
Learning Forecasts of Rare Stratospheric Transitions from Short Simulations

JUSTIN FINKEL,a ROBERT J. WEBBER,b EDWIN P. GERBER,c DORIAN S. ABBOT,d AND JONATHAN WEARE
c

aCommittee on Computational and Applied Mathematics, University of Chicago, Chicago, Illinois
bDepartment of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California

cCourant Institute of Mathematical Sciences, New York University, New York, New York
dDepartment of Geophysical Sciences, University of Chicago, Chicago, Illinois

(Manuscript received 10 February 2021, in final form 14 August 2021)

ABSTRACT: Rare events arising in nonlinear atmospheric dynamics remain hard to predict and attribute. We address the

problem of forecasting rare events in a prototypical example, sudden stratospheric warmings (SSWs). Approximately once

every other winter, the boreal stratospheric polar vortex rapidly breaks down, shifting midlatitude surface weather patterns

for months. We focus on two key quantities of interest: the probability of an SSW occurring, and the expected lead time if it

does occur, as functions of initial condition. These optimal forecasts concretely measure the event’s progress. Direct nu-

merical simulation can estimate them in principle but is prohibitively expensive in practice: each rare event requires a long

integration to observe, and the cost of each integration grows with model complexity. We describe an alternative approach

using integrations that are short compared to the time scale of the warming event.We compute the probability and lead time

efficiently by solving equations involving the transition operator, which encodes all information about the dynamics. We

relate these optimal forecasts to a small number of interpretable physical variables, suggesting optimal measurements for

forecasting. We illustrate the methodology on a prototype SSW model developed by Holton and Mass and modified by

stochastic forcing.While highly idealized, this model captures the essential nonlinear dynamics of SSWs and exhibits the key

forecasting challenge: the dramatic separation in time scales between a single event and the return time between successive

events. Our methodology is designed to fully exploit high-dimensional data from models and observations, and has the

potential to identify detailed predictors of many complex rare events in meteorology.

KEYWORDS: Stratospheric circulation; Extreme events; Stratosphere; Classification; Differential equations; Regression

analysis; Risk assessment; Statistical techniques; Statistics; Uncertainty; Diagnostics; Nonlinear models; Parameterization;

Stochastic models; Anomalies; Internal variability; Intraseasonal variability; Clustering; Model interpretation and

visualization; Other artificial intelligence/machine learning

1. Introduction

As computing power increases and weather models grow

more intricate and capable of generating a vast wealth of real-

istic data, the goal of extreme weather event prediction appears

less distant (Vitart and Robertson 2018). To take full advantage

of the increased computing power, we must develop new ap-

proaches to efficiently manage and parse the data we generate

(or observe) to derive physically interpretable, actionable in-

sights. Extremeweather events are worthy targets for simulation

owing to their destructive potential to life and property. Rare

events have attracted significant simulation efforts recently, in-

cluding hurricanes (e.g., Zhang and Sippel 2009; Webber et al.

2019; Plotkin et al. 2019), heat waves (e.g., Ragone et al. 2018),

rogue waves (e.g., Dematteis et al. 2018), and space weather

events (e.g., coronal mass ejections; Ngwira et al. 2013). These

are very difficult to characterize and predict, being excep-

tionally rare and pathological outliers in the spectrum of

weather events. Ensemble forecasting in numerical weather

prediction is best suited to estimate statistics of the average or

most likely scenarios, and specialized methods are needed to

examine the more extreme outlier scenarios.

In this study, we advance an alternative computational approach

to predicting and understanding general rare events without

sacrificing model fidelity.Our method relies on data generated

by a high-fidelity model with a state space with many degrees

of freedom d, representing, for example, spatial resolution of

the primitive equations. In this way, our method is similar to

recently introduced reduced order modeling techniques using

statistical and machine learning (e.g., Kashinath et al. 2021 and

references therein). However, in contrast to other data-driven

techniques, our approach focuses on directly computing key

quantities of interest that characterize the essential predictability

of the rare event, rather than trying to capture the full detailed

evolution of the system. In particular, we will compute estimators

of statistically optimal forecasts that are useful for initial conditions

somewhere between a ‘‘typical’’ configuration A and an ‘‘anoma-

lous’’ configurationB that defines the rare event, where typical and

anomalous are user-defined.We focus on two forecasts in particular

to quantify risk. The committor is the probability that a given initial

condition evolves directly into B rather than A. Given that it does

reachB first, the conditional mean first passage time, or lead time, is

the expected time that it takes to get there. The committor ap-

pears prominently in the molecular dynamics literature, with

some recent applications in geoscience including Tantet et al.

(2015), Lucente et al. (2019), and Finkel et al. (2020), which

compute the committor for low-dimensional atmosphericmodels.

Both quantities depend on the initial condition, defining

functions over d-dimensional state space that encode impor-

tant information regarding the fundamental causes and pre-

cursors of the rare event. However, ‘‘decoding’’ the physicalCorresponding author: Justin Finkel, jfinkel@uchicago.edu
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insights is not automatic. With real-time measurement con-

straints, the risk metrics must be estimated from low-dimensional

proxies. Even visualizing them requires projecting down to one or

two dimensions. This calls for a principled selection of low-

dimensional coordinates that are both physically meaningful

and statistically informative for our chosen risk metrics. We ad-

dress this problem using sparse regression, a simple but easily

extensible solution with the potential to inform optimal mea-

surement strategies to estimate risk as precisely as possible under

constraints.

Estimation of the committor and lead time is a challenge.

We employ a method that uses a large dataset of short-time

independent simulations. We represent the committor and

lead time as solutions to Feynman–Kac formulas (Oksendal

2003), which relate long-time forecasts to instantaneous

tendencies. These equations are elegant and general, but

computationally daunting: in the continuous time and space

limit, they become partial differential equations (PDE) with

d independent variables—the same as the model state space

dimension. It is therefore hopeless to solve the equations

using any standard spatial discretization. But, as we dem-

onstrate, the equations can be solved with remarkable ac-

curacy by expanding in a basis of functions informed by the

dataset.

We illustrate our approach on the highly simplified Holton–

Mass model (Holton and Mass 1976; Christiansen 2000) with

stochastic velocity perturbations in the spirit of Birner and

Williams (2008). The Holton–Mass model is well-understood

dynamically in light of decades of analysis and experiments, yet

complex enough to present the essential computational diffi-

culties of probabilistic forecasting and test our methods for ad-

dressing them. In particular, this system captures the key

difficulty in sampling rare events. The vast majority of the time,

the system sits in one of two metastable states, characterizing a

strong or weak vortex respectively. Extreme events are the in-

frequent jumps from one state to another. Our computational

framework can accurately characterize these rare transitions

using only a dataset of ‘‘short’’ model simulations: short not only

compared to the long periods the system sits in one state or the

other, but also relative to the time scale of the transition events

themselves. In the future, the same methodology could be ap-

plied to query the properties of more complex models, such as

GCMs, where less theoretical understanding is available.

In section 2, we review the dynamical model and define the

specific rare event of interest. In section 3, we formally define

the risk metrics introduced above and visualize the results for

the Holton–Mass model, including a discussion of physical

and practical insights gleaned from our approach. In section 4

we identify an optimal set of reduced coordinates for esti-

mating risk using sparse regression. These results will provide

motivation for the computational method, which we present

afterward in section 5 along with accuracy tests. We then lay

out future prospects and conclude in section 6.

2. Holton–Mass model

Holton and Mass (1976) devised a simple model of the

stratosphere aimed at reproducing observed intraseasonal

oscillations of the polar vortex, which they termed ‘‘stratospheric

vacillation cycles.’’ Earlier sudden stratospheric warming (SSW)

models, originating with that of Matsuno (1971), proposed

upward-propagating planetary waves as the major source of

disturbance to the vortex. While Matsuno (1971) used im-

pulsive forcing from the troposphere as the source of

planetary waves, Holton and Mass (1976) suggested that

even stationary tropospheric forcing could lead to an os-

cillatory response, suggesting that the stratosphere can self-

sustain its own oscillations. While the Holton–Mass model

is meant to represent internal stratospheric dynamics,

Sjoberg and Birner (2014) point out that the stationary

boundary condition does not lead to stationary wave ac-

tivity flux, meaning that even the Holton–Mass model in-

volves some dynamic interaction between the troposphere

and stratosphere. Isolating internal from external dynamics

is a subtle modeling question, but in the present paper we

adhere to the original Holton–Mass framework for sim-

plicity. Our methodology applies equally well to other

formulations.

Radiative cooling through the stratosphere and wave

perturbations at the tropopause are the two competing

forces that drive the vortex in the Holton–Mass model.

Altitude-dependent cooling relaxes the zonal wind toward a

strong vortex in thermal wind balance with a radiative

equilibrium temperature field. Gradients in potential vor-

ticity along the vortex, however, can allow the propagation

of Rossby waves. When conditions are just right, a Rossby

wave emerges from the tropopause and rapidly propagates

upward, sweeping heat poleward and stalling the vortex by

depositing a burst of negative momentum. The vortex is

destroyed and begins anew the rebuilding process.

Yoden (1987a) found that for a certain range of parameter

settings, these two effects balance each other to create two

distinct stable regimes: a strong vortex with zonal wind close

to the radiative equilibrium profile, and a weak vortex with a

possibly oscillatory wind profile. We focus our study on this

bistable setting as a prototypical model of atmospheric re-

gime behavior. The transition from strong to weak vortex

state captures the essential dynamics of an SSW.

The Holton–Mass model takes the linearized quasi-

geostrophic potential vorticity (QGPV) equation for a per-

turbation streamfunction c0(x, y, z, t) on top of a zonal mean

flow u(y, z, t), and projects these two fields onto a single zonal

wavenumber k 5 2/(a cos608) and a single meridional wave-

number ‘5 3/a, where a is Earth’s radius. This notation is

consistent with Holton and Mass (1976) and Christiansen

(2000), and we refer the reader to these earlier papers for

complete description of the equations and parameters. The

resulting ansatz is

u(y, z, t)5U(z, t) sin(‘y) ,

c0(x, y, z, t)5RefC(z, t)eikxg ez/2H sin(‘y) , (1)

which is fully determined by the reduced state space U(z, t),

andC(z, t), the latter being complex valued;H is a scale height,

7 km. Inserting this into the linearized QGPV equations yields

the coupled PDE system
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for U(z, t). Here, « 5 8/(3p) is a coefficient for projecting

sin2(‘y) onto sin(‘y). We have nondimensionalized the equa-

tions with the parameter G2 5H2N2/(f 20L
2), where N2 5 4 3

1024 s22 is a constant stratification (Brunt–Väisälä frequency),
f0 is the Coriolis parameter, andL5 2.53 105m is a horizontal

length scale, selected in order to create a homogeneously

shaped dataset more suited to our analysis. See Holton and

Mass (1976), Yoden (1987a), and Christiansen (2000) for de-

tails on parameters. Boundary conditions are prescribed at the

bottom of the stratosphere, which in this model corresponds to

z 5 0 km, and the top of the stratosphere ztop 5 70 km.

C(0, t)5
gh

f
0

, C(z
top

, t)5 0,

U(0, t)5UR(0), ›
z
U(z

top
, t)5 ›

z
UR(z

top
) . (4)

The vortex-stabilizing influence is represented by a(z), the

altitude-dependent cooling coefficient, and the radiative wind

profileUR(z)5UR(0)1 (g/1000)z (with z in m), which relaxes

the vortex toward radiative equilibrium. Here g5O(1) is the

vertical wind shear (m s21 km21). The competing force of wave

perturbation is encoded through the lower boundary condition

C(0, t) 5 gh/f0.

Detailed bifurcation analysis of the model by both Yoden

(1987a) and Christiansen (2000) in (g, h) space revealed the

bifurcations that lead to bistability, vacillations, and ultimately

quasiperiodicity and chaos. Here we will focus on an inter-

mediate parameter setting of g 5 1.5m s21 km21 and h 5
38.5m, where two stable states coexist: a strong vortex with U

closely followingUR and an almost barotropic stationary wave,

as well as a weak vortex with U dipping close to zero at an

intermediate altitude and a stationary wave with strong west-

ward phase tilt. The two stable equilibria, which we call a and b,

are illustrated in Figs. 1a and 1b by their z-dependent zonal

wind and perturbation streamfunction profiles.

The two equilibria can be interpreted as two different winter

climatologies, one with a strong vortex and one with a weak

vortex susceptible to vacillation cycles. To explore transitions

between these two states, we followBirner andWilliams (2008)

and modify the Holton–Mass equations with small additive

noise in the U variable to mimic momentum perturbations by

smaller scale Rossby waves, gravity waves, and other unre-

solved sources. The form of noise will be specified in Eq. (7).

While the details of the additive noise are ad hoc, the general

approach can be more rigorously justified through the Mori–

Zwanzig formalism (Zwanzig 2001). Because many hidden de-

grees of freedom are being projected onto the low-dimensional

space of the Holton–Mass model, the dynamics on small ob-

servable subspaces can be considered stochastic. This is the

perspective taken in stochastic parameterization of turbulence

and other high-dimensional chaotic systems (Hasselmann 1976;

DelSole and Farrell 1995; Franzke andMajda 2006; Majda et al.

2001;Gottwald et al. 2016). In general, unobserved deterministic

dynamics can make the system non-Markovian, which techni-

cally violates the assumptions of our methodology. However,

with sufficient separation of time scales the Markovian as-

sumption is not unreasonable. Furthermore, memory terms can

be ameliorated by lifting data back to higher-dimensional state

spacewith time-delay embedding (Berry et al. 2013; Thiede et al.

2019; Lin and Lu 2021).

We follow Holton and Mass (1976) and discretize the

equations using a finite-difference method in z, with 27 vertical

levels (including boundaries). After constraining the bound-

aries, there are d5 33 (272 2)5 75 degrees of freedom in the

model. Christiansen (2000) investigated higher resolution and

found negligible differences. The full discretized state is rep-

resented by a long vector

X(t)5 [RefCg(Dz, t), . . . , RefCg(z
top

2Dz, t),

ImfCg(Dz, t), . . . , ImfCg(z
top

2Dz, t),

U(Dz, t), . . . ,U(z
top

2Dz, t)] 2 Rd 5R75 (5)

The deterministic system can be written dX(t)/dt 5 v[X(t)]

for a vector field v:Rd /Rd specified by discretizing (2) and

(3). Under deterministic dynamics, X(t) / a or X(t) / b as

t / ‘ depending on initial conditions. The addition of white

noise changes the system into an Itô diffusion

dX(t)5 v[X(t)]dt1s[X(t)]dW(t) , (6)

where s:Rd /Rd3m imparts a correlation structure to the

vectorW(t) 2 Rm of independent standardwhite noise processes.

As discussed above, we designs to be a low-rank, constantmatrix

that adds spatially smooth stirring to only the zonal wind U (not

the streamfunction C) and which respects boundary conditions

at the bottom and top of the stratosphere. Its structure is defined

by the following Euler–Maruyama scheme: in a time step dt 5
0.005 days, after a deterministic forward Euler step we add the

stochastic perturbation to zonal wind on large vertical scales

dU(z)5s
U�

m

k50

h
k
sin

"�
k1

1

2

	
p

z

z
top

# ffiffiffiffi
dt

p
, (7)

where hk(k 5 0, 1, 2) are independent unit normal samples,

m 5 2, and sU is a scalar that sets the magnitudes of entries in

s. In terms of physical units,

s2
U 5

E[(dU)
2
]

dt
’ (1m s21)2 day21 , (8)

sU has units of (L/T)/T1/2, where the square root of time comes

from the quadratic variation of the Wiener process. It is best
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interpreted in terms of the daily root-mean-square velocity

perturbation of 1.0m s21. We have experimented with this

value, and found that reducing the noise level below 0.8 dra-

matically reduces the frequency of transitions, while increasing

it past 1.5 washes out metastability. We keep sU constant going

forward as a favorable numerical regime to demonstrate our

approach, while acknowledging that the specifics of stochastic

parameterization are important in general to obtain accurate

forecasts. The resultingmatrixs is 753 3, with nonzero entries

only in the last 25 rows as forcing only applies to U(z).

A long simulation of the model reveals metastability, with

the system tending to remain close to one fixed point for a

long time before switching quickly to the other, as shown by

the time series of U(30 km) in Fig. 1d. Figure 1e shows a

projection of the steady-state distribution, also known as the

equilibrium/invariant distribution, of U as a function of z.

We call this density p(x), which is a function over the full

d-dimensional state space. We focus on the zonal wind U at

30 km following Christiansen (2000), because this is where

its strength is minimized in the weak vortex. While the two

regimes are clearly associated with the two fixed points, they are

better characterized by extended regions of state space with

strong and weak vortices. We thus define the two metastable

subsets of Rd:

A5 fX:U(X)(30 km)$U(a)(30 km)5 53:8m s21g,

B5 fX:U(X)(30 km)#U(b)(30 km)5 1:75m s21g.

This straightforward definition roughly follows the con-

vention of Charlton and Polvani (2007), which defines an

SSW as a reversal of zonal winds at 10 hPa. We use 30 km for

consistency with Christiansen (2000); this is technically

higher than 10 hPa because z5 0 in the Holton–Mass model

represents the tropopause. Our method is equally applicable

to any definition, and the results are not qualitatively de-

pendent on this choice. Incidentally, the analysis tools we

presentmay be helpful in distinguishing predictability properties

between different definitions. In fact, we will show that the

height neighborhood of 20km is actually more salient for pre-

dicting the event than wind at the 30-km level, even when the

event is defined by wind at 30km! This emerges from statistical

analysis alone, and gives us confidence that essential SSW

FIG. 1. Illustration of the two stable states of the Holton–Mass model and transitions between them. (a) Zonal wind profiles of the

radiatively maintained strong vortex (the fixed point a, blue), which increases linearly with altitude, and the weak vortex (the fixed point b,
red), which dips close to zero in the midstratosphere. (b) Streamfunction contours are overlaid for the two equilibria a and b.

(c) Parametric plot of a control simulation in a two-dimensional state space projection, including two transitions fromA toB (orange) and

from B to A (green). (d) Time series of U(30 km) from the same simulation. (e) The steady-state density projected onto U(30 km).
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properties are stable with respect to reasonable changes in

definition.

The orange highlights in Fig. 1d begin when the system exits

the A region bound for B, and end when the system enters B.

The green highlights start when the system leaves B bound for

A, and end when A is reached. Note that A / B transitions,

SSWs, are much shorter in duration than B / A transitions.

Figure 1c shows the same paths but viewed parametrically in a

two-dimensional state space consisting of integrated heat

flux (IHF)
Ð 30 km

0 km
e2z/Hy0T 0 dz, and zonal wind U(30 km). IHF

is an informative number because it captures both magni-

tude and phase information of the streamfunction in the

Holton–Mass model:

IHF5

ð30 km
0 km

e2z/Hy0T 0 dz}

ð30 km
0km

jCj2 ›u
›z

dz , (9)

where u is the phase of C. The A/ B and B / A transitions

are again highlighted in orange and green respectively, show-

ing geometrical differences between the two directions. We

will refer to the A / B transition as an SSW event, even

though it is more accurately a transition between climatologies

according to the Holton–Mass interpretation. The B / A

transition is a vortex restoration event. Our focus in this paper

is on predicting these transition events (mainly the A / B

direction) andmonitoring their progress in a principled way. In

the next section we explain the formalism for doing so.

3. Forecast functions: The committor and lead
time statistics

a. Defining risk and lead time

We will introduce the quantities of interest by way of ex-

ample. First, suppose the stratosphere is observed in an initial

state X(0) 5 x that is neither in A nor B, so U(b)(30 km) ,
U(x)(30 km) , U(a)(30 km) and the vortex is somewhat

weakened, but not completely broken down. We call this in-

termediate zone D5 (A<B)
c
(the complement of the two

metastable sets). Because A and B are attractive, the system

will soon find its way to one or the other at the first-exit time

from D, denoted

t
Dc 5minft$ 0:X(t) 2 Dcg . (10)

Here,Dc emphasizes that the process has leftD, that is, gone to

A orB. The first-exit locationX(tDc ) is itself a random variable

that importantly determines how the system exits D: either

X(tDc ) 2 A, meaning the vortex restores to radiative equilib-

rium, or X(tDc ) 2 B, meaning the vortex breaks down into

vacillation cycles. A fundamental goal of forecasting is to de-

termine the probabilities of these two events, which naturally

leads to the definition of the (forward) committor function

q1(x)5

8>>><>>>:
P

x
fX(t

Dc ) 2 Bg x 2 D5 (A<B)
c

0 x 2 A

1 x 2 B

, (11)

where the subscript x indicates that the probability is con-

ditional on a fixed initial condition X(0) 5 x, that is,

Pxf�g5Pf � jX(0)5 xg. The superscript ‘‘1’’ distinguishes the

forward committor from the backward committor, an analo-

gous quantity for the time-reversed process that we do not use

in this paper. Throughout, we will use capital X(t) to denote a

stochastic process, and lower-case x to represent a specific

point in state space, typically an initial condition, that is,

X(0) 5 x. Both are d 5 75-dimensional vectors.

The committor is the probability that the system will be in

state B (the disturbed state) next rather than A (the strong

vortex state). Hence q1(x)5 0 if you start in A, and is 1 if you

are already in B. In between (i.e., when x 2D), q1(x) tells you

the probability that you will first go to B rather than toA. That

is, q1(x) tells you the probability that an SSW will happen.

Another important forecasting quantity is the lead time to

the event of interest. While the forward committor reveals

the probability of experiencing vortex breakdown before re-

turning to a strong vortex, it does not say how long either

event will take. Furthermore, even if the vortex is restored

first, how long will it be until the next SSW does occur? The

time until the next SSW event is denoted tB, again a random

variable, whose distribution depends on the initial condition

x. We call Ex[tB] the mean first passage time (MFPT) to B.

Conversely, we may ask how long a vortex disturbance will

persist before normal conditions return; the answer (on av-

erage) is Ex[tA], the mean first passage time to A. These same

quantities have been calculated previously in other simplified

models, for example, Birner and Williams (2008) and Esler

and Mester (2019).

The Ex[tB] has an obvious shortcoming: it is an average

over all paths starting from x, including those that go straight

intoB (i.e., an orange trajectory in Figs. 1c,d) and the rest that

return to A, that is, a green trajectory) and linger there, po-

tentially for a very long time, before eventually recrossing

back into B. It is more relevant for near-term forecasting to

condition tB on the event that an SSW is coming before the

strong vortex returns. For this purpose, we introduce the

conditional mean first passage time, or lead time, to B:

h1(x)d E
x
[t

B
jt

B
, t

A
] , (12)

which quantifies the suddenness of SSW.

All of these quantities can, in principle, be estimated by

direct numerical simulation (DNS). For example, suppose we

observe an initial condition X(0) 5 x in an operational fore-

casting setting, and wish to estimate the probability and lead

time for the event of next hitting B. We would initialize an

ensemble fXn(0)5 x, n5 1, . . . , Ng and evolve eachmember

forward in time until it hitsA or B at the random time tn. In an

explicitly stochastic model, random forcing would drive each

member to a different fate, while in a deterministic model their

initial conditions would be perturbed slightly. To estimate the

committor toB, we could calculate the fraction of members that

hit B first. Averaging the arrival times (tn), over only those

members, gives an estimate of the lead time to B. For a single

initial condition x reasonably close to B, DNS may be the most

economical. But how do we systematically compute q1(x) over

all of state space (here 75 variables, but potentially billions of

variables in a GCM or other state-of-the-art forecast system)?
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For this more ambitious goal, DNS is prohibitively expen-

sive. By definition, transitions betweenA andB are infrequent.

Therefore, if starting from x far from B, a huge number of

sampled trajectories (N) will be required to observe even a

small number ending inB, and they may take a long time to get

there. If instead we could precompute these functions offline

over all of state space, the online forecasting problem would

reduce to ‘‘reading off’’ the committor and lead time with ev-

ery new observation. Achieving this goal is the key point of our

paper, and we achieve this using the dynamical Galerkin ap-

proximation (DGA) recipe described by Thiede et al. (2019).

A brute force way to estimate these functions is to inte-

grate the model for a long time until it reaches statistical

steady state, meaning it has explored its attractor thor-

oughly according to the steady-state distribution. After long

enough, it will have wandered close to every point x suffi-

ciently often to estimate q1(x) and h1 robustly as in DNS.

We have performed such a ‘‘control simulation’’ of 5 3 105

days for validation purposes, but our main contribution in

this paper is to compute the forecast functions using only

short trajectories with DGA, allowing for massive paralle-

lization. However, we will defer the methodological details

to section 5, and first justify the effort with some results. We

visualize the committor and lead time computed from short

trajectories and elaborate on their interpretation, utility,

and relationship to ensemble forecasting methods.

b. Steady-state distribution

Before visualizing the committor and lead time, it will be

helpful to have a precise notion of the steady-state distribution,

denoted p(x), a probability density that describes the long-

term behavior of a stochastic process X(t). Assuming the sys-

tem is ergodic, averages over time are equivalent to averages

over state space with respect top. That is, for any well-behaved

function g:Rd /R,

hgi
p
d lim

T/‘

1

T

ðT
0

g[X(t)] dt5

ð
Rd

g(x)p(x)dx . (13)

For example, if g(x)5 1S(x) (an indicator function, which is 1

for x 2 S � Rd and 0 for x;S), Eq. (13) says that the fraction of

time spent in S can be found by integrating the density over S.

The density peaks in Fig. 1d indicates clearly that the neigh-

borhoods of a and b are two such regions with especially large

probability under p. Note that both sides of (13) are inde-

pendent of the initial condition, which is forgotten eventually.

Short-term forecasts are by definition out-of-equilibrium pro-

cesses, depending critically on initial conditions; however, p(x)

is important to us here as a ‘‘default’’ distribution for missing

information. If the initial condition is only partially observed,

for example, in only one coordinate, we have no information

about the other d 2 1 dimensions, and in many cases the most

principled tactic is to assume those other dimensions are dis-

tributed according to p, conditional on the observation.

c. Visualizing committor and lead times

The forecasts q1(x) and h1(x) are functions of a high-

dimensional space Rd. However, these degrees of freedom may

not all be ‘‘observable’’ in a practical sense, given the sparsity and

resolution limits of weather sensors, and visualizing them requires

projecting onto reduced-coordinate spaces of dimension 1 or 2.

We call these ‘‘collective variables’’ (CVs) following chemistry

literature (e.g., Noé and Clementi 2017), and denote them as

vector-valued functions from the full state space to a reduced

space, u:Rd /Rk, where k5 1 or 2. For instance, Fig. 1c plots

trajectories in the CV space consisting of integrated heat flux

and zonal wind at 30 km: u(x)5

�Ð 30km

0 km
e2z/Hy0T 0dz, U(30 km)

�
.

The first component is a nonlinear function involving products of

Re{C} and Im{C}, while the second component is a linear

function involving onlyU at a certain altitude. For visualization

in general, we have to approximate a function F :Rd /R, such

as the committor or lead time, as a function of reduced coor-

dinates. That is, we wish to find f :Rk /R such that F(x) ’
f[u(x)]. Given a fixed CV space u, an ‘‘optimal’’ f is chosen by

minimizing some function-space metric between f+u and F.

A natural choice is the mean-squared error weighted by the

steady-state distribution p, so the projection problem is to

minimize over functions f :Rk /R the penalty

S[f ; u]d jjf+u2Fjj2L2(p)

5

ð
Rd

ff [u(x)]2F(x)g2p(x) dx . (14)

The optimal f for this purpose is the conditional expectation

f (y)5E
X;p

[F(X)ju(X)5 y]

5 lim
jdyj/0

ð
f (x)1

dy
[u(x)]p(x)dxð

1
dy
[u(x)]p(x)dx

, (15)

where dy is a small neighborhood about y in CV space Rk. The

subscriptX; pmeans that the expectation is with respect to a

random variable X distributed according to p(x), that is, at

steady state. Figure 2 uses this formula to display one-

dimensional projections of the committor (first row) and lead

time (second row), as well as the one standard deviation en-

velope incurred by projecting out the other 74 degrees of

freedom. This ‘‘projection error’’ is defined as the square root

of the conditional variance:

V
F
(y)5E

X;p
[[F(X)2 f (y)]2ju(X)5 y] . (16)

Each quantity is projected onto two different one-dimensional

CVs: U(30 km) (first column) and IHF (second column). In

Fig. 2a, for example, we see the committor is a decreasing

function of U: the weaker the wind, the more likely a vortex

breakdown. Moreover, the curve provides a conversion factor

between risk (as measured by probability) and a physical var-

iable, zonal wind. An observation of U(30 km) 5 38m s21

implies a 50% chance of vortex breakdown. The variation in

slope also tells us that a wind reduction from 40 to 30m s21

represents a far greater increase in risk than a reduction from

30 to 20m s21. Meanwhile, Fig. 2b shows the committor to

be an increasing function of IHF, since SSW is associated

with large wave amplitude and phase lag. However, IHF seems
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inferior to zonal wind as a committor proxy, as a small change

in IHF from ;15 000 to ;20 000Km2 s21 corresponds to a

sharp increase in committor from nearly zero to nearly one. In

other words, knowing only IHF does not provide much useful

information about the threat of SSW until it is already virtually

certain. The dotted envelope is also wider in Fig. 2b than

Fig. 2a, indicating that projecting the committor onto IHF re-

moves more information than projecting onto U. While the

underlying noise makes it impossible to divine the outcome

with certainty from any observation, the projection error

clearly privileges some observables over others for their

predictive power.

In Figs. 2c and 2d, the lead time is seen to have the opposite

overall trend as the committor: the weaker the wind, or the

greater the heat flux, the closer you are on average to a vortex

breakdown. The h1(x) is not defined when wind is strongest, as

x 2 A and so q1(x) 5 0. However, an interesting exception to

the trend occurs in the range 10m s21 # U # 40m s21: the

expected lead time stays constant or slightly decreases as zonal

wind increases, and the projection error remains large. This

means that while the probability of vortex breakdown in-

creases rapidly from 50% to 90%, the time until vortex

breakdown remains highly uncertain. To resolve this seeming

paradox, we will have to visualize the joint variation of q1

and h1.

It is of course better to consider multiple observables at

once. Figure 3 shows the information gained beyond observing

U(30 km) by incorporating IHF as a second observable. In the

top row we project p, q1, and h1 onto the two-dimensional

subspace, revealing structure hidden from view in the one-

dimensional projections. Figure 3a is a two-dimensional

extension of Fig. 1d, with density peaks visible in the neigh-

borhoods of a and b. The white space surrounding the gray

represents physically insignificant regions of state space that

FIG. 2. (a),(b) One-dimensional projections of the forward committor and (c),(d) lead time toB. These functions

depend on all d 5 75 degrees of freedom in the model, but we have averaged across d 2 1 5 74 dimensions to

visualize them as rough functions of two single degrees of freedom: (left)U(30 km) and (right) integrated heat flux

up to 30 km, IHF. Additionally (a) marks the q1 5 1/2 threshold and the corresponding value of zonal wind.
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was not sampled by the long simulation. The same convention

holds for the following two-dimensional figures. The commit-

tor is displayed in Fig. 3b over the same space. It changes from

blue at the top (an SSW is unlikely) to red at the bottom (an

SSW is likely), bearing out the negative association between U

and q1. However, there are nonnegligible horizontal gradients

that show that IHF plays a role, too. Likewise, the lead time

in Fig. 3c decreases from ;90 days near a to 0 days near b,

when the transition is complete. Here, IHF appears even more

critically important for forecasting how the event plays out, as

gradients in h1 are often completely horizontal.

A horizontal dotted line in Figs. 3a–c marks the 50% risk

level U(30 km) 5 38m s21, but the committor varies along it

from low risk at the left to high risk at the right: we show this

concretely by selecting two points u0 and u1 along the line.

According to U alone, that is, the curve in Fig. 2a, both would

have the same committor of 0.5. According to both U and IHF

together, that is, the two-dimensional heat map in Fig. 3b, they

FIG. 3. The density, committor, and lead time as functions of zonal wind and integrated heat flux. (a) The steady-state distribution p(x)

onto the two-dimensional subspace (U, IHF) at 30 km. The white regions surrounding the gray are unphysical states with negligible

probability. (b),(c) Display the committor and lead time in the same space. A horizontal transect marks the level U(30 km)5 38.5m s21,

where q1 according to U only is 0.5. (d),(e) Ensembles initialized from two points u0 and u1 along the transect, verifying that their

committor and lead time values differ from their values according toU, in a way that is predictable due to considering IHF in addition toU.
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have very different probabilities of q1(u0)5 0.31 and q1(u1)5
0.73: an SSW is more than twice as likely to occur from starting

point u1 as u0.

While those committor values come from the DGAmethod

to be described in section 5, we confirm them empirically by

plotting an ensemble of 100 trajectories originating from each

of the two initial conditions in Figs. 3d and 3e below, coloring

A-bound trajectories blue and B-bound trajectories red. Only

28% of the sampled trajectories through u0 exhibit an SSW,

next going to stateB, while 68%of the integrations from u1 end

at B. In both cases, the heat maps and ensemble sample means

roughly match. The small differences between the projected

committor and the empirical ‘‘success’’ rate of trajectories

arises both from errors in the DGA calculation (which we

analyze in section 5) and the finite size of the ensemble.

The lead time prediction is improved similarly by incor-

porating the second observable. According to U alone, Fig. 2

predicts a lead time of 40 days for both u0 and u1. Considering

IHF additionally, the two-dimensional heat map in Fig. 3

predicts a lead time of 52 and 24 days for u0 and u1, respec-

tively. Referring to the ensemble from u1 in Figs. 3d and 3e,

the arrival times of red trajectories to B provide a discrete

sampling of the lead time distributions of tBjtB , tA. The

sample means are 50 and 32 days respectively from u0 and u1,

again roughly matching with our predictions.

These two-dimensional projections still leave out 73

remaining dimensions, which we could incorporate to make

the forecasts even better. After accounting for all 75 di-

mensions, we would obtain the full committor function

q1:Rd /R. This is still a probability, that is, an expectation

over the unresolved turbulent processes and uncertain

initial condition. Low-dimensional committor projections

simply treat the projected-out dimensions as random vari-

ables sampled according to p. Whether projected to a space

of 1 or 75 dimensions, the committor is the function of that

space that is closest, in the mean-square sense, to the binary

indicator 1B[X(t)]; this is the defining characteristic of

conditional expectation (Durrett 2013). In the case that the

system does hit B next, the lead time is closest in the mean-

square sense to tB.

While high-dimensional systems offer many coordinates to

choose from, we argue that the committor and lead time are the

most important nonlinear coordinates to monitor for fore-

casting purposes. We will explore their relationship in the next

subsection. Although both encode some version of proximity

to SSW, they are independent variables that deserve separate

consideration.

d. Relationship between risk and lead time

A forecast is most useful if it comes sufficiently early (to

leave some buffer time before impact) and is sufficiently

precise to time your response. For example, in June we can

say with certainty it will snow next winter in Minnesota. To

be useful, we want to know the date of the first snow as early

as possible. By relating levels of risk (quantified by q1) and

lead time (quantified by h1), we can now assess the limits of

early prediction. Such a relationship would answer two

questions: For an SSW transition, 1) how far in advance will

we be aware of it with some prescribed confidence, say 80%?

2) Given some prescribed lead time, say 42 days, how aware

or ignorant could we be of it?

The committor and lead time have an overall negative rela-

tionship, but they do not completely determine each other, as the

contours in Figs. 3a and 3b donot perfectly line up.We treat them

as independent variables in Fig. 4, which maps zonal wind and

IHF as functions of the coordinates q1 and h1 in an inversion of

Fig. 3. The density p(x) projected on this space in Fig. 4a shows

again a bimodal structure around a and b, which occupy opposite

corners of this space by construction. Meanwhile, zonal wind and

IHF are indicated by the shading in Fig. 4b and 4c. The bridge

between a and b is not a narrow band, but rather includes a cu-

rious high-committor, high lead time branch that seems para-

doxical: points at q15 0.9 have a greater spread inh1 than points

at q1 5 0.5, contrary to the intuition that closeness to B in

probabilitymeans closeness in time. The color shading shows that

q1 is strongly associated with U(30 km), while h1 is more

strongly associatedwith IHF(30km). In particular, the horizontal

contours in Fig. 4c show that the large spread in lead time nearB

is due almost completely to variation in IHF. In other words, the

system can be highly committed toBwith a low zonal wind, but if

IHF is low, it may take a long time to get there. We can also see

this from the lower-left region of Figs. 3a and 3b, where com-

mittor is high and lead time is high.

There are two complementary explanations for this phenom-

enon. First, the low-U, low-IHF region of state space corresponds

to a temporary restoration phase in a vacillation cycle, which

delays the inevitable collapse of zonal wind below the threshold

defining B. In fact, the ensemble of pathways starting from u0 in

Fig. 3c has several members whose zonal wind either stagnates at

medium strength, or dips low and partially restores before finally

plunging all theway down. The second explanation is thatmany of

these partial restoration events are not part of an A / B transi-

tion, but rather aB/B transition. In a highly irreversible system

such as the Holton–Mass model, these two situations are quite

dynamically distinct. To distinguish them using DGA, we would

have to account for the past as well as the future, calculating

backward-in-time forecasts such as the backward committor

q2(x)5PxfX(t2) 2 Ag, where t2 , 0 is themost-recent hitting

time. Backward forecasts will be analyzed thoroughly in a forth-

coming paper, but they are beyond the scope of the present one.

In summary, q1 and h1 are principled metrics to inform prep-

aration for extreme weather. For example, a threatened commu-

nitymight decide in advance to start taking actionwhen an event is

very likely, q1 $ 0.8, and somewhat imminent, h1 # 10 days, or

rather, when an event is somewhat likely, q1 $ 0.5, and very im-

minent, h1 # 3 days. Because of partial restoration events, the

committor does not determine the lead time or vice versa, and so a

good real-time disaster response strategy should take both of them

into account, defining an ‘‘alarm threshold’’ that is not a single

number, but some function of both the committor and lead time.

This idea is similar in spirit to that of the Torino scale, which

assigns a single risk metric to an asteroid or comet impacts based

on both probability and severity (Binzel 2000). Of course, after

manynear-SSWevents, a lot ofmaterial damagemayhave already

occurred, which may be a reason to define a higher threshold for

the definition ofB, or even a continuum for different severity levels
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of SSW. We emphasize that the choice of A, B, and alarm

thresholds are more of a community and policy decision than a

scientific one. The strength of our approach is that it provides

a flexible numerical framework to quantify and optimize the

consequences of those decisions.

4. Sparse representation of the committor

The committor projections showed give only an impression

of its high-dimensional structure. While Eq. (15) says how to

optimally represent the committor over a given CV subspace,

optimizing S[f; u] over f, it does not say which subspace u is

optimal. If the committor does admit a sparse representation,

we could specifically target observations on these high-impact

signals. In this section we address this much harder problem of

optimizing S[f; u] over subspaces u.

The set of CV spaces is infinite, as observables u can be ar-

bitrarily complex nonlinear functions of the basic state variables

x. Machine learning algorithms such as artificial neural networks

are designed exactly for that purpose: to represent functions

nonparametrically from observed input–output pairs. However,

to keep the representation interpretable, we will restrict ourselves

FIG. 4. Committor and lead time as independent coordinates. This figure inverts the functions in Fig. 3, con-

sidering the zonal wind and integrated heat flux as functions of committor and lead time. The two-dimensional

space they span is the essential goal of forecasting. (a) The steady-state distribution on this subspace, which is

peaked near a and b (darker shading), weaker in the ‘‘bridge’’ region between them, and completely negligible the

white regions unexplored by data. (b),(c) Zonal wind and heat flux in color as functions of the committor and

lead time.
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to physics-informed input features based on the Eliassen–Palm

(EP) relation, which relates wave activity, PV fluxes and gradi-

ents, and heating source terms in a conservation equation. From

Yoden (1987b), the EP relation for the Holton–Mass model

takes the form

›
t

�
q02

2

	
1 (›

y
q)r21

s = � F

52
f 20
N2

r21
s q0›

z
(ar

s
›
z
c0) , (17)

where F5 (2r
s
u0y0)j1 (r

s
y0›

z
c0)k .

The EP flux divergence has two alternative expressions:

r21
s = � F5 y0q0 5 r21

s (R/Hf0)›z(rsy
0T 0). If there were no dissi-

pation (a 5 0) and the background zonal state were time-

independent (›tq5 0), dividing both sides by ›yq would express

local conservation of wave activityA5 rsq
02/(2›yq). Neither of

these is exact in the stochastic Holton–Mass model, so we use

the quantities in Eq. (17) as diagnostics: enstrophy q02, PV

gradient ›yq, PV flux y0q0, and heat flux y0T 0. Each field is a

function of (y, z) and takes on very different profiles for the

states a and b, as found by Yoden (1987b). A transition from

A to B, where the vortex weakens dramatically, must entail a

reduction in ›yq and a burst in positive y0T 0 (negative y0q0) as a

Rossby wave propagates from the tropopause vertically up

through the stratosphere and breaks. This is the general

physical narrative of a sudden warming event, and these same

fields might be expected to be useful observables to track for

qualitative understanding and prediction. For visualization, we

have found U(30 km) and IHF(30 km)5
Ð 30 km
0 km

e2z/Hy0T 0 dz to

be particularly helpful. However, this does not necessarily

imply they are optimal predictors of q1, and regression is a

more principled way to find them.

We start by projecting the committor onto each observable

at each altitude separately, in hopes of finding particularly

salient altitude levels that clarify the role of vertical interac-

tions. The first five rows of Fig. 5 display, for five fields (U, jCj,
q02, ›yq, and y0q0) and for a range of altitude levels, the mean

and standard deviation of the committor projected onto that

field at that altitude. Each altitude has a different range of

the CV; for example, because U has a Dirichlet condition at

the bottom and a Neumann condition at the top, the lower

levels have a much smaller range of variability than the high

levels. We also plot the integrated variance, or L2 projection

error, at each level in the right-hand column. A low projected

committor variance over U at altitude z0 means that the

committor is mostly determined by the single observable

U(z0), while a high projected variance indicates significant

dependence of q1 on variables other thanU(z0). To compare

different altitudes and fields as directly as possible, the L2

projection error at each altitude is an average over discrete

bins of the observable.

In selecting good CVs, we generally look for a simple,

hopefully monotonic, and sensitive relationship with the

committor. Of all the candidate fields, U and ›yq stand out

the most in this respect, being clearly negatively correlated

with the forward committor at all altitudes. The associated

projection error tends to be greatest in the region q1 ’ 0.5,

as observed before, but interestingly there is a small altitude

band around 15–25 km where its magnitude is minimized.

This suggests an optimal altitude for monitoring the com-

mittor through zonal wind, giving the most reliable estimate

possible for a single state variable. In contrast, the projec-

tion of q1 onto jCj, displays a large variance across all al-

titudes. The eddy enstrophy and potential vorticity flux

are also rather unhelpful as early warning signs, despite

their central role in SSW evolution. For example, the large,

positive spikes in heat flux across all altitudes generally

occur after the committor ’ 0.5 threshold has already been

crossed. Furthermore, the relationship of y0q0 with the

committor is not smooth. The q1 , 0.5 region at each alti-

tude is a thin band near zero.

The exhaustive CV search in Fig. 5 is visually compelling in

favor of some fields and some altitudes over others, but it is not

satisfactory as a rigorous comparison. Differences between

units and ranges make it difficult to objectively compare theL2

projection error. Furthermore, restricting to one variable at a

time is limiting. Accordingly, we also perform a more auto-

mated approach to identify salient variables in the form of a

generalized linear model for the forward committor, using

sparsity-promoting least absolute shrinkage and selection op-

erator (LASSO) regression due to Tibshirani (1996), as im-

plemented in the scikit-learn Python package (Pedregosa et al.

2011). As input features, we use all state variables Re{C}, Im

{C},U, the integrated heat flux
Ð z

0
e2z/Hy0T 0 dz, the eddy PV flux

y0q0, and the background PV gradient ›yq, at all altitudes z si-

multaneously. The advantage of a sparsity-promoting regres-

sion is that it isolates a small number of observables that can

accurately approximate the committor in linear combination.

Considering that regions close toA and B have low committor

uncertainty, we regress only on data points with q1 2 (0.2, 0.8),

and of those only a subset weighted by p(x)q1(x)[1 2 q1(x)]

to further emphasize the transition region q1 ’ 0.5. To con-

strain committor predictions to the range (0, 1), we regress on

the committor after an inverse-sigmoid transformation, ln

[q1/(12 q1)]. First we do this at each altitude separately, and

in Fig. 6a we plot the coefficients of each component as a function

of altitude. The bottom row of Fig. 5 also displays the com-

mittor projected on the height-dependent LASSO predictor.

The height-dependent regression in Fig. 6a shows each

component is salient for some altitude range. In general, U

and Im{C} dominate as causal variables at low altitudes, while

Re{C} dominates at high altitudes. The overall prediction

quality, as measured by R2 and plotted in Fig. 6b, is greatest

around 21.5 km, consistent with our qualitative observations

of Fig. 5. Note that not all single-altitude slices are sufficient

for approximating the committor, even with LASSO regres-

sion; in the altitude band 50–60 km, the LASSO predictor is

not monotonic and has a large projected variance, as seen in

the bottom row of Fig. 5. The specific altitude can matter a

great deal. But by using all altitudes at once, the committor

approximation may be improved further. We thus repeat the

LASSO with all altitudes simultaneously and find the sparse

coefficient structure shown in Fig. 6c, with a few variables

contributing the most, namely the state variables C and U in
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FIG. 5. Projection of the forward committor onto a large collection of altitude-dependent physical variables. (top left) Heat maps of q1

as a function ofU and z; white regions denote whereU(z) is negligibly observed. (top center) The standard deviation in q1 as a function of

U and z; this uncertainty stems from the remaining 74 model dimensions. (top right) The total mean-squared error due to the

projection for each altitude, i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S[f ;u]

p
from Eq. (14). A low value indicates that this level is ideal for prediction. The remaining rows

show the same quantities as in the top row for other physical variables: streamfunction magnitude, eddy enstrophy, background PV

gradient, eddy PV flux, and LASSO.
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the altitude range 15–22 km. The nonlinear CVs failed to

make any nonzero contribution to LASSO, and this remained

stubbornly true for other nonlinear combinations not shown,

such as y0T 0. With multiple lines of evidence indicating

21.5 km as an altitude with high predictive value for the for-

ward committor, we can make a strong recommendation for

targeting observations here. This conclusion applies only to

the Holton–Mass model under these parameters, but the

methodology explained above can be applied similarly to

models of arbitrary complexity.

We have presented the committor and lead time as ‘‘ideal’’

forecasts, especially the committor, which we have devoted

considerable effort to approximating in this section. We want

to emphasize that q1 and h1 are not competitors to ensemble

forecasting; rather, they are two of its most important end re-

sults. So far, we have simply advocated including q1 and h1 as

quantities of interest. Going forward, however, we do propose

an alternative to ensemble forecasting aimed specifically at the

committor, lead time, and a wider class of forecasting func-

tions, as they are important enough in their own right to

FIG. 6. Results of LASSO regression of the forward committor with linear and nonlinear input features. (a) The coefficients when q1 is

regressed as a function of only the variables at a given altitude, and (b) the corresponding correlation score. 21.5 km seems the most

predictive (where z[ 0 at the tropopause, not the surface). (c) The coefficient structure when all altitudes are considered simultaneously.

Most of the nonzero coefficients appear between 15 and 22 km, distinguishing that range as highly relevant for prediction.
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warrant dedicated computation methods. Our approach uses

only short simulations, making it highly parallelizable, and shifts

the numerical burden from online to offline. Figures 2–6 were all

generated using the short-simulation algorithm. While the

method is not yet optimized and in some cases not competitive

with ensemble forecasting, we anticipate such methods will be

increasingly favorable with modern trends in computing.

5. The computational method

In this section we describe the methodology, which involves

some technical results from stochastic processes and measure the-

ory. After describing the theoretical motivation and the numerical

pipeline in turn, we demonstrate themethod’s accuracy and discuss

its efficiency compared to straightforward ensemble forecasting.

a. Feynman–Kac formulas

The forecast functions described above—committors and

passage times—can all be derived from general conditional

expectations of the form

F(x; l)5 E
x

�
G[X(t)]exp

�
l

ðt
0

G[X(s)] ds

��
, (18)

where again the subscript x denotes conditioning onX(0)5 x;

G, G are arbitrary known functions overRd; and t is a stopping

time, specifically a first-exit time like Eq. (10) but possibly

with D replaced by another set. The term l is a variable pa-

rameter that turns F into a moment-generating function. To

see that the forward committor takes on this form, set

G(x)5 1B(x), l 5 0 (G can be anything), and t5 tA<B. Then

F(x)5Ex[1B[X(t)]]5PxfX(tDc ) 2 Bg5q1(x). For the h1,

set t 5 tB, G5 1B, and G 5 1. Then

F(x;l)5 E
x
[1

B
[X(t)]exp(lt)] (19)

1

q1(x)

›

›l
F(x; 0)5

E
x
[t1

B
[X(t)]]

E
x
[1

B
[X(t)]]

(20)

5h1(x) . (21)

So we must also be able to differentiate F with respect to l.

More generally, the function G is chosen by the user to

quantify risk at the terminal time t; in the case of the forward

committor, that risk is binary, with an SSW representing a

positive risk and a radiative vortex no risk at all. The function G
is chosen to quantify the risk accumulated up until time t,

whichmight be simply an event’s duration, but other integrated

risks may be of more interest for the application. For example,

one could express the total poleward heat flux by setting

G5 y0T 0, or the momentum lost by the vortex by setting G(x)5
U(a)2U(x). Extending (20), one can compute not only means

but higher moments of such integrals by expressing the risk

with G. Repeated differentiation of F(x; l) gives

›klF(x; 0)5E
x

�
G[X(t)]

�ðt
0

G[X(s)] ds

�k�
(22)

We choose to focus on expectations of the form (18) in order to

take advantage of the Feynman–Kac formula, which represents

F(x;l) as the solution to aPDEboundary valueproblemover state

space. As PDEs involve local operators, this form is more ame-

nable to solution with short trajectories that do not stray far from

their source. The boundary value problem associated with (18) is(
(L1lG)F(x; l)5 0 x 2 D

F(x;l)5G(x) x 2 Dc
. (23)

The domain D here is some combination of Ac and Bc. The

operator L is known as the infinitesimal generator of the sto-

chastic process, which acts on functions by pushing expecta-

tions forward in time along trajectories:

Lf (x)d lim
Dt/ 0

E
x
[f [X(Dt)]]2 f (x)

Dt
. (24)

In a diffusion process like the stochastic Holton–Massmodel,L
is an advection–diffusion partial differential operator that is

analogous to amaterial derivative influidmechanics.Thegenerator

encapsulates the properties of the stochastic process. In addition to

solving boundary value problems (18), its adjoint L* provides the

Fokker–Planck equation for the stationary density p(x):

L*p(x)5 0. (25)

We can also write equations for moments of F, as in (22), by

differentiating (23) repeatedly and setting l 5 0:

L[›klF](x; 0)52kG›k21
l F . (26)

This is an application of the Kac moment method (Fitzsimmons

and Pitman 1999). Note that we never actually have to solve (23)

with nonzerol. Insteadwe implement the recursion above.Note

that the base case, k5 0, withG5 1B gives F1 5 q1, no matter

what the risk functionG. In this paper we compute only up to the

first moment, k 5 1. Further background regarding stochastic

processes and Feynman–Kac formulas can be found in Karatzas

and Shreve (1998), Oksendal (2003), E et al. (2019).

b. Dynamical Galerkin approximation

To solve the boundary value problem (23) with l5 0, we start

by following the standard finite element recipe, converting to a

variational form, and projecting onto a finite basis. First, we

homogenize boundary conditions by writingF(x)5 F̂(x)1 f (x),

where F̂ is a guess function that obeys the boundary condition

F̂jDc 5G, and f jDc 5 0. Next, we integrate the equation against

any test function f, weighting the integrand by a density m

(which is arbitrary for now, but will be specified later):ð
Rd

f(x)Lf (x)m(x) dx5
ð
f(x)(G2LF̂)(x)m(x)dx

hf,Lf i
m
5 hf,G2LF̂i

m
. (27)

The test functionf should live in the same space as f, that is, with

homogeneous boundary conditions f(x)5 0 for x 2 A<B. We

refer to the inner products in (27) as being ‘‘with respect to’’ the

measure (with density) m. We approximate f by expanding in a

finite basis f (x)5�M

j51jjfj(x) with unknown coefficients jj, and

enforce that (27) hold for eachfi. This reduces the problem to a

system of linear equations,
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�
M

j51

hf
i
,Lf

j
i
m
j
j
5 hf

i
,G2LF̂i

m
i5 1, . . . ,M, (28)

which can be solved with standard numerical linear algebra

packages.

This procedure consists of three crucial subroutines. First, we

must construct a set of basis functions fj. Second, we have to

evaluate the generator’s action on them, Lfj. Third, we have to

compute inner products. With standard PDEmethods, the basis

size would grow exponentially with dimension, quickly render-

ing the first and third steps intractable. Successful approaches

will involve a representation of the solution F, suitable for the

high dimensional setting, that is, representations of the type

commonly employed for machine learning tasks. DGA is one

such method, whose special twist is to construct a ‘‘data in-

formed’’ basis of reasonable size, evaluate the generator by

implementing Eq. (24) with the same dataset, and finally eval-

uate the inner products (27) with a Monte Carlo integral. The

data consist of short trajectories launched from all over state

space, which the system of linear equations stitches together

into a global function estimate. We sketch the procedure here,

but for the implementation details we refer to the appendix and

toThiede et al. (2019) and Strahan et al. (2021), whereDGAhas

already been developed for molecular dynamics.

Step 1: Generate the data, in the format of N initial

conditions {Xn: 1# n#N}. Evolve each initial condition

forward for a ‘‘lag time’’ Dt to obtain a set of short

trajectories fXn(t): 0# t#Dt, n5 1, . . . , Ng � Rd. (Lag

time is an algorithmic parameter for DGA. It is not to be

confused with the forecast time horizon between the

prediction and the event of interest in meteorology.)

Here and going forward,Xn will meanXn(0). The choice

of starting points is flexible, but crucial for the efficiency

and accuracy of DGA. Because our goal here is to

demonstrate interpretable results, we prioritize simplic-

ity and accuracy over efficiency, and defer optimization

to later work. We simply draw initial conditions at

random from the long control simulation of 5 3 105

days, and then generate new short trajectories from

those points. We do not sample the points with equal

probability, but instead reweight to get a uniform dis-

tribution over the space [U(30 km), jCj(30 km)], within

the bounds realized by the control simulation, which

are approximately 230m s21 # U(30 km) # 70m s21

and 0m2 s21# jCj(30 km)# 23 107m2 s21. This sampling

procedure, and any other version, implicitly defines a

sampling measure m on state space, where m(x)dx is the

expected fraction of starting points in the neighborhood dx

about x. Sampling points with equal weight from the control

run would induce m 5 p, a very inefficient choice because

probability concentrates around themetastable states a and

b. The reweighting procedure ensures data coverage of

intermediate-wind regions between A and B, as well as the

large bursts of wave amplitude that characterize the transition

pathways. Ourmain results useN5 53 105 short trajectories

with a lag time of Dt 5 20 days, sampled at a frequency of

twice per day. This dataset is more than needed to get a

reasonable committor estimate, but we have sampled

generously in order to visualize the functions in high de-

tail. The final section will show the method is robust,

capable of reasonably approximating the committor even

with an order-of-magnitude reduction in data.

Step 2: Define the basis. The Galerkin method works for any

class of basis functions that becomes increasingly expressive

as the library grows and becomes capable of estimating any

function of interest. However, with a finite truncation,

choosing basis functions is a crucial ingredient of DGA,

greatly impacting the efficiency and accuracy of the results.

In our current study, we restrict to the simplest kind of basis,

which consists of indicator functions fi(x)5 1Si(x), where

{S1, . . . , SM} is a disjoint partition of state space. In practice

we will construct these sets by clustering the initial data

points as described in more detail in the appendix. This is a

common practice in the computational statistical mechanics

community for building a Markov state model (MSM)

(Chodera et al. 2006; Frank and Fischer 2008; Pande et al.

2010; Bowman et al. 2013; Chodera and Noé 2014). MSMs

are a dimensionality reduction technique that has also been

used in conjunction with analysis of metastable transitions,

primarily in protein folding dynamics (Noé et al. 2009).

MSMs have also been used recently to study garbage patch

dynamics in the ocean (Miron et al. 2021) as well as complex

social dynamics (Helfmann et al. 2021). In Maiocchi et al.

(2020), the authors take an interesting approach to MSMs

by clustering points based on proximity to unstable periodic

orbits, a potentially useful paradigm for general chaotic

weather phenomena (Lucarini andGritsun 2020).DGAcan

be viewed as an extension of MSMs, though, rather than

producing any reduced complexity model, the explicit goal

in DGA is estimating specific functions as in Eq. (18).

Step 3: Apply the generator. The forward difference formula

cLf(X
n
)5

f[X
n
(Dt)]2 f(X

n
)

Dt
(29)

suggested by the definition of the generator (24), results

in a systematic bias when Dt is finite. On the other hand,

small values of Dt lead to large variances in our Monte

Carlo estimates of the inner products in (28). To resolve

these issues, we use an integrated form of the Feynman–

Kac equations that involves stopping trajectories when

they enter A or B. Details are provided in the appendix.

Step 4: Compute the inner products. The inner products in

Eq. (28) are integrals over high-dimensional state space that

are intractable with standard quadrature, but can be approxi-

mated using Monte Carlo integration. If X is an Rd-valued

random variable distributed according to m, and we have ac-

cess to randomsamples {X1, . . . ,XN} (whichwedo), the lawof

large numbers gives, for any function gwith finite expectation,

lim
N/‘

1

N
�
N

n51

g(X
n
)5

ð
Rd

g(x)m(x)dx . (30)

Setting g(x)5fi(x)Lfj(x), the sample average on the

left-hand side of (30) therefore provides an estimator of

hfi,Lfjim. Of course, our approximation uses finite N and

nonzero Dt. A similar sample average approximation can
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be used to estimate the inner product on the right-hand

side of (28).

These same steps apply to both q1 and E[tB], as well as the

recursion in (26) for h1. For the Fokker–Planck Eq. (25),

one extra step is needed to convert an equation with L*
into an equation withL. Our procedure for estimating p is

described in appendix A.

Step 5: Solve the Eq. (28). With a reasonable basis size

M& 1000, a lower–upper (LU) solver such as in Linear

Algebra Package (LAPACK) via Numpy can handle

Eq. (28). In the case of the homogeneous system for

w(x), a quantile regression (QR) decomposition can

identify the null vector.

c. DGA fidelity and sensitivity analysis

To illustrate the effect of parameter choices on performance,

we present here a simple sensitivity analysis. Figure 7 verifies the

numerical accuracy and convergence of DGA by plotting the

committor as a function of U(30 km), estimated both with

DNS and DGA, for various DGA parameters. The red curves

q1
DGA[U(30 km)] are calculated by projecting the committor as

in Fig. 2a, while the black curve q1
DNS[U(30 km)] is an empirical

committor estimate equal to the fraction of control simulation

points seen at a particular value of U(30 km) that next hit B.

In Figs. 7a, 7b, and 7d, the lag timeDt increases from 5 to 10 to

20 days while the number of short trajectories stays fixed atN5
53 105. Figure 7c has a long lag of 20 days, but a small dataset of

N5 53 104, allowing us to see the trade-off between N and Dt.
The basis sizeM is chosenheuristically as large as possiblewithin

reason for the clustering algorithm (see the appendix). While

DGA tends to systematically overestimate q1 relative to q1
DNS in

the midrange of U, it seems to approach the empirical estimate

as the data size and lag time increase. Each plot also displays the

root-mean-square deviation between the two estimators over

this subspace, «5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(q1

DGA 2q1
DNS)

2ip
q

. Within this regime, it

seems that increasing the lag time has a greater impact on the

deviation than increasing the number of data points. Figures 7b

and 7c have approximately the same deviation «, but Fig. 7c uses

only one fifth the data, measured by total simulation time. On

the other hand, more short trajectories can be parallelized more

readily than fewer long trajectories, and the optimal choice will

depend on computing resources.

It is natural to ask whether our short trajectory based ap-

proach is more efficient than DNS in which many independent

‘‘long’’ trajectories are launched from a single initial condition

x and the committor probability q1(x) (or another forecast) is

estimated directly. For a single value of x for which q1(x) is not

very small (so that a nonnegligible fraction of trajectories reach

B before A) and for which the lead time h1(x) is not too large

(so that trajectories reaching B do so without requiring long

integration times), DNS will undoubtedly be more efficient.

This is often the situation in real-time weather forecasting.

However, a key feature of our approach is that it simulta-

neously estimates forecasts at all values of x, allowing the

subsequent analysis of those functions that has been the focus

of much of this article. Global knowledge of the committor and

lead time is more pertinent for oft-repeated forecasts, for long-

term risk assessment of extreme event climatology, and for

targeting observations optimally. Building accurate estimators

in all of state space by DNS would be extremely costly even for

the reduced complexity model studied here.

6. Conclusions

Forecasting rare events is, by the very nature of rare

events, an extremely difficult computational task, and one of

science’s most pressing challenges. We have described a

computational framework, a dynamical Galerkin approxi-

mation to the Feynman–Kac equations, that combines the

minimalistic philosophy of dimensionality reduction with the

fidelity of high-resolution models. We identify a set of re-

duced coordinates, the committor probability and expected

lead time, that provide the essential information that large

ensemble forecasts hope to compute. DGA uses relatively

short simulations of the full model to estimate these quan-

tities of interest, allowing for prediction on much longer time

scales than that of the simulation. In its focus on directly

estimating statistics of interest, DGA differs from previous

reduced-order modeling methods that attempt to capture

general qualities of the system, including both physics-based

models (Lorenz 1963; Charney andDeVore 1979; Legras and

Ghil 1985; Crommelin 2003; Timmermann et al. 2003; Ruzmaikin

et al. 2003) and more recent data-driven models making use of

machine learning (Giannakis and Majda 2012; Giannakis et al.

2018; Berry et al. 2015; Sabeerali et al. 2017; Majda and Qi

2018; Wan et al. 2018; Bolton and Zanna 2019; Chattopadhyay

et al. 2020; Chen and Majda 2020; Kashinath et al. 2021;

Chattopadhyay et al. 2021).

We have shown numerical results in the context of a sto-

chastically forced Holton–Mass model with 75 degrees of

freedom, which points to the method’s promise for forecasting.

By systematically evaluating many model variables for their

utility in predicting the fate of the vortex, we have identified

some salient physical descriptions of early warning signs. We

have furthermore examined the relationship between proba-

bility and lead time for a given rare event, a powerful pairing

for assessing predictability and preparing for extreme weather.

Our results suggest that the slow evolution of vortex pre-

conditioning is an important source of predictability. In par-

ticular, the zonal wind and streamfunction in the range of

10–20 km above the tropopause seems to be optimal among a

large class of dynamically motivated observables.

Beyond the problemof real-timeweather forecasting, it is also

important to assess the climatology, that is, long-term frequency,

intensity, and other characteristics of rare events. For this goal as

well, our methodology offers advantages over large ensemble

simulations, which are currently themost detailed source of data

(e.g., Schaller et al. 2018). The committor and lead time are in-

gredients in a larger framework called transition path theory

(TPT) for describing rare transition events at steady state,

meaning average properties over long time scales. TPTdescribes

not only the future evolution from an initial condition (x/ B),

but the ensemble of full vortex breakdown events (A/ B), and

how they differ from restoration events (B / A). In principle,

interrogating the ensemble of transition paths requires direct
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simulation of the system long enough to observemany transition

events. However, using TPT, quantities computable by our

framework can be combined to yield key statistics describing the

ensemble of transition paths (Metzner et al. 2006, 2009; E and

Vanden-Eijnden 2010, 2006; Finkel et al. 2020). In a following

paper, we will apply the same short-trajectory forecasting ap-

proach together with TPT to compute transition path statistics

such as return times and extract insight about physical mecha-

nisms of the transition process.

Scaling our approach up to state-of-the-art weather and

climate models will require significant further development. In

particular, a completely new procedure for generating trajec-

tory initial conditions will need to be introduced. Generation

of a trajectory long enough to thoroughly sample transitions

will not be practical for more complicated models. One prom-

ising alternative is launching many trajectories in parallel and

selectively replicating those that explore new regions of state

space, especially transition regions. Such an approach could

build on exciting progress over the last decade in targeted rare

event simulation schemes (Hoffman et al. 2006; Weare 2009;

Bouchet et al. 2011, 2014; Vanden-Eijnden and Weare 2013;

Chen et al. 2014; Yasuda et al. 2017; Farazmand and Sapsis 2017;

Dematteis et al. 2018; Mohamad and Sapsis 2018; Dematteis

et al. 2019; Webber et al. 2019; Bouchet et al. 2019a,b; Plotkin

et al. 2019; Simonnet et al. 2021; Ragone and Bouchet 2020;

Sapsis 2021). A potential challenge here is thatGCMsmay not be

set up for short simulations that start and stop frequently. For this

reason, it may be sensible to use longer lag times and a sliding

window to define short trajectories. Furthermore, the communi-

cation overhead required for adaptive sampling with GCMs

would impose additional costs. We have deferred the sampling

problem to future work, acknowledging that this step is crucial to

make DGA competitive. The utility of committor and lead time,

however, is independent of the method for computing them.

FIG. 7. Fidelity ofDGA.For severalDGAparameter values ofN (the number of data points),M (the number of basis

functions), and lag time, we plot the committor calculated fromDGAandDNS (from the long control simulation), both

as a function of U(30 km). The mean-square difference « in the legend is used as a global error estimate for DGA.
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Defining the source of stochasticity is also an important step

that varies between models. Explicitly stochastic parameteri-

zation (e.g., Berner et al. 2009; Porta Mana and Zanna 2014)

will automatically lead to a spread in the short-trajectory en-

semble, but in deterministic models, uncertainty will arise from

perturbing the initial conditions. This may require special care

depending on the model.

Another area of algorithmic improvement is selecting a basis

expansion of the forecast functions. In upcoming work we will

explore more flexible representations using kernel methods and

neural networks. The solution of high-dimensional PDEs is an

active research area that is making innovative use of machine

learning, particularly in the fields of computational chemistry,

quantummechanics, and fluid dynamics (e.g., Carleo andTroyer

2017; Han et al. 2018; Khoo et al. 2018; Li et al. 2020;Mardt et al.

2018; Li et al. 2019; Raissi et al. 2019; Lorpaiboon et al. 2020).

Similar approaches may hold great potential for understanding

predictability in atmospheric science.
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APPENDIX

Feynman–Kac Formula and DGA

In this section we spell out the DGA procedure in more

detail than the main text, explaining the variants that get us to

the more intricate conditional expectations. The theoretical

background can be found in, for example, Karatzas and Shreve

(1998), Oksendal (2003), E et al. (2019). Let X(t) be a time-

homogeneous stochastic process with continuous sample paths

in Rd. Associated to this process is the infinitesimal gener-

ator L, which acts on functions of state space (also called

‘‘observable’’ functions) by evolving their expectation forward

in time:

Lf (x)5 lim
Dt/ 0

E
x
[f [X(Dt)]]2 f (x)

Dt
, (A1)

where Ex[�]d E[ �jX(0)5 x]. It can be shown that under the

above assumptions on X, the Itô chain rule gives

df [X(t)]5Lf [X(t)]dt1 dM(t) , (A2)

where M(t) is a martingale. More concretely, in this paper,

X(t) is an Itô diffusion obeying the stochastic differential

equation

X(t)5X(0)1

ðt
0

b[X(s)] ds

1

ðt
0

s[X(s)] dW(s) , (A3)

with infinitesimal generator and martingale terms

Lf (x)5�
d

i51

b
i
(x)

›f (x)

›x
i

1�
d

i51
�
d

j51

1

2
[s(x)s(x)T]

ij

›2f (x)

›x
i
›x

j

, and (A4)

dM(t)5�
d

i51

›f (x)

›x
i

s
ij
(x)dW

j
(t) . (A5)

The key forecasting quantities in this paper are of the form (18)

and can be solved with (23), a linear equation involving the

generator. We now lay out a brief derivation of the Feynman–

Kac formula and our numerical discretization, roughly fol-

lowing E et al. (2019).

1 This report was prepared as an account of work sponsored by

an agency of the U.S. government. Neither the U.S. government

nor any agency thereof, nor any of their employees, makes any

warranty, express or implied, or assumes any legal liability or re-

sponsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise does not nec-

essarily constitute or imply its endorsement, recommendation, or

favoring by the U.S. government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or

reflect those of the U.S. government or any agency thereof.
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a. Feynman–Kac formula

Let D be a domain in Rd [e.g., (A<B)c] and tDc 5
minft$ 0:X(t);Dg be the first exit time from this domain

starting at time zero. This is a random variable that depends on

the starting condition x 2 D. Let G: ›D/R be a boundary

condition, G:D/R a source term, and G:D/R a term to

represent accumulated risk. We seek a PDE for the conditional

expectation from (18):

F(x)5 E
x

�
G[X(t)]exp

�
l

ðt
0

G[X(s)] ds

��
, (A6)

where Ex[�]5E[ �jX(0)5 x]. To derive the PDE (23), consider

the following stochastic process:

Z(t)5F[X(t)]Y(t) , (A7)

where Y(t)dexp
�
l
Ð t

0
G[X(s)] ds

�
. Itô’s lemma gives us that

dY(t) 5 lG[X(t)]Y(t)dt. Hence, applying the product rule

to Z(t),

dZ(t)5dF[X(t)]Y(t)1F[X(t)] dY(t) , (A8)

5LF[X(t)]Y(t) dt1 dM(t)Y(t)

1 lF[X(t)]G[X(t)]Y(t) dt, and (A9)

5 [LF1lGF][X(t)]Y(t)dt1Y(t)dM(t) , (A10)

where in (A8) we have left out the quadratic cross-variation of

F[X(t)] andY(t) becauseY has finite variation. If the bracketed

term [L1lG(x)]F(x)5 0 for all x, thenZ(t) is a martingale and

it follows that

Z(0)5E
x
[Z(t)], and (A11)

F(x)5E
x

�
F[X(t)]exp

�
l

ðt
0

G[X(s)] ds

��
. (A12)

Finally, the formula still holds if we substitute a stopping time

for t. By choosing t, the first exit time fromD, the F[X(t)] inside

the brackets becomes its boundary valueG[X(t)]. Thus F(x) as

defined in (A6) also solves the PDE boundary value prob-

lem (23):

(
[L1lG(x)]F(x;l)5 0 x 2 D

F(x;l)5G(x) x 2 Dc
, (A13)

where we have inserted the additional dependence of F

on l in order to lead directly to the recursive formulas

(20) and (26).

b. Dynkin’s formula and finite lag time

We have presented (29) as a mathematically concise

approximation to the generator. In practice, we achieve

better numerical stability integrating the generator (A1)

to a finite lag time Dt, following Strahan et al. (2021). The

theorem that allows this is called Dynkin’s formula (e.g.,

Oksendal 2003), which states that for any suitable function

f :Rd /R and a stopping time u (not to be confused with

CV coordinates),

E
x
[f [X(u)]]5 f (x)1 E

x

�ðu
0

Lf [X(t)] dt

�
. (A14)

The left-hand side, Ex[f [X(u)]], is known as the transition op-

erator T uf (x), a finite-time version of the generator. Note that

this is a deterministic operator despite u being a random vari-

able, because by definition T u only has u inside of expectations.

We can apply Dynkin’s formula to (A13) before numerical

approximation, setting u 5 min(Dt, t). That is, the short tra-

jectory {X(t):0 # t # Dt 5 20 days} is stopped early if it exits

the domain D before Dt. Applying Dynkin’s formula to F(x;

l), we find

E
x
[F[X(u)]]5F(x)1 E

x

�ðu
0

LF[X(t)] dt

�
5F(x)2 lE

x

�ðu
0

G[X(t)]F[X(t)] dt

�
T uF(x)5F(x)2lKu[GF](x) , (A15)

whereKu is shorthand notation for the integral operator on the

right. Equation (A15), along with the boundary conditions

FjDc 5GjDc , gives us a linear equation for F(x) that can be

solved by DGA. As outlined in section 5, we write F5 F̂1 f ,

where F̂ obeys the boundary conditions and f obeys

(T u 2 1)f (x)1lKu[Gf ](x)

52(T u 2 1)F̂(x)2lKu[GF̂](x) . (A16)

We then expand f 5�M

j51jjfj(x) with basis functions {fj} that

are zero onDc, and take m-weighted inner products with fi on

both sides to obtain

�
M

j51

j
j
(hf

i
, (T u 2 1)f

j
i
m
1lhf

i
, Ku[Gf

j
]i

m
)

2 hf
i
, (T u 2 1)F̂i

m
2 lhf

i
, Ku[GF̂]i

m
. (A17)

Finally, the inner products can be estimated with short tra-

jectories using (30). For two functions f and c, the first left-

hand side inner product is approximately

hf, (T u 2 1)ci
m
’

1

N
�
N

n51

f(X
n
)fc[X

n
(u

n
)]2c(X

n
)g , (A18)

where un is the sampled first-exit time of the nth trajectory, or

Dt if it never exits. The second left-hand side inner product is

approximately

hf, Ku[Gc]i
m

’
1

N
�
N

n51

f(X
n
)

ðun
0

G[X
n
(t)]c[X

n
(t)] dt , (A19)

where the time integral on the right is computed with the

trapezoid rule on the trajectory, which is sampled every

0.5 days. The error from numerical quadrature is likely small

compared to the error from basis set construction, but higher-

order integration methods do merit further investigation.

Given a fixed G and G, and with the inner products in hand,

we now have (A17) as a family of matrix equations with l a

continuous parameter:
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(P1lQ)j(l)5 v1 lr . (A20)

We can then differentiate in l and evaluate at l5 0 to obtain a

ready-to-solve discretization of the recursion (26):

Pj(0)5 v , (A21)

Pj0(0)5 r2Qj(0), and (A22)

Pj(k)(0)52kQj(k21)(0) for k$ 2, (A23)

where the kth derivative j(k)(0) is the coefficient expansion in

the basis {fj} of the kth moment from (22):

›klF(x; 0)5E
x

�
G[X(t)]

�
l

ðt
0

G[X(s)]ds

�k�
. (A24)

c. Change of measure

Wenow specify how to compute the change ofmeasure fromm

(the sampling distribution) to p (the steady-state distribution),

using an adjoint versionof theFeynman–Kac formula.Eachof the

basis functions fi has an expectation at time zero with respect to

the steady-state distribution: EX(0);p[fi[X(0)]]5
Ð
fi(x)p(x) dx.

Evolving the dynamics from 0 to Dt induces another expectation:
EX(0);p[fi[X(Dt)]]5

Ð
T Dtfi(x)p(dx). p is the invariant distri-

bution, which means that these two integrals are equal:ð
(T Dt 2 1)f

i
(x)p(x) dx5 0: (A25)

Furthermore, with a change of measure they can be rewritten

with respect to the sampling measure m instead of p, soð
(T Dt 2 1)f

i
(x)

dp

dm
(x)m(x)dx5 0. (A26)

The change of measure (dp/dm)(x), which we abbreviate w(x),

is yet another unknown function that we expand in the basis as

w(x)5�jjjfj(x). Putting this into the integral and usingMonte

Carlo, we cast the coefficients jj as the solution to a null ei-

genvector problem:

05

ð
(T Dt 2 1)f

i
(x)�

M

j51

j
j
f
j
(x)m (dx), and (A27)

’�
M

j51

j
j�
N

n51

ff
i
[X

n
(Dt)]2f

i
(X

n
)gf

j
(X

n
) . (A28)

This last equation is simply the Fokker–Planck equation,

L*p5 0, in weak form and integrated in time using Dynkin’s

formula. Note that the matrix elements in (A28) are the

transpose of those in (A18).

d. DGA details

We will provide more details here on our particular construc-

tion of basis functions. The partition {S1, . . . , SM} to build the basis

function library fj(x)5 1Sj(x), n 5 1, . . . , N should be chosen

with a number of considerations in mind. The partition elements

should be small enough to accurately represent the functions they

are used to approximate, but large enough to contain sufficient

data to robustly estimate transition probabilities. We form

these sets by a hierarchical modification of k-means clustering

on the initial points fXngNn51. The K-means method is a robust

method that can incorporate new samples by simply identifying

the closest centroid, and is commonly used in molecular dy-

namics (Pande et al. 2010). However, straightforward appli-

cation of k-means, as implemented in the scikit-learn software

(Pedregosa et al. 2011), can produce a very imbalanced cluster

size distribution, even with empty clusters. This leads to un-

wanted singularities in the constructed Markov matrix. To

avoid this problem we cluster hierarchically, starting with a

coarse clustering of all points and iteratively refining the larger

clusters, at every stage enforcing a minimum cluster size of five

points, until we have the desired number of clusters (M). After

clustering on the initial points {Xn}, the other points {Xn(t), 0,
t # Dt} are placed into clusters using an address tree produced

by the k-means cluster hierarchy. For boundary value prob-

lems with a domain D and boundary Dc, we need only cluster

points in D since the basis should be homogeneous. The total

number of clusters should scale with dataset. In our main re-

sults with N5 53 105, we foundM5 1500 to be enough basis

functions to resolve some of the finer details in the structure of

the forecast functions, but not so many as to require an un-

manageably deep address tree, which manifests in dramatic

slowdown past a certain threshold. At this point, the cluster

number is still a manually tuned hyperparameter.

Because the committor and lead time obey Dirichlet

boundary conditions on A<B, the basis functions used to

construct them should be zero on A<B, meaning only data

pointsXn;A<B should be used to produce the clusters. On

the other hand, the steady-state distribution has no boundary

condition to satisfy, only a global normalization condition.

Hence, the basis for the change of measure w must be dif-

ferent from the basis for q1 and h1, with its clusters including

all data points in A<B. Furthermore, the basis must be

chosen so that the matrix h(T Dt 2 1)fi, fji has a nontrivial

null space; this is guaranteed by the indicator basis set we use

but can otherwise be guaranteed by including a constant

function in the basis.

The use of an indicator basis follows the Markov state

modeling literature (e.g., Chodera et al. 2006; Pande et al.

2010), which has the advantage of simplicity and robustness. In

particular, the discretization of T u 2 1 is a properly normalized

stochastic matrix (with nonnegative entries and rows summing

to 1), which guarantees the maximum principle 0 # q1(x) # 1

and 0 # w(x) for all data points x. However, alternative basis

sets have been shown to be promising, perhaps with much less

data. Thiede et al. (2019) used diffusion maps, while Strahan

et al. (2021) used a PCA-like procedure to construct the basis.

More generally, there is no requirement to use a linear

Galerkin method to solve the Feynman–Kac formulas. More

flexible functional forms may have an important role to play as

well. In the low-data regime, some preliminary experiments

have suggested that Gaussian process regression (GPR) is a

useful way to constrain the committor estimate with a prior,

following the framework in Bilionis (2016) to solve PDEs with

Gaussian processes. As mentioned in the conclusion, there is

rapidly growing interest in the use of artificial neural networks

to solve PDEs. As with many novel methods, however, DGA is
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likely to work best on new applications when its simplest form

is applied first. This will be our approach in coming experi-

ments on more complex models.
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