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a b s t r a c t 

We introduce a real-time system for recognizing five phases of the trauma resuscitation process, the 

initial management of injured patients in the emergency department. We used depth videos as input 

to preserve the privacy of the patients and providers. The depth videos were recorded using a Kinect-v2 

mounted on the sidewall of the room. Our dataset consisted of 183 depth videos of trauma resuscitations. 

The model was trained on 150 cases with more than 30 minutes each and tested on the remaining 33 

cases. We introduced a reduced long-term operation (RLO) method for extracting features from long seg- 

ments of video and combined it with the regular model having short-term information only. The model 

with RLO outperformed the regular short-term model by 5% using the accuracy score. We also intro- 

duced a progress gate (PG) method to distinguish visually similar phases using video progress. The final 

system achieved 91% accuracy and significantly outperformed previous systems for phase recognition in 

this setting. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Trauma is the leading cause of mortality in children and young 

dults ( Kaplan (2002) ). The initial resuscitation of injured patients 

s critical for identifying and managing life-threatening injuries. 

espite the use of a standardized protocol, errors remain frequent 

uring this initial evaluation ( Rodziewicz and Hipskind (2020) ; 

olf and Hughes (2008) ). Computerized decision support has 

een proposed as a method for reducing errors in this setting 

 Jia et al. (2016) ; Reis et al. (2017) ; Castaneda et al. (2015) ). Trauma

esuscitation is divided into phases based on the prioritization 

f activities within each phase. The pre-arrival phase is focused 

n preparation for the patient, the primary survey for identify- 

ng and managing life-threatening injuries, the secondary survey 

hase for identifying additional injuries that need management, 

nd the post-secondary phases for initiating additional injury man- 

gement. Although some activities are shared between phases, the 

ypes and order of many activities differ between phases. Identi- 

cation of phases aids in the determination of errors in the type 
∗ Corresponding author. 
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nd order of activities. Decision support in this domain should re- 

ect the priorities of each phase. Knowledge of the current phases 

ids in the prioritization of required activities based on the under- 

ying goals in each. The duration of each phase varies across re- 

uscitation, preventing the use of fixed time points to separate the 

hases. An automatic phase recognition system is needed to ad- 

ress this challenge. Our real-time phase recognition system uses 

epth video as input ( Fig. 1 ). Building on modeling experience 

ith deep learning in the field of computer vision, video classifica- 

ion has been rapidly developed for activity recognition. Compared 

o activity recognition, recognizing phases in medical settings has 

hree challenges. First, the system needs to manage privacy con- 

iderations because RGB videos reveal patient and providers’ faces. 

econd, the system training needs to rely on small datasets be- 

ause of the increased time requirement of annotating and lim- 

ted access to videos of patient care compared to general activi- 

ies. Third, the system needs to rely on long-term context because 

he phases are defined by the occurrence of multiple and often 

verlapping activities that may occur in several phases. Models us- 

ng short-term input (individual frames or subsequent frames) will 

ake erroneous predictions because the same or visually similar 

ctivities may occur in different phases. 

https://doi.org/10.1016/j.media.2021.102224
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102224&domain=pdf
mailto:yz593@scarletmail.rutgers.edu
https://doi.org/10.1016/j.media.2021.102224
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Fig. 1. Overview of our phase recognition system. The system takes depth videos as input, and the phase is predicted using 32-second-frame inputs to the short-term 

module and 320-second-frame inputs to RLO. The outputs of the short-term and long-term modules are fused for making the final prediction. 
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To address the first challenge, we used depth instead of RGB 

ideos. The depth videos contain gray-scale images, with pixel val- 

es denoting the distances between the objects and the camera. 

hese gray-scale images do not contain recognizable facial textures 

ut include the contour of the people and objects relevant to activ- 

ty performance. To address the challenge of limited data, we used 

ransfer learning, pre-training the model using public large activity 

atasets ( Kay et al. (2017) ). We then fine-tuned the model weights 

sing our smaller dataset. This approach could be used because ac- 

ivity and phase recognition rely on similar low-level features, such 

s the presence of people and objects and the occurrence of asso- 

iated gestures. We evaluated our system using two model struc- 

ures, an inflated 3D ConvNet (i3D) ( Carreira and Zisserman (2017) ) 

nd a nonlocal neural network (NL) ( Wang et al. (2018) ). These two

odel structures have achieved state-of-the-art performance on 

he Kinetics-400 dataset for activity recognition( Kay et al. (2017) ), 

aking them an appropriate starting point. Previous research in- 

roduced a 2-stage CNN-RNN structure, where CNN pre-computes 

eatures followed by a RNN, which learns temporal dependencies 

mong features ( Al Hajj et al. (2018) ). Their method is not end-

o-end trainable which causes an error propagating problem, and 

NN-based networks are slow and have information loss problems 

hen given long-range inputs. ( Vaswani et al. (2017) ). To enable 

he model learn long-range video contexts better, we introduced 

 reduced long-term operation (RLO) method ( Fig. 1 , right) that 

ses frame inputs from a long time sequence (320 seconds). Some 

hases have similar visual features that persist for a relatively long 

ime, making it difficult for the model to distinguish them us- 

o

2 
ng RLO. For example, the pre-arrival (before patient arrival) and 

he patient departure (after patient leave) phases have similar vi- 

ual characteristics. People can easily distinguish these phases us- 

ng the time since the start of the process. Previous research pro- 

osed a phase-inference network (RSDNet) to predict the surgical 

rogresses ( Twinanda et al. (2018) ). We introduced a progress gate 

PG) method ( Fig. 1 , bottom), which is using the estimated process 

rogress for phase recognition unlike the RSDNet which used the 

hase information to predict the process progress. 

.1. Related work 

Medical Phase Recognition: Medical phases often define the 

rogress of a medical event. For surgical procedures, several 

hases can be defined, including preparation, execution, and 

ermination phases. For protocols such as Advanced Cardiovas- 

ular Life Support (ACLS) and Advanced Trauma Life Support 

ATLS), phases can be defined based on the choice and priority 

f management and treatment activities ( Kortbeek et al. (2008) ). 

hase prediction in medical settings can be used for several 

urposes, including targeting recommendations based on the 

urrent phase (context-aware), comparison of performance 

etween individuals and teams, and estimating process dura- 

ion for workflow tracking and improvement ( Li et al. (2016) ; 

winanda et al. (2016a) ; Bardram et al. (2011) ). Previous work 

n phase recognition has achieved good results using body-worn 

ensors ( Ahmadi et al. (2008) ; Meißner et al. (2014) ). In a medical

etting, wearable sensors may require the active participation 

f providers or may interfere with the performance of medical 
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asks, potentially limiting the usability of this approach. Computer 

ision has advantages over wearable sensors by relying on data 

rom fixed cameras without interfering with the conduct of the 

edical event. Video images are a rich source of information 

bout phases and may enhance performance in a context in which 

earable sensors are impractical. Deep convolution networks have 

een used to recognize surgical phases using laparoscopic and 

cular videos ( Twinanda et al. (2016a) ; Yengera et al. (2018) ;

oukas (2018) ; Zisimopoulos et al. (2018) ; Chen et al. (2018) ;

oukas (2018) ). These studies showed that video-based systems 

ork well on phase recognition without requiring wearable sen- 

ors that may interfere with work. Surgical phase recognition 

as used videos focused on specific regions around medi- 

al tools ( Twinanda et al. (2016a) ; Zisimopoulos et al. (2018) ;

hen et al. (2018) ). For example, the cholecystectomy dataset 

 Chen et al. (2018) ; Twinanda et al. (2016a) ) contains videos 

rom a laparoscopic view, while the CATARACTS dataset 

 Zisimopoulos et al. (2018) ) includes only video of the orbital 

egion during cataract surgery. In contrast to this previous work, 

hase recognition in a team-based medical setting requires video 

hat covers the entire scene for recognition of activities relevant 

o each phase. A real-time state identification system in operating 

ooms has been proposed using RGB videos ( Bhatia et al. (2007) ). 

ecause these scenes include the patient and the individuals 

roviding medical care, the use of RGB videos has privacy con- 

erns that needed to be addressed. Several strategies have been 

sed to manage concerns with RGB videos including the use 

f using extremely low-resolution images to anonymize faces 

 Dai et al. (2015) ; Ryoo et al. (2018) ; Ren et al. (2018) ). An alter-

ative approach for ensuring that images do not allow individual 

etection is the use of depth videos that include gray-scale images. 

his representation makes it difficult to identify individuals but 

ay be sufficient for recognizing activities and phases ( Li et al. 

2016, 2017b) ). 

Medical Workflow Analysis using Depth Videos: Depth videos 

ontain gray-scale frames that represent the distance between the 

amera and objects in the scene. Previous research on monitor- 

ng hand hygiene, human pose, and patient mobilization activ- 

ties in Intensive Care Unit (ICU) used depth videos instead of 

GB due to the privacy concerns in ICU ( Srivastav et al. (2019) ;

eung et al. (2019) ; Reiter et al. (2016) ; Yeung et al. (2016) ). Other

esearch used RGBD videos that rely on distance information in 

epth images to improve system performance on surgical phase 

ecognition and activity recognition in operating rooms ( Twinanda 

t al. (2015, 2016b) ). 

Video Understanding: In many settings, activities and phases 

re continuous rather than fixed point events. Recognition of these 

omponents of human work benefits from analysis of spatio- 

emporal features available in videos. Detection of dynamic com- 

onents of work differs from standard image recognition that only 

equires spatial features from a single image. Several model struc- 

ures are available for extracting spatio-temporal features for ac- 

ivity recognition in videos. The Two-stream and CNN-LSTM net- 

ork structures have been used for large-scale video classifica- 

ion and activity recognition by extracting temporal associations 

etween subsequent frames ( Wang et al. (2016) ; Simonyan and 

isserman (2014) ; Feichtenhofer et al. (2016) ; Li et al. (2017a) ;

utegeki and Han (2020) ). Recent works applied 3D Convolu- 

ion structures for video understanding, supported by 3D Con- 

Nets being end-to-end trainable (unlike Two-stream networks) 

nd allowing parallel computing (unlike CNN-LSTM networks) 

 Carreira and Zisserman (2017) ; Tran et al. (2015) ). The Slow- 

ast, and the Channel-separated networks were proposed for 

educing computational complexity for training 3D ConvNets 

 Feichtenhofer et al. (2019) ; Tran et al. (2019) ). The X3D expands

yper-parameters of 3D Convolution architectures for building effi- 
3 
ient video recognition networks ( Feichtenhofer (2020) ). The non- 

ocal neural network also has been used to obtain long-range 

ssociations between distant pixels by including nonlocal blocks 

nto the 3D ConvNets. This type of structure has achieved bet- 

er performance for activity recognition than the i3D network 

 Wang et al. (2018) ). Although these approaches perform well for 

ecognizing activities, additional spatio-temporal information from 

onger video context is needed for recognizing phases rather than 

ny single activity. An additional challenge is that some activities 

ay be performed in different phases, limiting the use of short- 

ange spatio-temporal features. 

.2. Contributions 

We introduce a real-time phase recognition system that can be 

sed to provide contextual information that supports a context- 

ware recommend system for trauma resuscitation. This system 

s privacy-preserving and extends previous preliminary works ( Li 

t al. (2016, 2017b) ) as follows: 

• We applied recent video understanding methods that extract 

spatio-temporal features from consecutive frames instead of 

spatial-only features from static images for recognizing phases. 

Our system significantly outperformed our previous systems ( Li 

et al. (2016, 2017b) ). 
• We introduced a RLO strategy that increased the performance 

by extracting long-term spatio-temporal features for phase 

recognition. 
• We introduced a PG method that allows the model to distin- 

guish visually similar phases using estimated video progress as 

an additional input. 
• We collected depth videos and created their corresponding 

ground truth for more trauma resuscitation cases (183 cases vs. 

60 cases Li et al. (2017b) ). The system evaluated on larger test- 

ing set is more convincing. 

This paper is organized as follows. Section 2 describes our 

hase recognition system. Section 3 presents data collection and 

he implementation details. Section 4 and Section 5 shows the ex- 

eriment results. Section 6 discuss the model visualization results, 

nd Section 7 concludes the paper. 

. Methodology 

.1. Method overview 

We represented a video input as (T , W, H, 1) , that includes T

onsecutive frames, each with three dimensions: width ( W ), height 

 H), and the color channel. We applied these inputs to recognize 

edical phases in three stages. We first trained short-term spatio- 

emporal models that take 32-second depth frames as input and 

ach phase as output ( Fig. 2 , up). We next applied a novel reduced

ong-term operation (RLO) method to learn long-range contexts 

rom the video ( Fig. 2 , bottom). This method takes long-range his- 

ory frames (320 seconds) as input for tuning the long-term mod- 

le branch. We then fused the predictions between using short- 

erm and long-term spatio-temporal features to generate the final 

hase predictions. Finally, we applied the progress gate (PG) after 

he fused predictions to help the model distinguish visually similar 

hases using estimated video progresses ( Fig. 2 , middle left). 

.2. Short-term module 

The short-term module takes 32-second consecutive depth 

rames as the input and extracts spatio-temporal features for 

hase recognition. We evaluated the short-term module using two 

patio-temporal network structures, the inflated 3D ConvNet (i3D) 

nd the nonlocal neural network. 
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Fig. 2. Network structure of our phase recognition system. Shown are the convolution kernel sizes for each network stage (Conv1-Res5) and the dimension transformation of 

the features in the nonlocal blocks. The W α, W β , and W γ are the parameters of nonlocal blocks in equation 2 and 3 . The “f” and “C” in the progress gate module (dash-lined 

block on the left of the middle row) are the function and the condition introduced in Section 2.5.. 
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.2.1. Inflated 3D ConvNet 

Inflated 3D ConvNet (i3D) ( Carreira and Zisserman (2017) ) is a 

patio-temporal structure that extends successful 2D image recog- 

ition models (Inception v1) into 3D ConvNets with an additional 

emporal dimension. 3D ConvNet learns spatio-temporal features 

rom the video input as: 

 f (k, j, i ) = Con v 3 D (X (k + t, j + h, i + w ) , θ ) 
= 

∑ 

t 

Con v 2 D (X (k + t, j + h, i + w ) , θt ) (1) 

here X is the input spatio-temporal feature descriptors, X f ∈ 

 
T W H×F is the output feature map of the 3D ConvNet, X f (k, i, j) 

s a feature point in the 3D feature space, θ denotes the pa- 

ameters of the 3D convolution, T is the number of consecutive 

rames in each input, and F is the number of channels in the 

eature map X f . Our i3D network is extended from the ResNet- 

01 ( He et al. (2016) ), which is the 2D image recognition net-

ork that achieved the first place on the ImageNet challenge 
4 
 Deng et al. (2009) ). Table 1 shows the detail network structure 

nd parameters of the i3D network that we used. The network in- 

ludes five stages ( Con v 1 , and Res 2 − Res 5 ), Res n denotes the bot-

leneck block including three 3D convolution layers. The i3D also 

enefits from loading the pre-trained 2D convolution parameters 

hat have already learned spatial features on image classification 

atasets and duplicating the 2D convolution kernels T times for 

enerating 3D convolution kernels. Learning spatio-temporal fea- 

ures by fine-tuning the well-learned spatial features converges 

aster than training from scratch by randomly initializing the 3D 

onvolution parameters. 

.2.2. Nonlocal neural network 

The attention mechanism was introduced for capturing long- 

erm dependencies within sequential inputs, which is com- 

only used in nature language processing systems, such as text 

lassification, and machine translation ( Vaswani et al. (2017) ; 
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Table 1 

The detail structure and parameters of the i3D network that we are 

using. 

Stage Details Output Size 

Conv 1 5 × 7 × 7 , 64, stride 1, 2, 2 32 × 112 × 112 × 64 

Maxpool 1 2 × 3 × 3 , stride 2, 2, 2 32 × 56 × 56 × 64 

Res 2 
(

3 × 1 × 1 , 64 
)

×3 
16 × 56 × 56 × 256 

1 × 3 × 3 , 64 

1 × 1 × 1 , 256 

Maxpool 2 2 × 3 × 3 , stride 2, 2, 2 8 × 28 × 28 × 256 

Res 3 
(

3 × 1 × 1 , 128 
)

×4 

8 × 28 × 28 × 512 

1 × 3 × 3 , 128 

1 × 1 × 1 , 512 

Res 4 
(

3 × 1 × 1 , 256 
)

×23 

8 × 14 × 14 × 1024 

1 × 3 × 3 , 256 

1 × 1 × 1 , 1024 

Res 5 
(

3 × 1 × 1 , 512 
)

×3 

8 × 7 × 7 × 2048 

1 × 3 × 3 , 512 

1 × 1 × 1 , 2048 
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hen et al. (2018) ; Bahdanau et al. (2014) ). The nonlocal neural 

etwork ( Wang et al. (2018) ) extends i3D by inserting nonlocal 

locks between the stages in the i3D network that learns long- 

erm spatio-temporal features from the feature maps extracted by 

D convolution by generating spatio-temporal attentions as: 

t t n = sof tmax (X T 
f 
W 

T 
αW βX f ) (2) 

 nl = At t n (W γ X f ) + X f (3) 

here X nl ∈ R 
T W H×F was the output after applying the nonlo- 

al block, At t n ∈ R 
T W H×T W H was the spatio-temporal attention 

hat represents the association between pairs of positions in 

 f , W α, W β, and W γ are the parameters of the linear functions, and

 X f denotes the residual operation between X f and the output af- 

er applying At t n on X f . Nonlocal neural network learns long-rang 

patio-temporal features using At t n . The attention At t n was gener-

ted using batch matrix multiplication between two linear projec- 

ions of the input X f ( W αX f and W βX f ) that captures the associa-

ion between two points in x, regardless of their distance. 

The two networks (i3D and nonlocal neural network) are pre- 

rained on Kinetics-400, a large-scale video set for activity recog- 

ition ( Kay et al. (2017) ). Pre-training the network using gen- 

ral large-scale datasets achieves better performance than train- 

ng the network only using the available limited domain-specific 

ata ( Carreira and Zisserman (2017) ; Wang et al. (2018) ). Although 

inetics-400 is an activity recognition dataset that is somewhat 

ifferent from phase recognition, these two phenomena (activity 

nd phase) share similar low-level features such as edges, objects 

ontours and personal motions. To predict the phases, we then 

pplied a fully-connected layer that takes the extracted spatio- 

emporal features as input. 

.3. Reduced long-term operation 

3D convolution extracts spatio-temporal features from videos 

nd the long-range dependencies in the feature maps can be cap- 

ured using nonlocal blocks. This information, however, is con- 

trained by the input duration (32 seconds). The short-term video 

nputs are sufficient for activity recognition because most activities 

re performed within seconds. Phase recognition requires longer- 

uration video contexts. Multiple activities may be performed dur- 

ng a phase, and the same activity may occur in different phases. 

or example, during trauma resuscitation, the blood pressure mea- 

urement may be performed in both the primary survey phase 

nd the secondary survey phase. In this case, short-term inputs 

hat contain features for this activity may be labeled as different 
5 
hases (primary survey and secondary survey), which would con- 

use the model. A straightforward solution to this problem is to 

nlarge the input duration. This approach, however, increases the 

omplexity of training and evaluating the model. We introduced a 

educed long-term operation (RLO) method that enables the model 

o learn features from long-range video contexts without increas- 

ng the model complexity. 

The input to our reduced long-term operation (RLO) method 

ere the video frames over the last 320-seconds before the cur- 

ent time. We did not use the frames after the current time to 

nable the model to generate online predictions. To reduce the 

odel complexity when using longer video inputs, we increased 

he down-sample rate of the inputs as: 

 long = { x α, x 2 α, . . . , x T α} (4) 

here x long denotes the long-range frame inputs of the RLO, α is 

he down-sample rate, and T is the frame number ( α = 10 , and 

 = 32 ). An additional fully-connected layer provided phase predic- 

ions that takes the long-term spatio-temporal features. The 320- 

econd inputs in RLO are frames constructed by the current 32- 

econd frames and the preceding 288-second frames (from his- 

ory). The historical frames help the model eliminate implausi- 

le predictions. For example, a prediction of the secondary survey 

hase cannot be made based on the inputs that having historical 

rames that occur before the primary survey phase. The model us- 

ng RLO achieved accuracy that was 5% higher than using short- 

erm module only. 

.4. Module fusion 

The next step of our system was to fuse the outputs from the 

hort-term and long-term modules. The long-term module pro- 

ides more accurate predictions because of the long-range inputs. 

t will not produce phase predictions during the first 320 seconds 

ntil it observes a sufficient past interval. We used the short-term 

odule to provide phase predictions during these 320 seconds and 

used the short-term and long-term modules for the predictions of 

he remaining time. We used the output-level fusion to aggregate 

he outputs of the long-term and short-term modules as: 

 f use = y short + y long (5) 

ˆ  = sof tmax (y f use ) (6) 

here y short and y long are in R 
5 , and they denote the outputs of 

he short-term and long-term modules, respectively. ˆ y denotes the 

odel output by applying softmax function over y f use . We also 

valuated the potential use of multi-modal fusion strategies (e.g., 

y concatenating or using nonlocal gates ( Wu et al. (2019) ) to 

erge the features outputted by the long-term and short-term 

odules. We did not adopt these multi-modal fusion strategies in 

ur system because our evaluation showed that their use imposed 

igher computation cost without a performance increase. 

.5. Progress gate 

During trauma resuscitation, several phases may have similar 

isual appearance over long intervals, making it difficult for the 

odel to distinguish them even with RLO. For example, in our 

ataset, the pre-arrival and the patient departure phases look sim- 

lar in some cases, but people can distinguish them based on the 

urrent progress of the video as additional information. We there- 

ore applied the progress gate (PG) after the fused predictions by 

sing estimated progress for additional input as: 

ˆ  
′ 
p = 

{
1 
5 
(1 − ˆ y p ) , if C 

ˆ y p , otherwise 
(7) 
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Fig. 3. The view of trauma resuscitation room (left) and the duration boxplot (right) for the five phases in our dataset (in seconds). The patient departure does not have an 

upper whisker (UW) because we truncated the videos 500 seconds after the patient left the room. 
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Table 2 

Number clips for different phases in training and testing sets. Each 

clip contains 32-second consecutive frames. 

Phase Name Num Clips (train) Clip Num (test) 

Pre-arrival 2150 490 

Primary Survey 1077 205 

Secondary Survey 1712 375 

Post-Secondary Survey 3697 1095 

Patient Departure 1973 454 
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here ˆ y ∈ R 
5 is the model prediction, p ∈ 0 , . . . , 4 is the element 

f ˆ y that denotes the p th phase, and C is the condition which is 

epresented as: 

 : argmax ( ̂  y ) = p and (λ < λp _ min or λ > λp _ max ) (8) 

here λ denotes the estimated progress of the current video by 

ividing the current time played with the average duration of the 

ideos in our training set. We used the estimated progress in- 

tead of the progress relative to the total length of the current 

ideo to be able to use this system for real-time phase predic- 

ion. The λp _ min and λp _ max are the lowest and highest estimated 

rogress values for the p th phase across all the cases in the train- 

ng set. We multiplied 1 − ˆ y p by 
1 
5 (5 is the number of phases) 

n Eq. 7 to ensure that the phase p will not be selected as the

rediction when the condition C is satisfied. In some cases, 1 − ˆ y p 
ill still make argmax ( ̂  y p ) = p (e.g., ˆ y = [0 . 5 , 0 . 2 , 0 . 1 , 0 . 05 , 0 . 05] ,

nd both argmax ( ̂  y ) and argmax (1 − ˆ y p ) are equal 0). Multiplying 

 − ˆ y p by 
1 
5 will make at least one other phase have a larger pre- 

iction score than the phase p. Note that multiplying by a smaller 

umber than 1 
5 or re-setting ˆ y p to 0 would have the same result. 

1 
5 is a boundary case when one phase is assigned the maximum 

ossible score ˆ y = [0 . 5 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 1] . Then, 1 5 (1 − ˆ y 0 ) = 0 . 1 and

ax ( ̂  y 1:4 ) = 0 . 1 . 

. Data collection and implementation details 

.1. Data collection 

We evaluated our system using videos of trauma resuscitations 

onducted at a level 1 trauma center. This research was approved 

y the hospital’s Institutional Review Board (IRB).We installed a 

icrosoft Kinect V2 for capturing depth videos and connected it to 

 local computer for controlling the recording and storing videos 

 Fig. 3 left). We mounted the Kinect on the sidewall of the room 

t a position 2.5 m above the ground and tilted it downwards at 

0 ◦. We applied the build-in skeleton detection function from the 

inect API on our system to detect the number of persons in the 

iew. The system is triggered and begins recording after the Kinect 

etects more than two people in view for at least one minute. This 

riggering function is required to decrease data storage needs and 

void the need to manually start recording, a task that can eas- 

ly be forgotten in this type of setting. After the camera is trig- 
6 
ered, the system stores a depth frame ( Fig. 4 right) every sec- 

nd and stops after the Kinect detects that no person is present 

n the room for more than one minute. We collected depth videos 

or 183 trauma resuscitation cases, using 150 cases for training 

nd 33 cases (20%) for testing. We segmented the videos into 32- 

econd clips (32 consecutive frames) using a 16-step sliding win- 

ow (overlapped by 16 seconds). Table 2 shows the number of 

lips for different phases in both training and testing set. Ground 

ruth labelling was performed by manual reviewing RGB videos 

without using audio), based on predetermined definitions of the 

rocess phases (RGB videos were not available for model training). 

ach video was annotated independently by the three providers, 

nd any conflicting annotations were resolved by consensus. When 

here is a phase transition in an input clip, the system assign the 

lip to the phase that dominates the clip (having longer duration). 

In contrast to other medical processes, trauma resuscitation is 

 highly structured process that is taught as part of the Advanced 

rauma Life Support (ATLS) protocol ( Kortbeek et al. (2008) ). Al- 

hough rare deviations may occur because of unusual patient con- 

itions or provider error, this phase structure is consistently ob- 

erved during trauma resuscitation. This consistency makes this 

omain ideal for phase-based decision support. The system was 

esigned to recognize five phases of the trauma resuscitation pro- 

ess: pre-arrival, primary survey, secondary survey, post-secondary 

urvey, and patient departure ( Table 3 ). The pre-arrival phase oc- 

urs in the time between a notification that an injured patient will 

e arriving and the arrival of the patient in the room. During this 

hase, a multidisciplinary team of up to 15 individuals assembles 

nd begins preparing equipment needed for evaluating and treat- 

ng the patient. The endpoint of this phase is defined as when 

he patient is moved from the prehospital gurney to the hospital 
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Fig. 4. The RGB (left) and depth (right) view of trauma resuscitation room from the Kinect. 

Table 3 

Description of five medical phases that our system recognize. 

Pre-arrival Start: When first personnel member enters the room End: When the patient enters the room 

Primary Survey Start: When first primary survey or primary survey related task (i.e. warm sheet placement) begins End: When examining 

provider performs first secondary survey task. 

Secondary 

Survey 

Start: When examining provider performs first secondary survey task. End: When the last secondary survey task is 

performed in the normal progression of the examination. Secondary survey tasks and secondary survey adjunct tasks that 

are completed after the secondary survey has been conducted should not be used as the end time. (i.e. if the examining 

provider completes the secondary survey and returns to re-evaluate an injury minutes later, the second occurrence should 

not be used as the end time. 

Post-Secondary 

Survey 

Start: When the last secondary survey task is performed in the normal progression of the examination. Secondary survey 

tasks and secondary survey adjunct tasks that are completed after the secondary survey has been conducted should not be 

used as the end time. (i.e. if the examining provider completes the secondary survey and returns to re-evaluate an injury 

minutes later, the second occurrence should not be used as the end time. End: When only the patient’s head remains 

visible in the ”foot view” video frame (rest of body already through the doorway) ∗if pt dies exit is time of death and label 

exit with ”death” attribute) 

Patient 

Departure 

When only the patient’s head remains visible in the ”foot view” video frame (rest of body already through the doorway) ∗if 
pt dies exit is time of death and label exit with ”death” attribute) 
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ed. The primary survey phase then begins. The primary survey in- 

ludes a series of activities that are performed for identifying and 

mmediately managing potentially life-threatening conditions. The 

ctivities within these phases follow five steps: acronym-named as 

 through E which stands for airway assessment and management 

A), evaluation of adequacy of ventilation/breathing (B), assessment 

f circulatory status and perfusion (C), assessment of neurological 

tatus/disability (D), and the complete exposure of the patient for 

isual inspection of injuries (E). These five steps occur in this order 

n most resuscitations unless patient requirements require omis- 

ion or delay of a step until later in the resuscitation. The sec- 

ndary survey follows the primary survey. This phase is a head to 

oe physical examination focused on identifying additional injuries 

ot found in the primary survey. The post-secondary phase begins 

t the completion of this assessment. The patient departure phase 

egins when the patient leaves the room, a period when the mem- 

ers of the team may remain to clean and prepare the room for 

nother patient. The phases of trauma resuscitation are sequential 

 Fig. 5 ). Although overlap occurs between some activities in each 

hase, phase order is preserved across resuscitation. The duration 

f the five phases vary through different cases ( Fig. 3 , and Fig. 5 ).

n some cases, the Kinect built-in function wrongly detected some 

ackground objects as people and made the system to keep record- 

ng after the patient departed. This type of event caused the la- 

el unbalance issue because the patient departure phase was ex- 

remely long in these cases. We solved this problem by truncating 

he videos 500 seconds after the patient left the room. 

.2. Implementation details 

We implemented our model using the Pytorch framework. We 

et the length of input video clips as 32 consecutive frames to 
7 
atch the input size of the pre-trained networks and expand to 

20 frames for the long-term branch (RLO). We added a batch nor- 

alization after every convolutional layer to speed up the model 

onvergence ( Ioffe and Szegedy (2015) ). A ReLU was used as the 

ctivation function. Adam ( Kingma and Ba (2014) ) was used as the 

ptimizer with the initialized learning rate of 1e-4, and 1e-8 as 

he weights decay. We set the batch size to 12 (constrained by the 

PU memory size) and trained the model for 14k iterations. The 

odel was trained using three RTX 2080 ti and required about 

ne day to converge. To avoid overfitting, we applied the scale- 

ittering method in range of [256, 320] to augment the frames 

n spatial ( Feichtenhofer et al. (2019) ). We also applied Dropout 

 Srivastava et al. (2014) ) after the fully-connected layers to avoid 

verfitting. 

. Experimental results 

.1. Experimental results overview 

Fig. 6 shows the confusion matrices of our system for predic- 

ion five phases. Based on the confusion matrices ( Fig. 6 ), our sys-

em performed best on the pre-arrival and the patient departure 

hases. During the pre-arrival, fewer than three people are typi- 

ally in the trauma room, and no patient is on the bed. These fea- 

ures are visually recognizable. During the patient departure phase, 

he patient’s bed has been wheeled out of the room, a feature pro- 

iding a strong visual cue. When the patient bed stayed in the 

oom after the resuscitation, but the patient has left, these two 

hases were sometimes confused. Prediction of the post-secondary 

hase ( Fig. 6 , row 4) was slightly worse because of the confu- 

ion between the secondary and post-secondary phases. During 

he post-secondary survey phase, the patient is still on the bed 
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Fig. 5. The workflow of the two cases. The phases’ duration varies between different cases. 

Fig. 6. Confusion matrices for phase recognition using nonlocal network. The values in the confusion matrices denote the number of input clips across the 33 testing cases. 

The left diagram is the confusion matrices using nonlocal network without RLO and PG, the middle diagram is the confusion matrices using nonlocal network with RLO only, 

and the right diagram is the confusion matrices with both RLO and PG. 
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nd only a few providers remain in the room. The lowest perfor- 

ance was achieved on the primary and secondary survey phases. 

hese two phases are difficult to distinguish based on depth video 

ecause detailed visual textures are not available that help a hu- 

an reviewer using RGB videos. Human reviewers presented with 

epth video had the most difficulty identifying the transition be- 

ween these two phases. Using RLO ( Fig. 6 middle) significantly in- 

reased the detection of the primary survey because this phase is 

elatively short. This short duration caused the long-range inputs 

320-second frames) for the primary survey to partially include 

iews from the pre-arrival phase and helped the model distinguish 

he primary survey from the secondary survey. The model using 

G ( Fig. 6 right) eliminated the incorrect predictions between the 

re-arrival and the patient departure phases because the estimated 

rogress of the video helped distinguish these two phases. 

.2. Ablation study 

We performed ablation experiments on phase recognition for 

omparing the performance using different network structures and 

yper-parameters. 

Network structures: We evaluated our model using three dif- 

erent network structures (ResNet2D-101, i3D, and Nonlocal) that 

ere introduced for image and video recognition ( He et al. (2016) ;

arreira and Zisserman (2017) ; Wang et al. (2018) ). The ResNet2D- 

01 achieved the worst performance because the model recog- 

ized phases using single-frames as input without considering the 

ontext between the consecutive frames ( Table 4 a). The nonlocal 

etwork slightly outperformed the i3D network because of the 

ong-range spatio-temporal associations captured by the nonlocal 
8 
locks. The nonlocal network with RLO and PG ( Table 4 a, last row)

ignificantly outperformed the nonlocal network without ( Table 4 a, 

econd last row) because the RLO helps the model to learn spatio- 

emporal features from a longer video context for phase recogni- 

ion rather than from short-term inputs (320 vs. 32 seconds). The 

G also helps the model to distinguish visually similar phases us- 

ng video progress. 

RLO input length: We also evaluated our model using RLO with 

ifferent input lengths ( Table 4 b). The model using 320-second- 

rame inputs for the RLO achieved the best performance. Inputs 

rom longer video contexts contained more information but had a 

ower temporal resolution that lacked the continuity of the videos. 

he model achieved the best performance with 320-second input 

uration and a decreased performance with inputs longer than 320 

econds ( Table 4 b, last row). 

.3. Comparison with previous systems 

We compared our system with two previous systems for phase 

ecognition during trauma resuscitation, both that used depth 

ideos as input ( Li et al. (2016, 2017b) ). We evaluated our system 

n both the smaller video set ( Table 5 , 50/10 train/test) that the 

revious systems used and our larger video set ( Table 5 , 150/33 

rain/test). Our system outperformed these systems ( Table 5 ) be- 

ause by the use of spatio-temporal network structures and our 

roposed methods (RLO and PG) for capturing features from long- 

ange video contexts and including estimated video progress as 

dditional input ( Table 5 ). One system ( Table 5 , first row) ap-

lied a spatial-only network structure previously used for sin- 

le image recognition, which did not include the temporal asso- 
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Table 4 

Ablation experiments on phase recognition. We show the accuracy, F1, precision and recall scores by using 

different network structures and hyper-parameters. 

Network Acc. F1. Prec. Rec. 

ResNet2D-101 74.9 74.8 75.3 75.0 

I3D 82.1 81.4 81.8 82.9 

Nonlocal 83.7 83.1 82.6 84.0 

Nonlocal + RLO 89.3 89.1 89.1 89.3 

Nonlocal + PG 84.6 84.3 84.4 85.7 

Nonlocal + RLO + PG 90.8 90.6 90.6 90.8 

Network structure: performance on phase recognition when using different network structures. 

RLO Inputs (seconds) Acc. F1. Prec. Rec. 

64 83.9 83.5 84.0 83.8 

160 84.0 83.9 84.6 84.0 

320 89.3 89.1 89.1 89.3 

640 89.0 88.7 88.7 89.0 

RLO inputs: performance on phase recognition when using different input length for the RLO method. 

Table 5 

Experimental results and comparison with previous work. The evaluation results are accuracy, F1-score, 

precision and recall in percentages. The column ”Data set” denotes the number of cases that were used for 

training and testing. 

Method Data set Online Acc. F1. Prec. Rec. 

CNN Frame-wise ( Li et al. (2016) ) 50/10 Yes 67.5 - - - 

CNN Frame-wise + constrain ( Li et al. (2016) ) 50/10 Yes 80.0 70.0 72.0 76.0 

CNN-LSTM + GMM ( Li et al. (2017b) ) 50/10 No 86.0 72.0 69.0 67.0 

Nonlocal 50/10 Yes 87.2 87.1 87.5 86.9 

Nonlocal + RLO + PG 50/10 Yes 92.1 90.9 91.7 91.1 

Nonlocal 150/33 Yes 83.7 83.1 82.6 84.0 

Nonlocal + RLO 150/33 Yes 89.3 89.1 89.1 89.3 

Nonlocal + RLO + PG 150/33 Yes 90.8 90.6 90.6 90.8 

Nonlocal + RLO + PG (filtered) 150/33 No 91.2 90.9 91.1 91.4 

Table 6 

Phase independent evaluation: we compared our system with other previous systems using independent F1-scores of each phase. 

Network Data set Online Pre-arrival Primary Secondary Post-secondary Pt-departure 

CNN Frame-wise + constrain ( Li et al. (2016) ) 50/10 Yes 80.0 49.0 43.0 76.0 77.0 

CNN-LSTM + GMM Li et al. (2017b) 50/10 No 61.0 56.0 72.0 43.0 94.9 

Nonlocal + RLO 50/10 Yes 95.2 82.7 82.2 94.6 90.3 

Nonlocal + RLO + PG 50/10 Yes 98.8 82.1 82.9 94.6 97.2 

Nonlocal + RLO 150/33 Yes 95.5 79.3 76.4 93.1 94.8 

Nonlocal + RLO + PG 150/33 Yes 97.9 79.0 75.2 93.1 97.3 
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iations between consecutive frames ( Li et al. (2016) ). This sys- 

em ( Li et al. (2016) ) applied a constrained softmax to eliminate 

he illegal predictions from the model output. We tried to ap- 

ly this constrained softmax method in our system, but it wors- 

ned performance. This decrease may have occurred because the 

onstrained softmax depends on the predictions of the preced- 

ng models, which will increase the error rate when these mod- 

ls made incorrect predictions. The second system ( Table 5 , third 

ow) estimated progress using depth videos as input and then pre- 

icted phases using the generated progress ( Li et al. (2017b) ). The 

rrors propagated from the progress estimation step may have re- 

ulted in incorrect phase prediction. In addition, the second system 

sed a filtering algorithm to smoothen the generated progress and 

nhance the performance of phase prediction ( Li et al. (2017b) ). 

his method can only be applied offline because progress can only 

e generated from consideration of performance of the entire case. 

e also evaluated our model by applying average filtering method. 

pplication of this method only increased accuracy by about 1% 

 Table 5 , last row). 

We also compared our current system with our previous sys- 

ems using independent F1-scores of the five phases. Based on the 

1-scores in Table 6 (rows 3 and 5), our current system signifi- 

antly outperformed our two previous systems on Pre-arrival, Pri- 

ary, Secondary, and Post-secondary (31.5% on average, Table 6 , 

ows 3 and 5) on the same dataset ( Table 6 , 50/10) because of the
 d

9 
se of RLO and PG methods that we introduced. These four phases 

re more important for detecting human errors during the resus- 

itation (especially the Primary and Secondary Surveys) compared 

o the Pt-Departure phase after the patient has left. We also evalu- 

ted our current system on our current video set ( Table 6 , 150/33),

hich is significantly larger than the video set we used in the past. 

ased on the evaluation matrices in Table 6 , our current system 

ignificantly outperformed our previous systems ( Li et al. (2017b, 

016) ) on both video sets. 

. Experiment results on Endotube and Cholec80 

To show the generalizability of our approach, we evaluate our 

ystem on the EndoTube dataset and, the Cholc80 dataset for sur- 

ical phase recognition ( Lea et al. (2016) ). 

EndoTube : The EndoTube dataset contains 25 videos captured 

rom full cholecystectomy procedures performed at 19 different 

ospitals in nine countries. The average video length is 11.4 min- 

tes in the range of 4 to 27 minutes. The procedures were manu- 

lly labeled into seven different phases: trocar placement, prepara- 

ion, clip/cut, dissection, retrieval, hemostasis, and drainage/finish. 

e applied 5-fold cross-validation on EndoTube that using 20 

ideos for training and the remaining five videos for testing, as was 

one in this previous study ( Lea et al. (2016) ). 
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Table 7 

Experimental results on the EndoTube dataset. The evaluation results are accuracy, f1- 

score, precision and recall in percentage. 

Method with tool Acc. F1. Prec. Rec. 

Spatial CNN + tool ( Lea et al. (2016) ) Yes 63.7 - - - 

ST-CNN + tool ( Lea et al. (2016) ) Yes 62.4 - - - 

Nonlocal No 70.9 71.3 75.5 70.9 

Nonlocal + RLO No 73.5 73.6 75.9 73.5 

Nonlocal + RLO + PG No 75.1 75.9 76.8 75.1 

Table 8 

Experimental results on the Cholec80 dataset. The evaluation results are ac- 

curacy, f1-score, precision and recall in percentage. 

Method Acc. F1. Prec. Rec. 

Phase-LSTM Twinanda et al. (2016a) 79.68 - 72.8 73.45 

Endo-LSTM Twinanda (2017) 80.8 - 76.8 72.1 

MTRCNet Jin et al. (2020) 82.8 - 76.1 78.0 

ResNet-LSTM Jin et al. (2017) 86.6 - 80.5 79.9 

TeCNO Czempiel et al. (2020) 88.6 - 81.6 85.2 

Nonlocal 87.1 87.0 88.2 87.1 

Nonlocal + RLO 90.5 90.4 91.5 90.6 

Nonlocal + RLO + PG 91.2 91.0 91.6 91.1 

o

(

f

d

p

u

m

(

a

p

m

 

s

b

T

i

C

s

t

v

c

u

e

a

i

p  

i

t

a

m

p

fi

i

p

6

6

g

Fig. 7. Phase recognition consistency: we visualized the system predictions and cor- 

responding ground truth in three cases. 
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Cholec80 : The Cholec80 dataset contains 80 videos 

f cholecystectomy surgeries performed by 13 surgeons 

 Twinanda et al. (2016a) ). The videos were captured at 25 

ps and labeled into seven phases: preparation, calot triangle 

issection, clipping cutting, gallbladder dissection, gallbladder 

ackaging, cleaning coagulation, and gallbladder retraction. We 

sed 40 videos for training, 8 videos for validation and the re- 

aining 40 videos for testing as was done in previous research 

 Twinanda et al. (2016a) ; Czempiel et al. (2020) ). These datasets 

lso included surgical tool labels, as additional information for 

hase recognition. We only used videos as input for our experi- 

ents. 

Based on the accuracy score in Table 7 , and Table 8 , our method

ignificantly outperformed previous state-of-the-art approaches on 

oth EndoTube, and Cholec80 datasets (75.1% vs.63.7% on Endo- 

ube, and 91.2 vs. 88.6 on Cholec80), even without using the 

nstrument labels as additional information ( Lea et al. (2016) ; 

zempiel et al. (2020) ). The previous system separately extracted 

patial features from individual frames and then represented the 

emporal associations from consecutive frames using temporal con- 

olution and LSTM, which poorly represented the motions in the 

onsecutive frames. Our method learns spatio-temporal features 

sing 3D convolution filters and nonlocal blocks. Our proposed RLO 

xtracts long-term spatio-temporal features from the video and 

lso benefits from the pre-trained weights using large-scale activ- 

ty recognition datasets. ( Kay et al. (2017) ). We set the downsam- 

le rate as 5 ( α = 5 ) based on the experiment result. The model

ncreased the accuracy score by around 3% when using RLO to ex- 

ract long-term video context across the video. The model with PG 

lso had about a 1% accuracy score enhancement compared to the 

odel without PG. The evaluation on using EndoTube data sup- 

orts that our system generalizes across different processes. These 

ndings also highlight that the proposed RLO and PG methods can 

mprove the model performance on the phase recognition tasks for 

rocesses other than trauma resuscitation. 

. Discussion 

.1. Phase recognition consistency 

We visualized the phase predictions and their corresponding 

round truth in three resuscitation cases ( Fig. 7 ). We compared 
10 
he predictions between the system with and without the intro- 

uced RLO and PG methods. Based on the visualizations in Fig. 7 , 

he system with RLO and PG can provide more consistent predic- 

ions with very few incorrect fragments ( Fig. 7 , case3). The model 

aving limited incorrected fragments is caused by the use of RLO 

nd PG methods that capture long-term information, and eliminate 

mplausible predictions. 

.2. Temporal modeling 

We compared our RLO with other temporal modeling meth- 

ds by evaluating them on both our Trauma dataset and Cholec80. 

ased on the evaluation matrices in Table 9 , the Nonlocal and 

CN-based networks outperformed traditional temporal modeling 

tructures such as CNN-HMM, and CNN-LSTM that are unable to 

odel long distance temporal associations. The HMM, and LSTM- 

ased networks cannot build correlations between long distance 

rames. The performance did not increase when using LSTM and 

CN on top of the Nonlocal network. The spatio-temporal features 

n short-term inputs (e.g., 32-second in Trauma dataset) have al- 

eady been well captured by the Nonlocal network. Our proposed 

LO method improved the system performance based on the Non- 

ocal network by including long-term inputs (320-second) while 

educing the requirements on memory and computation resources. 

he TCN-based method reported in ( Czempiel et al. (2020) ) per- 

ormed slightly better than our implementation of the TCN-based 

etwork (88.6 vs. 87.4) on Cholec80. The difference in performance 

ight be caused by using different training settings. 

.3. Runtime efficiency 

We evaluated the runtime efficiency of our system to show that 

he system is able to provide real-time phase predictions. Table 10 

hows the latency of our complete system (including RLO and PG) 

sing both i3D and Nonlocal as backbones and running on multi- 

le processors. Based on the latency in Table 10 , even running on 

 CPU, our model required less than 2 seconds to provide a predic- 

ion for a 32-second input (plus 320-seconds history for RLO). The 
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Fig. 8. Feature visualizations for the five phases and their corresponding depth frames. We overlapped the feature maps on the original frames and used the 0.5 threshold 

for the values for better visualization. 
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untime efficiency show in Table 10 demonstrated that our sys- 

em was able to provide real-time phase predictions because the 

ime that the model uses for providing a prediction is significantly 

maller than the sliding window when extracting video clips (16 

econds). 

.4. System transferability 

The transferability of any vision-based system is partially de- 

endent on the camera view used. The Kinect in our setting was 

ounted on the wall, a location that is unobtrusive and easy to 

aintain. Transfer to another setting that uses different camera 
11 
iews may require tuning. We have obtained a domain-specific 

ataset that will speed this tuning process when other camera 

iews are used. Equipment may vary in different emergency room 

ettings. Our system relies on environmental features common to 

ther resuscitation settings, including the position of the patient 

ed and the location of providers performing specific activities. For 

xample, airway activities are performed during the primary sur- 

ey phase by individuals at the head of the bed. Transferability will 

equire fine tuning the model in other settings that having differ- 

nt background features. Image segmentation models that masking 

ut the unrelated backgrounds may also help to improve the per- 

ormance for system transferability ( He et al. (2017) )). 
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Table 9 

Discussion of temporal modules. We compared our method (Nonlocal + RLO) with other temporal modules on 

both our Trauma Resuscitation dataset and Cholec80. 

Method dataset Acc. F1. Prec. Rec. 

CNN-HMM Trauma Resuscitation 75.1 74.9 79.2 74.4 

CNN-LSTM Trauma Resuscitation 78.0 79.1 82.4 78.0 

Nonlocal Trauma Resuscitation 83.7 83.1 82.6 84.0 

Nonlocal + LSTM Trauma Resuscitation 82.9 81.1 82.3 83.7 

Nonlocal + TCN Trauma Resuscitation 83.5 83.6 84.2 83.9 

Ours (Nonlocal + RLO) Trauma Resuscitation 90.8 90.6 90.6 90.8 

EndoNet (CNN-HMM) Twinanda et al. (2016a) Cholec80 75.2 - 70.0 66.0 

ResNet-L STM (CNN-L STM) Jin et al. (2017) Cholec80 86.6 - 80.5 79.9 

TCN Czempiel et al. (2020) Cholec80 88.6 - 81.6 85.2 

Nonlocal Cholec80 87.1 87.0 88.2 87.1 

Nonlocal + LSTM Cholec80 87.1 86.5 86.9 86.8 

Nonlocal + TCN Cholec80 87.4 86.9 87.7 86.8 

Ours (Nonlocal + RLO) Cholec80 90.5 90.4 91.5 90.6 

Table 10 

Runtime efficiency of our system. We evaluated the latency of our 

system using different backbones and processors. 

Method Input Processors Latency 

Ours (i3D) 32 + 320 (s) RTX-2080 ti 0.07 (s) 

Ours (Nonlocal) 32 + 320 (s) RTX-2080 ti 0.14 (s) 

Ours (i3D) 32 + 320 (s) GTX-1080 ti 0.10 (s) 

Ours (Nonlocal) 32 + 320 (s) GTX-1080 ti 0.20 (s) 

Ours (i3D) 32 + 320 (s) i7-6850k (CPU) 1.11 (s) 

Ours (Nonlocal) 32 + 320 (s) i7-6850k (CPU) 1.75 (s) 
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.5. Model visualization 

To evaluate our hypotheses about the reasons for differences 

n phase prediction (Section 5.1), we visualized feature maps ob- 

ained from the intermediate output of the model and their corre- 

ponding depth inputs for different phases ( Fig. 8 ). We overlapped 

he feature maps on their corresponding depth frames and used 

 threshold value of 0.5 to generate clearer visualizations. Based 

n these visualizations ( Fig. 8 ), the feature map has high values 

or the region of patient bed during the pre-arrival phase ( Fig. 8 ,

eft) and focuses on the floor during the patient departure phase 

 Fig. 8 , right). The feature map during the post-secondary survey 

hase ( Fig. 8 , second last) focused on the patient bed and the few

roviders around the patient bed. Finally, during the primary and 

econdary survey, a large area on the feature map (around the pa- 

ient bed, Fig. 8 , second and third) was highlighted reflecting the 

omplexity of the environment in these phases. The model ap- 

eared to focus on multiple regions that have features for phase 

ecognition. These visualizations showed that the model focused 

n regions likely to distinguish different phases and learned repre- 

entative features for phase recognition. 

.6. Limitation and future work 

We have built the system using depth video to ensure that our 

ystem is privacy preserving. Our results show that the perfor- 

ance is lower in recognizing the primary and secondary survey 

hases, but with a relatively high F1-score ( > 82% ). Human anno- 

ators have used RGB videos ground truth coding because unique 

ctivities need to be detected to distinguish these two phases. Our 

ext step will be to implement a system that uses enriched texture 

eatures from RGB videos preserves privacy-sensitive regions from 

rames using generating adversarial networks ( Goodfellow (2016) ; 

onneberger et al. (2015) ; Mirza and Osindero (2014) ). RGB/depth 

ideo may not be adequate for distinguishing the primary and sec- 

ndary survey in some cases. For example, secondary survey ac- 

ivities may be performed in parallel with primary survey activi- 
12 
ies or the primary survey may be interrupted by performance of 

econdary survey activities before returning to primary survey ac- 

ivities. Although uncommon, these variations will be managed in 

ur future work using a multi-label phase prediction network that 

rovides concurrent phase predictions. Modeling phase-wise corre- 

ations will improve multi-label phase prediction in this framework 

 Sun et al. (2010) ; Huang et al. (2017) ). 

Our system segments the trauma resuscitation cases into 

hases and reduces the challenge of detecting and localizing pro- 

ess errors by setting the focus on a phase of interest. Phase recog- 

ition can also be used to improve activity recognition. Because 

ome activities occur uniquely or more (or less) frequently in cer- 

ain phases, the initial step of phase recognition can provide this 

eeded context. The single camera system may miss some activi- 

ies because of view occlusion when providers are crowded around 

he patient bed. Additional cameras may improve this performance 

ven more but at a cost of reducing the transferability of our sys- 

em. Building a system for recognizing activities using multiple 

GB cameras without privacy violation and reducing transferabil- 

ty will be our future work. 

. Conclusion 

We introduced a real-time medical phase recognition system 

uring trauma resuscitation. The system is privacy-preserving and 

chieved more than 90% accuracy score, which outperformed the 

revious systems using depth videos as input for phase recognition 

uring trauma resuscitation. We also evaluated our system on the 

ndoTube dataset, outperforming results using a previous system 

upporting the generalizability of our approach. We introduced 

ovel methods (RLO and PG) for learning spatio-temporal features 

rom long-range video contexts. These methods include estimation 

f the video progresses to enhance the accuracy of phase predic- 

ion. The system’s accuracy in distinguishing the primary-survey 

nd secondary-survey phases was affected by the limited texture 

nformation in the depth videos. To apply this system within an 

ctivity recognition system, we are implementing an RGB-based 

hase recognition system that manages privacy considerations. 
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