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ABSTRACT

We introduce a real-time system for recognizing five phases of the trauma resuscitation process, the
initial management of injured patients in the emergency department. We used depth videos as input
to preserve the privacy of the patients and providers. The depth videos were recorded using a Kinect-v2
mounted on the sidewall of the room. Our dataset consisted of 183 depth videos of trauma resuscitations.
The model was trained on 150 cases with more than 30 minutes each and tested on the remaining 33
cases. We introduced a reduced long-term operation (RLO) method for extracting features from long seg-
ments of video and combined it with the regular model having short-term information only. The model
with RLO outperformed the regular short-term model by 5% using the accuracy score. We also intro-
duced a progress gate (PG) method to distinguish visually similar phases using video progress. The final
system achieved 91% accuracy and significantly outperformed previous systems for phase recognition in
this setting.
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1. Introduction

Trauma is the leading cause of mortality in children and young
adults (Kaplan (2002)). The initial resuscitation of injured patients
is critical for identifying and managing life-threatening injuries.
Despite the use of a standardized protocol, errors remain frequent
during this initial evaluation (Rodziewicz and Hipskind (2020);
Wolf and Hughes (2008)). Computerized decision support has
been proposed as a method for reducing errors in this setting
(Jia et al. (2016); Reis et al. (2017); Castaneda et al. (2015)). Trauma
resuscitation is divided into phases based on the prioritization
of activities within each phase. The pre-arrival phase is focused
on preparation for the patient, the primary survey for identify-
ing and managing life-threatening injuries, the secondary survey
phase for identifying additional injuries that need management,
and the post-secondary phases for initiating additional injury man-
agement. Although some activities are shared between phases, the
types and order of many activities differ between phases. Identi-
fication of phases aids in the determination of errors in the type
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and order of activities. Decision support in this domain should re-
flect the priorities of each phase. Knowledge of the current phases
aids in the prioritization of required activities based on the under-
lying goals in each. The duration of each phase varies across re-
suscitation, preventing the use of fixed time points to separate the
phases. An automatic phase recognition system is needed to ad-
dress this challenge. Our real-time phase recognition system uses
depth video as input (Fig. 1). Building on modeling experience
with deep learning in the field of computer vision, video classifica-
tion has been rapidly developed for activity recognition. Compared
to activity recognition, recognizing phases in medical settings has
three challenges. First, the system needs to manage privacy con-
siderations because RGB videos reveal patient and providers’ faces.
Second, the system training needs to rely on small datasets be-
cause of the increased time requirement of annotating and lim-
ited access to videos of patient care compared to general activi-
ties. Third, the system needs to rely on long-term context because
the phases are defined by the occurrence of multiple and often
overlapping activities that may occur in several phases. Models us-
ing short-term input (individual frames or subsequent frames) will
make erroneous predictions because the same or visually similar
activities may occur in different phases.
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Fig. 1. Overview of our phase recognition system. The system takes depth videos as input, and the phase is predicted using 32-second-frame inputs to the short-term
module and 320-second-frame inputs to RLO. The outputs of the short-term and long-term modules are fused for making the final prediction.

To address the first challenge, we used depth instead of RGB
videos. The depth videos contain gray-scale images, with pixel val-
ues denoting the distances between the objects and the camera.
These gray-scale images do not contain recognizable facial textures
but include the contour of the people and objects relevant to activ-
ity performance. To address the challenge of limited data, we used
transfer learning, pre-training the model using public large activity
datasets (Kay et al. (2017)). We then fine-tuned the model weights
using our smaller dataset. This approach could be used because ac-
tivity and phase recognition rely on similar low-level features, such
as the presence of people and objects and the occurrence of asso-
ciated gestures. We evaluated our system using two model struc-
tures, an inflated 3D ConvNet (i3D) (Carreira and Zisserman (2017))
and a nonlocal neural network (NL) (Wang et al. (2018)). These two
model structures have achieved state-of-the-art performance on
the Kinetics-400 dataset for activity recognition(Kay et al. (2017)),
making them an appropriate starting point. Previous research in-
troduced a 2-stage CNN-RNN structure, where CNN pre-computes
features followed by a RNN, which learns temporal dependencies
among features (Al Hajj et al. (2018)). Their method is not end-
to-end trainable which causes an error propagating problem, and
RNN-based networks are slow and have information loss problems
when given long-range inputs. (Vaswani et al. (2017)). To enable
the model learn long-range video contexts better, we introduced
a reduced long-term operation (RLO) method (Fig. 1, right) that
uses frame inputs from a long time sequence (320 seconds). Some
phases have similar visual features that persist for a relatively long
time, making it difficult for the model to distinguish them us-

ing RLO. For example, the pre-arrival (before patient arrival) and
the patient departure (after patient leave) phases have similar vi-
sual characteristics. People can easily distinguish these phases us-
ing the time since the start of the process. Previous research pro-
posed a phase-inference network (RSDNet) to predict the surgical
progresses (Twinanda et al. (2018)). We introduced a progress gate
(PG) method (Fig. 1, bottom), which is using the estimated process
progress for phase recognition unlike the RSDNet which used the
phase information to predict the process progress.

1.1. Related work

Medical Phase Recognition: Medical phases often define the
progress of a medical event. For surgical procedures, several
phases can be defined, including preparation, execution, and
termination phases. For protocols such as Advanced Cardiovas-
cular Life Support (ACLS) and Advanced Trauma Life Support
(ATLS), phases can be defined based on the choice and priority
of management and treatment activities (Kortbeek et al. (2008)).
Phase prediction in medical settings can be used for several
purposes, including targeting recommendations based on the
current phase (context-aware), comparison of performance
between individuals and teams, and estimating process dura-
tion for workflow tracking and improvement (Li et al. (2016);
Twinanda et al. (2016a); Bardram et al. (2011)). Previous work
in phase recognition has achieved good results using body-worn
sensors (Ahmadi et al. (2008); Meiliner et al. (2014)). In a medical
setting, wearable sensors may require the active participation
of providers or may interfere with the performance of medical
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tasks, potentially limiting the usability of this approach. Computer
vision has advantages over wearable sensors by relying on data
from fixed cameras without interfering with the conduct of the
medical event. Video images are a rich source of information
about phases and may enhance performance in a context in which
wearable sensors are impractical. Deep convolution networks have
been used to recognize surgical phases using laparoscopic and
ocular videos (Twinanda et al. (2016a); Yengera et al. (2018);
Loukas (2018); Zisimopoulos et al. (2018); Chen et al. (2018);
Loukas (2018)). These studies showed that video-based systems
work well on phase recognition without requiring wearable sen-
sors that may interfere with work. Surgical phase recognition
has used videos focused on specific regions around medi-
cal tools (Twinanda et al. (2016a); Zisimopoulos et al. (2018);
Chen et al. (2018)). For example, the cholecystectomy dataset
(Chen et al. (2018); Twinanda et al. (2016a)) contains videos
from a laparoscopic view, while the CATARACTS dataset
(Zisimopoulos et al. (2018)) includes only video of the orbital
region during cataract surgery. In contrast to this previous work,
phase recognition in a team-based medical setting requires video
that covers the entire scene for recognition of activities relevant
to each phase. A real-time state identification system in operating
rooms has been proposed using RGB videos (Bhatia et al. (2007)).
Because these scenes include the patient and the individuals
providing medical care, the use of RGB videos has privacy con-
cerns that needed to be addressed. Several strategies have been
used to manage concerns with RGB videos including the use
of using extremely low-resolution images to anonymize faces
(Dai et al. (2015); Ryoo et al. (2018); Ren et al. (2018)). An alter-
native approach for ensuring that images do not allow individual
detection is the use of depth videos that include gray-scale images.
This representation makes it difficult to identify individuals but
may be sufficient for recognizing activities and phases (Li et al.
(2016, 2017Db)).

Medical Workflow Analysis using Depth Videos: Depth videos
contain gray-scale frames that represent the distance between the
camera and objects in the scene. Previous research on monitor-
ing hand hygiene, human pose, and patient mobilization activ-
ities in Intensive Care Unit (ICU) used depth videos instead of
RGB due to the privacy concerns in ICU (Srivastav et al. (2019);
Yeung et al. (2019); Reiter et al. (2016); Yeung et al. (2016)). Other
research used RGBD videos that rely on distance information in
depth images to improve system performance on surgical phase
recognition and activity recognition in operating rooms (Twinanda
et al. (2015, 2016b)).

Video Understanding: In many settings, activities and phases
are continuous rather than fixed point events. Recognition of these
components of human work benefits from analysis of spatio-
temporal features available in videos. Detection of dynamic com-
ponents of work differs from standard image recognition that only
requires spatial features from a single image. Several model struc-
tures are available for extracting spatio-temporal features for ac-
tivity recognition in videos. The Two-stream and CNN-LSTM net-
work structures have been used for large-scale video classifica-
tion and activity recognition by extracting temporal associations
between subsequent frames (Wang et al. (2016); Simonyan and
Zisserman (2014); Feichtenhofer et al. (2016); Li et al. (2017a);
Mutegeki and Han (2020)). Recent works applied 3D Convolu-
tion structures for video understanding, supported by 3D Con-
vNets being end-to-end trainable (unlike Two-stream networks)
and allowing parallel computing (unlike CNN-LSTM networks)
(Carreira and Zisserman (2017); Tran et al. (2015)). The Slow-
Fast, and the Channel-separated networks were proposed for
reducing computational complexity for training 3D ConvNets
(Feichtenhofer et al. (2019); Tran et al. (2019)). The X3D expands
hyper-parameters of 3D Convolution architectures for building effi-
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cient video recognition networks (Feichtenhofer (2020)). The non-
local neural network also has been used to obtain long-range
associations between distant pixels by including nonlocal blocks
into the 3D ConvNets. This type of structure has achieved bet-
ter performance for activity recognition than the i3D network
(Wang et al. (2018)). Although these approaches perform well for
recognizing activities, additional spatio-temporal information from
longer video context is needed for recognizing phases rather than
any single activity. An additional challenge is that some activities
may be performed in different phases, limiting the use of short-
range spatio-temporal features.

1.2. Contributions

We introduce a real-time phase recognition system that can be
used to provide contextual information that supports a context-
aware recommend system for trauma resuscitation. This system
is privacy-preserving and extends previous preliminary works (Li
et al. (2016, 2017b)) as follows:

We applied recent video understanding methods that extract
spatio-temporal features from consecutive frames instead of
spatial-only features from static images for recognizing phases.
Our system significantly outperformed our previous systems (Li
et al. (2016, 2017b)).

We introduced a RLO strategy that increased the performance
by extracting long-term spatio-temporal features for phase
recognition.

We introduced a PG method that allows the model to distin-
guish visually similar phases using estimated video progress as
an additional input.

We collected depth videos and created their corresponding
ground truth for more trauma resuscitation cases (183 cases vs.
60 cases Li et al. (2017b)). The system evaluated on larger test-
ing set is more convincing.

This paper is organized as follows. Section 2 describes our
phase recognition system. Section 3 presents data collection and
the implementation details. Section 4 and Section 5 shows the ex-
periment results. Section 6 discuss the model visualization results,
and Section 7 concludes the paper.

2. Methodology
2.1. Method overview

We represented a video input as (T,W,H, 1), that includes T
consecutive frames, each with three dimensions: width (W), height
(H), and the color channel. We applied these inputs to recognize
medical phases in three stages. We first trained short-term spatio-
temporal models that take 32-second depth frames as input and
each phase as output (Fig. 2, up). We next applied a novel reduced
long-term operation (RLO) method to learn long-range contexts
from the video (Fig. 2, bottom). This method takes long-range his-
tory frames (320 seconds) as input for tuning the long-term mod-
ule branch. We then fused the predictions between using short-
term and long-term spatio-temporal features to generate the final
phase predictions. Finally, we applied the progress gate (PG) after
the fused predictions to help the model distinguish visually similar
phases using estimated video progresses (Fig. 2, middle left).

2.2. Short-term module

The short-term module takes 32-second consecutive depth
frames as the input and extracts spatio-temporal features for
phase recognition. We evaluated the short-term module using two
spatio-temporal network structures, the inflated 3D ConvNet (i3D)
and the nonlocal neural network.
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Fig. 2. Network structure of our phase recognition system. Shown are the convolution kernel sizes for each network stage (Conv1-Res5) and the dimension transformation of
the features in the nonlocal blocks. The W, Wy, and W, are the parameters of nonlocal blocks in equation 2 and 3. The “f” and “C” in the progress gate module (dash-lined
block on the left of the middle row) are the function and the condition introduced in Section 2.5..

2.2.1. Inflated 3D ConvNet

Inflated 3D ConvNet (i3D) (Carreira and Zisserman (2017)) is a
spatio-temporal structure that extends successful 2D image recog-
nition models (Inception v1) into 3D ConvNets with an additional
temporal dimension. 3D ConvNet learns spatio-temporal features
from the video input as:

Xs(k, j.i) =Conv3D(X(k+t,j+h,i+w),0)
=Y Con2D(X(k+t,j+h,i+w),6) (1)
t

where X is the input spatio-temporal feature descriptors, Xy €
RTWH*F s the output feature map of the 3D ConvNet, X;(k. 1. j)
is a feature point in the 3D feature space, 6 denotes the pa-
rameters of the 3D convolution, T is the number of consecutive
frames in each input, and F is the number of channels in the
feature map X;. Our i3D network is extended from the ResNet-
101 (He et al. (2016)), which is the 2D image recognition net-
work that achieved the first place on the ImageNet challenge

(Deng et al. (2009)). Table 1 shows the detail network structure
and parameters of the i3D network that we used. The network in-
cludes five stages (Convq, and Res, — Ress), Res, denotes the bot-
tleneck block including three 3D convolution layers. The i3D also
benefits from loading the pre-trained 2D convolution parameters
that have already learned spatial features on image classification
datasets and duplicating the 2D convolution kernels T times for
generating 3D convolution kernels. Learning spatio-temporal fea-
tures by fine-tuning the well-learned spatial features converges
faster than training from scratch by randomly initializing the 3D
convolution parameters.

2.2.2. Nonlocal neural network

The attention mechanism was introduced for capturing long-
term dependencies within sequential inputs, which is com-
monly used in nature language processing systems, such as text
classification, and machine translation (Vaswani et al. (2017);
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Table 1
The detail structure and parameters of the i3D network that we are
using.
Stage Details Output Size
Conv, 5x7x7, 64, stride 1,2,2  32x 112 x 112 x 64
Maxpool, 2 x 3 x 3, stride 2, 2, 2 32 x 56 x 56 x 64
Res, 3x1x1, 64 316><56><56><256
1x3x3, 64 x

1x1x1, 256 )

Maxpool, 2 x 3 x 3, stride 2, 2, 2 8 x 28 x 28 x 256
Res; 3x1x1,128 8 x 28 x 28 x 512
( 1x3x3,128 )

)

)

X

1x1x1,512

Resy 3x1x1, 256 4 8 x 14 x 14 x 1024
( 1x3x3, 256
1x1x1, 1024 23
Ress 3x1x1,512 8 x 7 x7x2048
( 1x3x3,512

1x1x1, 2048 3

Shen et al. (2018); Bahdanau et al. (2014)). The nonlocal neural
network (Wang et al. (2018)) extends i3D by inserting nonlocal
blocks between the stages in the i3D network that learns long-
term spatio-temporal features from the feature maps extracted by
3D convolution by generating spatio-temporal attentions as:

Attn = softmax(X{ Wy WgX) (2)

Xl =Attn(WyXf) +Xf 3)

where X,; e RTWHxF was the output after applying the nonlo-
cal block, Attn e RTWHXTWH wag the spatio-temporal attention
that represents the association between pairs of positions in
X5, Wy, Wg, and W), are the parameters of the linear functions, and
+X; denotes the residual operation between Xy and the output af-
ter applying Attn on X;. Nonlocal neural network learns long-rang
spatio-temporal features using Attn. The attention Attn was gener-
ated using batch matrix multiplication between two linear projec-
tions of the input X; (WoX; and WgX) that captures the associa-
tion between two points in x, regardless of their distance.

The two networks (i3D and nonlocal neural network) are pre-
trained on Kinetics-400, a large-scale video set for activity recog-
nition (Kay et al. (2017)). Pre-training the network using gen-
eral large-scale datasets achieves better performance than train-
ing the network only using the available limited domain-specific
data (Carreira and Zisserman (2017); Wang et al. (2018)). Although
Kinetics-400 is an activity recognition dataset that is somewhat
different from phase recognition, these two phenomena (activity
and phase) share similar low-level features such as edges, objects
contours and personal motions. To predict the phases, we then
applied a fully-connected layer that takes the extracted spatio-
temporal features as input.

2.3. Reduced long-term operation

3D convolution extracts spatio-temporal features from videos
and the long-range dependencies in the feature maps can be cap-
tured using nonlocal blocks. This information, however, is con-
strained by the input duration (32 seconds). The short-term video
inputs are sufficient for activity recognition because most activities
are performed within seconds. Phase recognition requires longer-
duration video contexts. Multiple activities may be performed dur-
ing a phase, and the same activity may occur in different phases.
For example, during trauma resuscitation, the blood pressure mea-
surement may be performed in both the primary survey phase
and the secondary survey phase. In this case, short-term inputs
that contain features for this activity may be labeled as different
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phases (primary survey and secondary survey), which would con-
fuse the model. A straightforward solution to this problem is to
enlarge the input duration. This approach, however, increases the
complexity of training and evaluating the model. We introduced a
reduced long-term operation (RLO) method that enables the model
to learn features from long-range video contexts without increas-
ing the model complexity.

The input to our reduced long-term operation (RLO) method
were the video frames over the last 320-seconds before the cur-
rent time. We did not use the frames after the current time to
enable the model to generate online predictions. To reduce the
model complexity when using longer video inputs, we increased
the down-sample rate of the inputs as:

i XT{x} (4)

where x;,,, denotes the long-range frame inputs of the RLO, « is
the down-sample rate, and T is the frame number (¢ = 10, and
T = 32). An additional fully-connected layer provided phase predic-
tions that takes the long-term spatio-temporal features. The 320-
second inputs in RLO are frames constructed by the current 32-
second frames and the preceding 288-second frames (from his-
tory). The historical frames help the model eliminate implausi-
ble predictions. For example, a prediction of the secondary survey
phase cannot be made based on the inputs that having historical
frames that occur before the primary survey phase. The model us-
ing RLO achieved accuracy that was 5% higher than using short-
term module only.

Xlong = {Xa, X20/, - .

2.4. Module fusion

The next step of our system was to fuse the outputs from the
short-term and long-term modules. The long-term module pro-
vides more accurate predictions because of the long-range inputs.
It will not produce phase predictions during the first 320 seconds
until it observes a sufficient past interval. We used the short-term
module to provide phase predictions during these 320 seconds and
fused the short-term and long-term modules for the predictions of
the remaining time. We used the output-level fusion to aggregate
the outputs of the long-term and short-term modules as:

Yfuse = Yshort +.VIOng (5)

.)7 = Softmax(yfuse) (6)

where Yo and yjoe are in R>, and they denote the outputs of
the short-term and long-term modules, respectively. j denotes the
model output by applying softmax function over yy,,. We also
evaluated the potential use of multi-modal fusion strategies (e.g.,
by concatenating or using nonlocal gates (Wu et al. (2019)) to
merge the features outputted by the long-term and short-term
modules. We did not adopt these multi-modal fusion strategies in
our system because our evaluation showed that their use imposed
higher computation cost without a performance increase.

2.5. Progress gate

During trauma resuscitation, several phases may have similar
visual appearance over long intervals, making it difficult for the
model to distinguish them even with RLO. For example, in our
dataset, the pre-arrival and the patient departure phases look sim-
ilar in some cases, but people can distinguish them based on the
current progress of the video as additional information. We there-
fore applied the progress gate (PG) after the fused predictions by
using estimated progress for additional input as:

= %(l—yp) JfC
P, , otherwise

(7)
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Fig. 3. The view of trauma resuscitation room (left) and the duration boxplot (right) for the five phases in our dataset (in seconds). The patient departure does not have an
upper whisker (UW) because we truncated the videos 500 seconds after the patient left the room.

where j € R® is the model prediction, p<O0,...,4 is the element
of y that denotes the p" phase, and C is the condition which is
represented as:

C:argmax(y) = p and (A < Ap_min OF A > Ap max) (8)

where A denotes the estimated progress of the current video by
dividing the current time played with the average duration of the
videos in our training set. We used the estimated progress in-
stead of the progress relative to the total length of the current
video to be able to use this system for real-time phase predic-
tion. The Ap_min and Ap max are the lowest and highest estimated
progress values for the pt" phase across all the cases in the train-
ing set. We multiplied 1 -, by % (5 is the number of phases)
in Eq. 7 to ensure that the phase p will not be selected as the
prediction when the condition C is satisfied. In some cases, 1 -y,
will still make argmax(y,) =p (e.g., y=1[0.5,0.2,0.1,0.05,0.05],
and both argmax(y) and argmax(1 —y,) are equal 0). Multiplying
1-9, by % will make at least one other phase have a larger pre-
diction score than the phase p. Note that multiplying by a smaller

number than % or re-setting yp to 0 would have the same result.

% is a boundary case when one phase is assigned the maximum
possible score y =[0.5,0.1,0.1,0.1,0.1]. Then, %(1 —J0) =0.1 and

max(y1.4) =0.1.
3. Data collection and implementation details
3.1. Data collection

We evaluated our system using videos of trauma resuscitations
conducted at a level 1 trauma center. This research was approved
by the hospital’s Institutional Review Board (IRB).We installed a
Microsoft Kinect V2 for capturing depth videos and connected it to
a local computer for controlling the recording and storing videos
(Fig. 3 left). We mounted the Kinect on the sidewall of the room
at a position 2.5 m above the ground and tilted it downwards at
20°. We applied the build-in skeleton detection function from the
Kinect API on our system to detect the number of persons in the
view. The system is triggered and begins recording after the Kinect
detects more than two people in view for at least one minute. This
triggering function is required to decrease data storage needs and
avoid the need to manually start recording, a task that can eas-
ily be forgotten in this type of setting. After the camera is trig-

Table 2
Number clips for different phases in training and testing sets. Each
clip contains 32-second consecutive frames.

Phase Name Num Clips (train)  Clip Num (test)
Pre-arrival 2150 490

Primary Survey 1077 205

Secondary Survey 1712 375
Post-Secondary Survey 3697 1095

Patient Departure 1973 454

gered, the system stores a depth frame (Fig. 4 right) every sec-
ond and stops after the Kinect detects that no person is present
in the room for more than one minute. We collected depth videos
for 183 trauma resuscitation cases, using 150 cases for training
and 33 cases (20%) for testing. We segmented the videos into 32-
second clips (32 consecutive frames) using a 16-step sliding win-
dow (overlapped by 16 seconds). Table 2 shows the number of
clips for different phases in both training and testing set. Ground
truth labelling was performed by manual reviewing RGB videos
(without using audio), based on predetermined definitions of the
process phases (RGB videos were not available for model training).
Each video was annotated independently by the three providers,
and any conflicting annotations were resolved by consensus. When
there is a phase transition in an input clip, the system assign the
clip to the phase that dominates the clip (having longer duration).

In contrast to other medical processes, trauma resuscitation is
a highly structured process that is taught as part of the Advanced
Trauma Life Support (ATLS) protocol (Kortbeek et al. (2008)). Al-
though rare deviations may occur because of unusual patient con-
ditions or provider error, this phase structure is consistently ob-
served during trauma resuscitation. This consistency makes this
domain ideal for phase-based decision support. The system was
designed to recognize five phases of the trauma resuscitation pro-
cess: pre-arrival, primary survey, secondary survey, post-secondary
survey, and patient departure (Table 3). The pre-arrival phase oc-
curs in the time between a notification that an injured patient will
be arriving and the arrival of the patient in the room. During this
phase, a multidisciplinary team of up to 15 individuals assembles
and begins preparing equipment needed for evaluating and treat-
ing the patient. The endpoint of this phase is defined as when
the patient is moved from the prehospital gurney to the hospital
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Table 3

Fig. 4. The RGB (left) and depth (right) view of trauma resuscitation room from the Kinect.

Description of five medical phases that our system recognize.

Pre-arrival

Start: When first personnel member enters the room End: When the patient enters the room

Primary Survey

Secondary
Survey

Post-Secondary

Start: When first primary survey or primary survey related task (i.e. warm sheet placement) begins End: When examining
provider performs first secondary survey task.

Start: When examining provider performs first secondary survey task. End: When the last secondary survey task is
performed in the normal progression of the examination. Secondary survey tasks and secondary survey adjunct tasks that
are completed after the secondary survey has been conducted should not be used as the end time. (i.e. if the examining
provider completes the secondary survey and returns to re-evaluate an injury minutes later, the second occurrence should
not be used as the end time.

Start: When the last secondary survey task is performed in the normal progression of the examination. Secondary survey
tasks and secondary survey adjunct tasks that are completed after the secondary survey has been conducted should not be
used as the end time. (i.e. if the examining provider completes the secondary survey and returns to re-evaluate an injury
minutes later, the second occurrence should not be used as the end time. End: When only the patient’s head remains
visible in the "foot view” video frame (rest of body already through the doorway) *if pt dies exit is time of death and label

When only the patient’s head remains visible in the "foot view” video frame (rest of body already through the doorway) *if

Survey
exit with "death” attribute)
Patient
Departure pt dies exit is time of death and label exit with "death” attribute)

bed. The primary survey phase then begins. The primary survey in-
cludes a series of activities that are performed for identifying and
immediately managing potentially life-threatening conditions. The
activities within these phases follow five steps: acronym-named as
A through E which stands for airway assessment and management
(A), evaluation of adequacy of ventilation/breathing (B), assessment
of circulatory status and perfusion (C), assessment of neurological
status/disability (D), and the complete exposure of the patient for
visual inspection of injuries (E). These five steps occur in this order
in most resuscitations unless patient requirements require omis-
sion or delay of a step until later in the resuscitation. The sec-
ondary survey follows the primary survey. This phase is a head to
toe physical examination focused on identifying additional injuries
not found in the primary survey. The post-secondary phase begins
at the completion of this assessment. The patient departure phase
begins when the patient leaves the room, a period when the mem-
bers of the team may remain to clean and prepare the room for
another patient. The phases of trauma resuscitation are sequential
(Fig. 5). Although overlap occurs between some activities in each
phase, phase order is preserved across resuscitation. The duration
of the five phases vary through different cases (Fig. 3, and Fig. 5).
In some cases, the Kinect built-in function wrongly detected some
background objects as people and made the system to keep record-
ing after the patient departed. This type of event caused the la-
bel unbalance issue because the patient departure phase was ex-
tremely long in these cases. We solved this problem by truncating
the videos 500 seconds after the patient left the room.

3.2. Implementation details

We implemented our model using the Pytorch framework. We
set the length of input video clips as 32 consecutive frames to

match the input size of the pre-trained networks and expand to
320 frames for the long-term branch (RLO). We added a batch nor-
malization after every convolutional layer to speed up the model
convergence (loffe and Szegedy (2015)). A ReLU was used as the
activation function. Adam (Kingma and Ba (2014)) was used as the
optimizer with the initialized learning rate of 1e-4, and 1e-8 as
the weights decay. We set the batch size to 12 (constrained by the
GPU memory size) and trained the model for 14k iterations. The
model was trained using three RTX 2080 ti and required about
one day to converge. To avoid overfitting, we applied the scale-
jittering method in range of [256, 320] to augment the frames
in spatial (Feichtenhofer et al. (2019)). We also applied Dropout
(Srivastava et al. (2014)) after the fully-connected layers to avoid
overfitting.

4. Experimental results
4.1. Experimental results overview

Fig. 6 shows the confusion matrices of our system for predic-
tion five phases. Based on the confusion matrices (Fig. 6), our sys-
tem performed best on the pre-arrival and the patient departure
phases. During the pre-arrival, fewer than three people are typi-
cally in the trauma room, and no patient is on the bed. These fea-
tures are visually recognizable. During the patient departure phase,
the patient’s bed has been wheeled out of the room, a feature pro-
viding a strong visual cue. When the patient bed stayed in the
room after the resuscitation, but the patient has left, these two
phases were sometimes confused. Prediction of the post-secondary
phase (Fig. 6, row 4) was slightly worse because of the confu-
sion between the secondary and post-secondary phases. During
the post-secondary survey phase, the patient is still on the bed
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Fig. 5. The workflow of the two cases. The phases’ duration varies between different cases.

Nonlocal without RLO

Pre-arrival 478 4 0 1 7 462
Primary 14 126 54 11 0 15
Secondary 8 33 261 68 5 0
Post secondary 16 ikl 123 928 17 il
Patient departure 35 0 0 12 407 | 0

Nonlocal with RLO

Nonlocal with RLO and PG

0 1 24 487 3 0 0 0
34 7 0 18 149 32 6 0
283 73 0 0 20 272 83 0
49 1037 8 0 0 44 1043 8
0 16 438 0 0 0 16 438

Fig. 6. Confusion matrices for phase recognition using nonlocal network. The values in the confusion matrices denote the number of input clips across the 33 testing cases.
The left diagram is the confusion matrices using nonlocal network without RLO and PG, the middle diagram is the confusion matrices using nonlocal network with RLO only,

and the right diagram is the confusion matrices with both RLO and PG.

and only a few providers remain in the room. The lowest perfor-
mance was achieved on the primary and secondary survey phases.
These two phases are difficult to distinguish based on depth video
because detailed visual textures are not available that help a hu-
man reviewer using RGB videos. Human reviewers presented with
depth video had the most difficulty identifying the transition be-
tween these two phases. Using RLO (Fig. 6 middle) significantly in-
creased the detection of the primary survey because this phase is
relatively short. This short duration caused the long-range inputs
(320-second frames) for the primary survey to partially include
views from the pre-arrival phase and helped the model distinguish
the primary survey from the secondary survey. The model using
PG (Fig. 6 right) eliminated the incorrect predictions between the
pre-arrival and the patient departure phases because the estimated
progress of the video helped distinguish these two phases.

4.2. Ablation study

We performed ablation experiments on phase recognition for
comparing the performance using different network structures and
hyper-parameters.

Network structures: We evaluated our model using three dif-
ferent network structures (ResNet2D-101, i3D, and Nonlocal) that
were introduced for image and video recognition (He et al. (2016);
Carreira and Zisserman (2017); Wang et al. (2018)). The ResNet2D-
101 achieved the worst performance because the model recog-
nized phases using single-frames as input without considering the
context between the consecutive frames (Table 4a). The nonlocal
network slightly outperformed the i3D network because of the
long-range spatio-temporal associations captured by the nonlocal

blocks. The nonlocal network with RLO and PG (Table 4a, last row)
significantly outperformed the nonlocal network without (Table 4a,
second last row) because the RLO helps the model to learn spatio-
temporal features from a longer video context for phase recogni-
tion rather than from short-term inputs (320 vs. 32 seconds). The
PG also helps the model to distinguish visually similar phases us-
ing video progress.

RLO input length: We also evaluated our model using RLO with
different input lengths (Table 4b). The model using 320-second-
frame inputs for the RLO achieved the best performance. Inputs
from longer video contexts contained more information but had a
lower temporal resolution that lacked the continuity of the videos.
The model achieved the best performance with 320-second input
duration and a decreased performance with inputs longer than 320
seconds (Table 4b, last row).

4.3. Comparison with previous systems

We compared our system with two previous systems for phase
recognition during trauma resuscitation, both that used depth
videos as input (Li et al. (2016, 2017b)). We evaluated our system
on both the smaller video set (Table 5, 50/10 train/test) that the
previous systems used and our larger video set (Table 5, 150/33
train/test). Our system outperformed these systems (Table 5) be-
cause by the use of spatio-temporal network structures and our
proposed methods (RLO and PG) for capturing features from long-
range video contexts and including estimated video progress as
additional input (Table 5). One system (Table 5, first row) ap-
plied a spatial-only network structure previously used for sin-
gle image recognition, which did not include the temporal asso-
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Table 4

Ablation experiments on phase recognition. We show the accuracy, F1, precision and recall scores by using

different network structures and hyper-parameters.
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Network Acc. F1. Prec. Rec.
ResNet2D-101 749 748 753 75.0
13D 82.1 814 818 82.9
Nonlocal 83.7 83.1 82.6 84.0
Nonlocal + RLO 893  89.1 89.1 89.3
Nonlocal + PG 84.6 843 844 85.7
Nonlocal + RLO + PG 90.8 90.6 90.6 90.8
Network structure: performance on phase recognition when using different network structures.
RLO Inputs (seconds) Acc. F1. Prec.  Rec.
64 839 835 84.0 83.8
160 840 839 846 84.0
320 893 89.1 89.1 89.3
640 89.0 887 887 89.0

RLO inputs: performance on phase recognition when using different input length for the RLO method.

Table 5

Experimental results and comparison with previous work. The evaluation results are accuracy, F1-score,
precision and recall in percentages. The column "Data set” denotes the number of cases that were used for

training and testing.

Method Data set  Online  Acc. F1. Prec.  Rec.
CNN Frame-wise (Li et al. (2016)) 50/10 Yes 67.5 - - -

CNN Frame-wise + constrain (Li et al. (2016))  50/10 Yes 80.0 70.0 72.0 76.0
CNN-LSTM + GMM (Li et al. (2017b)) 50/10 No 86.0 720 69.0 67.0
Nonlocal 50/10 Yes 872 871 87.5 86.9
Nonlocal + RLO + PG 50/10 Yes 92.1 909 917 91.1
Nonlocal 150/33 Yes 83.7 83.1 82.6 84.0
Nonlocal + RLO 150/33 Yes 89.3 89.1 89.1 89.3
Nonlocal + RLO + PG 150/33 Yes 90.8 906 90.6 90.8
Nonlocal + RLO + PG (filtered) 150/33 No 91.2 909 911 914

Table 6

Phase independent evaluation: we compared our system with other previous systems using independent F1-scores of each phase.

Network Data set  Online  Pre-arrival ~ Primary  Secondary  Post-secondary  Pt-departure
CNN Frame-wise + constrain (Li et al. (2016))  50/10 Yes 80.0 49.0 43.0 76.0 77.0
CNN-LSTM + GMM Li et al. (2017b) 50/10 No 61.0 56.0 72.0 43.0 94.9
Nonlocal + RLO 50/10 Yes 95.2 82.7 82.2 94.6 90.3
Nonlocal + RLO + PG 50/10 Yes 98.8 82.1 82.9 94.6 97.2
Nonlocal + RLO 150/33 Yes 95.5 79.3 76.4 93.1 94.8
Nonlocal + RLO + PG 150/33 Yes 97.9 79.0 75.2 93.1 97.3

ciations between consecutive frames (Li et al. (2016)). This sys-
tem (Li et al. (2016)) applied a constrained softmax to eliminate
the illegal predictions from the model output. We tried to ap-
ply this constrained softmax method in our system, but it wors-
ened performance. This decrease may have occurred because the
constrained softmax depends on the predictions of the preced-
ing models, which will increase the error rate when these mod-
els made incorrect predictions. The second system (Table 5, third
row) estimated progress using depth videos as input and then pre-
dicted phases using the generated progress (Li et al. (2017b)). The
errors propagated from the progress estimation step may have re-
sulted in incorrect phase prediction. In addition, the second system
used a filtering algorithm to smoothen the generated progress and
enhance the performance of phase prediction (Li et al. (2017b)).
This method can only be applied offline because progress can only
be generated from consideration of performance of the entire case.
We also evaluated our model by applying average filtering method.
Application of this method only increased accuracy by about 1%
(Table 5, last row).

We also compared our current system with our previous sys-
tems using independent F1-scores of the five phases. Based on the
F1-scores in Table 6 (rows 3 and 5), our current system signifi-
cantly outperformed our two previous systems on Pre-arrival, Pri-
mary, Secondary, and Post-secondary (31.5% on average, Table 6,
rows 3 and 5) on the same dataset (Table 6, 50/10) because of the

use of RLO and PG methods that we introduced. These four phases
are more important for detecting human errors during the resus-
citation (especially the Primary and Secondary Surveys) compared
to the Pt-Departure phase after the patient has left. We also evalu-
ated our current system on our current video set (Table 6, 150/33),
which is significantly larger than the video set we used in the past.
Based on the evaluation matrices in Table 6, our current system
significantly outperformed our previous systems (Li et al. (2017b,
2016)) on both video sets.

5. Experiment results on Endotube and Cholec80

To show the generalizability of our approach, we evaluate our
system on the EndoTube dataset and, the Cholc80 dataset for sur-
gical phase recognition (Lea et al. (2016)).

EndoTube: The EndoTube dataset contains 25 videos captured
from full cholecystectomy procedures performed at 19 different
hospitals in nine countries. The average video length is 11.4 min-
utes in the range of 4 to 27 minutes. The procedures were manu-
ally labeled into seven different phases: trocar placement, prepara-
tion, clip/cut, dissection, retrieval, hemostasis, and drainage/finish.
We applied 5-fold cross-validation on EndoTube that using 20
videos for training and the remaining five videos for testing, as was
done in this previous study (Lea et al. (2016)).
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Experimental results on the EndoTube dataset. The evaluation results are accuracy, f1-

score, precision and recall in percentage.

Method with tool  Acc. F1. Prec.  Rec.
Spatial CNN + tool (Lea et al. (2016))  Yes 63.7 - - -
ST-CNN + tool (Lea et al. (2016)) Yes 624 - - -
Nonlocal No 709 713 755 70.9
Nonlocal + RLO No 735 736 759 73.5
Nonlocal + RLO + PG No 75.1 759 76.8 75.1

Table 8
Experimental results on the Cholec80 dataset. The evaluation results are ac-
curacy, f1-score, precision and recall in percentage.

Method Acc. F1. Prec. Rec.
Phase-LSTM Twinanda et al. (2016a) 79.68 - 72.8 73.45
Endo-LSTM Twinanda (2017) 80.8 - 768 721
MTRCNet Jin et al. (2020) 82.8 - 76.1  78.0
ResNet-LSTM Jin et al. (2017) 86.6 - 805 799
TeCNO Czempiel et al. (2020) 88.6 - 81.6 85.2
Nonlocal 87.1 87.0 88.2 87.1
Nonlocal + RLO 90.5 904 915 906
Nonlocal + RLO + PG 91.2 91.0 916 911
Cholec80: The Cholec80 dataset contains 80 videos
of cholecystectomy surgeries performed by 13 surgeons

(Twinanda et al. (2016a)). The videos were captured at 25
fps and labeled into seven phases: preparation, calot triangle
dissection, clipping cutting, gallbladder dissection, gallbladder
packaging, cleaning coagulation, and gallbladder retraction. We
used 40 videos for training, 8 videos for validation and the re-
maining 40 videos for testing as was done in previous research
(Twinanda et al. (2016a); Czempiel et al. (2020)). These datasets
also included surgical tool labels, as additional information for
phase recognition. We only used videos as input for our experi-
ments.

Based on the accuracy score in Table 7, and Table 8, our method
significantly outperformed previous state-of-the-art approaches on
both EndoTube, and Cholec80 datasets (75.1% vs.63.7% on Endo-
Tube, and 91.2 vs. 88.6 on Cholec80), even without using the
instrument labels as additional information (Lea et al. (2016);
Czempiel et al. (2020)). The previous system separately extracted
spatial features from individual frames and then represented the
temporal associations from consecutive frames using temporal con-
volution and LSTM, which poorly represented the motions in the
consecutive frames. Our method learns spatio-temporal features
using 3D convolution filters and nonlocal blocks. Our proposed RLO
extracts long-term spatio-temporal features from the video and
also benefits from the pre-trained weights using large-scale activ-
ity recognition datasets. (Kay et al. (2017)). We set the downsam-
ple rate as 5 (o = 5) based on the experiment result. The model
increased the accuracy score by around 3% when using RLO to ex-
tract long-term video context across the video. The model with PG
also had about a 1% accuracy score enhancement compared to the
model without PG. The evaluation on using EndoTube data sup-
ports that our system generalizes across different processes. These
findings also highlight that the proposed RLO and PG methods can
improve the model performance on the phase recognition tasks for
processes other than trauma resuscitation.

6. Discussion
6.1. Phase recognition consistency

We visualized the phase predictions and their corresponding
ground truth in three resuscitation cases (Fig. 7). We compared
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Fig. 7. Phase recognition consistency: we visualized the system predictions and cor-
responding ground truth in three cases.

the predictions between the system with and without the intro-
duced RLO and PG methods. Based on the visualizations in Fig. 7,
the system with RLO and PG can provide more consistent predic-
tions with very few incorrect fragments (Fig. 7, case3). The model
having limited incorrected fragments is caused by the use of RLO
and PG methods that capture long-term information, and eliminate
implausible predictions.

6.2. Temporal modeling

We compared our RLO with other temporal modeling meth-
ods by evaluating them on both our Trauma dataset and Cholec80.
Based on the evaluation matrices in Table 9, the Nonlocal and
TCN-based networks outperformed traditional temporal modeling
structures such as CNN-HMM, and CNN-LSTM that are unable to
model long distance temporal associations. The HMM, and LSTM-
based networks cannot build correlations between long distance
frames. The performance did not increase when using LSTM and
TCN on top of the Nonlocal network. The spatio-temporal features
in short-term inputs (e.g., 32-second in Trauma dataset) have al-
ready been well captured by the Nonlocal network. Our proposed
RLO method improved the system performance based on the Non-
local network by including long-term inputs (320-second) while
reducing the requirements on memory and computation resources.
The TCN-based method reported in (Czempiel et al. (2020)) per-
formed slightly better than our implementation of the TCN-based
network (88.6 vs. 87.4) on Cholec80. The difference in performance
might be caused by using different training settings.

6.3. Runtime efficiency

We evaluated the runtime efficiency of our system to show that
the system is able to provide real-time phase predictions. Table 10
shows the latency of our complete system (including RLO and PG)
using both i3D and Nonlocal as backbones and running on multi-
ple processors. Based on the latency in Table 10, even running on
a CPU, our model required less than 2 seconds to provide a predic-
tion for a 32-second input (plus 320-seconds history for RLO). The
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Fig. 8. Feature visualizations for the five phases and their corresponding depth frames. We overlapped the feature maps on the original frames and used the 0.5 threshold

for the values for better visualization.

runtime efficiency show in Table 10 demonstrated that our sys-
tem was able to provide real-time phase predictions because the
time that the model uses for providing a prediction is significantly
smaller than the sliding window when extracting video clips (16
seconds).

6.4. System transferability

The transferability of any vision-based system is partially de-
pendent on the camera view used. The Kinect in our setting was
mounted on the wall, a location that is unobtrusive and easy to
maintain. Transfer to another setting that uses different camera

1

views may require tuning. We have obtained a domain-specific
dataset that will speed this tuning process when other camera
views are used. Equipment may vary in different emergency room
settings. Our system relies on environmental features common to
other resuscitation settings, including the position of the patient
bed and the location of providers performing specific activities. For
example, airway activities are performed during the primary sur-
vey phase by individuals at the head of the bed. Transferability will
require fine tuning the model in other settings that having differ-
ent background features. Image segmentation models that masking
out the unrelated backgrounds may also help to improve the per-
formance for system transferability (He et al. (2017))).
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Discussion of temporal modules. We compared our method (Nonlocal + RLO) with other temporal modules on

both our Trauma Resuscitation dataset and Cholec80.

Method dataset Acc. F1. Prec. Rec.
CNN-HMM Trauma Resuscitation 75.1 74.9 79.2 74.4
CNN-LSTM Trauma Resuscitation 78.0 79.1 824 78.0
Nonlocal Trauma Resuscitation 83.7 83.1 82.6 84.0
Nonlocal + LSTM Trauma Resuscitation 82.9 81.1 823 83.7
Nonlocal + TCN Trauma Resuscitation 83.5 83.6 84.2 83.9
Ours (Nonlocal + RLO) Trauma Resuscitation 90.8 90.6 90.6 90.8
EndoNet (CNN-HMM) Twinanda et al. (2016a)  Cholec80 75.2 - 70.0 66.0
ResNet-LSTM (CNN-LSTM) Jin et al. (2017) Cholec80 86.6 - 80.5 79.9
TCN Czempiel et al. (2020) Cholec80 88.6 - 81.6 85.2
Nonlocal Cholec80 87.1 87.0 88.2 87.1
Nonlocal + LSTM Cholec80 87.1 86.5 86.9 86.8
Nonlocal + TCN Cholec80 874 869 877 86.8
Ours (Nonlocal + RLO) Cholec80 90.5 904 915 90.6

Table 10
Runtime efficiency of our system. We evaluated the latency of our
system using different backbones and processors.

Method Input Processors Latency
Ours (i3D) 32 +320(s)  RTX-2080 ti 0.07 (s)
Ours (Nonlocal) 32 4+ 320 (s)  RTX-2080 ti 0.14 (s)
Ours (i3D) 32 +320(s) GTX-1080 ti 0.10 (s)
Ours (Nonlocal) 32 + 320 (s)  GTX-1080 ti 0.20 (s)
Ours (i3D) 32 +320(s) i7-6850k (CPU)  1.11 (s)
Ours (Nonlocal) 32 + 320 (s) i7-6850k (CPU) 1.75 (s)

6.5. Model visualization

To evaluate our hypotheses about the reasons for differences
in phase prediction (Section 5.1), we visualized feature maps ob-
tained from the intermediate output of the model and their corre-
sponding depth inputs for different phases (Fig. 8). We overlapped
the feature maps on their corresponding depth frames and used
a threshold value of 0.5 to generate clearer visualizations. Based
on these visualizations (Fig. 8), the feature map has high values
for the region of patient bed during the pre-arrival phase (Fig. 8,
left) and focuses on the floor during the patient departure phase
(Fig. 8, right). The feature map during the post-secondary survey
phase (Fig. 8, second last) focused on the patient bed and the few
providers around the patient bed. Finally, during the primary and
secondary survey, a large area on the feature map (around the pa-
tient bed, Fig. 8, second and third) was highlighted reflecting the
complexity of the environment in these phases. The model ap-
peared to focus on multiple regions that have features for phase
recognition. These visualizations showed that the model focused
on regions likely to distinguish different phases and learned repre-
sentative features for phase recognition.

6.6. Limitation and future work

We have built the system using depth video to ensure that our
system is privacy preserving. Our results show that the perfor-
mance is lower in recognizing the primary and secondary survey
phases, but with a relatively high F1-score (> 82%). Human anno-
tators have used RGB videos ground truth coding because unique
activities need to be detected to distinguish these two phases. Our
next step will be to implement a system that uses enriched texture
features from RGB videos preserves privacy-sensitive regions from
frames using generating adversarial networks (Goodfellow (2016);
Ronneberger et al. (2015); Mirza and Osindero (2014)). RGB/depth
video may not be adequate for distinguishing the primary and sec-
ondary survey in some cases. For example, secondary survey ac-
tivities may be performed in parallel with primary survey activi-

12

ties or the primary survey may be interrupted by performance of
secondary survey activities before returning to primary survey ac-
tivities. Although uncommon, these variations will be managed in
our future work using a multi-label phase prediction network that
provides concurrent phase predictions. Modeling phase-wise corre-
lations will improve multi-label phase prediction in this framework
(Sun et al. (2010); Huang et al. (2017)).

Our system segments the trauma resuscitation cases into
phases and reduces the challenge of detecting and localizing pro-
cess errors by setting the focus on a phase of interest. Phase recog-
nition can also be used to improve activity recognition. Because
some activities occur uniquely or more (or less) frequently in cer-
tain phases, the initial step of phase recognition can provide this
needed context. The single camera system may miss some activi-
ties because of view occlusion when providers are crowded around
the patient bed. Additional cameras may improve this performance
even more but at a cost of reducing the transferability of our sys-
tem. Building a system for recognizing activities using multiple
RGB cameras without privacy violation and reducing transferabil-
ity will be our future work.

7. Conclusion

We introduced a real-time medical phase recognition system
during trauma resuscitation. The system is privacy-preserving and
achieved more than 90% accuracy score, which outperformed the
previous systems using depth videos as input for phase recognition
during trauma resuscitation. We also evaluated our system on the
EndoTube dataset, outperforming results using a previous system
supporting the generalizability of our approach. We introduced
novel methods (RLO and PG) for learning spatio-temporal features
from long-range video contexts. These methods include estimation
of the video progresses to enhance the accuracy of phase predic-
tion. The system’s accuracy in distinguishing the primary-survey
and secondary-survey phases was affected by the limited texture
information in the depth videos. To apply this system within an
activity recognition system, we are implementing an RGB-based
phase recognition system that manages privacy considerations.
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