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ABSTRACT
Water can be stored in nominally anhydrous minerals as substitutional hydroxyl, generat-

ing vast but commonly unrecognized H2O reservoirs in ostensibly dry regimes. Researchers 
have long known that hematite (α-Fe2O3) can accommodate small concentrations of hydroxyl 
through the substitution of Fe3+ by 3H+. Our study of natural hematite has demonstrated the 
occurrence of “hydrohematite” phases that are 10–20 mol% deficient in Fe and accordingly 
contain 3.6–7.8 mol% structural water. Intergrown with natural hydrohematite samples were 
superhydrous goethite-like phases exhibiting an Fe deficiency of 10–20 mol% relative to end-
member goethite (α-FeOOH). We synthesized hydrohematite in alkaline solutions (pH 9–12) 
at low temperatures (T < 200 °C) using fresh ferrihydrite as the transient precursor, and 
we observed a nonclassical crystallization pathway involving vacancy inoculation by Fe as 
nanocrystals evolved. The high level of incorporation of H2O in iron (hydr)oxides dramati-
cally alters their behaviors as catalysts and pigments, and the presence of hydrohematite in 
rocks may rule out high-T diagenesis. We propose that hydrohematite is common in low-T 
occurrences of Fe oxide on Earth, and by extension it may inventory large quantities of water 
in apparently arid planetary environments, such as the surface of Mars.

INTRODUCTION
Hematite (Hm, α-Fe2O3) and goethite 

(Gt, α-FeOOH) are common minerals in oxi-
dized terrestrial environments, and they are low-
cost materials that are widely used as pigments, 
electrodes, sorbents, catalysts, etc. (Blake et al., 
1966; Giménez et al., 2007; Rovira et al., 2008; 
Lin et al., 2018). Previous studies have shown 
that the replacement of <10 mol% Fe by OH 
modifies the physical and chemical properties 
of these minerals, generally increasing reactivity 
and altering the color and magnetic suscepti-
bility (Burgina et al., 2000; Cornell and Schw-
ertmann, 2003; Peterson et al., 2015; Keppeler 
et al., 2016). In the mid–19th century, mineralo-
gists identified highly Fe-deficient phases based 
on their unusually bright red streaks, describ-
ing them variously as “hydrohematite” or “tur-
gite” (Brush and Rodman, 1867; Pailhé et al., 
2008). These mineral species were discredited 

in the 1920s, however, as being mixtures of end-
member Gt and Hm based on primitive pow-
der X-ray diffraction (XRD) data (Posnjak and 
Merwin, 1922; Böhm, 1925). Studies of the dry 
thermal dehydration of Gt to Hm inspired ef-
forts to reintroduce the species “hydrohematite” 
alongside “protohematite” (Wolska, 1981; Dang 
et al., 1998; Gualtieri and Venturelli, 1999; Bur-
gina et al., 2000).

We document departures from the ideal stoi-
chiometries of Hm and Gt that are too significant 
to dismiss as minor defect structures. We obtained 
the original type “hydrohematite” collected by 
Breithaupt (1847) and compared it with miner-
als labeled as “turgite” from the Smithsonian 
National Museum of Natural History (Washing-
ton, D.C., USA) and the historic Genth Collec-
tion at The Pennsylvania State University (PSU; 
University Park, Pennsylvania, USA) (Fig. S1A 
in the Supplemental Material1). We investigated 

the Fe and OH concentrations by electron probe 
microanalysis (EPMA), Fourier transform in-
frared spectroscopy (FTIR), thermogravimetric 
analysis coupled with mass spectrometry (TGA-
MS), and Rietveld structure refinements using 
synchrotron XRD data. We conclude that much 
of the nodular Hm formed in terrestrial low-
temperature environments is better character-
ized as “hydrohematite”. Moreover, we specu-
late that the spherical hematitic “blueberries” on 
Mars (Squyres et al., 2004) and perhaps the Hm in 
Martian dust (Christensen et al., 2001; Fraeman 
et al., 2013) incorporate hydroxyl, and thus serve 
as an unappreciated reservoir for water.

IRON DEFICIENCIES AND 
WATER CONTENTS OF NATURAL 
HYDROHEMATITE

Electron probe microanalysis of polished 
sections revealed O/Fe ratios that ranged from 
1.88 to 1.74 (±0.01; Table S1), departing mark-
edly from the O/Fe ratio of 1.50 in stoichiometric 
Fe2O3. The total concentration of trace elements 
was <3 wt% for all specimens, revealing that 
very little Fe was replaced by impurity elements 
(e.g., Al, Si, Mg, Mn, and Cr). A broad FTIR 
peak at 900 cm−1 was prominent in multiple hy-
drohematite samples but absent in a stoichiomet-
ric Hm standard (Fig. 1). This mode at 900 cm−1 
is similar to the mode at 890 cm−1 that has been 
assigned as in-plane deformation (δdeform-OH) 
vibrations for hydroxyl in Gt (Kustova et al., 
1992; Prasad et al., 2006). We also observed 
broad absorption peaks at 3000–3500 cm−1, at-
tributable to hydroxyl stretching (Prasad et al., 
2006). A shift in a band center from 516 cm−1 
in stoichiometric Hm to a higher wavenumber 

1Supplemental Material. Materials, analytical methods, Figures S1–S8, and Tables S1–S3. Please visit https://doi.org/10.1130/GEOL.S.14903316 to access the 
supplemental material, and contact editing@geosociety.org with any questions.
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(539 cm−1) in hydrohematite is consistent with 
an increase in Fe-O bond vibration due to the 
substitution of OH for O (Ruan et al., 2002). We 
interpret these results as evidence that the charge 
deficit generated by missing Fe3+ is satisfied by 
the bonding of H+ to octahedral O2−. Synchrotron 
XRD for the hydrohematite samples confirmed 
that they are monomineralic, showing no impu-
rities of Gt or other Fe hydroxides.

Rietveld analysis of hydrohematite synchro-
tron XRD patterns (Table S2; Fig. S2) yielded 
Fe site occupancies that are consistent with the 
EPMA Fe/O ratios (Table S1). The composi-
tion of ideal hydrohematite lies midway be-
tween those of Hm and Gt (Fig. 2; Hermann, 
1844; Breithaupt, 1847). Assuming a substi-
tution of 3H+ ↔ Fe3+, the general chemical 
formula of hydrohematite can be expressed as 
Fe2−x/3O3−x(OH)x (Wolska, 1981). EPMA analy-

ses of our natural hydrohematite yielded formu-
lae of Fe1.8O2.4(OH)0.6 to Fe1.6O1.8(OH)1.2 and thus 
water contents of 3.62–7.80 wt%. Refined Fe 
site occupancies, equivalent to half the Fe stoi-
chiometry in these formulas, ranged from 0.90 
to 0.80 (Fig. 2; Table S3). By comparison, for 
hydrohematite having a composition equivalent 
to that of Gt (FeOOH), the Fe occupancy (Feocc) 
would be 0.75 with 10.14 wt% H2O (Fig. 2). 
Our results therefore confirm the existence of 
several specimens that are isostructural with Hm 
(space group R3 c) that have near-goethite water 
concentrations.

X-ray diffraction and EPMA investigations 
revealed variations in Feocc within a single hy-
drohematite botryoidal specimen. For exam-
ple, EPMA analyses of hydrohematite from 
Richmond, Massachusetts (USA), yielded an 
Feocc of 0.82 (±0.02) near the botryoidal ex-

terior and 0.86 (±0.02) 1.0 cm beneath the 
surface (Fig. S3). These subtle differences in 
Feocc correlated with observed variations in the 
growth bands in backscattered electron images, 
with more iron-rich layers appearing relatively 
brighter (Fig. S3). Similarly, Rietveld refine-
ments using XRD data collected from different 
regions within a single hydrohematite nodule 
from Salisbury, Connecticut, yielded a range in 
Feocc of 0.82–0.88 (±0.02) (Fig. S2B; Table S1).

INTERGROWTH OF 
HYDROHEMATITE AND 
HYDROGOETHITE

Transmission and scanning electron micros-
copy of a natural hydrohematite from Arkansas 
revealed no evidence for intergrowths of ferri-
hydrite or noncrystalline Fe-hydroxide phases to 
account for the observed water contents. Images 
of interior sections of this botryoidal sample re-
vealed an underlying radial fibrosity (Fig. S4), 
with fibers forming bands or layers oriented per-
pendicular to the growth direction. High-resolu-
tion transmission electron microscopy (HRTEM) 
of focused ion beam (FIB) sections prepared par-
allel to the fiber direction revealed that radial 
fibers were composed of hexagonal nanocrystals 
measuring ∼10 nm in diameter. Lattice fringes 
were continuous across nanocrystal boundar-
ies within individual fibers, and selected area 
electron diffraction (SAED) indicated a growth 
direction parallel to [001] of the hydrohematite 
nanocrystals. These observations suggest that 
growth of botryoidal hydrohematite proceeded 
by topotactic attachment of nanocrystals.

Some hydrohematite samples from Salisbury 
(Connecticut), Arkansas, and Spain showed inter-
growths of Gt (Fig. 3; Fig. S5). EPMA revealed 
that the Gt also was non-stoichiometric relative 
to Fe. To our knowledge, natural Gt that is sig-
nificantly deficient in Fe has not been previously 
reported, and hereafter we refer to this phase as 
“hydrogoethite” (Fig. 2). EPMA compositions of 
hydrogoethite ranged from Fe0.80O0.40(OH)1.60 to 
Fe0.90O0.70(OH)1.30 in our samples. Our Rietveld 
refinements of synchrotron XRD data are con-
sistent with the EPMA results, with refined Feocc 
ranging from 0.80 to 0.90 and accordingly cal-
culated water contents from 18.41 to 14.00 wt% 
in our samples (Fig. S6; Table S4).

High-resolution transmission electron mi-
croscopy of the hydrogoethite in a Salisbury 
sample revealed that radially fibrous monomin-
eralic bands of nanocrystalline hydrogoethite 
alternate with the monomineralic bands of hy-
drohematite (Fig. 3). SAED patterns indicated 
that hydrogoethite fibers grew parallel to the Gt 
structure c-axis. Moreover, they suggested that 
the [100] and [010] axes of microcrystalline 
hydrogoethite (space group Pnma) grew paral-
lel to [001] and [110], respectively, of coexisting 
cryptocrystalline hydrohematite (R3 c). HRTEM 
images showed lattice continuity at the interface 

Figure 1.  Fourier transform 
infrared spectroscopy (FTIR) 
spectra of natural hydrohe-
matite (Hyhm), hematite (Hm), 
and goethite (Gt). Hyhm has 
characteristic hydroxyl-related 
peaks at 900 cm−1 that are not 
observed in stoichiometric Hm. 
Broad absorption peak at 3000–
3500 cm−1 is due to stretching of 
hydroxyls. Shift of band center 
from 516 cm−1 (Hm) to 539 cm−1 
(Hyhm) indicates an increase 
in Fe-OH content. *infrared ref-
erence pattern of natural Gt 
was collected from Colorado, 
USA (RRUFF™ Project [www.
https://rruff.info/] ID: R050142); 
†all Hyhm samples were tested 
in this study (from Richmond, 
Massachusetts, USA; Arkansas, 
USA; Salisbury, Connecticut, 
USA; and Spain); ‡anhydrous 
Hm was collected from Michi-
gan, USA (RRUFF ID: R040024).

Figure 2.  Schematic diagram of chemical composition of natural hydrohematite and hydrogoe-
thite. Feocc refers to Fe occupancy. Ideal hydrohematite described by Breithaupt and Hermann 
in the 1840s (Hermann, 1844; Breithaupt, 1847) locates midway between stoichiometric hema-
tite (Hm) and goethite (Gt). The general formula of hydrohematite and hydrogoethite can be 
represented as Fe2−x/3O3−x(OH)x and Fe1−y/3O1−y(OH)1+y, respectively.
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of hydrogoethite and hydrohematite layers. The 
abrupt transitions between bands of hydrohema-
tite and hydrogoethite, and the monomineralic 
nature of individual bands, argue against forma-
tion of one phase from the other. Rather, we in-
terpret the alternating bands of hydrogoethite and 
hydrohematite as reflecting different episodes of 
primary precipitation. As revealed by our labo-
ratory precipitation experiments, described be-
low, small changes in environmental conditions, 
such as pH, temperature (T), Fe activity, etc., can 
toggle the system between hydrohematite and 
hydrogoethite generation.

To investigate the thermal stability of hy-
drohematite from Salisbury (Connecticut), we 
measured the release of H2O by TGA-MS and 
separately monitored the change in Feocc in 
hydrohematite with increasing T using time-
resolved X-ray diffraction (TRXRD). Our TGA-
MS experiments revealed episodes of H2O loss 
between 120 °C and 200 °C (differential peak at 
175 °C) and between 200 °C and 350 °C (peak at 
275 °C), suggesting distinct dehydration events 
for differently bound species of hydroxyl. To-
tal water losses were ∼5.2 wt% H2O (Fig. S7), 
consistent with a composition halfway between 
those of Hm (0 wt% H2O) and Gt (10.14 wt% 
H2O) (Fig. 2). We interpret the low-T weight loss 
(<150 °C) to the desorption of H2O and/or OH at 
grain boundaries and dislocations in these highly 
defective nanocrystals. In situ synchrotron XRD 
during heating of dry hydrohematite powders 
showed that hydrohematite started to lose struc-
tural hydroxyl above ∼150 °C and fully trans-
formed to anhydrous Hm by 700 °C (Fig. S7). 
Consequently, the presence of hydrohematite in 
a rock would seem to rule out dry heating over 
∼300 °C. The OH groups in hydrohematite could 
not, however, be fully extracted at T <500 °C 
(Fig. S7), suggesting that the transformation of 
hydrohematite to anhydrous Hm requires a high 
activation energy (Wolska, 1981). Moreover, in 

contrast to 19th-century reports (Brush and Rod-
man, 1867), we boiled Salisbury hydrohematite 
powder at 120 °C for two weeks in deionized 
water and it did not lead to a conversion to Hm.

FORMATION OF HYDROHEMATITE
In order to determine how the presence of 

hydrohematite and hydrogoethite might con-
strain the geologic history of a paleosol or 
host rock, we investigated the transformation 
of ferrihydrite (Fh) to Hm ± Gt for a range of 
solution pH (2–13) and T (70–200 °C) in both 
batch and in situ synchrotron XRD experiments 
(Fig. 4) (Heaney et al., 2020). The conversion 
from Fh is the most common pathway for Hm 
formation in low-T natural systems (Cornell 
and Schwertmann, 2003; Lagroix et al., 2016). 
Although prior researchers have precipitated 
hydrohematite as a transient intermediate re-
actant (Peterson et al., 2018), for the first time, 
we successfully synthesized hydrohematite as a 
final metastable product from fresh two-line Fh 
gel. TRXRD revealed that when Fh gels were 
adjusted to pH 9–12 and heated at moderately 
low T (80–170 °C), Fe-deficient hydrohema-
tite initially nucleated with Feocc ∼0.50 (Fig. 
S8). As the crystals grew, the Feocc increased 
to, and leveled off at, typical hydrohematite 
values (Feocc = 0.80–0.90). For example, at 
pH 11 and 90 °C, the Feocc in hydrohematite 
increased from 0.68 to 0.84 within 0.5 h and 
remained stable at 0.84 for the remaining 4 h 
of the experiment (Fig. 4). The decrease in Fe 
vacancies was accompanied by aggregation and 
growth of hydrohematite nanoparticles (Way-
chunas et al., 2005; Niederberger and Cölfen, 
2006; Soltis and Penn, 2016). Unlike minerals 
evolving through classical growth mechanisms 
that involve the attachment of atoms to the sur-
faces of stoichiometric crystals, hydrohematite 
and hydrogoethite evolve through the infilling 
of interior vacancies via diffusion of surficial 

Fe during crystal growth (Fig. S8) (Peterson 
et al., 2018).

The crystal structure of synthetic hydrohe-
matite prepared at 90 °C for 1 h in a solution 
initially at pH 11 was virtually identical to that 
of the natural Hm from Salisbury (Connecti-
cut), both in terms of unit-cell parameters and 
refined atomic positions (Table S2). Relative to 
stoichiometric Hm, the higher concentration of 
Fe vacancies in hydrohematite diminishes the 
Fe-Fe repulsions, thereby decreasing the octa-
hedral distortion. Additionally, the Fe-O1 bond 
(the longest Fe-O octahedral bond) in natural 
hydrohematite is longer than in anhydrous Hm 
(Table S2), consistent with a model in which H 
preferentially bonds with the O1 anions, result-
ing in a longer Fe-OH bond (Fig. 4).

GEOLOGICAL SIGNIFICANCE
Our examination suggests that hydrous and 

Fe-deficient iron oxides are surprisingly com-
mon; we observed hydrohematite as a primary 
mineral within sedimentary rocks alongside 
quartz and clays. We propose that many terrestrial 
radially fibrous Fe-oxide nodules in fact consist 
of these superhydrous phases, such as the red 
ochres used by early hominids for pigmenta-
tion. If so, then Fe-oxide concretions observed 
on nominally dry planets, such as the hematitic 
concretions (“blueberries”) in Meridiani Planum 
on Mars, may serve as an unrecognized reservoir 
for water (Squyres et al., 2004). We note that a 
1-cm-thick layer of hydrohematite enveloping a 
Mars-sized planet would sequester a volume of 
water equivalent to 4.32 × 1011 m3, or roughly the 
amount in Lake Erie (northeastern North Amer-
ica). Our results also indicate that these super-
hydrous phases can survive without diagenetic 
alteration to end-member Hm for long durations. 
The hydrohematite and hydrogoethite from Salis-
bury (Connecticut), studied here were located in 
the major iron-ore district that was active in that 

Figure 3.  Intergrowth of 
natural hydrohematite 
(Hyhm) and hydrogoethite 
(Hygt) from Salisbury, 
Connecticut, USA (Genth 
[Genth Collection at The 
Pennsylvania State Uni-
versity, USA] specimen 
#255.3). Images show the 
interface of Hyhm and 
Hygt as observed by light 
reflectance microscopy 
(A), scanning electron 
microscopy (B), focused 
ion beam (FIB)–transmis-
sion electron microscopy 
(TEM) (C), and high-reso-
lution TEM (HRTEM) (D), 
with two inserted selected 
area electron diffraction 
(SAED) patterns of Hyhm 

and Hygt. Hyhm and Hygt are seen to grow as separate bands (A). FIB-thinned sample (C) was prepared along the interface (white dashed 
line in C) between Hygt and Hyhm (white rectangles in A and B). HRTEM of interface (yellow rectangle in C) indicates that Hyhm fibers grew 
along the c* axis, and Hygt is epitaxially intergrown with Hyhm such that a*Hygt is parallel to c*Hyhm, and b*Hygt is parallel to [110]*Hyhm.

A B D

C
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area from 1732 to 1904. These iron (hydr)oxides 
occur on an unconformity between the underlying 
Cambrian-Ordovician Stockbridge Marble and 
the overlying Ordovician Walloomsac Schist, and 
they are interpreted as a metamorphosed lateritic 
paleosol horizon (Hobbs, 1907). Consequently, 
hydrohematite and hydrogoethite likely persist-
ed at this site for several hundred million years, 
indicating a high degree of metastability. This 
study promises geochemical constraints for the 
formation and heating histories for terrestrial and 
planetary rocks that contain these phases.
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