the 
number of species given k plots in which all N indi- 
viduals are randomly reassigned to plots while 

 
 

 
 

FIG 2. The three rarefaction curves compared at one site along a gradient in which this particular site has lower individual den- 
sity than an average site on the gradient (i.e., a negative N effect is illustrated here). The individual-based rarefaction (IBR) is a 
direct expression of the SAD (yellow line). The nonspatial, sample-based rarefaction (nsSBR) reflects both the SAD and variation 
in N; thus the difference between the nsSBR and the IBR provides an estimate of the N effect (light green area). The spatial, sam- 
ple-based rarefaction (sSBR) also takes spatial position into consideration; thus the effect of spatial aggregation is the difference 
between the sSBR and the nsSBR (light blue area). Note that the nsSBR must eventually intersect the IBR and sSBR at this site 
(i.e., all curves converge to the same total S once enough effort is considered). 
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maintaining observed individual density (Fig. 2). The 
nsSBR reflects variation in both N and the SAD. 

3. Individual-based rarefaction (IBR) is the number of 
species given a random sample of n individuals out of 
N total individuals (Fig. 2). The IBR only reflects 
variation in the SAD. 

Combining these curves allows us to dissect out the 
contribution of each component to changes in S across a 
range of scales less than the maximum spatial grain con- 
sidered (Fig. 2). The difference between the sSBR and 
the nsSBR quantifies how changes in aggregation con- 
tribute to changes in S (i.e., the aggregation effect); the 
difference between the nsSBR and the IBR reflects how 
changes in N contribute to changes in S (i.e., the N 
effect); and by eliminating N and aggregation effects, the 
IBR shows how changes to the SAD covary with S 
(Fig. 2). 

In the simple scenario in which only the SAD changes 
along the gradient (Fig. 1A), the IBRs diverge as sam- 
pling effort increases (Fig. 3A, gradient location 

represented by dark blue to light blue line colors, as in 
Fig. 1). Because the IBRs diverge, the strength of the 
detected SAD effect increases with effort (Fig. 3B). We 
can estimate the relationship between the gradient and 
the SAD effect on S using linear models (or nonlinear if 
more appropriate; Fig. 3B, only three scales shown for 
clarity) that allow us to quantify whether the strength of 
this relationship shows scale dependence (Fig. 3C). The 
scale dependence of the SAD effect may be particularly 
strong if the IBR curves from different points along the 
gradient intersect. In such cases the SAD effect may shift 
from positive at small scales to negative at large scales, 
for example, which would indicate changes in both even- 
ness and species pool size. Alternatively, the SAD may 
not change along the gradient. In this case, the IBR 
curves for different points along the gradient would lie 
on top of each other: the SAD effect would be zero 
everywhere, have no relationship to the gradient and 
make no contribution to any changes to richness 
observed along the gradient. 

 
 

 
 

FIG 3. The three sets of hypothetical results illustrating the measurement of biodiversity (MoB) multiscale approach using the 
cartoon communities considered in Fig. 1. (A), (D), and (G) display three types of rarefaction curves that detect different compo- 
nents of community structure (for clarity only the relevant rarefaction curves are shown to detect the component of community 
structure known to have shifted). IBR = individual-based rarefaction; nsSBR = nonspatial, sample-based rarefaction; and 
sSBR = spatial, sample-based rarefaction. For each type of rarefaction curve three curves are computed at each site along the gra- 
dient (colored dark blue to light blue as in Fig. 1). Three sampling efforts (orange vertical lines in (A), (C), (D), (F), (G), and (I) 
and points in (B), (E), and (H)) are highlighted to emphasize that the variation in the curves (i.e., effect sizes) change with scale. (B), 
(E), and (H) display the strength of the SAD, N, and aggregation effects ([Agg.] in units of species), respectively, on S plotted 
against the gradient. Regression lines are fit to the relationship between effect size and the gradient, and the strength (the estimated 
regression slope) of those fits are plotted in panels (C), (F), and (I) as a function of sampling effort. The dashed line denotes zero 
effect ((B), (E), and (H)) or slope ((C), (F), (I), the null expectation). 
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If only N changes across the gradient (e.g., decreasing 
N in the illustrated scenario, Fig. 1B), the nsSBRs vary 
along the gradient (Fig. 3D), but not the IBR and the 
sSBR curves (not shown). As with the SAD effects, we 
can model the relationship between the N effect (i.e., the 
difference between the nsSBR and IBR, Fig. 2) and the 
gradient across spatial grains (Fig. 3E). The net result 
on S is shown in Fig. 3F, where the decrease in N along 
the gradient is captured as a negative slope. 

Finally, if only species aggregation changes along the 
gradient, the sSBRs will vary along the gradient 
(Fig. 3G), but not the other two rarefaction curves (IBR 
and nsSBR not shown). In the simple scenario we con- 
sidered plot scale S decreases along the gradient as spa- 
tial clustering increases (Fig. 1C). Spatial clustering 
causes fewer species to be accumulated than expected 
under a random spatial distribution (i.e., a negative 
aggregation effect; Fig. 3H). In this scenario, the 
strength of aggregation is most negative at fine spatial 
scales indicating that species clustering primarily influ- 
ences local scale richness (Fig. 3I). Note that regardless 
of the specific scenario considered in a balanced experi- 
mental design (i.e., same number of subplots at each site 
along the gradient), the effect of aggregation must con- 
verge on zero at the maximum sampling effort (i.e., all 
plots collected) because at this scale the sSBR must be 
identical to the nsSBR (McGlinn et al. 2019). 

In summary, we have extended the multiscale MoB 
comparisons between categorical treatments to continu- 
ous gradients. This can be thought of as extending MoB 
from a t-test to a regression analysis. We have released a 
new version of the mobr R package (McGlinn et al. 
2020) to carry out the following steps of the gradient 
analysis illustrated in Fig. 3. 

 
1. Compute three rarefaction curves that capture differ- 

ent information on the influence of N, the SAD, and 
aggregation for each set of samples (i.e., a site) along 
the gradient of interest: IBR, nsSBR, and sSBR 
(Fig. 3A, D, G, respectively). 

2. Compute the differences between rarefaction curves 
at each site along the gradient. N effect = nsSBR 
IBR (Fig. 3E); aggregation effect = sSBR nsSBR 
(Fig. 3H). Note that the SAD effect is calculated 
directly from the IBR; that is, it is equal to S for a 
given sampling effort at a given point along the gradi- 
ent (Fig. 3A, B). 

3. Model the relationship between the gradient and the 
estimates of the SAD, N, and aggregation effects 
(Fig. 3B, E, H). 

4. Examine how the rate of change in the gradient and 
the effect (i.e., slope of model) vary with sampling 
effort. (Fig. 3C, F, I). 

5. Compare the observed results to randomization- 
based null models (described in McGlinn et al. 
2019) for each component of community structure 
(i.e., SAD, N, and aggregation; Fig. 3C, F, I) to 
examine if the effects and their relationship to the 

gradient are different than expected from a null 
expectation. 

 
In our simple example, S decreases monotonically 

along the gradient, as it often does along environmental 
gradients. And using the MoB approach, we estimate 
how each component of community structure—N, SAD, 
and aggregation—is associated with the richness gradi- 
ent. Although our simple examples only showed richness 
gradients corresponding to changes in a single compo- 
nent of community structure, it is likely that more than 
one component will change along richness gradients in 
real communities. A sensitivity analysis suggested that 
the multiscale MoB approach can reliably detect the sig- 
nature of simultaneous changes in multiple components 
of community structure on S (McGlinn et al. 2019). 

 
Data requirements 

The cartoon in Fig. 1 illustrates the basic data require- 
ments to use MoB to explore variation in S along gradi- 
ents. Obviously, sampling sites must be distributed along 
an environmental gradient. At each sampling site, there 
must be a collection of several (≥5) georeferenced sam- 
ples that contain data on the abundances and identities 
of each species in a sample. It is not necessary for the 
sampling design to have the same number of samples at 
each site along the gradient, but the sSBR should be 
truncated to the smallest common number of samples 
per site across the gradient (to minimize any influence of 
spatial extent). Similarly, the IBR and the nsSBR should 
be truncated to the smallest number of individuals 
observed and therefore sites (not necessarily samples) 
should have enough individuals so that rarefaction 
results are meaningful—differences in rarefaction curves 
are constrained to be small at low sample sizes. It is also 
important that the spatial grain and spatial arrangement 
of plots is consistent along the gradient. Otherwise the 
investigator runs the risk that the variation in sampling 
design is responsible for changes in the components of 
community structure. If a given sampling design is not 
consistent among sites along a gradient, then it may be 
necessary to subset the samples so that sites along the 
gradient have comparable spatial extents. It is more 
important to ensure a constant extent across sites than a 
balanced design when using rarefaction curves to com- 
pare biodiversity. Although there may be slight differ- 
ences in their numbers and spatial arrangement, it is 
more important that samples are standardised across all 
sites so they relate to a constant unit of effort (e.g., area). 

 
Case study 

To demonstrate our new methods we use data from 
Sanders et al. (2007), who examined spatial variation in 
richness along an elevational gradient (379–1,742 m) in 
the Great Smoky Mountains National Park, USA. San- 
ders et al. (2007) collected ant samples from each site 
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along the elevational gradient by visiting each site once 
between June and August in 2004–2006 when ants in the 
national park are typically most active (Dunn et al. 
2007). All sites were located in mixed hardwood forests 
and away from any area of recent human disturbance. 
We removed one site (site code = “NODI”) which only 
contained six individuals across the 16 samples, resulting 
in a data set of 28 sites. 

At each site, data come from a randomly placed 
50 9 50 m plot, from which 16 1–m2 quadrats were 
arranged in a nested design: 10 9 10 m subplots were 
placed in the corners of each 50 9 50 m plot, and 1-m2 
quadrats were placed in the corners of each 10 9 10 m 
subplot, for a total of 16 1-m2 quadrats per site. Ants 
were sampled by collecting all leaf litter within each 
quadrat and sifting through it with a coarse mesh screen 
(1-cm grid) to remove the largest fragments and concen- 
trate the fine litter. Concentrated litter from each quad- 
rat was then put in its own mini-Winkler sack for 2 d in 
the lab. Winkler samplers are common and efficient for 
quantifying ant abundance and diversity (Fisher 2005). 
After 2 d, all worker ants were extracted and enumer- 
ated. The data for this reanalysis were published to 
Dryad (Sanders et al. 2020). The code to reproduce the 
analysis is also available as an online supplement 
(DataS1.zip, as described in MetadataS1.pdf). 

Here we will primarily focus on the insights gained 
from the multiscale MoB analysis. However, to clarify the 
added insights gained with our new method, we first dis- 
cuss the results of a multimetric MoB analysis, which uses 
a collection of traditional diversity metrics 
(Appendix S1). Multimetric MoB reveals that at the site 
scale species richness and total number of individuals 
decrease with elevation (these effects were not as strong at 
the quadrat scale, Appendix S1: Fig. S1, S2A). However, 
rarefied richness, which controls for site-specific differ- 
ences in number of individuals, also decreases with eleva- 
tion (Appendix S1: Fig. S2B), which indicates that 
although density effects cannot be ruled out, they do not 
provide a complete explanation for why richness is lower 
at higher elevations. A metric of evenness decreases with 
elevation (Appendix S1: Fig. S2C), whereas a metric of 
beta diversity thought to reflect spatial aggregation did 
not change along the elevational gradient (Appendix S1: 
Fig. S2F). The multimetric analysis suggests that at 
higher elevations richness is lower, and that it may be 
related to the lower density of individuals (N effects) and 
lower evenness (SAD effects), but it is not due to increased 
spatial clustering (aggregation effects). This analysis also 
suggests that diversity displays scale-dependent responses 
to elevation because several of the trends with elevation 
were weaker at the quadrat scale than at the site scale. Next 
we demonstrate that the multiscale MoB analysis provides 
a more direct, quantitative multiscale decomposition of 
changes in richness with elevation that implicates different 
components of community structure. 

We deployed the full multiscale MoB analysis using 
mobr (Fig. 4). The sSBRs show a general trend of higher 
S at lower elevations (Fig. 4A, darker curves), but the 
shape of these curves varied with spatial scale (x-axis). 
Note that many of the sSBRs cross at intermediate 
scales, indicating that the ranking of site diversity across 
elevations depends on scale. The nsSBR curves, from 
which spatial aggregation has been removed, also tend 
to show that the lower-elevation sites have higher S 
(Fig. 4B). Again, many of these nsSBR curves cross at 
intermediate scales (Fig. 4B) indicating scale depen- 
dence. Finally, the IBRs showed qualitatively similar 
patterns to the nsSBRs. 

The aggregation effects were predominantly negative 
because species richness was lower than expected due to 
spatial clustering across the gradient (Fig. 4D). Addition- 
ally, aggregation effects display a positive relationship with 
elevation (Fig. 4D), which indicates that spatial clustering 
was weaker at higher elevations. The relationship between 
the aggregation effect on richness and elevation was stron- 
gest at coarser spatial grains but indistinguishable from 
the null model at the largest spatial grains (Fig. 4G). 
Although the effect of aggregation on richness was statisti- 
cally significant it was relatively modest. The magnitude 
of the largest aggregation slope was 0.0007 species/m, 
which equates to a gain of half a species associated with 
decreased spatial clustering across the approximately 
1,000 m of elevation covered by the gradient. 

The N effects were also predominantly negative. This 
indicates that richness was lower at most sites than would 
be expected if the total number of individuals was uni- 
form across the gradient (Fig. 4E). This effect was nega- 
tively correlated with elevation, indicating that higher- 
elevation sites had lower richness because they have fewer 
individuals (Fig. 4E; Appendix S1: Fig. S1), but this was 
only true at the finest spatial scale (Fig. 4H). This means 
that when we consider the multiscale nature of the N 
effect, it is clear that low-elevation sites were not more 
species rich simply because they have more individuals. 
Lastly, richness values from random subsampling of the 
observed SADs (i.e., the SAD effects) were lower at high 
elevations because these sites had lower evenness and/or 
fewer total number of species (Fig. 4F). The strength of 
this negative relationship increased as coarser sampling 
scales were considered (Fig. 4I), where for a 1,000-m 
change in elevation, an average of three fewer species 
occurred in quadrats at high elevation sites. 

Using the multiscale MoB analysis we found that the 
Smokies ant elevational diversity gradient is largely asso- 
ciated with changes in the SAD and aggregation effects 
across elevation. Interestingly, these two components of 
community structure change in counteracting ways 
along the gradient. However, there are more species lost 
with elevation as a result of the change in evenness and 
species pool size than gained through the change in spa- 
tial structure, especially at larger scales. Consequently, 
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FIG 4. Multiscale analysis for the ant communities. (A) The spatial, sample-based rarefaction (sSBR), (B) the nonspatial, sam- 
ple-based rarefaction (nsSBR), and (C) the individual-based rarefaction (IBR) all expressed against number of individuals where 
each curve was constructed from a different site along the elevational gradient (black to blue lines). Panels (D)–(F) show the regres- 
sion lines of the linear model of DS ~ elevation (m) at each sampling scale (light orange to dark orange lines) because of (D) aggre- 
gation (Agg.), (E) density (N), and (F) species abundance distribution (SAD) effects. Note that the sampling effort color gradient is 
log transformed. Panels (G)–(I) show how the linear regression slope for each component of community structure changes across 
sampling efforts (range varies across panels) relative to null model expectations (gray polygon is the 95% quantile of the null 
model). 

 
we find a scale-dependent net decline of species richness 
with elevation (see Appendix S1). 

 
DISCUSSION 

Diversity gradients are rich testing grounds for ecolog- 
ical theory. However, the most common metric of 

diversity, species richness, may respond similarly to dif- 
ferent processes and thus cannot provide unambiguous 
tests. Our extension of the MoB analysis to continuous 
explanatory variables allows us to decompose diversity 
gradients into the effects of the different components— 
evenness, density, or spatial aggregation—changing 
along the gradient. By quantifying the contribution of 
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changes in these components to changes in richness, 
we can provide more powerful tests of ecological  
hypotheses. 

An example is the data set on ants that we described 
above. One major feature that varies along elevational 
gradients is the amount of energy available to species. In 
species–energy theory, the more-individuals hypothesis 
(Wright 1983, Srivastava and Lawton 1998, Storch et al. 
2018) proposes that richness should be linked to N 
effects. In the ant data set we examined, however, we 
found little support for this hypothesis. Although there 
was a decrease at the site scale in total ant abundance 
with increasing elevation (Appendix S1: Fig. S1), this 
reduction in N was not associated with decreases in spe- 
cies richness across at all but the finest spatial scale 
(Fig. 4H). Instead, we found that declines in richness at 
higher elevations were primarily associated with 
decreases in evenness and total number of species, and 
to a lesser degree with decreases in spatial clustering. 
Many hypotheses can be linked to shifts in the SAD and 
spatial aggregation we observed (e.g., changes in com- 
petitive dominance, dispersal limitation, and/or environ- 
mental filtering) and information beyond what our 
analysis considers would be necessary to differentiate 
these hypotheses more fully. For the same data set, 
Machac et al. (2011) found that ant species in higher ele- 
vations were more closely related than expected by 
chance, which they interpreted as a signal of stronger 
environmental filtering because of low temperatures at 
high elevations. Our analysis using multiscale MoB is 
consistent with this hypothesis. If only a few cold-toler- 
ant species exist in high elevations, then this could 
explain why the SADs of the high-elevation sites had 
fewer total species and lower evenness. It also seems rea- 
sonable that this mechanism could be responsible for the 
decrease in spatial clustering at high elevations (species 
may be less spatially clustered in environments in which 
they are competitively superior). However, without data 
on microhabitat features and species traits we are unable 
to rule out the possibility that higher elevations simply 
have less subsite environmental heterogeneity or that the 
cold-tolerant species have evolved different foraging or 
social behaviors that result in less clumped spatial distri- 
butions. 

More generally, decomposing richness into its compo- 
nents along ecological gradients may help provide reso- 
lution to apparently discordant empirical patterns of 
richness. For example, little consistency has emerged 
from some of the most well-studied ecological gradients 
of species richness, such as those along disturbance gra- 
dients (Mackey and Currie 2001, Svensson et al. 2012) 
and productivity gradients (e.g., Mittelbach et al. 2001, 
Adler et al. 2011). Some of the variation observed along 
these gradients is most certainly because of differences 
in the scales in which observations are taken (e.g., Rah- 
bek 2005, Chase et al. 2018), but much of the variation 
could be because of the differential influence of these 
gradients on the components of species richness, such as 

on the density of individuals, the SAD, or aggregation. 
By examining how these components change along gra- 
dients in a more consistent way, we can begin to achieve 
greater synthesis than is currently possible with informa- 
tion only on species richness. 

The multiscale version of MoB that we have extended 
here has important advantages over traditional analyses 
of collections of diversity metrics along gradients (e.g., 
multimetric MoB). For example, the results of the multi- 
metric MoB (Appendix S1) largely reflected a comple- 
mentary subset of the multiscale MoB findings with 
some important exceptions: (1) multimetric MoB found 
no evidence of aggregation effects, whereas multiscale 
MoB did; (2) multimetric MoB could not rule out N 
effects completely, whereas multiscale MoB demon- 
strated this depended on scale; and (3) multimetric MoB 
provided a collection of trends in different metrics, 
whereas multiscale MoB related all trends back to 
change in species richness, arguably the most intuitive 
and popular metric of biodiversity. 

Although the gradient version of multiscale MoB pro- 
vides an important advance over the previous version 
that was only able to compare among categorical vari- 
ables, there are many more directions in which the 
framework could be extended further. For example, both 
MoB analyses examine spatial scaling of subplots but 
cannot, in their current form, address scaling patterns 
between sites (i.e., sets of subplots). MoB also relies on 
species abundance data so that rarefactions can be per- 
formed. Often such data are unavailable, though pres- 
ence–absence data are available. For such cases, it should 
be straightforward to apply MoB to presence–absence 
data with a goal to partition changes in richness due to 
occupancy and spatial aggregation (see e.g., Tjørve et al. 
2008 for a similar approach using presence–absence 
data). Additionally, for some taxa, separation into indi- 
viduals is difficult if not impossible, and relative abun- 
dance data are instead available as estimates of visual 
cover or biomass. It is less clear how to interpret MoB 
metrics when using cover or biomass, which in many 
communities may not be correlated with numbers of 
individuals. Finally, although we applied our approach 
using linear models of diversity change along a single 
explanatory variable (e.g., elevation), a logical next step 
would be to consider a multiple regression framework in 
which the partial effects of several variables are consid- 
ered simultaneously, as well as to include the potential 
for nonlinear effects. 
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