
1126 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Automated Stability Testing of Elastic Rods With
Helical Centerlines Using a Robotic System

Dezhong Tong, Andy Borum, and Mohammad Khalid Jawed

Abstract—Experimental analysis of the mechanics of a de-
formable object, and particularly its stability, requires repetitive
testing and, depending on the complexity of the object’s shape, a
testing setup that can manipulate many degrees of freedom at the
object’s boundary. Motivated by recent advancements in robotic
manipulation of deformable objects, this letter addresses these
challenges by constructing a method for automated stability testing
of a slender elastic rod — a canonical example of a deformable
object — using a robotic system. We focus on rod configurations
with helical centerlines since the stability of a helical rod can be
described using only three parameters, but experimentally deter-
mining the stability requires manipulation of both the position and
orientation at one end of the rod, which is not possible using tra-
ditional experimental methods that only actuate a limited number
of degrees of freedom. Using a recent geometric characterization
of stability for helical rods, we construct and implement a manip-
ulation scheme to explore the space of stable helices, and we use a
vision system to detect the onset of instabilities within this space.
The experimental results obtained by our automated testing system
show good agreement with numerical simulations of elastic rods in
helical configurations. The methods described in this letter lay the
groundwork for automation to grow within the field of experimental
mechanics.

Index Terms—Robotic manipulation, experiment automation,
elastic rods, elastic stability.

I. INTRODUCTION

ADEFORMABLE elastic rod can conform to an infinite
number of equilibrium configurations, even when its

boundary conditions are fixed. Determining which of these con-
figurations are stable and which are unstable is a quintessential
problem in mechanics. However, experimental analysis of these
configurations requires repetitive testing and an experimental
setup that can actuate up to six degrees of freedom at the
rod’s ends. In prior work, traditional experiment platform have
only controlled a small number (e.g., one or two) of degrees
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of freedom at the ends of a rod [1], [2]. In Ref. [1], an ex-
perimental platform with two DOFs is used to observe the
rod’s behavior under contorting. Thompson et al. implemented
a platform controlling two DOFs to study post-buckling of a
flexible rod with torsion [2]. The number of controllable DOFs
often restricts the configurations of the rod that can be studied
in experiments. In this paper, we address these challenges by
constructing an automated testing method using a robotic system
to determine when an elastic rod becomes unstable. Although the
methods described in this paper could be applied to a rod in any
configuration, we focus on rod configurations whose centerline
is a helix. This choice is motivated by a recent characterization
of the set of all helical rod configurations that are stable [3],
and we exploit this characterization in our automated testing
method. Experimental analysis of this stability problem has not
been completed in previous work due to the repetitive nature of
the testing procedure and the complexity of controlling both the
position and orientation at the rod’s end. These issues are over-
come by employing a robot to perform the stability experiments.

Fig. 1 provides one example of an experiment conducted by
our automated testing system. The elastic rod, denoted with blue
markers along its length, deforms with a helical centerline as the
collaborative robot manipulates one end of the rod in Fig. 1(a-e).
Between Fig. 1(e) and (f), an instability occurs, and the rod jumps
to another configuration that does not have a helical centerline.
The experiment concludes in Fig. 1(g). Simulated configurations
of the rod with identical boundary conditions, based on the
Discrete Elastic Rod formulation [4], [5], are shown beneath
the experimental images.

A robot manipulating a deformable object, such as in Fig. 1,
faces many challenges that do not occur when manipulating rigid
objects. The problem of deformable object manipulation has
therefore received considerable attention in the robotics litera-
ture [6]. In this prior work, the goal is often to deform an object,
such as the elastic rod considered in this paper, from a starting
configuration into a specific goal configuration [7], [8]. Other
constraints, such as limiting the object’s deformation, avoid-
ing unstable configurations, and avoiding self-collisions, are
often included [9]–[11]. Problems involving the manipulation
of elastic rods arise in a variety of applications in different en-
gineering fields, for example, robot cutting with a hot wire [12],
magnetically guided rods for medical applications [13], and the
development of concentric tube robots [14]. The methods in this
paper are strongly motivated by this previous work on robotic
manipulation. However, rather than using a robot to deform
an object into a goal configuration while avoiding undesirable
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Fig. 1. Snapshots of an elastic rod manipulated by a robot from stable helical configurations to non-helical configurations after an instability. (a-e) Stable helical
configurations; (f-g) non-helical configurations after an instability; elastic instability happens at the vertical green line.

phenomena (such as an instability), our goal is to incite an
instability in order to gain information regarding the mechanics
of the object being manipulated.

In addition to the robotic system, a key component of our
automated stability testing method is a vision system that de-
tects when the rod becomes unstable. Like manipulation, visual
tracking of deformable objects has previously been studied in the
robotics literature [15], with applications in robotic surgery [16].
In contrast to our work, the goal of these previous studies was
to estimate the rod’s current configuration using, for example,
an image of the rod. In this paper, we also estimate the rod’s
configuration using an image provided by a camera. However,
we then measure the error between this detected configuration
and the expected configuration. As we will show, a sudden jump
in this error can be used as an automated method to determine
when an instability occurs.

The elastic rods considered in this paper are examples of
flexible slender structures, which are commonly encountered
in our daily lives. The study of their equilibrium configurations
has many practical applications, including polymers, bacterial
fibers, DNA, and plant growth [17]–[20]. Beyond equilibrium,
determining which of these configurations are stable and which
are unstable has been a topic of much interest in the mechanics
community [21], [22]. Configurations whose centerline is a helix
have received particular attention, dating back to Kirchhoff’s
seminal work in 1859, when he showed that an initially straight,
inextensible, unshearable, isotropic, and uniform rod can have a
helical centerline under appropriate boundary conditions. It was
later shown that the stability of these helical configurations is
determined by only three parameters: the centerline’s curvature,
the centerline’s torsion, and the twisting moment applied to
the rod [3]. Furthermore, within this three-dimensional param-
eter space, the set of helical configurations that are stable is
star-convex. The manipulation scheme that we use to incite
instabilities in the elastic rod is motivated by this geometric

property of the set of stable helical configurations. Finally,
to validate the results of our automated testing method, we
compare the stability measurements collected by our robotic
system with simulations of helical elastic rods, which are based
on the Discrete Elastic Rod formulation [4], [5]. The mechanical
information obtained from these robotic experiments could also
be used to develop a refined mechanical model. In Ref. [23],
machine learning is used to construct smart constitutive laws of
materials, which could be deployed in traditional finite element
analysis to study the deformation of complex structures. In
future work, the robotic system described in this paper can be
combined with machine learning to use information collected
from mechanical experiments to obtain a better understanding
of complex structures.

The primary contributions of our work are outlined below.
� We describe an automated procedure for testing the stabil-

ity of elastic rod configurations using a robotic system.
� We use this system to determine when rod configurations

with helical centerlines become unstable.
� We use numerical simulations to validate both our experi-

mental results and the feasibility of using a robot to perform
mechanics experiments.

The paper is organized as follows. In Section II, we describe
the parameter space of rods with helical centerlines, the nu-
merical simulation framework, and the manipulation scheme to
explore the set of stable helices. Section III describes the robotic
system that is used to perform the experiments, and Section IV
gives the result of the experiments. Section V provides conclud-
ing remarks and directions for future work.

II. EXPLORATION AND SIMULATION OF HELICAL RODS

This section describes a parameterized space for helical rod
configurations and proposes a scheme to explore the subset of
this space corresponding to configurations that are stable. We
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first describe the coordinates of this parameter space: the rod’s
curvature, torsion, and twisting moment. We then describe the
details of our numerical simulation to predict the stability of
helical rod configurations. Finally, we describe a manipulation
scheme to incite instabilities in helical rods, which is later
implemented in Section III on the robotic system.

A. Parameter Space of Helical Rod Configurations

In this section, we present the necessary background from
Ref. [3]. This work showed that the set of all stable helical
configurations of an initially straight, inextensible, unshearable,
isotropic, and uniform elastic rod having lengthL can be param-
eterized by the centerline’s curvature κ ≥ 0 and torsion τ , and
the twisting moment ω applied to the rod. Knowledge of these
three parameters is sufficient to determine if the corresponding
helical rod is stable. We can therefore visualize the stability of
all helical configurations within a three-dimensional parameter
space having axes κ, τ , and ω.

Each point in this parameter space corresponds to a helical
rod configuration that is in equilibrium. However, only certain
points in this space will correspond to helical configurations
that are stable, i.e., configurations that minimize elastic potential
energy. The elastic potential energy is comprised of two terms:
the bending energy and the twisting energy. We note that the
energy associated with axial stretching is neglected, as is poten-
tial energy due to external forces such as gravity. The relative
weights of bending and twisting energy are determined by the
stiffness ratio c = kt/kb = 1/(1 + ν), where kb is the bending
stiffness, kt is the twisting stiffness, and ν is the Poisson’s ratio.
The ratio c, however, does not affect stability within the κ-τ -ω
parameter space.

A geometric property of the stable subset, derived in Ref. [3],
states that the set of points in the κ-τ -ω parameter space corre-
sponding to stable configurations is star-convex. This means that
each ray extending from the origin in the κ-τ -ω parameter space
intersects the boundary separating stable and unstable helices
exactly once. In the following sections, we will use this property
to construct a manipulation scheme to incite instabilities in our
automated testing procedure.

B. Numerical Framework

A numerical framework based on Discrete Elastic Rod
(DER) [4], [5] is used to simulate a rod under various boundary
conditions and generate a corresponding robotic trajectory for
motion planning. DER is a simulation tool developed in the
computer graphics community and has recently gained traction
in engineering as a predictive tool. Since the physical accuracy
of DER has been validated in different studies [19], [24], [25],
we use this method to study formation of helices in elastic rods
and their stability. A brief description of DER follows; a tutorial
exposition can be found in Ref. [5].

Fig. 2(a) schematically represents the discrete representation
of a rod in DER. The rod is discretized into n+ 1 nodes qi

(0 ≤ i ≤ n), and n edges ei = qi+1 − qi (0 ≤ i ≤ n− 1) as
shown in Fig. 2(a). Each node qi has three degrees of freedom:
positions along x, y and z axes; and each edge ei has one degree
of freedom – twist angle θi – that represents the orientation of

Fig. 2. (a) Discrete model of an elastic rod; (b) Material frame, reference
frame, and turning angle.

the material frame [m1
i ,m

2
i , ti] with respect to the reference

frame [d1
i ,d

2
i , ti]. The reference frame [d1

i ,d
2
i , ti] is a frame

predefined at the initial time. Its values are updated with a time
matching scheme from time t to time t+Δt, where Δt is the
time step size. Therefore, its values are known and we use it to
measure the angle θi with the material frame [m1

i ,m
2
i , ti]. Note

that the third director in both the frames is the tangent along the
edge, i.e., ti =

ei

‖ei‖ , and the frames are orthonormal. The 4n+ 3
sized degrees of freedom (DOF) vector representing the config-
uration of the elastic rod is q = [q0, θ0,q1, . . . , θn−1,qn]. As
the robotic manipulator imposes boundary conditions on one
end of the rod while the other end is clamped, the rod deforms.
DER computes the DOF vector q(t) as a function of time by
integrating the equation of motion (EOM) at each time stamp.

Before describing the EOM, we outline the elastic energies
of a rod as a function of q. The stretching energy is

Es =

n∑
i=0

1

2
ks

(
1− ‖ei‖

‖ei‖
)2

‖ei‖, (1)

whereks = EA is the axial stiffness,E is Young’s modulus,A is
the cross sectional area, and ‖ei‖ is the length of the undeformed
edge ei. In our case, the undeformed configuration is the initial
configuration q(0). The bending energy is

Eb =

n−1∑
i=1

1

2

kb
‖ei‖

(
2 tan

φi

2
− 2 tan

φ0
i

2

)2

, (2)

where kb =
Eπh4

4 is the bending stiffness, h is the rod radius,
φi is the turning angle at a node (as shown in Fig. 2(b)), and φ0

i

is the turning angle in the undeformed state. For the naturally
straight rod studied here, φ0

i = 0. The twisting energy is

Et =
1

2

n−2∑
i=1

1

‖ei‖ktτ
2
i , (3)

where kt =
Eπh4

4(1+v) is the twisting stiffness, τi = θi − θi−1 +

Δτ refi is the discrete twist at nodeqi, andΔτ refi is the reference
twist, which is related to the twist between the reference frame
on edge ei−1 and ei.

To march from time ti to ti+1 = ti +Δt, the DER algorithm
uses the implicit Euler method to integrate the EOM, which can
be obtained via Newton’s second law:

M

Δt

(
q(ti+1)− q(ti)

Δt
− q̇(ti)

)
= Fint + Fext, (4a)
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Fig. 3. Scheme to incite an instability in a helical rod. (a) Parameterized space
of helical configurations and two searching directions; (b) Error between the
simulated rod and the expected helical shapes vs. distance along the search-
ing direction ‖S‖ when S = [0.594, 0.698, 0.4]; and (c) Error between the
simulated rod and the expected helical shapes vs. distance along the searching
direction ‖S‖ when S = 1√

3
[1, 1,−1];.

Fint =
∂(Es + Eb + Et)

∂q
, (4b)

q̇(ti+1) =
q(ti+1)− q(ti)

Δt
, (4c)

where M is the lumped mass matrix (which is a diagonal matrix
of size 4n+ 3), F int is the elastic force vector of size 4n+ 3,
and F ext is the external force vector of same size. Dot represents
time derivative, i.e., q̇(ti) is the velocity vector of size 4n+ 3 at
time ti. In the above time marching scheme, the old DOF vector
q(ti) and the old velocity vector q̇(ti) are known. Equation 4a is
solved to obtain the new DOF vector q(ti+1). The new velocity
vector is then simply calculated using equation 4c.

C. Manipulation Scheme to Explore Stable Configurations

We now propose a scheme for manipulating a helical rod
that will incite instabilities, thereby allowing us to explore the
points in the κ-τ -ω parameter space corresponding to stable
configurations. As described earlier, it has been shown that each
ray extending from the origin within the κ-τ -ω parameter space
intersects the boundary separating stable and unstable helices
exactly once. Moving along such a ray within the parameter
space corresponds to continuously changing the helical rod’s
shape. Therefore, we propose a manipulation scheme that begins
with a straight untwisted rod (corresponding to the origin in the
κ-τ -ω parameter space), and then moves along a search direction
S within this space. We use ‖S‖ to denote the distance from the
origin along the searching direction andS to denote a unit vector
in the search direction. Beginning at the origin, we move along
S in the κ-τ -ω space until an instability is encountered.

Two examples of this procedure are shown in Fig. 3. Fig. 3(a)
shows the κ-τ -ω parameter space along with a half-sphere of
radius 1. Each point on this half-sphere corresponds to a different
search directionS, two of which are shown in the figure. Moving
along either search direction corresponds to manipulating a

Fig. 4. Flow chart of the manipulation scheme.

helical rod and continuously changing its curvature, torsion,
and twisting moment. This manipulation process was completed
using the numerical simulation framework described in the
previous section, and the results for the search directions S1

and S2 are shown in Fig. 3(b)-(c). To measure the error between
the simulated rod and the predicted helical shape, we calculate
the average deviation of the rod configuration from the predicted
helix, normalized by the helix’s radius. The expression for this
error e is given by

e =
1

n+ 1

n∑
i=0

κ2 + τ2

κ
‖qi − qhelix

i ‖, (5)

where n+ 1 is the number of discrete nodes representing the
centerline of the rod, qi is the position of the node, and qhelix

i is
the position of the node when the rod is assumed to be helical.
In Fig. 3(b)-(c), we see that this error initially remains small
and then jumps sharply at a critical distance along the search
direction. This sudden increase corresponds to an instability at
which the rod jumps to another non-helical configuration. This
process was repeated for 58,352 search directions using numer-
ical simulation, and the resulting points S at which instabilities
occurred were recorded. These points were then used to generate
the surface in Fig. 7, which represents the predicted boundary
between stable and unstable configurations within the κ-τ -ω
parameter space.

III. ROBOTIC SYSTEM

In this section, we describe a robotic system that implements
the manipulation scheme from the previous section within the κ-
τ -ω parameter space. This system allows for automated stability
testing and unsupervised collection of relevant data. We first
provide an overview of the robotic system. We then discuss how
boundary conditions for the rod corresponding to points in the
κ-τ -ω parameter space are implemented. Finally, we describe
the vision system used to detect instabilities, and we discuss the
effects of disturbances in the robotic system.
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Fig. 5. (a) Illustration of the references frames on the two ends; (b) Schematic
diagram of parallel transport.

A. Overview of the Robotic System

A flowchart of the robotic manipulation scheme is shown
in Fig. 4. The robotic system is composed of three parts: a
collaborative robot, an externally mounted motor, and a camera.
The collaborative robot imposes the prescribed position and
tangent on one end of the manipulated rod while the mounted
motor imposes the required torsion by rotating one end of the
rod. In other words, the collaborative robot and the mounted
motor work together to apply the required clamped boundary
conditions on the manipulated rod. A camera is used to image the
configuration of the rod undergoing manipulation. The images
are used to calculate the difference between the experimental
rod and the predicted helical shape when searching for the
boundary of the set of stable helices. As described in Fig. 3,
a large increase in the error between the manipulated rod and
the predicted configuration indicates that a point on the boundary
between stable and unstable configurations has been found. The
robotic system is able to explore the boundary of the set of stable
helices by repeating this experimental procedure along different
directions S.

B. Boundary Conditions and Path Planning

In this study, the boundary conditions on the two ends of the
rod are clamped, which require fixing both the position and the
tangent. The position can be expressed by three variables [x, y, z]
in the world coordinate system – a reference frame fixed to the
environment – and the tangent – a unit vector – can be specified
using a rotation matrix. First, we discuss our implementation
of the conditions on the position using the robot. As shown in
Fig. 5(a), we regard one clamped end (the mounting end) of the
rod as the origin of the world frame without any loss in generality.
This position q0 is the first node in the discrete representation.
For a helical shape, the last node qn held by the end-effector of
the robot can be expressed using the geometrical properties (κ

and τ ) of the helix such that

qn =

⎡
⎢⎢⎢⎢⎣

−
κτ

(
−1+(κ2+τ2)3/2 sin 1

(κ2+τ2)3/2

)

κ2+τ2

κ
(
cos

(
1

(κ2+τ2)3/2

)
− 1

)
(κ2 + τ2)

τ2

κ2+τ2 + κ2
√

(κ2 + τ2) sin
(

1
(κ2+τ2)3/2

)

⎤
⎥⎥⎥⎥⎦ . (6)

Next, a method to implement the tangent or orientation
boundary condition has to be developed. The material frame
[m1

n−1,m
2
n−1, tn−1] on the last edge (manipulated end) gives

the required rotation matrix. Referring to Fig. 4, this material
frame is imposed by the joint controller of the end-effector
and the external motor mounted on the end-effector. When the
twisting moment is zero (ω = 0), we denote the material frame
of the last edge to be [m1,int

n−1,m
2,int
n−1, tn−1]. This “intermediate”

material frame is imposed by the joint controller of the robot.
The intermediate material frame can be computed using parallel
transport, which allows us to move the material frame from one
edge to another without twisting about the tangent. Referring to
Fig. 5(b), given the material frame on edge ei−1, the material
frame on ei that does not generate any twist can be computed
from the following steps.

b =
ti−1 × ti

‖ti−1 × ti‖ where ti−1 =
ei−1

‖ei−1‖ , ti =
ei
‖ei‖ ,

m1,int
i = (m1,int

i−1 · (ti−1 × b))(ti × b) + (m1,int
i−1 · b)b,

m1,int
i =

m1,int
i

‖m1,int
i ‖ ,

m2,int
i = ti ×m1,int

i , (7)

where [m1,int
i ,m2,int

i , ti] is the intermediate frame on the i-
th edge with zero twist compared with the material frame
[m1

0,m
2
0, t0] on the fixed end. By sequentially parallel trans-

porting the material frame from the first edge to the last one, we
can obtain the intermediate frame [m1,int

n−1,m
2,int
n−1, tn−1].

This intermediate frame and the prescribed material frame
[m1

n−1,m
2
n−1, tn−1] share the tangent tn−1 as the third director.

Therefore, only a scalar quantity – the rotation angle – is needed
to obtain the prescribed material frame from the intermediate
frame. As indicated in Fig. 4, an external motor that is mounted
on the end-effector rotates the last edge by a rotation angle
ω/c, where c is the ratio between twisting stiffness and bending
stiffness. Fig. 5(a) schematically shows the two frames and the
rotation angle. The reason behind using an external motor to
impose the rotation is that the rotation angle in this study can be
so large that it falls outside the joint limits of the collaborative
robot.

Knowing the required boundary conditions of a series of
helical shapes to be explored, we can construct a constrained
path in Cartesian space. During motion planning, singular con-
figurations of the robot should be avoided since these singu-
larities could result in a high speed of the manipulator, thereby
influencing the stability of the rod. To minimize the likelihood of
encountering these singularities, the desired path of the manipu-
lator was divided into a series of discrete points and the Descartes
planner [26] was used to plan a corresponding path in the robot’s
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Fig. 6. The effects of (a) Poisson’s ratio, (b) Young’s Modulus, (c) the gravito-bending length, (d) manipulator velocity, and (e) jittering on the point of instability.
In each figure, the horizontal axis is the distance along the search direction S = 1/

√
3[1 1 1], and the vertical axis is the error with respect to the expected helical

shape. The predicted point of instability is denoted by the vertical dashed line.

Fig. 7. Comparison between simulation data (blue surface) and experiment
data: red circles denote the experimental data; green circles denote the anti-
symmetric experimental data. (a) Comparison between simulation results and
experimental results; (b) View via negative κ axis of (a); (c) View via negative
τ axis of (a); (d) View via negative ω axis of (a); (e) The comparison between
simulation and experimental results when ω = 0.

joint space. The collaborative robot used in our experiments
has seven DOF, and there are multiple joint solutions for a
specified pose along the desired path. Between discrete points
along the path, the Descartes planner minimizes the function
f = ‖θri+1 − θri ‖, where θr is the robot joint solution and sub-
scripts denote the index of the corresponding discrete point

on the path. The minimization of f reduces the likelihood of
encountering large and sudden changes in the robot’s joint angles
due to singularities. During motion planning, we also account
for self-collisions and joint limits of the robotic system, resulting
in a joint path that does not have sudden jumps associated with
singularities. We note, however, that for a robotic system with
fewer DOFs (e.g., 6 DOFs), avoiding singularities might be
more challenging during motion planning. In this circumstance,
methods such as those described in [27] can be used during
motion planning.

C. Perception System

The perception system is completed with a camera (Intel
Realsense D435) that images the rod. Lightweight markers made
of paper are attached along the rod (see Fig. 1) to track its
configuration. Using the extrinsic and intrinsic matrices of the
camera, the expected helical shapes from numerical simulations
can be projected into the image domain of the experiments.
The intrinsic camera matrix is provided by the vendor and the
extrinsic matrix is measured with robot hand-eye calibration.
The difference between the expected helical shape and the
detected manipulated rod in the image domain is used to evaluate
if an elastic instability occurs. When the elastic rod with a helical
centerline reaches the critical point, it will snap into a non-helical
shape and induce a large difference between the experimental
shape and the prescribed helical shape. A representative example
on this experiment vs. simulation comparison is shown in the
supplementary video. The corresponding curvature κ, torsion
ω, and twist τ at the onset of elastic instability is a point on the
boundary of the set of stable helical configurations. In this work,
a detailed comparison between the 3D simulated configuration
and the experimental configuration is not necessary; we are only
interested in capturing the onset of instability.

D. Effects of Disturbances

We now discuss potential sources of disturbances in the
robotic system and their effects on the stability measurements.
First, in section II, we described how the parameters κ, τ ,
ω, and c can be used to describe the set of all helical rod
configurations, where curvature κ and torsion τ are geomet-
rical parameters of the rod that are independent of the rod’s
material. Furthermore, the ratio of twisting stiffness to bending
stiffness, c = kt/kb = 1/(1 + ν), is only dependent upon the
Poisson’s ratio of the material. Varying c results in a change
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of the rod’s twisting strain, ω/c, and a change of the rod’s
twisting energy. However, these two changes together result
in no change in the rod’s stability [3]. To validate this result,
we simulated a helical rod using the DER formulation along
the search direction S = 1/

√
3[1 1 1]. The default parameters

for these simulations were: Young’s modulus E = 1.12 Gpa,
Poisson’s ratio ν = 0.33, density ρ = 1180 kg/m3, lengthL = 1
m, and radius h = 0.781 mm. In Fig. 6(a)-(b), we show the
effect of varying Poisson’s ratio and Young’s modulus on the
instability. We see that the rod’s material properties have a
minimal effect on the instability point (the value of which is
indicated by the vertical dashed line for the default parameters).
Therefore, the material of the rod should have minimal influence
on our stability results, and it is sufficient to use a single rod in
the experiments. In future work, our robotic system can be used
to automate the experimental validation of the theoretical result
regarding c obtained in [3].

In addition to the rod’s material, the effect of gravity on the
rod must also be considered. In this paper, we assume that
the rod is sufficiently stiff so that gravity can be neglected.
To quantify this assumption, we use the gravito-bending length
Lgb = (h

2E
8ρg )

1/3, where g is the acceleration of gravity [24].Lgb

describes the balance between gravitational and bending energy,
and the effects of gravity diminish as Lgb increases. Fig. 6(c)
shows the effect of varying Lgb on the instability, and we see
that gravity becomes negligible when Lgb/L > 0.6.

The main external disturbances (i.e., external to the rod)
can be divided into two components: the speed of the robotic
manipulator and jittering of the manipulator. To assess these
effects, we again conducted simulations with the default pa-
rameters described above. Fig. 6(d) shows how varying the
manipulator’s speed v affects the instability point by introducing
inertial effects. We conclude that the manipulator’s speed should
be sufficiently small so as to minimize the influence of these
inertial disturbances. We also used the simulator to explore the
effects of jittering, i.e., small deviations from the desired path.
As shown in Fig. 6(e), we found that jittering of magnitude
less than d � 0.02L, where L is the rod’s length, has minimal
influence on the rod’s stability.

IV. EXPERIMENTS AND ANALYSIS

The robotic system, manipulation scheme, and vision system
described in section III were implemented to conduct automated
experimental testing of stability for helical elastic rods. We
used a collaborative robot (Sawyer, Rethink robotics) with seven
degrees of freedom. The motor used for applying external torque
is a stepper motor (NEMA 17) controlled with a microcontroller
(Arduino Uno Rev3), and the camera used in the perception
system is an RGBD camera (Intel Realsense D435). The elastic
rod used was a superelastic nitinol wire with length L = 0.5 m,
diameter 2r = 1.5875 mm, Poisson’s ratio ν = 0.33, density
ρ = 6450 kg/m3, and Young’s modulus E = 67.5 GPa. For
this rod, we haveLgb/L = 1.3816, and we can therefore neglect
the effects of gravity. Furthermore, the reported accuracy of the
Sawyer robot is less than 0.01 cm, which is within the jittering
tolerance established in the previous section.

As described in Ref. [3], there is a symmetry in the κ-
τ -ω parameter space between points located at (κ, τ, ω) and
(κ,−τ,−ω). We therefore only consider search directions with
τ > 0, and we reflect these points on the stability boundary to
generate data for τ < 0. In future work, experiments will be
conducted for all values of τ to validate this symmetry. The rod
was manipulated along a total of 328 search direction until an
instability occurred, and the resulting values of κ, τ , and ω at
the instability were recorded.

The blue surface in Fig. 7(a) shows the predicted boundary
between stable and unstable helical configurations within the
κ-τ -ω parameter space based on the DER numerical simula-
tions. The experimental data collected by our automated testing
procedure is shown in red, and the anti-symmetric data gener-
ated from the symmetry is shown in green. Views along each
coordinate axis are shown in Fig. 7(b)-(d), and Fig. 7(e) shows
the comparison for the two-dimensional section withω = 0, i.e.,
twist-free helices. Our results show good agreement between the
simulated and experimental data, suggesting that our automated
testing procedure is able to accurately reproduce the stability
boundary.

To quantify the difference between the simulated and exper-
imental data, we introduce an error that measures the relative
distance between points on the simulated and experimental sta-
bility boundaries along the same search direction. Along a given
search direction S, we let Ss = [κs, τs, ωs] denote the resulting
point on the stability boundary based on numerical simulations,
and similarly we let Se = [κe, τe, ωe] denote the resulting point
on the stability boundary based on the experimental data. The
relative error along the search direction S is then defined as
err = |(‖Se‖ − ‖Ss‖)/‖Ss‖|. The average error of our exper-
imental results over all 328 search directions was 0.0272. The
maximum error found was 0.1298, and the standard deviation of
the error was 0.0238. Based on these results, we can conclude
that our automated experimental testing method can accurately
determine when an elastic rod in a helical configuration loses
stability.

V. CONCLUSION

This paper developed an automated testing procedure for
determining the stability of a helical elastic rod. Due to the
repetitive nature of the test and the need to simultaneously ma-
nipulate both the position and orientation at one end of the rod,
the robotic system was a key component of our testing procedure.
Experimental observations were compared with results from
numerical simulations based on the DER algorithm, and their
agreement suggests our method is able to accurately capture the
onset of instabilities in helical rods. Although our manipulation
scheme relied on specific properties of helical rods, the other
components of our testing method can be applied to analyze
stability of non-helical rod configurations.

While our automated testing system was able to accurately
reproduce the boundary between stable and unstable helical rods,
there are areas in which the method could be improved. First, a
primary error source in our system was the stepper motor, due
to its inability to apply a consistently linear rotation and latency
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when communicating with the robotic system. Furthermore,
since the position of one end of the rod as fixed in our experiment,
self-collisions of the robot prevented us from exploring certain
regions of the κ-τ -ω parameter space. Using two robots to
collaboratively manipulate the rod would provide additional
dexterity, allowing us to explore a larger region of the parameter
space. Our future work will focus on understanding how the
robot’s work space constrains the rod’s mechanical parameter
space. Despite these areas for improvement, the methods de-
scribed in this paper provide a foundation for using robotic
systems to perform research in experimental mechanics. In
future work, a robotic system could be used to not only perform
mechanics experiments, but to apply machine learning based on
the collected data to improve the mechanical model of the object
being manipulated.
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