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Abstract
In this paper we study the principal spectral theory and asynchronous exponential
growth for age-structured models with nonlocal diffusion of Neumann type. First,
we provide two general sufficient conditions to guarantee existence of the principal
eigenvalue of the age-structured operator with nonlocal diffusion. Then we show that
such conditions are also enough to ensure that the semigroup generated by solutions of
the age-structured model with nonlocal diffusion exhibits asynchronous exponential
growth. Compared with previous studies, we prove that the semigroup is essentially
compact instead of eventually compact, where the latter is usually obtained by showing
the compactness of solution trajectories.Next, following the technique developed inVo
(Principal spectral theory of time-periodic nonlocal dispersal operators of Neumann
type. arXiv:1911.06119, 2019), we overcome the difficulty that the principal eigen-
value of a nonlocal Neumann operator is not monotone with respect to the domain and
obtain some limit properties of the principal eigenvalue with respect to the diffusion
rate and diffusion range. Finally, we establish the strong maximum principle for the
age-structured operator with nonlocal diffusion.
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1 Introduction

In this paper we study the following age-structured model with nonlocal diffusion and
Neumann boundary condition:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t,a,x)
∂t + ∂u(t,a,x)

∂a
= D

∫

Ω J(x − y)(u(t, a, y) − u(t, a, x))dy− μ(a, x)u(t, a, x),
(t, a, x) ∈ (0,∞) × (0, a+) × Ω,

u(t, 0, x) =
∫ a+

0 β(a, x)u(t, a, x)da, (t, x) ∈ (0,∞) × Ω,
u(0, a, x) = u0(a, x), (a, x) ∈ (0, a+) × Ω,

(1.1)

where u(t, a, x) denotes the density of a population at time t of age a ∈ [0, a+] at
location x ∈ Ω, in which a+ < ∞ represents the maximum age and Ω ⊂ RN is a
bounded and convex domain with smooth boundary, D > 0 is the diffusion rate. The
nonlocal diffusion kernel J ∈ C1(RN) is nonnegative and supported in B(0, r) for
some r > 0, and satisfies J(0) > 0 and

∫

RN J(x)dx = 1, where B(0, r) ⊂ RN is the
open ball centered at 0 with radius r. We remark that the nonlocal diffusion operator
in (1.1) corresponds to an elliptic operator with Neumann boundary condition. We
assume that the birth rate β(a, x) and death rate μ(a, x) are positive and belong to
C0,1([0, a+]× Ω) for the convenience to study the spectrum later, where C0,1 denotes
the continuity with respect to the first variable and continuous differentiability with
respect to the second variable. Define

μ(a) := inf
x∈Ω

μ(a, x), μ(a) := sup
x∈Ω

μ(a, x),

β(a) := inf
x∈Ω

β(a, x), β(a) := sup
x∈Ω

β(a, x).
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For scalar linear and nonlinear age-structured equations with nonlocal diffusion of
Dirichlet type, recently we (Kang and Ruan [24,25], Kang et al. [26]) developed
some basic theories including the semigroup of linear operators, asymptotic behavior,
spectral theory, asynchronous exponential growth, strong maximum principle, global
dynamics, etc.

In the first part of this paper, we continue to study the principal spectral theory
for the age-structured model (1.1) with nonlocal diffusion of Neumann type based
on our previous work (Kang and Ruan [24]). More precisely, we are interested in the
following eigenvalue problem obtained from (1.1):

⎧
⎨

⎩

∂u(a,x)
∂a = D

σm

∫

Ω Jσ(x−y)(u(a, y)−u(a, x))dy−μ(a, x)u(a, x)−λu(a, x), a ∈ (0, a+), x∈Ω,

u(0, x) =
∫ a+

0 β(a, x)u(a, x)da, x ∈ Ω,

(1.2)

where σ > 0 is the diffusion range and m > 0 is the cost parameter with Jσ(x) :=
1

σN J
(

x
σ

)
for x ∈ RN . Note that (1.2) is with kernel scaling , thus a little bit different

from (1.1) without kernel scaling. In fact, the eigenvalue problem associated with (1.1)
is a specific case of (1.2); i.e. σ = 1.

Now let us first briefly recall some history of principal spectral theory of nonlo-
cal diffusion operators. Berestycki et al. [8] introduced the concept of generalized
principal eigenvalue for second-order elliptic operators in general domains. Coville
[11] studied existence of the principal eigenvalue and gave a non-locally-integrable
condition based on the generalized Krein-Rutman theorem. Berestycki et al. [7] fur-
ther studied the problem in both bounded and unbounded domains and investigated
the asymptotic behavior of generalized principal eigenvalue on the diffusion rate. See
also Brasseur et al. [10], Coville and Hamel [12], García-Melián and Rossi [19], Li
et al. [28], Yang et al. [52], and the references cited therein. On the other hand, Shen
and Xie [39] and Rawal and Shen [36] investigated the existence of the principal
eigenvalue for autonomous and time periodic cases respectively, where they gave suf-
ficient and necessary conditions for both cases by using the idea of perturbation of
positive operators, but they required that the operator has dense domain and generates
a positive semigroup of contractions, which seems to be restrictive and in general
not satisfied in our case. See also Bao and Shen [6], Liang et al. [29] and Liu et al.
[30]. Combining these two directions, recently Shen and Vo [40] and Su et al. [41]
discussed the asymptotic behavior of generalized principal eigenvalue on the diffusion
rate in the time-periodic case. Kang and Ruan [24] combined their treatment of the
nonautonomous case and the theory of resolvent positive operators with their pertur-
bations to deal with age-structured models with nonlocal diffusion of Dirichlet type.
Most recently, Vo [47] proved some important limits of the principal eigenvalue for
nonlocal operator of Neumann type with respect to the parameters. In the first part of
this paper, based on the technique developed in Vo [47], we study the principal spectral
theory for age-structured models with nonlocal diffusion of Neumann type and prove
some limit properties of the principal eigenvalue with respect to the diffusion rate and
diffusion range. Moreover, with the definition of essential compactness in hands, we
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will observe a key fact that the sufficient conditions which we present for the exis-
tence of the principal eigenvalue of an operator from the theory of resolvent positive
operators with their perturbations are equivalent to that in some sense obtained from
the generalized Krein-Rutman theorem (see Edmunds et al. [16], Nussbuam [34] or
Zhang [53]). Furthermore, we improve some limiting properties for m ∈ [0, 2) that
were established in Vo [47] for m = 0.

In the second part of this paper, we study asynchronous (balanced) exponential
growth of model (1.1). Asynchronous exponential growth is one of the most important
properties in population dynamics since it is observed in many reproducing popula-
tions before the impacts of crowding and resource limitation take hold. Sharpe and
Lotka [38] were the first to study asynchronous exponential growth in age-structured
populations. Feller [18]was the first to give a rigorous proof of asynchronous exponen-
tial growth in age-structured population dynamics. On the one hand it was recognized
that the idea of asynchronous exponential growth can be described in the framework
of strongly continuous semigroups of bounded linear operators in Banach spaces, see
for example, Diekmann et al. [14], Greiner [20], Greiner and Nagel [21], Greiner
et al. [22], Webb [50], and the references cited therein. Webb [49] provided a new
proof of the Sharpe-Lotka Theorem by using the theory of semigroups of operators
in Banach spaces. Thieme [43] characterized strong and uniform approach to asyn-
chronous exponential growth and Thieme [44] derived conditions for the positively
perturbed semigroups to have asynchronous exponential growth.Gyllenberg andWebb
[23] considered asynchronous exponential growth of semigroups of nonlinear oper-
ators. On the other hand, many researchers have studied asynchronous exponential
growth in various structured biological models, see for example, Arino et al. [2,3], Bai
and Xu [4], Banasiak et al. [5], Bernard and Gabriel [9], Dyson et al. [15], Farkas [17],
Piazzera and Tonetto [35], Webb and Grabosch [51], and the references cited therein.

We would like to mention that asynchronous exponential growth in age-structured
models was studied by Webb [50] and was generalized by Thieme [44] to age-
structured models with Laplace diffusion. Here we investigate asynchronous expo-
nential growth in age-structured models with nonlocal diffusion (1.1) which is not
included in [44]. In fact, we have studied asynchronous exponential growth in such a
type of equations in Kang and Ruan [25], where a nonlocal boundary condition was
assumed to make the semigroup generated by solutions to be eventually compact and
further exhibit asynchronous exponential growth. Here we find that the previous two
general sufficient conditions that ensure existence of the principal eigenvalue are also
just enough to guarantee the semigroup to be essentially compact (rather than even-
tually compact as before) and to exhibit asynchronous exponential growth without
additional assumptions on the boundary condition as in [25]. Moreover, we would like
to mention that the property of asynchronous exponential growth also occurs under
the Dirichlet boundary condition.

The paper is organized as follows. In Sect. 2, we first introduce the theory of
resolvent positive operators and asynchronous exponential growth. Then we recall
a few important theorems that will be used later. In Sect. 3, we establish the basic
theory including necessary lemmas and propositions for proving the main results
later. In Sect. 4, we show the main theorem and provide two easily verifiable sufficient
conditions for the existence of the principal eigenvalue and asynchronous exponential
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growth. In Sect. 5, we derive a formula for the asynchronous exponential growth. In
Sect. 6, we study the effects of diffusion rate and diffusion range on the generalized
principal eigenvalue. In Sect. 7, we establish the strong maximum principle which
is of fundamental importance and independent interest. The paper ends with a brief
discussion in Sect. 8.

Finally, we would like to mention that the conditions that J has a compact support
and Ω is bounded can be relaxed. For the principal spectral theory, we only need Ω to
be bounded without requiring that J has a compact support. However, in order to study
the limiting properties of principal eigenvalues, J needs to be compactly supported.
In addition, the condition that Ω is bounded can even be removed if one only defines
the generalized principal eigenvalue, see Berestycki et al. [7]. Here to give a unified
presentation of the results, we assumed both of them.

2 Preliminaries

In this section we present some preliminary notation and results on positive operators
and asynchronous exponential growth.

2.1 Positive operators

Let E be a real or complex Banach space. A nonempty closed subset E+ is called a
cone if the following hold: (1) E+ + E+ ⊂ E+; (2) λE+ ⊂ E+ for λ ≥ 0; and (3)
E+ ∩ (−E+) = {0}. Let E̊+ be the interior of E+, ∂E+ = E+ \ E̊+ the boundary of
E+, and Ė+ = E+ \ {0}.

Let us define the order in E such that x ≤ y if and only if y− x ∈ E+, x < y if and
only if y − x ∈ Ė+, and x � y if and only if y − x ∈ E̊. The cone E+ is said to be
total if the set {ψ − φ : ψ, φ ∈ E+} is dense in E. If a cone has a nonempty interior
E̊+, we call it a solid cone. Obviously, if E̊+ �= ∅, then E+ is total. The dual cone E∗

+
is the subset of E∗ consisting of all positive linear functionals on E; that is, f ∈ E∗

+
if and only if 〈 f ,ψ〉 ≥ 0 for all ψ ∈ E+. f ∈ E∗

+ is said to be strictly positive if
〈 f ,ψ〉 > 0 for all ψ ∈ E+ \ {0}. The cone E+ is called generating if E = E+ − E+
and is called normal if the associated norm on E is semimonotone; that is, there exists
a constant δ > 0 such that 0 ≤ f ≤ g implies

∥
∥ f
∥
∥ ≤ δ

∥
∥g
∥
∥.

Let B(E) be the collection of all bounded linear operators from E to E. T ∈ B(E)
is said to be positive if T : E+ → E+ and T ∈ B(E) is said to be strongly positive
if T : Ė+ → E̊+. Let σ(T) and σe(T) denote the spectrum and essential spectrum
of T ∈ B(E) respectively, whose radius are denoted by r(T) and re(T), respec-
tively. Let us recall the following strong version of the generalized Krein-Rutman
theorem.

Theorem 2.1 (Zhang [53, Theorem 1.3]) Let E be a Banach space having a cone E+ ⊂
X with E̊+ �= ∅ and T ∈ B(E) be a strongly positive operator with r(T) > re(T).
Then r(T) is an algebraically simple eigenvalue of T with an eigenvector x ∈ E̊+ and
|λ| < r(T) for any other eigenvalue of T.
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2.2 Resolvent positive operators

Now we recall some results about resolvent positive operators, the readers can refer
to Thieme [44–46] and Webb [50] for details. Let Z denote a Banach space and Z+
be a closed convex cone that is normal and generating. Assume that C : Z1 → Z
is a positive linear operator defined on a linear subspace Z1 of Z, which means that
Cx ∈ Z+ for all x ∈ Z1 ∩ Z+ and C is not the 0 operator.

Definition 2.2 A closed operator A in Z is said to be resolvent positive if the resolvent
set of A, ρ(A), contains a ray (ω,∞) and (λI − A)−1 is a positive operator (i.e., it
maps Z+ into itself) for all λ > ω.

Definition 2.3 We define the spectral bound of a closed operator A by

s(A) = sup{Reλ ∈ R;λ ∈ σ(A)},

the real spectral bound of A by

sR(A) = sup{λ ∈ R;λ ∈ σ(A)},

and the spectral radius of A by

r(A) = sup{|λ|;λ ∈ σ(A)}.

Definition 2.4 A semigroup {S(t)}t≥0 is said to be essentially compact if its essential
growth bound ω1(S) is strictly smaller than its growth bound ω(S), where the growth
bound and essential growth bound are defined respectively as follows:

ω(S) := lim
t→∞

log
∥
∥S(t)

∥
∥

t
, ω1(S) := lim

t→∞

log α[S(t)]
t

, (2.1)

and α denotes the measure of noncompactness, which is defined as follows:

α[L] = inf{ε > 0, L(B) can be covered by a finite number of balls of radius ≤ ε},

where L is a closed linear operator in Z and B is the unit ball of Z.

By the formulas

re(S(t)) = eω1(S)t, r(S(t)) = eω(S)t,

we can see that equivalently re(S(t)) (the essential spectral radius of S(t)) is strictly
smaller than r(S(t)) (the spectral radius of S(t)) for one (actually for all) t > 0.

If B is a resolvent positive operator and C : D(B) → Z is a positive linear
operator, then A = B+ C is called a positive perturbation of B. If B+ C is a positive
perturbation of B andλ > s(B), thenC(λI − B)−1 is automatically bounded (without
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Principal spectral theory and asynchronous exponential growth... 581

C being necessarily closed). This is a consequence of Z+ being normal and generating
(De Pagter [13, A.2.11]).

Denote the part of A in D(A) by A0 and the part of B in D(B) by B0, respectively.
Let A0 and B0 generate positive C0-semigroups {S(t)}t≥0 and {T(t)}t≥0, respec-
tively. If A and B are resolvent positive, then by Thieme [44, Proposition 2.4] we
have

s(A) = s(A0) = ω(S), s(B) = s(B0) = ω(T).

Theorem 2.5 (Thieme [45, Theorem 3.5]) Let the cone Z+ be normal and generating
and A be a resolvent positive operator in Z. Then s(A) = sR(A) < ∞ and s(A) ∈
σ(A) whenever s(A) > −∞. Moreover, there is a constant c > 0 such that

∥
∥
∥(λI − A)−1

∥
∥
∥ ≤ c

∥
∥
∥(ReλI − A)−1

∥
∥
∥ whenever Reλ > s(A).

Now define

Fλ = C(λI − B)−1, λ > s(B). (2.2)

Definition 2.6 The operator C : D(B) → Z is called a compact perturbator of B and
A = B+ C a compact perturbation of B if

(λI − B)−1Fλ : D(B) → D(B) is compact for some λ > s(B)

and

(λI − B)−1(Fλ)2 : Z → Z is compact for some λ > s(B).

C is called an essentially compact perturbator of B and A = B + C an essentially
compact perturbation of B if there is some n ∈ N such that (λI − B)−1(Fλ)n is
compact for all λ > s(B).

Theorem 2.7 (Thieme [46, Theorem 3.6]) Let Z be an ordered Banach space with
a normal and generating cone Z+ and let A = B+ C be a positive perturbation of
B. Then r(Fλ) is a decreasing convex function of λ > s(B) and exactly one of the
following three cases holds:

(i) if r(Fλ) ≥ 1 for all λ > s(B), then A is not resolvent positive;
(ii) if r(Fλ) < 1 for all λ > s(B), then A is resolvent positive and s(A) = s(B);
(iii) if there exists ν > λ > s(B) such that r(Fν) < 1 ≤ r(Fλ), then A is resolvent

positive and s(B) < s(A) < ∞; further s = s(A) is characterized by r(Fs) = 1.

Theorem 2.8 (Thieme [44, Theorems 3.4 and 4.9]) If C is a compact perturbator of B,
then S(t) − T(t) is a compact operator for t ≥ 0. Moreover, if ω(T) < ω(S), then
{S(t)}t≥0 is an essentially compact semigroup.
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582 H. Kang, S. Ruan

Theorem 2.9 (Thieme [45, Theorems 4.7 and 4.9]) Assume that C is an essentially
compact perturbator of B. Moreover assume that there exists λ2 > λ1 > s(B) such
that r(Fλ1) ≥ 1 > r(Fλ2). Then s(B) < s(A) and the following statements hold:

(i) s(A) is an eigenvalue of A associatedwith positive eigenvectors of A and A∗, has
finite algebraic multiplicity, and is a pole of the resolvent of A. If C is a compact
perturbator of B, then all spectral values λ of A with Reλ ∈ (s(B), s(A)]
are poles of the resolvent of A and are eigenvalues of A with finite algebraic
multiplicity;

(ii) 1 is an eigenvalue of Fs(A) and is associated with an eigenvector w ∈ Z of

Fs(A) such that (λI − B)−1w ∈ Z+ and with an eigenvector v∗ ∈ Z∗
+ of F∗

s(A).

Actually s(A) is the largest λ ∈ R for which 1 is an eigenvalue of Fλ.

Moreover, if Z is a Banach lattice and there exists a fixed point of F∗
s in Z∗

+ that is
conditionally strictly positive, then the following statements hold:

(iii) s = s(A) is associated with a positive eigenvector v of A such that w =
(s(A)I − B)v is a positive fixed point of Fs(A);

(iv) s is the only eigenvalue of A associated with a positive eigenvector.

2.3 Asynchronous exponential growth

Next we recall the formal definition of asynchronous exponential growth, which is an
important property on the asymptotic behavior of operator semigroups.

Definition 2.10 We say that a C0-semigroup {S(t)}t≥0 in a Banach space Z has
asynchronous exponential growth with intrinsic growth constant λ0 ∈ R if there
exists a non-zero finite rank operator P on Z such that

lim
t→∞

e−λ0tS(t) = P,

where the limit is in the operator norm topology.

Definition 2.11 Let {Fλ}λ>s(B) be a positive resolvent output family for the operator
B. A vector x ∈ X+ is said to be conditionally strictly positive if the following holds:

(a) If x∗ ∈ Z∗
+ and F∗

λx
∗ �= 0 for some (and then for all) λ > s(B), then 〈x, x∗〉 > 0.

Similarly we say that a functional x∗ ∈ Z∗
+ is conditionally strictly positive if the

following holds:

(b) If x ∈ Z+ and Fλx �= 0 for some (and then for all) λ > s(B), then 〈x, x∗〉 > 0.

In addition, {Fλ}λ>s(B) is said to be conditionally strictly positive if the following
holds:

(c) If x ∈ Z+, x∗ ∈ Z∗
+ and Fλx �= 0, F∗

λx
∗ �= 0 for some (and then for all)λ > s(B),

then there exist some n ∈ N and some λ > s(B) such that 〈Fnλ x, x∗〉 > 0.
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Theorem 2.12 (Thieme [44, Theorem4.13])Assume that {S(t)}t≥0 generated byA is
an essentially compact semigroup. Let the resolvent output family {Fλ}λ>s(B) for the
operator A be conditionally strictly positive. Then {S(t)}t≥0 exhibits asynchronous
exponential growth. In particular, there exists positive eigenvectors v of A and v∗ of
A∗ associated with s(A) such that 〈v, v∗〉 = 1 and

∥
∥
∥e−s(A)tS(t) − v ⊗ v∗

∥
∥
∥→ 0 as t → ∞,

where v ⊗ v∗ is the projection defined by (v ⊗ v∗)x = 〈x, v∗〉v.

The following theorem provides sufficient and necessary conditions for a strongly
continuous semigroup to have asynchronous exponential growth, which was proved
by Webb [50] (see also Magal and Ruan [32, Theorem 4.6.2]).

Theorem 2.13 (Webb [50, Proposition 2.3]) Let {S(t)}t≥0 be a strongly continuous
semigroup of bounded linear operators on a Banach space X with infinitesimal gener-
ator A. Then {S(t)}t≥0 has asynchronous exponential growth with intrinsic growth
constant λ0 ∈ R if and only if

(i) ω1(A) < λ0;
(ii) λ0 = sup{Reλ : λ ∈ σ(A)};
(iii) λ0 is a simple pole of (λI − A)−1,

where ω1(A) denotes the essential growth bound of A which is defined by (2.1).

2.4 Abstract setting

In this subsection we introduce our working spaces. LetX be an ordered Banach space
that represents distributions of a population u(a, ·) with respect to a spatial structure
differing from the age a. Since we consider nonlocal diffusion, let X be a Banach
space such as C(Ω) or L1(Ω), where Ω ⊂ RN is a bounded and convex domain. It
is easy to see that X has a normal and generating cone X+ = { f ∈ X : f ≥ 0}.
In order to make the operator A defined in (2.3) contain the initial integral boundary
condition, we define the following function spaces

X = X × L1((0, a+),X),

X0 = {0} × L1((0, a+),X),

X+
0 = {0} × L1+((0, a

+),X)

= {0} × {u ∈ L1((0, a+),X) : u(a, x) ≥ 0, (a, x) ∈ (0, a+) × Ω},

and define an operator

A = B + C with domain D(A) = {0} ×W1,1((0, a+),X), (2.3)
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where W1,1 represents the weak differentiability in a and that the derivative also
belongs to L1, with

B(0, f ) =
(
− f (0, ·), − f ′ + Lσ,m f

)
,

C(0, f )=
(
∫ a+

0
β(a, ·) f (a, ·)da, 0

)

, (0, f )∈D(A), (2.4)

in which f ′ := ∂ f
∂a and

Lσ,m[ f ](a, x)

=
D
σm

∫

Ω
Jσ(x − y)( f (a, y)− f (a, x))dy − μ(a, x) f (a, x), f ∈ L1((0, a+),X).

(2.5)

Note that X0 is a Banach space with a positive cone X+
0 which is normal and gen-

erating. X0 can be identified with L1((0, a+),X) in an obvious way. Define A0 to be
the part of A in X0 with

D(A0) = {(0, f );A f ∈ X0}.

Then (0, f ) ∈ D(A0) implies that f (0, ·) =
∫ a+

0 β(a, ·) f (a, ·)da, the boundary
condition in (1.2). Let {S(t)}t≥0 be the C0-semigroup generated by A0, the part of
A in X0, see [25] for the existence of {S(t)}t≥0 (Note that the proof is identical
with nonlocal diffusion of Dirichlet type being replaced by Neumann type.); that is,
u(t, a, x) = S(t)u0(a, x) is the solution of (1.1).

Moreover, define the nonlocal operator of Neumann type as

L0σ,m[ f ](a, x) =
D
σm

∫

Ω
Jσ(x − y)( f (a, y) − f (a, x))dy, f ∈ L1((0, a+),X)

and denote

κ(x) :=
∫

Ω
J(x − y)dy, κσ(x) :=

∫

Ω
Jσ(x − y)dy. (2.6)

It is obvious that 0 < κ(x) ≤ 1 and lim
σ→∞

κσ(x) = 0. Observe that by standard

Sobolev embedding we have

W1,1((0, a+),X) ↪→ C([0, a+],X). (2.7)

This will enable us to define the strong maximum principle and sub/super-solutions of
(1.2) (see Andreu-Vaillo et al. [1]) and, in particular, to study the limiting properties
in Sect. 6 in the appropriate sense by noting that the functions are defined in D(A).
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Finally, we would like to mention that the Cauchy problem (1.1) has been investi-
gated in an abstract setting by using the theory of integrated semigroups, see Thieme
[44,46] and, in particular, Magal and Ruan [31] in a more general framework where
the operators are neither densely-defined nor of Hille-Yosida types, for example in Lp

spaces (p ≥ 1), see Remark 3.2.

3 Principal spectral theory

In this section we establish some lemmas and propositions that will be used to show
the main results in next section. We would like to mention that all the results in
this section are parallel to those for nonlocal diffusion of Dirichlet type obtained
previously in Kang and Ruan [24, Section 3]. Here for completeness we provide all
proofs including necessary modifications.

We first consider the kernel J without scaling for convenience (since the principal
spectral theory are the same for scaling cases); i.e., A = B + C with

B(0, f ) =
(
− f (0, ·), − f ′ + L f

)
,

C(0, f ) =
(
∫ a+

0
β(a, ·) f (a, ·)da, 0

)

, (0, f ) ∈ D(A),

where

L[ f ](a, x) = D
∫

Ω
J(x − y)( f (a, y) − f (a, x))dy − μ(a, x) f (a, x),

f ∈ L1((0, a+),X). (3.1)

Definition 3.1 The principal spectrum point of A is defined by λ1(A) = sup{Reλ :
λ ∈ σ(A)}. If λ1(A) is an isolated eigenvalue of A with a positive eigenfunction in
D(A), then it is called the principal eigenvalue of A.

Note that λ1(A) = s(A), where s(A) denotes the spectral bound of A. Define

B1(0, f ) =
(
− f (0, ·),− f ′ − (Dκ(·) + μ) f

)
,

B2(0, f ) =
(

0,D
∫

Ω
J(· − y) f (a, y)dy

)

, (0, f ) ∈ D(A). (3.2)

Remark 3.2 If the operator B is decomposed as follows:

B′
1(0, f ) =

(
− f (0, ·),− f ′

)
,

B′
2(0, f ) =

(

0,D
∫

Ω
J(· − y) f (a, y)dy − (Dk(·) + μ) f

)

, (0, f ) ∈ D(A),
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then the results in Thieme [44,46] for L1 spaces and in Magal and Ruan [31] for Lp

spaces (p ≥ 1) can be applied directly to obtain the well-posedness of the Cauchy
problem (1.1). Nevertheless, we shall follow our decomposition defined in (3.2) to
study the principal spectral theorywhich is necessary for our purpose and, in particular,
to obtain the existence of the principal eigenvalue and to investigate the limiting
properties in the following.

One can see that B = B1 + B2. Observe that if α ∈ C such that (αI − B1 − C)−1

exists, then

(B2 + B1 + C)u = αu

has nontrivial solutions in X0 ⊕ iX0 is equivalent to

B2(αI − B1 − C)−1v = v

has nontrivial solutions in X ⊕ iX , where

X0 ⊕ iX0 = {u+ iv|u, v ∈ X0}, X ⊕ iX = {u+ iv|u, v ∈ X }.

Proposition 3.3 The resolvent operator (αI − B1 − C)−1 exists when Reα > α∗∗

with α∗∗ ∈ R satisfying

r(Gα∗∗) = r

(
∫ a+

0
β(a, ·)e−(α∗∗+Dκ(·))aΠ(0, a, ·)da

)

= 1, (3.3)

in which

Π(γ, a, ·) := e−
∫ a

γ μ(s,·)ds (3.4)

and Gα : X → X is a linear bounded operator defined by

[Gαg](x) =
∫ a+

0
β(a, x)e−(α+Dκ(x))aΠ(0, a, x)g(x)da, g ∈ X, (3.5)

where κ is defined in (2.6). Moreover, B1 + C is a resolvent positive operator. In
addition, s(B1 + C) = α∗∗ and α∗∗ also satisfies the following equation

max
x∈Ω

∫ a+

0
β(a, x)e−(α∗∗+Dκ(x))aΠ(0, a, x)da = 1. (3.6)

Proof Writing the resolvent equation (αI − B1 − C)(0, φ) = (η,ψ) ∈ X explicitly,
we obtain
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⎧
⎨

⎩

∂φ(a,x)
∂a = −(α + Dκ(x) + μ(a, x))φ(a, x) + ψ(a, x), (a, x) ∈ (0, a+) × Ω

φ(0, x) =
∫ a+

0 β(a, x)φ(a, x)da+ η(x), x ∈ Ω.

(3.7)

Solving the equation, we have

φ(a, x) = e−(α+Dκ(x))aΠ(0, a, x)φ(0, x)

+
∫ a

0
e−(α+Dκ(x))(a−γ)Π(γ, a, x)ψ(γ, x)dγ, (3.8)

where Π(γ, a, x) = e−
∫ a

γ μ(s,x)ds, and accordingly

φ(0, x) −
∫ a+

0
β(a, x)e−(α+Dκ(x))aΠ(0, a, x)φ(0, x)da

=
∫ a+

0
β(a, x)

∫ a

0
e−(α+Dκ(x))(a−γ)Π(γ, a, x)ψ(γ, x)dγda+ η(x),

which is equivalent to

(I − Gα)φ(0, x)=
∫ a+

0
β(a, x)

∫ a

0
e−(α+Dκ(x))(a−γ)Π(γ, a, x)ψ(γ, x)dγda+η(x),

(3.9)

in which Gα is given in (3.5). Thus if 1 ∈ ρ(Gα), then

φ(0, x) = (I − Gα)−1

[
∫ a+

0
β(a, x)

∫ a

0
e−(α+Dκ(x))(a−γ)Π(γ, a, x)ψ(γ, x)dγda+ η(x)

]

, (3.10)

which implies that

φ(a, x) = e−(α+Dκ(x))aΠ(0, a, x)(I − Gα)−1
[ ∫ a+

0
β(s, x)

∫ s

0
e−(α+Dκ(x))(s−γ)Π(γ, s, x)ψ(γ, x)dγds

+η(x)
]
+
∫ a

0
e−(α+Dκ(x))(a−γ)Π(γ, a, x)ψ(γ, x)dγ. (3.11)

It follows that α ∈ ρ(B1 + C) and thus (αI − B1 − C)−1 exists. Now the problem
becomes to find such an α such that 1 ∈ ρ(Gα). By assumptions on β and μ, we have

Gαg ≥
∫ a+

0
β(a)e−(α+D)aΠ̃(0, a)dag, g ∈ X, (3.12)
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where Π̃(γ, a) := e−
∫ a

γ μ(s)ds and the fact that 0 < κ(x) ≤ 1 for any x ∈ Ω was
used. Now define

Hα :=
∫ a+

0
β(a)e−(α+D)aΠ̃(0, a)da.

Then it follows from (3.12) that Gα ≥ Hα in the sense of positive operators (actually
Hα is a function of α) and that r(Gα) is a strictly decreasing continuous function
with respect to α, see Kang and Ruan [26, Lemmas 3.3-3.4]. The classical theory of
age-structured models implies that there is a unique α∗ ∈ R such that

∫ a+

0
β(a)e−(α∗+D)aΠ̃(0, a)da = 1

i.e. Hα∗ = 1. Now by using the theory of positive operators, we have r(Gα∗) ≥
r(Hα∗) = Hα∗ = 1 and there exists a unique α∗∗ ∈ R satisfying r(Gα∗∗) = 1.
Note that for any α ∈ C, when Reα > α∗∗ we have r(GReα) < r(Gα∗∗) = 1
and (I − GReα)−1 exists. It follows that α ∈ ρ(B1 + C) when Reα > α∗∗, which
implies that ρ(B1 + C) contains a ray (α∗∗,∞) and (αI − B1 − C)−1 is a positive
operator for all α > α∗∗ by (3.11). Hence, B1 + C is a resolvent positive operator.
Moreover, α∗∗ is larger than all other real spectral values in σ(B1 + C). It implies that
α∗∗ = sR(B1 + C). Now since X0 is a Banach space with a normal and generating
cone X+

0 and s(B1 + C) ≥ α∗∗ > −∞ due to α∗∗ ∈ σ(B1 + C), we can conclude
from Theorem 2.5 that s(B1 + C) = sR(B1 + C) = α∗∗.

Notice that Gα is actually a positive multiplication operator in X. We can determine
the spectral radius r(Gα) of Gα as follows:

r(Gα) = max
x∈Ω

∫ a+

0
β(a, x)e−(α+Dκ(x))aΠ(0, a, x)da.

Hence, α∗∗ satisfies (3.6). Denote

αmin := min
x∈Ω

∫ a+

0
β(a, x)e−(α+Dκ(x))aΠ(0, a, x)da.

We can see from Liang et al. [29, Proposition 2.7] that σe(Gα) = σ(Gα) =
∪x∈Ωσ(Gα(x)) = [αmin, r(Gα)], where

Gα(x) =
∫ a+

0
β(a, x)e−(α+Dκ(x))aΠ(0, a, x)da, (3.13)

and σe(A) represents the essential spectrum of A. ��
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Next consider the following equation corresponding to the age-structured model
without nonlocal diffusion:
⎧
⎨

⎩

∂u(a,x)
∂a = −(α + Dκ(x))u(a, x) − μ(a, x)u(a, x), (a, x) ∈ (0, a+) × Ω,

u(0, x) =
∫ a+

0 β(a, x)u(a, x)da, x ∈ Ω.

(3.14)

The solvability of such an equation is the key in constructing sub- and super-solutions
later. Before proceeding, let us recall an important theorem on the global implicit
function theorem which we will use in the proof of the following proposition.

Theorem 3.4 (Global implicit function theorem, Sandberg [37, Theorem1]) Let S1, S2
and W be normed vector linear spaces and let U and V denote nonempty subsets of
S1 and S2 respectively, such that U is open in S1 and V is open in S2. Let 0W be the
zero element ofW. Let {Vi} be any family of compact subsets ofV such that for each
compact subset V̂ of V, there is an Vk ∈ {Vi} such that V̂ ⊂ Vk, and similarly, let
{Ui} denote any collection of compact subsets of U with the property that for any
compact set Û in U, there is Uk ∈ {Ui} such that Û ⊂ Uk.

Now assume that V is convex and that f is a continuous map from U × V to W.
Then there is a unique g : U → V such that f (g(y), y) = 0W for all y ∈ V, and g is
continuous, if and only if

(i) for some y0 ∈ V, there is exactly one x0 ∈ U such that f (x0, y0) = 0W ;
(ii) f is locally solvable for x;
(iii) for each Vk ∈ {Vi}, there is aUk ∈ {Ui} such that y ∈ Vk, x ∈ U and f (x, y) =

0W imply that x ∈ Uk.

Proposition 3.5 There exists a continuous function α : Ω → R such that equation
(3.14) has positive solutions and

∫ a+

0
β(a, x)e−(α(x)+Dκ(x))aΠ(0, a, x)da = 1, ∀x ∈ Ω,

where κ and Π are defined in (2.6) and (3.4) respectively. Moreover, α(x) ≤ α∗∗ for
all x ∈ Ω.

Proof To prove the proposition, we shall verify that the three hypothesis (i), (ii) and
(iii) in Theorem 3.4 are satisfied. Solving (3.14) explicitly, we obtain a formal positive
solution

u(a, x) = e−(α+Dκ(x))aΠ(0, a, x)u(0, x)

provided u(0, x) > 0. Then plugging it into the integral initial condition, we obtain
after canceling u(0, x) that

∫ a+

0
β(a, x)e−(α+Dκ(x))aΠ(0, a, x)da = 1.
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Now define

G(α, x) := Gα(x) =
∫ a+

0
β(a, x)e−(α+Dκ(x))aΠ(0, a, x)da. (3.15)

We can verify that G : R × Ω → (0,∞) is a continuously differentiable function
with respect to α and x due to the continuous differentiability of β and μ. Moreover,

∂G
∂α

= −
∫ a+

0
β(a, x)ae−(α+Dκ(x))aΠ(0, a, x)da < 0, ∀x ∈ Ω, (3.16)

∂G
∂xi

=
∫ a+

0

∂β(a, x)
∂xi

e−(α+Dκ(x))aΠ(0, a, x)da

−
∫ a+

0

∫ a

0
β(a, x)e−(α+Dκ(x))a ∂μ(s, x)

∂xi
Π(0, a, x)dsda

−
∫ a+

0
β(a, x)aD

∂κ(x)
∂xi

e−(α+Dκ(x))aΠ(0, a, x)da, i = 1, . . . ,N.

(3.17)

It follows by implicit function theorem that (ii) G is locally solvable for x ∈ Ω due
to (3.16); i.e. for each (α0, x0) ∈ OG := {(α, x) ∈ R × Ω : G(α, x) = 1}, there are
open neighborhoodsNα0 andNx0 of α0 and x0 respectively, and a unique continuously
differentiable map α of Nx0 into Nα0 such that for x ∈ Nx0 , α = α(x) is the unique
solution in Nα0 of G(α, x) = 1.

Next, let {Vi} be any family of compact subsets of Ω such that for each compact
subset V̂ of Ω, there is a subset Vk ∈ {Vi} such that V̂ ⊂ Vk. Similarly, let {Ui}
denote any collection of compact subsets ofR with the property that for any compact
set Û in R, there is a subset Uk ∈ {Ui} such that Û ⊂ Uk. Note that due to the fact
that μ, β ∈ C0,1([0, a+] × Ω), we have from (3.16) and (3.17) that

∣
∣
∣
∣
∂α

∂x

∣
∣
∣
∣ =

∣
∣
∣
∣
∂G
∂x

∣
∣
∣
∣

/ ∣∣
∣
∣
∂G
∂α

∣
∣
∣
∣ ≤ Constant, ∀x ∈ Ω,

where
∣
∣
∣ ∂α
∂x

∣
∣
∣

(∣
∣
∣ ∂G∂x

∣
∣
∣ respectively

)

denotes the length of vector ∂α
∂x =

(
∂α
∂x1

, . . . , ∂α
∂xN

)

( ∂G
∂x =

(
∂G
∂x1

, . . . , ∂G
∂xN

)
respectively) in the usual sense. Now the mean value theorem

implies that we can extend continuously α up to the boundary of Nx0 . In fact if any
sequence {xj} ∈ Nx0 converges to b ∈ ∂Nx0 , then

|α(xk) − α(xl)| ≤
∣
∣
∣
∣
∣

∂α(ξ)
∂x

∣
∣
∣
∣
∣
|xk − xl |

for some ξ depending on xk and xl , which implies that {α(xk)} is a Cauchy sequence,
where xk and xl are two points in {xj} ∈ Nx0 . Thus {α(xk)} converges to α(b) by
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the continuity of α. Hence, by the above argument we have (iii) for each Vk ∈ {Vi},
there is a Uk ∈ {Ui} such that x ∈ Vk, α ∈ R and G(α, x) = 1 imply that α ∈ Uk.

Finally, since ∂G
∂α < 0 for all x ∈ Ω, then (i) holds for some x0 ∈ Ω, there is

exactly one α0 such that G(α0, x0) = 1. Actually, (i) implies that the extension of α
is unique.

Now we have verified that the three hypotheses (i), (ii) and (iii) in Theorem 3.4 are
satisfied. It follows that we have a unique α : Ω → R such thatG(α(x), x) = 1 for all
x ∈ Ω and α is a continuous function.Moreover, it follows from (3.6) that α(x) ≤ α∗∗.
In fact, α∗∗ = maxx∈Ω α(x). This completes the proof of the proposition. ��

Remark 3.6 Note that we split A into A = B1 + B2 + C and studied the spectral
bound ofB1+ C; i.e. α∗∗ in (3.6) (an algebraic equation) which is easily and explicitly
obtained compared with that in Thieme [44,46], where A was decomposed into A =
B + C and the spectral bound of B was obtained by an operator equation since it
contains the spatial diffusion.

Now assume that B0
1 + C0, the part of B1 + C in X0, generates a positive C0-

semigroup {T(t)}t≥0 on X0. Since B1 + C is resolvent positive, by Thieme [44,
Proposition 2.4] we know that s(B1 + C) = s(B0

1 + C0) = ω(T)when X = L1(Ω),
since now X is an abstract L space. Next, we provide a lower bound for (αI − B1 −
C)−1 when Reα > α∗∗.

Proposition 3.7 For any Reα > α∗∗, the resolvent operator (αI − B1 − C)−1 : X →
X0 has the estimate for any ψ ∈ L1+((0, a+),X) with ψ(a, x) ≡ ψ(x),

(
(αI − B1 − C)−1(0,ψ)

)
(a, x) ≥ M(α,D)

1− Gα(x)
(0,ψ)(x), (a, x) ∈ [0, a+] × Ω,

where M(α,D) > 0 will be determined in the proof.

Proof Define

I1(α,D, x) :=
∫ a+

0
β(a, x)

∫ a

0
e−(α+Dκ(x))(a−γ)Π(γ, a, x)dγda,

I2(α,D, a, x) = e−(α+Dκ(x))aΠ(0, a, x).

Then by (3.11), we can see that

φ(a, x) ≥ (1− Gα(x))−1 min
[0,a+]×Ω

I2(α,D, ·, ·)I1(α,D, ·)ψ(x)

for any ψ(a, x) ≡ ψ(x). Thus M(α,D) is given by
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M(α,D) := min
[0,a+]×Ω

I2(α,D, ·, ·)I1(α,D, ·).

The result follows. ��

Next we consider the following evolution equation

⎧
⎪⎪⎨

⎪⎪⎩

∂u(a,x)
∂a = D

∫

Ω J(x − y)(u(a, y) − u(a, x))dy
−μ(a, x)u(a, x), (a, x) ∈ (0, a+) × Ω,

u(τ, x) = φ(x) ∈ X.

(3.18)

Define an evolution family {U (τ, a)}0≤τ≤a≤a+ associated with (3.18); that is, the
solution u(a, x) of (3.18) can be written as

u(a, x) = U (τ, a)φ(x). (3.19)

The existence of such an evolution family {U (τ, a)}0≤τ≤a≤a+ is guaranteed by results
in Andreu-Vaillo et al. [1]. Moreover, it is positive in X.

Proposition 3.8 The operator A is resolvent positive and s(A) = λ0, where λ0 sat-
isfies

r(Mλ0) = r

(
∫ a+

0
β(a, ·)e−λ0aU (0, a)da

)

= 1, (3.20)

in which U(0, a) is defined in (3.19) and for each λ ∈ C, Mλ : X → X is a linear
bounded operator defined by

[Mλφ](x) =
∫ a+

0
β(a, x)e−λaU (0, a)φ(x)da, ∀φ ∈ X.

Proof The proof can be found in [26, Theorem 3.6] or [24, Proposition 3.7], just noting
that nonlocal diffusion of Dirichlet type is replaced by Neumann type and there also
exists a principal eigenvalue equalling to zero for the nonlocal operator of Neumann
type associated with a positive constant eigenfunction. Thus we omit it here.Wewould
like to recall the solution of the resolvent equation (λI − A)−1(ϑ, ϕ) in the following,
which will be used later:

[(λI − A)−1(ϑ, ϕ)](a, x)

=
(
0, e−λaU (0, a)(I − Mλ)−1

[
∫ a+

0
β(s, x)

∫ s

0
e−λ(s−γ)U (γ, s)ϕ(γ, x)dγds+ ϑ(x)

]

+
∫ a

0
e−λ(a−γ)U (γ, a)ϕ(γ, x)dγ

)
. (3.21)

This completes the proof. ��
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Moreover, by Thieme [44, Proposition 2.4], when X = L1(Ω) we have s(A) =
s(A0) = ω(S) since A is resolvent positive. Next, we have the following lemma in
characterizing the relation between the evolution system family {U (τ, a)}0≤τ≤a≤a+

and {e−Dκ(x)(a−τ)Π(τ, a, x)}0≤τ≤a≤a+ .

Lemma 3.9 We have e−Dκ(x)aΠ(0, a, x) � U (0, a) in X,where κ is defined in (2.6);
i.e.,

0 < φ ∈ C(Ω) ⇒ e−Dκ(x)aΠ(0, a, x)φ(x) < U (0, a)φ(x), ∀x ∈ Ω.

Proof Let u1(a, x) = e−Dκ(x)aΠ(0, a, x)φ(x) and u2(a, x) = U (0, a)φ(x) be the
solutions of the following equations

{
∂u1(a,x)

∂a = −Dκ(x)u1(a, x) − μ(a, x)u1(a, x), (a, x) ∈ (0, a+) × Ω
u1(0, x) = φ(x), x ∈ Ω

(3.22)

and

⎧
⎨

⎩

∂u2(a,x)
∂a =D

∫

Ω J(x−y)(u2(a, y)−u2(a, x))dy−μ(a, x)u2(a, x), (a, x)∈ (0, a+)×Ω
u2(0, x) = φ(x), x ∈ Ω,

(3.23)

respectively. Consider the difference of (3.22) and (3.23) in the following

{
∂u(a,x)

∂a = D
∫

Ω J(x − y)u(a, y)dy, (a, x) ∈ (0, a+) × Ω
u(0, x) = φ(x), x ∈ Ω.

(3.24)

Define

(Kv)(x) = D
∫

Ω
J(x − y)v(y)dy, ∀v ∈ C(Ω).

Then the solution u(a, x) of (3.24) can be written as

u = eKaφ = φ + aKφ +
a2K2φ

2!
+ · · · + anKnφ

n!
+ · · · .

Let x0 ∈ Ω be such that φ(x0) > 0. Then by the fact that φ ∈ C(Ω), there is a
constant η > 0 such that φ(x) > 0 for x ∈ B(x0, η) ∩ Ω. This implies that

(Kφ)(x) = D
∫

Ω
J(x − y)φ(y)dy > 0 for x ∈ B(x0, r+ η) ∩ Ω.
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Then

(Knφ)(x) > 0 for x ∈ B(x0, nr+ η) ∩ Ω.

It then follows that eKaφ � 0 for a > 0. ��

Remark 3.10 The result in Lemma 3.9 remains valid when X = L1(Ω). From
Lemma 3.9, comparing (3.3) with (3.20) plus their monotonicity with respect to α
and λ, we can see that s(A) ≥ s(B1 + C). In fact, this can also be obtained by the
fact that A is resolvent positive from Proposition 3.8 and Theorem 2.7 since case (i)
was ruled out. But we cannot obtain the strict relation, i.e. s(A) > s(B1 + C), even
if e−Dκ(x)aΠ(0, a, x) � U (0, a) holds, because α∗∗ and λ0 are obtained by taking
the spectral radius of the operators to be equal to 1, where a limit process occurs in
which the strict relation may not be preserved. However, if r(Gα) and r(Mλ) are
eigenvalues of Gα and Mλ respectively, we could obtain the strict relation, see Marek
[33, Theorem 4.3] which is the Frobenius theory for positive operators.

Proposition 3.11 B2(αI − B1 − C)−1 is a compact operator in X ⊕ iX when Reα >
α∗∗, where B1,B2 and C are defined in (3.2) and (2.4) respectively.

Proof By (3.11) we have for Reα > α∗∗ that

[
B2(αI − B1 − C)−1(η,ψ)

]
(a, x)

=
(

0,D
∫

Ω
J(x − y)e−(α+Dκ(y))aΠ(0, a, y)(I − Gα)−1

[ ∫ a+

0
β(s, y)

∫ s

0
e−(α+Dκ(y))(s−γ)Π(γ, s, y)

×ψ(γ, y)dγds+ η(y)
]
dy+ D

∫

Ω
J(x − y)

∫ a

0
e−(α+Dκ(y))(a−γ)Π(γ, a, y)ψ(γ, y)dγdy

)

. (3.25)

It then follows that for any bounded subset E ⊂ X ⊕ iX , B2(αI − B1 − C)−1E
is a relatively compact subset of X ⊕ iX by Aubin-Lions Lemma. In fact, from
(3.25) one can see by the fact J ∈ C1(R) that the second component of B2(αI −
B1 − C)−1(η,ψ) belongs toW1,1((0, a+),C1(Ω)). Due to Arzelà-Ascoli Theorem,
C1(Ω) is compactly embedded into C(Ω). ThusW1,1((0, a+),C1(Ω)) is compactly
embedded into L1((0, a+),X) by Aubin-Lions Lemma when X = C(Ω) or X =
L1(Ω). Hence B2(αI − B1 − C)−1 is compact in X ⊕ iX . ��

Corollary 3.12 B2 is a compact perturbator of B1 + C and A = B1 + B2 + C a
compact perturbation of B1 + C.

Proof (αI − B1 − C)−1B2(αI − B1 − C)−1 is compact for some α > s(B1 + C)
since B2(αI − B1 − C)−1 is compact by Proposition 3.11. ��

We next give a proposition to characterize the relation between the eigenvalues of
Mλ to those of A = B + C, also see Kang and Ruan [25] or Walker [48].

Proposition 3.13 Let λ ∈ C and let m ∈ N \ {0}. Then λ ∈ σp(A) with geometric
multiplicity m if and only if 1 ∈ σp(Mλ) with geometric multiplicity m, where
σp(A) denotes the point spectrum of A.
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Proof Let λ ∈ C. Suppose that λ ∈ σp(A) has geometric multiplicitym so that there
are m linearly independent elements

(
0, φ1

)
, . . . ,

(
0, φm

)
∈ D(A) with (λI − A)

(
0, φj

)
= (0, 0) for j = 1, . . . ,m.

Then by solving the eigenvalue problem as above, we obtain

φj(a, ·) = e−λaU (0, a)φj(0, ·) with φj(0, ·) = Mλφj(0, ·).

Hence,φ1(0, ·), . . . , φm(0, ·) are necessarily linearly independent eigenvectors ofMλ

corresponding to the eigenvalue 1. Now suppose that 1 ∈ σp(Mλ) has geometric
multiplicity m so that there are linearly independent ψ1, . . . ,ψm ∈ X with Mλψj =

ψj for j = 1, . . . ,m. Setting (0, φj) =
(
0, e−λaU (0, a)ψj

)
∈ X0 and noting that for

j = 1, . . . ,m, we have

∂φj

∂a
+ λφj − Lφj = 0,

∫ a+

0
β(a, ·)φj(a, ·)da = Mλψj = ψj = φj(0, ·),

which are equivalent to

A(0, φj) = λ(0, φj) and (0, φj) ∈ D(A).

Thus λ ∈ σp(A). If α1, . . . , αm are any scalars, the unique solvability of the Cauchy
problem

∂φ

∂a
+ λφ − Lφ = 0, φ(0, x) =

m

∑
j=1

αjψj

ensures that (0, φ1), . . . , (0, φm) are linearly independent. This completes the proof.
��

4 Main theorems

In this section, we state and prove the main theorems of this paper which address the
existence of the principal eigenvalue and the property of asynchronous exponential
growth simultaneously.

Theorem 4.1 Assume that s(A) > s(B1 + C), then λ1(A) = s(A) is the principal
eigenvalue of A. Moreover, {S(t)}t≥0 exhibits asynchronous exponential growth.
Conversely, if λ is an eigenvalue of A with a eigenfunction (0, φ(a, x)) with φ being
positive, then λ = s(A).

Proof Define

Fλ = B2(λI − B1 − C)−1, Reλ > α∗∗. (4.1)
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Note that A = B1 + C + B2 is a compact perturbation of B1 + C by Corollary 3.12.
First, we use Theorem 2.9 to prove that λ1(A) = s(A) is the principal eigenvalue
of A. We know that A is resolvent positive by Proposition 3.8. It implies that case
(i) in Theorem 2.7 is ruled out. Secondly, by the assumption s(A) > s(B1 + C) we
know that only case (iii) in Theorem 2.7 will occur; otherwise s(A) = s(B1 + C),
which is a contradiction if case (ii) in Theorem 2.7 would happen. Hence, there exists
λ2 > λ1 > s(B1 + C) such that r(Fλ1) ≥ 1 > r(Fλ2). Now the hypothesis in
Theorem 2.9 holds, then s(A) is an eigenvalue of A with a positive eigenfunction,
has finite algebraic multiplicity, and is a pole of the resolvent of A. It follows that
λ1(A) = s(A) is the principal eigenvalue of A.

Next, we show that {S(t)}t≥0 exhibits asynchronous exponential growth under the
assumption when X = L1(Ω). Observing ω(S) = s(A) > s(B1 + C) = ω(T),
it follows that {S(t)}t≥0 is an essentially compact semigroup by Theorem 2.8. In
addition, it can be seen that the resolvent output family Fλ is conditionally strictly
positive regarding to (3.25) when s(A) > s(B1 + C). In fact, first observe that Fλ

maps X into X0 = {0} × L1((0, a+), L1(Ω)), then we introduce the restriction of
Fλ to X0 and the associated operator Lλ in Q := L1((0, a+), L1(Ω)) (see (3.25)),

[Lλψ](a, x) = D
∫

Ω
J(x − y)e−(λ+Dκ(y))aΠ(0, a, y)[(I − Gλ)−1g(ψ)](y)dy

+D
∫

Ω
J(x − y)

∫ a

0
e−(λ+Dκ(y))(a−γ)Π(γ, a, y)ψ(γ, y)dγdy,

(4.2)

where

g(ψ)(y) :=
∫ a+

0
β(s, y)

∫ s

0
e−(λ+Dκ(y))(s−γ)Π(γ, s, y)ψ(γ, y)dγds.

We use Lλ for both the operators in Q and the operator in X0 = {0} × Q. Next for
any ψ ∈ Q+ with Lλψ �= 0, there exists some (a0, x0) ∈ [0, a+] × Ω, such that

[Lλψ](a, x) ≥ Dεmin{e−λa+ , 1}e−Da+

×
∫

B(x0,r/2)∩Ω
Π(0, a+, y)[(I − Gλ)−1g(ψ)](y)dy > 0,

for all (a, x) ∈ [0, a+] × B(x0, r/2) ∩ Ω, since J(x) > ε > 0 in B(0, r) with some
r > 0 due to J(0) > 0 and (I − Gλ)−1 and g are positive due to the positivity of β.
Now by the argument similar with Lemma 3.9, one can show that

[Lnλψ](a, x) > 0, ∀(a, x) ∈ [0, a+] × B(x0, nr/2) ∩ Ω.

On the other hand, for any ψ∗ ∈ Q∗
+ with L∗

λψ∗ �= 0, one can also similarly
obtain that there exists some subset E of [0, a+]× Ω with positive measure such that
ψ∗(a, x) > 0 in E, otherwise L∗

λψ∗ = 0. Observe that when n is large enough, one
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has E ∩
(
[0, a+] × B(x0, nr/2) ∩ Ω

)
�= ∅. It follows that

〈Lnλψ,ψ∗〉 > 0, (4.3)

which implies that Lλ is conditionally strictly positive and so is Fλ.
Now Theorem 2.12 implies that {S(t)}t≥0 exhibits asynchronous exponential

growth. In particular, there exists positive eigenvectors v of A and v∗ of A∗ asso-
ciated with s(A) such that 〈v, v∗〉 = 1 and

∥
∥
∥e−s(A)tS(t) − v ⊗ v∗

∥
∥
∥→ 0, t → ∞,

where v⊗ v∗ is the projection defined by (v⊗ v∗)x = 〈x, v∗〉v. Observe now that we
have obtained the existence of principal eigenvalue s(A) associated with two positive
eigenfunctions respectively in L1((0, a+),C(Ω)) and L1((0, a+), L1(Ω)). Further-
more, we have also verified that {Fλ}λ>s(B1+C) is conditionally strictly positive in

L1((0, a+), L1(Ω)), it follows from Theorem 4.9 from Thieme [45] that s(A) is a
first order pole of the resolvent of A and that the eigenspace of A associated with
s(A) is one dimensional. These facts conclude that the two principal eigenfunction
are the same since C(Ω) ⊂ L1(Ω).

Conversely, if λ ∈ R is an eigenvalue of A associated to an eigenfunction
(0, φ(a, x)) with φ being positive, we prove that s(A) = λ. Let {S(t)}t≥0 be the
C0-semigroup generated by A0, the part of A in X0, see Kang and Ruan [25] for the
existence of {S(t)}t≥0; that is u(t, a, x) = S(t)u0(a, x) is the solution of (1.1). By
direct computation, we have S(t)φ(a, x) = eλtφ(a, x). Since φ(a, x) > 0, ∀(a, x) ∈
[0, a+] × Ω, for any u0 ∈ C+([0, a+],C(Ω)) ⊂ L1+((0, a+), L1(Ω)) with

u0(a, x) ≤ M0φ(a, x), ∀(a, x) ∈ [0, a+] × Ω,

where M0 =
‖u0‖

min[0,a+]×Ω φ(a,x) , it follows from the comparison principle for (1.1) (see

[24, Lemma 8.2]) that

S(t)u0 ≤ M0S(t)φ = M0eλtφ, ∀t > 0.

This, noting that C+([0, a+], L1(Ω)) is dense in L1+((0, a+),C(Ω)), together with
Thieme [44, Theorem 5.4] and Thieme [46, Theorem 6.2] which state that ω(S) =
s(A0) = s(A), implies that s(A) = λ, where ω(S) represents the growth bound of
{S(t)}t≥0. ��
Corollary 4.2 The inequality s(A) > s(B1 + C) holds if and only if there is λ∗ >
s(B1 + C) such that r(Fλ∗) ≥ 1, where Fλ is defined in (4.1).

Proof If there exists λ∗ > s(B1 + C) such that r(Fλ∗) ≥ 1, then case (iii) of
Theorem 2.7 will occur, which implies that s(A) > s(B1 + C), because we can
alway find ϑ large enough such that r(Fϑ) < 1 according to (3.25). Conversely, if
s(A) > s(B1 + C), by the same argument in Theorem 4.1, we have the desired result.

��
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In applications, the condition s(A) > s(B1 + C) is hard to check, so it is desirable
to find easily verifiable conditions to ensure that λ1(A) is the principal eigenvalue
of A and {S(t)}t≥0 exhibits asynchronous exponential growth. This leads us to the
following results on the existence of the principal eigenvalue of A and the property
of asynchronous exponential growth of {S(t)}t≥0 in this section.

Theorem 4.3 (Existence of the principal eigenvalue and asynchronous exponential
growth - I) Assume that for every α > α∗∗,

1
1− Gα

/∈ L1loc(Ω), (4.3)

then λ1(A) = s(A) is the principal eigenvalue of A and {S(t)}t≥0 exhibits asyn-
chronous exponential growth, where

Gα(x) = G(α, x) =
∫ a+

0
β(a, x)e−(α+Dκ(x))aΠ(0, a, x)da,

which is defined in (3.15).

Proof The idea of the proof below traced back to Shen and Vo [40]. For completeness
and reader’s convenience, we include some necessary modifications and provide a
detailed proof.

By contradiction, assume that λ1(A) = s(A) is not the principal eigenvalue of
A, by the contrapositive statement of Theorem 4.1, s(A) ≤ s(B1 + C) (in fact,
by Remark 3.10, one can get a stronger result s(A) = s(B1 + C)). It follows by
Corollary 4.2 that

r(Fα) = r(B2(αI − B1 − C)−1) < 1, ∀Reα > s(B1 + C). (4.4)

We can see from (3.11) that the operator (αI − B1 − C)−1 has monotonicity in the
sense that

(u1, u2), (v1, v2) ∈ X with (u1, u2) ≥ (v1, v2)

⇒ (αI − B1 − C)−1(u1, u2) ≥ (αI − B1 − C)−1(v1, v2),

where (u1, u2) ≥ (v1, v2) represents u1 ≥ v1, u2 ≥ v2.
Now Proposition 3.7 implies that

((αI−B1−C)−1(0, 1))(a, x)≥
(

0,
M(α,D)
1−Gα(x)

)

≥ (0, 0), (a, x) ∈ [0, a+] × Ω.

Note that in the following estimates, we will focus on the second component of (αI −
B1 − C)−1(0, 1) since the first component is always zero. Thus for the convenience
of notation, we will only write down the second component without ambiguity. Now
applying B2 to both sides of the above estimate, we find that
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(B2(αI − B1 − C)−1(0, 1))(a, x) = D
∫

Ω
J(x−y)((αI−B1−C)−1(0, 1))(a, y)dy,

≥
∫

Ω
J(x − y)

DM(α,D)
1− Gα(y)

dy, (a, x) ∈ [0, a+] × Ω.

(4.5)

By the monotonicity of (αI − B1 − C)−1, (4.5) and Proposition 3.7, we find for each
(a, x) ∈ [0, a+] × Ω that

(
(αI − B1 − C)−1B2(αI − B1 − C)−1(0, 1)

)
(a, x)

=

(

(αI − B1 − C)−1
∫

Ω
J(· − y)

DM(α,D)
1− Gα(y)

dy

)

(a, x),

≥ M(α,D)
1− Gα(x)

∫

Ω
J(x − y)

DM(α,D)
1− Gα(y)

dy, (a, x) ∈ [0, a+] × Ω. (4.6)

Applying B2 to both sides of the above estimate again, we have

(
(B2(αI − B1 − C)−1)2(0, 1)

)
(a, x)

≥
∫

Ω
J(x − y)

DM(α,D)
1− Gα(y)

∫

Ω
J(y − z)

DM(α,D)
1− Gα(z)

dzdy. (4.7)

Repeating the above procedure, we find for each (a, x0) ∈ [0, a+]× Ω the following
estimate

(
(B2(αI − B1 − C)−1)n(0, 1)

)
(a, x0)

≥
∫

Ω
· · ·
∫

Ω

n

∏
m=1

[

J(xm−1 − xm)
DM(α,D)
1− Gα(xm)

]

dxn · · · dx1.

As a result,

∥
∥
∥(B2(αI − B1 − C)−1)n

∥
∥
∥ ≥ max

(a,x0)∈[0,a+]×Ω

(
(B2(αI − B1 − C)−1)n(0, 1)

)
(a, x0)

≥ max
x0∈Ω

∫

Ω
· · ·
∫

Ω

n

∏
m=1

[

J(xm−1 − xm)
DM(α,D)
1− Gα(xm)

]

dxn · · · dx1,

which implies that for any x0 ∈ Ω and δ > 0,
∥
∥
∥(B2(αI − B1 − C)−1)n

∥
∥
∥

≥
∫

Ω∩B(x0,δ)
· · ·
∫

Ω∩B(x0,δ)

n

∏
m=1

[

J(xm−1 − xm)
DM(α,D)
1− Gα(xm)

]

dxn · · · dx1
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≥
[

inf
x∈Ω∩B(x0,δ)

∫

Ω∩B(x0,δ)
J(x − y)

DM(α,D)
1− Gα(y)

dy

]n

, (4.8)

where B(x0, δ) is an open ball in RN centered at x0 with radius δ. We can use (4.4)
and Gelfand’s formula for the spectral radius of a bounded linear operator to find that

1 ≥ inf
x∈Ω∩B(x0,δ)

∫

Ω∩B(x0,δ)
J(x − y)

DM(α,D)
1− Gα(y)

dy := I(x0, δ, α,D) (4.9)

for all x0 ∈ Ω, δ > 0 and Reα > s(B1 + C).
Since J is continuous and J(0) > 0, there exist δ∗ > 0 and c∗ > 0 such that J ≥ c∗

on B(0, δ∗), an open ball in RN centered at 0 with radius δ∗. Hence,

I(x0, δ, α,D) ≥ inf
x∈Ω∩B(x0,δ)

∫

Ω∩B(x0,δ)∩B(x,δ∗)
J(x − y)

DM(α,D)
1− Gα(y)

dy

≥ c∗ inf
x∈Ω∩B(x0,δ)

∫

Ω∩B(x0,δ)∩B(x,δ∗)

DM(α,D)
1− Gα(y)

dy

= c∗
∫

Ω∩B(x0,δ)

DM(α,D)
1− Gα(y)

dy (4.10)

provided 2δ ≤ δ∗ so that B(x0, δ) ⊂ B(x, δ∗) whenever x ∈ B(x0, δ). In particular,
for any x0 ∈ Ω and Reα > s(B1 + C),

I(x0, δ∗/2, α,D) ≥ c∗
∫

Ω∩B(x0,δ∗/2)

DM(α,D)
1− Gα(y)

dy. (4.11)

Since 1
1−Gα

/∈ L1loc(Ω), there exists x∗ ∈ Ω such that

1
1− Gα

/∈ L1
(

Ω ∩ B (x∗, δ∗/2)
)
,

which implies the existence of some small enough ε∗ ∈ (0, 1) such that

c∗
∫

Ω∩B(x∗,δ∗/2)

DM(α,D)
1− Gα(y) + ε

dy ≥ 2

for all ε ∈ (0, ε∗]. In particular, I(x∗, δ∗/2, α,D) ≥ 2, which contradicts (4.9). ��

Corollary 4.4 Assume that μ(a, x), β(a, x) and J(x) are CN in x, there is some x0 ∈
Int(Ω) satisfying that Gα(x0) = maxx∈Ω Gα(x) = 1 and the partial derivatives of
Gα(x) up to orderN− 1 at x0 are zero, thenλ1(A) = s(A) is the principal eigenvalue
of A and {S(t)}t≥0 exhibits asynchronous exponential growth.
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Proof We shall follow the proof of Theorem 4.3 by contradiction. Let x0 ∈ Ω be such
that Gα(x0) = 1. Also without loss of generality, we may assume that x0 ∈ Int(Ω).
Since the partial derivatives of Gα(x) up to order N − 1 at x0 are zero, there is M > 0
such that

Gα(x0) − Gα(y) ≤ M
∥
∥x0 − y

∥
∥N for y ∈ RN .

Then following the arguments of Theorem 4.3, we have

I(x0, δ∗/2, α,D) ≥ c∗
∫

Ω∩B(x0,δ∗/2)

DM(α,D)

M
∥
∥x0 − y

∥
∥N

dy,

see (4.11). Note that
∫

Ω∩B(x0,δ∗/2)
DM(α,D)

M‖x0−y‖N dy = ∞. This, together with the argu-

ments in Theorem 4.3, yields a contradiction. It follows that the desired result is
concluded. ��

Next, we give another nonlocally-integrable condition similar to (4.3) to check the
existence of the principal eigenvalue of A and asynchronous exponential growth of
{S(t)}t≥0.

Theorem 4.5 (Existence of the principal eigenvalue and asynchronous exponential
growth - II) Assume that for every ζ > α∗∗,

1
ζ − α

/∈ L1loc(Ω), (4.12)

then λ1(A) = s(A) is the principal eigenvalue of A and {S(t)}t≥0 exhibits asyn-
chronous exponential growth, where α(x) is defined in Proposition 3.5.

Proof The idea of the proof below came from Liang et al. [29, Lemma 3.8] or Bao and
Shen [6, Proposition 3.1]. For completeness and reader’s convenience, we provide a
detailed and modified proof.

By the assumption on the kernel J, there exist r > 0 and c0 > 0 such that J(x −
y) > c0 for all x, y ∈ Ω with |x − y| < r. By Proposition 3.5 and classical theory
of age-structured models, for each x ∈ Ω, Bx

1 + Cx possesses a strongly positive
eigenfunction

(0, [E(x)](a)) := (0, e−(α+Dκ(x))aΠ(0, a, x)φ(x))

corresponding to eigenvalue α(x), where φ(x) is an arbitrary positive nontrivial fixed
point of Gα(x) and Bx

1 + Cx is defined in (3.2) with upper script representing each
fixed x ∈ Ω. It then follows from Kato [27, Section IV.3.5] that E(x) is continuous
in x ∈ Ω. Without loss of generality, we assume that

max
(a,x)∈×[0,a+]×Ω

[E(x)](a) = 1.
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Next let c1 = min(a,x)∈[0,a+]×Ω[E(x)](a). Since (ζ − α)−1 /∈ L1loc(Ω), we can

choose some δ > 0 and x1 ∈ Ω such that B(x1, δ) ⊂ B(x1, 2δ) ⊂ Ω,

∫

B(x1,δ)

1
ζ − α(x)

dx ≥ 2(Dc0c1)−1,

and 3δ < r, where B(x, r) is the ball centered at x with radius r. Let p(x) be a
continuous function on Ω defined by

p(x) =

{
1, x ∈ B(x1, δ),
0, x ∈ Ω \ B(x1, 2δ)

(4.13)

and [Ê(x)](a) := Ê(a, x) := p(x)[E(x)](a), ∀(a, x) ∈ [0, a+] × Ω. It then follows
that for any (a, x) ∈ [0, a+] × Ω \ B(x1, 2δ), we have

∫

Ω
J(x − y)

dy
ζ − α(y)

Ê(a, y) ≥ 0.

For any (a, x) ∈ [0, a+] × B(x1, 2δ), we see that

∫

Ω
J(x − y)

dy
ζ − α(y)

Ê(a, y)

≥
∫

B(x1,δ)
J(x − y)

dy
ζ − α(y)

[E(y)](a)

≥ 2c0c1(Dc0c1)−1 ≥ 2D−1Ê(a, x). (4.14)

Note that

[(ζ I − B1 − C)−1(0, Ê)](x) = (ζ I − Bx
1 − Cx)−1(0, [Ê(x)])

= (ζ − α(x))−1(0, [Ê(x)]) (4.15)

for all x ∈ Ω. It then follows that

Fζ(0, Ê) = B2(ζ I − B1 − C)−1(0, Ê) ≥ 2(0, Ê) > (0, Ê). (4.16)

Thus, there exists ζ > s(B1 + C) such that r(Fζ) > 1. Then by Corollary 4.2, it
follows that s(A) > s(B1 + C), which implies the desired result by Theorem 4.1. ��

Again parallel to Corollary 4.4, we have the following corollary.

Corollary 4.6 Assume that μ(a, x), β(a, x) and J(x) are CN in x, there is some x0 ∈
Int(Ω) satisfying that α(x0) = maxx∈Ω α(x) and the partial derivatives of α(x) up
to order N − 1 at x0 are zero, then λ1(A) = s(A) is the principal eigenvalue of A
and {S(t)}t≥0 exhibits asynchronous exponential growth.
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Remark 4.7 (a) Observe that the criterion for the existence of the principal eigenvalue
that we provided in (4.3) and (4.12) are reasonable and comparable with the ones
obtained for other nonlocal problems, for instance, see Coville [11] who employed
generalizedKrein-RutmanTheorem to obtain existence of the principal eigenvalue of a
nonlocal diffusion operator. In fact, for our case (4.3) and (4.12) imply s(A) > s(B1+
C). It follows from the proof of Theorem 4.1 that {S(t)}t≥0 is an essentially compact
semigroup which implies that r(A) > re(A). Then by generalized Krein-Rutman
Theorem (Theorem 2.1) we can also conclude existence of the principal eigenvalue.
This shows the equivalence in using the theory of resolvent positive operators with
their perturbations and using generalized Krein-Rutman Theorem to obtain existence
of the principal eigenvalue. In addition, such criteria in (4.3) and (4.12) are sharp
in the sense that if they are not satisfied, A admits no principal eigenvalue, see a
counterexample in [24] for details.

(b) We would like to mention again that such sufficient conditions (4.3) and (4.12)
are also valid for age-structured models with nonlocal diffusion of Dirichlet type
to obtain the existence of the principal eigenvalue and asynchronous exponentially
growth (see [24] in which we only discussed the existence of the principal eigenvalue).

5 Formula of asynchronous exponential growth

In this section, we derive a formula for the projection Pλ0 := v ⊗ v∗ : X0 →
ker(A − λ0 I) inspired by Walker [48], where λ0 = s(A).

Note that λ0 = s(A) is the principal eigenvalue of A when the assumptions in
Theorems 4.3 or 4.5 are satisfied. Since {S(t)}t≥0 exhibits asynchronous exponential
growth, λ0 = s(A) is a simple eigenvalue of A by Theorem 2.13-(iii), which implies
that 1 ∈ σp(Mλ0) with geometric multiplicity 1. It follows that there is a positive
element Φ0 ∈ X such that

ker(I − Mλ0) = span{Φ0} and ker(A − λ0 I) = span

⎧
⎨

⎩

(
0

e−λ0aU (0, a)Φ0

)⎫
⎬

⎭
.

Let φ ∈ Q := L1((0, a+), L1(Ω)) be fixed and let c(φ) ∈ R be such that

Pλ0

(
0
φ

)

=

(
0

c(φ)e−λ0aU (0, a)Φ0

)

.

Note that we only need to find the second component of Pλ0

(
0
φ

)

since the first one is

always zero. Thus in the followingwewillwrite Pλ0φ = c(φ)e−λ0aU (0, a)Φ0without
ambiguity. Recall that λ0 is a simple pole of the resolvent (A − λI)−1. Denote

(Hλφ)(a) :=
∫ a

0
e−λ(a−σ)U (σ, a)φ(σ, ·)dσ.
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Then Hλφ is holomorphic in λ and it follows from (3.21) and residue theorem that

Pλ0φ = lim
λ→λ0

(λ − λ0)e−λaU (0, a)(I − Mλ)−1Wλφ,

where

Wλφ =
∫ a+

0
β(a, ·)

∫ a

0
e−λ(a−σ)U (σ, a)φ(σ, ·)dσda.

Let w′ ∈ X′ be a positive eigenfunctional of the dual operator M′
λ0

of Mλ0 corre-

sponding to the eigenvalue r(Mλ0) = 1. Then for f ′ ∈ Q′ defined by

〈 f ′,ψ〉 :=
〈

w′,
∫ a+

0
β(a, ·)ψ(a, ·)da

〉

, ψ ∈ Q,

we have due to M′
λ0
w′ = w′ that

c(φ)〈w′,Φ0〉 = 〈 f ′, Pλ0φ〉 = lim
λ→λ0

〈 f ′, (λ − λ0)e−λaU (0, a)(I − Mλ)−1Wλφ〉

= lim
λ→λ0

〈w′, (λ − λ0)(I − (I − Mλ))(I − Mλ)−1Wλφ〉

= lim
λ→λ0

〈w′, (λ − λ0)(I − Mλ)−1Wλφ〉.

DecomposeWλφ as

Wλφ = d(Wλφ)Φ0 ⊕ (I − Mλ0)g(Wλφ). (5.1)

According to the decomposition X = R · Φ0 ⊕ rg(I − Mλ0), it follows that

lim
λ→λ0

〈w′, (λ − λ0)(I − Mλ)−1Wλφ〉 = d(Wλ0φ) lim
λ→λ0

〈w′, (λ − λ0)(I − Mλ)−1Φ0〉

due to the continuity of Mλ in λ. But it follows from (5.1) that

〈w′,Wλ0φ〉 = d(Wλ0φ)〈w′,Φ0〉

since M′
λ0
w′ = w′, whence d(Wλ0φ) = ξ〈w′,Wλ0φ〉 with ξ−1 = 〈w′,Φ0〉. Simi-

larly, decomposing

Yλ := (λ − λ0)(I − Mλ)−1Φ0,

we find that

lim
λ→λ0

〈w′,Yλ〉 =
(

lim
λ→λ0

d(Yλ)

)

〈w′,Φ0〉.
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Based on these observations, we derive that

c(φ)〈w′,Φ0〉 = C0〈w′,Wλ0φ〉〈w′,Φ0〉

for some constant C0. Consequently,

Pλ0φ = C0〈w′,Wλ0φ〉e−λ0aU (0, a)Φ0.

Since Pλ0 is a projection; i.e., P
2
λ0

= Pλ0 , the constant C0 can be easily computed and
we obtain the following result.

Proposition 5.1 Under the assumptions of Theorems 4.3 or 4.5, the projection Pλ0 :=
v ⊗ v∗ is given by

Pλ0φ =
〈w′,Wλ0φ〉

〈w′,
∫ a+
0 aβ(a, ·)e−λ0aU (0, a)Φ0da〉

e−λ0aU (0, a)Φ0 (5.2)

for φ ∈ Q, where

Wλ0φ =
∫ a+

0
β(a, ·)

∫ a

0
e−λ0(a−σ)U (σ, a)φ(σ, ·)dσda

and w′ ∈ X′ is a positive eigenfunctional of the dual operator M′
λ0

of Mλ0 corre-
sponding to the eigenvalue r(Mλ0) = 1.

6 Limiting properties

In this section we study the effects of diffusion rate on the principal spectrum point
λ1(A) ofA. Following the idea fromBerestycki et al. [7,8],we introduce the following
definition.

Definition 6.1 Define the generalized principal eigenvalue by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λp(A) := sup{λ ∈ R : ∃ (0, φ) ∈ D(A) ∩ X++
0

s.t. (−A + λ)(0, φ) ≤ (0, 0) in [0, a+] × Ω},
λ′
p(A) := inf{λ ∈ R : ∃ (0, φ) ∈ D(A) ∩ X++

0
s.t. (−A + λ)(0, φ) ≥ (0, 0) in [0, a+] × Ω},

(6.1)

where X++
0 = {0} × {u ∈ C([0, a+] × Ω) : u(a, x) > 0, (a, x) ∈ [0, a+] × Ω}.

We would like to mention that the sets in Definition 6.1 are nonempty (see the proof of
Theorem 6.5 in the following). This idea has been widely used to prove the existence
and asymptotic behavior of the principal eigenvalue with respect to diffusion rate,
see Coville [11], Li et al. [28] and Su et al. [42] for nonlocal diffusion equations,
Shen and Vo [40] and Su et al. [41] for time periodic nonlocal diffusion equations.
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As Shen and Vo [40] pointed out for the time periodic case, we emphasize that the
parabolic-type operator A containing ∂a is not self-adjoint, so we do not have the
usual L2(Ω) variational formula for the principal eigenvalue λ1(A). The generalized
principal eigenvalues λp(A) and λ′

p(A) defined in (6.1) are helpful in addressing this
issue.

6.1 Without scaling

In this subsection first we study the diffusion kernel without scaling; i.e., L defined in
(3.1).

Proposition 6.2 λ1(A) = λp(A) = λ′
p(A) if λ1(A) is the principal eigenvalue of

A.

Proof First we prove that λ1 = λp. Since λ1(A) is the principal eigenvalue of A,
there exists (0, φ1) ∈ D(A) ∩ X++

0 such that

A(0, φ1) − λ1(0, φ1) = (0, 0) in [0, a+] × Ω. (6.2)

Since inf[0,a+]×Ω φ1 > 0, we have λ1 ≤ λp. Suppose by contradiction that λ1 < λp.

From the definition of λp, there are λ ∈ (λ1,λp) and (0, φ) ∈ D(A) ∩ X++
0 such

that

− A(0, φ) + λ(0, φ) ≤ (0, 0) in [0, a+] × Ω (6.3)

that is,

⎧
⎨

⎩

∂φ(a,x)
∂a − D

∫

Ω J(x − y)(φ(a, y) − φ(a, x))dy+ μ(a, x)φ + λφ ≤ 0,

φ(0, x) −
∫ a+

0 β(a, x)φ(a, x)da ≤ 0.
(6.4)

Now solving the first inequality in (6.4), we obtain

φ(a, ·) ≤ e−λaU (0, a)φ(0, ·).

Plugging it into the second inequality in (6.4), we have

φ(0, ·) ≤
∫ a+

0
β(a, ·)e−λaU (0, a)φ(0, ·)da. (6.5)

It follows that Mλφ(0, ·) ≥ φ(0, ·), which implies that r(Mλ) ≥ 1. But we
know that λ1 is the principal eigenvalue of A, then by Proposition 3.13, we have
r(Mλ1) = 1. Since λ → r(Mλ) is strictly decreasing following a similar argument
as in Proposition 3.3 or [24, Proposition 3.7], one has λ1 ≥ λ. This contradiction
leads to λ1 = λp.
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Next we prove λ1 = λ′
p. Obviously, λ1 ≥ λ′

p. Assume that λ1 > λ′
p. There are

λ̃ ∈ (λ′
p,λ1) and (0, φ̃) ∈ D(A) ∩ X++

0 such that −A(0, φ̃) + λ̃(0, φ̃) ≥ (0, 0).
By reversing the above inequalities, we have the desired conclusion by using a similar
argument as above. ��

Next we recall a lemma from Vo [47] on a Poincaré-type inequality of the operator
K : L2(Ω) → L2(Ω) defined by

K[ f ](x) = −
∫

Ω
J(x − y)[ f (y)− f (x)]dy, x ∈ Ω.

Lemma 6.3 (Vo [47, Lemma 3.2]) Assume that J is symmetric with respect to each
component. Then

∫

Ω
K[ f ](x) f (x)dx =

1
2

∫

Ω

∫

Ω
J(x − y)[ f (y) − f (x)]2dydx,

and there exists C > 0 such that
∫

Ω
K[ f ](x) f (x)dx ≥ C

∫

Ω
f 2(x)dx

for all f ∈ L2(Ω) with
∫

Ω f (x)dx = 0.

Lemma 6.4 λ1 ≤ λ1(A) ≤ λ1 for all D > 0, where λ1 and λ1 are defined in (6.10)
and (6.7), respectively.

Proof Let Ψ1(a) be the positive solution of the following age-structured equation
(note that the existence is guaranteed by the theory of age-structured models)

⎧
⎨

⎩

∂Ψ1(a)
∂a = −(λ1 + μ(a))Ψ1(a),

Ψ1(0) =
∫ a+

0 β(a)Ψ1(a)da,
(6.6)

where λ1 satisfies
∫ a+

0
β(a)e−λ1ae−

∫ a
0 μ(s)dsda = 1. (6.7)

Then (0,Ψ1) ∈ X++
0 ∩ D(A) and it is easy to compute that

−A(0,Ψ1) + λ1(0,Ψ1)

=

(

Ψ1(0) −
∫ a+

0 β(a, x)Ψ1(a)da, ∂Ψ1(a)
∂a − D

∫

Ω J(x − y)
(Ψ1(a) − Ψ1(a))dy+ μ(a, x)Ψ1 + λ1Ψ1

)

=
(∫ a+

0 (β(a) − β(a, x))Ψ1(a)da, (μ(a, x) − μ(a))Ψ1
)

≥
(
0, 0

)
. (6.8)
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It follows by Proposition 6.2 that λ1(A) = λ′
p(A) ≤ λ1.

Similarly, consider the following equation with a positive solution Ψ1(a):
⎧
⎨

⎩

∂Ψ1(a)
∂a = −(λ1 + μ(a))Ψ1(a),

Ψ1(0) =
∫ a+

0 β(a)Ψ1(a)da,
(6.9)

where λ1 satisfies

∫ a+

0
β(a)e−λ1ae−

∫ a
0 μ(s)dsda = 1. (6.10)

Then similar computation yields −A(0,Ψ1) + λ1(0,Ψ1) ≤ (0, 0), which implies
that λ1(A) = λp(A) ≥ λ1. Thus the conclusion is proven. ��

Now we give the main theorem about the effects of diffusion rate on λ1(A). We
write λD

1 (A) for λ1(A) to emphasize the dependence on D.

Theorem 6.5 Assume that λD
1 (A) = s(A) is the principal eigenvalue of A, then the

function D → λD
1 (A) is continuous on (0,∞) and satisfies

(i) lim
D→0+

λD
1 (A) = s(B0

1 + C), where

B0
1(0, f ) :=

(
− f (0, ·), − f ′ − μ f

)
, (0, f ) ∈ D(A);

(ii) In addition, if β(a, x) ≡ β(a) and
∥
∥β
∥
∥2
L2(0,a+) > 2λ1 with λ1 defined in (6.10),

then lim
D→∞

λD
1 (A) = λ0, where λ0 satisfies the following equation

∫ a+

0
β(a)e−λ0ae−

1
|Ω|
∫ a
0

∫

Ω μ(s,x)dxdsda = 1. (6.11)

Proof Since λD
1 (A) is an isolated eigenvalue, the continuity of D → λD

1 (A) follows
from the classical perturbation theory (see Kato [27, Section IV.3.5]).

(i) For the limits, we first claim that for every ε > 0, there exists Dε > 0 such that

s(B0
1 + C) − ε ≤ λD

1 (A) ≤ s(B0
1 + C) + ε, ∀D ∈ (0,Dε). (6.12)

Denote ϑ = s(B0
1 + C). Consider the following equation

⎧
⎨

⎩

∂φ(a,x)
∂a = −(α(x) + μ(a, x))φ(a, x), (a, x) ∈ (0, a+) × Ω,

φ(0, x) =
∫ a+

0 β(a, x)φ(a, x)da, x ∈ Ω.
(6.13)

By Proposition 3.5, we know that (6.13) has a solution φ(a, x) = e−α(x)aΠ(0, a, x)φ
(0, x) ∈ C1,0

++([0, a
+] × Ω) if the initial data φ(0, x) is continuous, positive and
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bounded, where C1,0([0, a+] × Ω), which represents the space of functions which
have continuous differentiability with respect to a ∈ [0, a+] and continuity with
respect to x ∈ Ω, the double plus sign ++ denotes the strict positive cone. Thus,
(0, φ) ∈ D(A) ∩ X++

0 . Moreover, it can be checked that

−A(0, φ) + (ϑ + ε)(0, φ)

=

(

φ(0, x) −
∫ a+

0
β(a, x)φ(a, x)da,

∂φ(a, x)
∂a

− D
∫

Ω
J(x − y)(φ(a, y)

−φ(a, x))dy+ μ(a, x)φ + (ϑ + ε)φ

⎞

⎠ .

Sincemin[0,a+]×Ω φ > 0 andmax[0,a+]×Ω φ < ∞, it is straightforward to check that

for each ε > 0, there exists D1ε > 0 such that for each D ∈ (0,D1ε), we have

∂φ(a, x)
∂a

− D
∫

Ω
J(x − y)(φ(a, y) − φ(a, x))dy+ μ(a, x)φ + (ϑ + ε)φ

= −D
∫

Ω
J(x − y)(φ(a, y) − φ(a, x))dy+ (ϑ − α(x))φ + εφ

≥ −D
∫

Ω
J(x − y)(φ(a, y) − φ(a, x))dy+ εφ

≥ 0, (6.14)

where we used ϑ ≥ α(x) from Proposition 3.5 in which D = 0. It then follows that
−A(0, φ) + (ϑ + ε)(0, φ) ≥ (0, 0), which by the definition of λ′

p(A) implies that

λD
1 (A) = λ′

p(A) ≤ s(B0
1 + C) + ε. (6.15)

Next, from Proposition 3.3, we know that s(B0
1 + C) = α1 and s(B1 + C) = α∗∗,

respectively, which satisfy

max
x∈Ω

∫ a+

0
β(a, x)e−α1aΠ(0, a, x)da = 1,

max
x∈Ω

∫ a+

0
β(a, x)e−(α∗∗+Dκ(x))aΠ(0, a, x)da = 1. (6.16)

It follows that α∗∗ ↑ α1 as D → 0+. Then for the previous same ε > 0, there exists
D2ε > 0, such that for each D ∈ (0,D2ε), we have

s(B0
1 + C) = α1 ≤ α∗∗ + ε = s(B1 + C) + ε. (6.17)
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Now combing with (6.15), we have by Remark 3.10 that for any ε > 0, there exists
Dε = min{D1ε,D2ε} such that for each D ∈ (0,Dε),

s(B0
1 + C) − ε ≤ s(B1 + C) ≤ s(A) = λD

1 (A) ≤ s(B0
1 + C) + ε.

Setting D → 0+, we find that

s(B0
1 + C) − ε ≤ lim inf

D→0+
λD
1 (A) ≤ lim sup

D→0+
λD
1 (A) ≤ s(B0

1 + C) + ε, ∀ε > 0,

which leads to λD
1 (A) → s(B0

1 + C) as D → 0+.
(ii) Finally, we prove the other limit λD

1 (A) → λ0 as D → ∞. Assume that
(0, φ) ∈ X++

0 ∩ D(A) is the principal eigenfunction associated with eigenvalue
λD = λD

1 (A); i.e. (λD, (0, φ)) as an eigen-pair satisfying (6.4) (with ≤ replaced by
=). Multiplying the first equation of (6.4) by φ and integrating the resulting equation
over [0, a+] × Ω, we find from the normalization

∥
∥φ
∥
∥
L2((0,a+)×Ω) = 1 that

D
∫ a+

0

∫

Ω

{∫

Ω
J(x − y)[φ(a, y) − φ(a, x)]dy

}

φ(a, x)dxda

−
∫ a+

0

∫

Ω
μ(a, x)φ2(a, x)dxda+

1
2

∫

Ω

{
∫ a+

0
β(a)φ(a, x)da

}2

dx

−1
2

∥
∥
∥φ(a+, ·)

∥
∥
∥
2

L2(Ω)
− λD = 0. (6.18)

By the symmetry of J, we have (see Vo [47, Lemma 3.2])

∫ a+

0

{∫

Ω

∫

Ω
J(x − y)[φ(a, y) − φ(a, x)]2dydx

}

da

= −2
∫ a+

0

∫

Ω

{∫

Ω
J(x − y)[φ(a, y) − φ(a, x)]dy

}

φ(a, x)dxda. (6.19)

It then follows from (6.18) that

−D
2

∫ a+

0

∫

Ω

{∫

Ω
J(x − y)[φ(a, y)− φ(a, x)]2dy

}

dxda −
∫ a+

0

∫

Ω
μ(a, x)φ2(a, x)dxda

+
1
2

∫

Ω

{
∫ a+

0
β(a)φ(a, x)da

}2

dx − 1
2

∥
∥
∥φ(a+, ·)

∥
∥
∥
2

L2(Ω)
− λD = 0. (6.20)

Since μ(a, x) and β(a, x) are bounded and {λD}D�1 is bounded by Lemma 6.4, there
exists C = C(β,λ1) > 0 by Hölder’s inequality and the assumption of theorem such
that
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D
2

∫ a+

0

∫

Ω

{∫

Ω
J(x − y)[φ(a, y) − φ(a, x)]2dy

}

dxda

≤ 1
2

∥
∥β
∥
∥2
L2(0,a+) − λD − 1

2

∥
∥
∥φ(a+, ·)

∥
∥
∥
2

L2(Ω)
− min

[0,a+]×Ω
μ(a, x)

≤ 1
2

∥
∥β
∥
∥2
L2(0,a+) − λ1 := C. (6.21)

Define φ(a) = 1
|Ω|
∫

Ω φ(a, x)dx for a ∈ [0, a+] and set ψ = φ − φ. Applying
Lemma 6.3, we have from (6.21) that

∫ a+

0

∫

Ω
K[ψ(a, ·)](x)ψ(a, x)dxda

=
1
2

∫ a+

0

{∫

Ω

∫

Ω
J(x − y)[ψ(a, y) − ψ(a, x)]2dydx

}

da

=
1
2

∫ a+

0

{∫

Ω

∫

Ω
J(x − y)[φ(a, y) − φ(a, x)]2dydx

}

da

≤ C
D
.

Since
∫

Ω ψ(a, x)dx = 0 for all a ∈ [0, a+], we can apply Lemma 6.3 to derive

∫

Ω
ψ2(a, x)dx ≤ C1

∫

Ω
K[ψ(a, ·)](x)ψ(a, x)dx, ∀a ∈ [0, a+],

for some C1 > 0. Hence,

∫ a+

0

∫

Ω
ψ2(a, x)dxda ≤ C1C

D
. (6.22)

Integrating the first equation of (6.4) (with ≤ replaced by=) over Ω and dividing the
resulting equation by |Ω|, we find

∂φ

∂a
=

1
|Ω|

∫

Ω

{

D
∫

Ω
J(x − y)[φ(a, y)− φ(a, x)]dy − μ(a, x)φ(a, x)− λDφ(a, x)

}

dx

= −λDφ − 1
|Ω|

∫

Ω
μ(a, x)φ(a, x)dx. (6.23)

Setting μ̂(a) = 1
|Ω|
∫

Ω μ(a, x)dx, we have

∂φ

∂a
+ [μ̂(a) + λD]φ = − 1

|Ω|

∫

Ω
μ(a, x)[φ(a, x) − φ(a)]dx

= − 1
|Ω|

∫

Ω
μ(a, x)ψ(a, x)dx. (6.24)
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It follows from the variation of constants formula that

φ(a) = φ(0)e−
∫ a
0 (μ̂(s)+λD)ds − 1

|Ω|

∫ a

0
e−
∫ a

τ (μ̂(s)+λD)ds

×
∫

Ω
μ(τ, x)ψ(τ, x)dxdτ, a ∈ [0, a+].

Since μ(a, x) and {λD}D�1 are bounded, we deduce from (6.22) and Hölder’s
inequality that

φ(a) = φ(0)e−
∫ a
0 [μ̂(s)+λD ]ds +O

(
1√
D

)

, ∀a ∈ [0, a+], (6.25)

for all D � 1. Now plugging (6.25) into the initial boundary condition, we obtain

φ(0) =
∫ a+

0
β(a)φ(a)da =

∫ a+

0
β(a)φ(0)e−

∫ a
0 [μ̂(s)+λD ]dsda+O

(
1√
D

)
∫ a+

0
β(a)da.

Since β(a) is also bounded, after cancellation of φ(0) in both sides, we have

1 =
∫ a+

0
β(a)e−λDae−

1
|Ω|
∫ a
0

∫

Ω μ(s,x)dxdsda+O

(
1√
D

)

for all D � 1. The reason that φ(0) � 0 is given in Vo [47, Theorem A(3)], we omit
it here. Now letting D → ∞, we obtain

∫ a+

0
β(a)e−λDae−

1
|Ω|
∫ a
0

∫

Ω μ(s,x)dxdsda = 1,

which leads to λD = λ0 defined in (6.11) by the strict monotonicity of H(λ) with
respect to λ, where

H(λ) :=
∫ a+

0
β(a)e−λae−

1
|Ω|
∫ a
0

∫

Ω μ(s,x)dxdsda.

This completes the proof. ��

Remark 6.6 It is worthwhile to point out that s(B0
1 + C) can be explicitly characterized

by using α1 as shown in (6.16). Moreover, it is interesting and open to investigate the
limit lim

D→∞
λD
1 (A) without the additional assumption that β(a, x) ≡ β(a) in (ii). We

conjecture that lim
D→∞

λD
1 (A) = λ1, where λ1 satisfies the following equation

1
|Ω|

∫ a+

0

∫

Ω
β(a, x)e−λ1ae−

1
|Ω|
∫ a
0

∫

Ω μ(s,x)dxdsdxda = 1.
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We leave it for future consideration.

Theorem 6.7 If μ(a, x) = μ1(a) + μ2(x) with μ2(·) �≡ constant, β(a, x) ≡ β(a),
and suppose that J is symmetric with respect to each component and in addition the
operator

v → D
[∫

Ω
J(· − y)(v(y) − v(·))dy

]

− μ2v : X → X

admits a principal eigenvalue, then D → λD
1 (A) is strictly decreasing.

Proof We write A = T + LΩ, where

T (0, φ) =

(

−φ(0) +
∫ a+

0
β(a)φ(a)da, −φ′ − μ1φ

)

, φ ∈ W1,1([0, a+]),

LΩ(0, v) =

(

0, D
[∫

Ω
J(· − y)(v(y) − v(·))dy

]

− μ2v

)

, v ∈ X.

Let (λD
1 (LΩ), (0, vΩ)) be the principal eigenpair of −LΩ. Then by using the same

argument as in Shen and Xie [39, Theorem 2.2(1)], we know that D → λD
1 (LΩ) is

strictly increasing. Now define (0, φ1) to be the solution of the characteristic equation
T (0, φ) = λ1(0, φ) (note that the existence of (λ1, φ1) is guaranteed by the theory
of age-structured models). It follows that λD

1 (A) = −λD
1 (LΩ) + λ1 is the principal

eigenvalue ofAwith the principal eigenfunction
(
0, vΩ(x)φ1(a)

)
. AsD → λD

1 (LΩ)
is strictly increasing, so D → λD

1 (A) is strictly decreasing. ��

6.2 With scaling

In this subsection we investigate the diffusion kernel with scaling; i.e., Lσ,m defined
in (2.5). First we give a proposition to address the effects of μ and β on the principal
eigenvalue. Write Aσ,m = Bσ,m + C for A = B + C to highlight the dependence on
σ and m. Also use Bμ

σ,m and Cβ for B and C to represent the dependence on μ and β
respectively.

Proposition 6.8 Let m ≥ 0 and σ > 0. We have the following statements:

(i) Assume that λ1(Bσ,m + Cβ) and λ1(Bμ
σ,m + C) are the principal eigenvalues of

Bσ,m + Cβ andBμ
σ,m + C respectively, then λ1(Bσ,m + Cβ) is non-decreasingwith

respect to β and λ1(Bμ
σ,m + C) is non-increasing with respect to μ;

(ii) Moreover,λ1(Bμ
σ,m+ C) is Lipschitz continuouswith respect toμ inC([0, a+],X)

if λ1(Aσ,m) is the principal eigenvalue of Aσ,m. More precisely,

|λ1(Bμ1
σ,m + C) − λ1(Bμ2

σ,m + C)| ≤
∥
∥μ1 − μ2

∥
∥
C([0,a+],X)

for any μ1, μ2 ∈ C([0, a+],X);
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The proof is almost identical to [24, Proposition 5.6], thus we omit it. Note that
we do not have the monotonicity dependence of λ1(A) on Ω due to the Neumann
boundary condition, which is different from the Dirichlet boundary condition.

Theorem 6.9 Let B1 be defined by (3.2) and

B0
1(0, f ) :=

(
− f (0, ·), − f ′ − μ f

)
, (0, f ) ∈ D(A).

Assume that λ1(Aσ,m) = s(Aσ,m) is the principal eigenvalue of Aσ,m, then the
following statements hold:

(i) For each m ≥ 0, there holds

lim
σ→∞

λ1(Aσ,m) = s(B0
1 + C); (6.26)

(ii) If m ∈ [0, 2) and β, μ ∈ C1,4([0, a+] × Ω]), in addition, assume that J is sym-
metric with respect to each component, then

lim
σ→0+

λ1(Aσ,m) = s(B0
1 + C).

Before proving Theorem 6.9, we make the following remark.

Remark 6.10 Observing Theorem 6.9-(ii), we obtained a better result for m ∈ [0, 2)
compared with Theorem B-(2) only for m = 0 in Vo [47]. In fact, such results when
m ∈ [0, 2) for nonlocal operators of Neumann type were also obtained by Su et al.
[41],where they compared the principal eigenvalue of time-periodic nonlocal diffusion
operators with autonomous ones (without time derivative) to get the desired estimates.
However, their method is not valid for our case, since we do not have an autonomous
operator. We shall follow and improve the estimates of Theorem B-(2) in Vo [47].

Proof Note that Proposition 6.2 holds for Aσ,m. (i) Let us consider m > 0. By using
a similar argument as in (6.17) in Theorem 6.5 via replacing D by D

σm , we find that
for any ε > 0, there exists σ0 � 1 such that for each σ > σ0 there holds

s(B0
1 + C) − ε ≤ s(B1 + C).

It follows from Remark 3.10 that

lim inf
σ→∞

λ1(Aσ,m) ≥ s(B1 + C) ≥ s(B0
1 + C) − ε. (6.27)

Let us still consider the equation in (6.13) with a solution φ(a, x) ∈ C1,0
++([0, a

+] ×
Ω), under initial data φ(0, x), which is continuous, positive and bounded with ϑ =
s(B0

1 + C). For the previous same ε > 0, we see that for each (a, x) ∈ [0, a+] × Ω,
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−Aσ,m(0, φ) + (ϑ + ε)(0, φ)

=

(

φ(0, x) −
∫ a+

0
β(a, x)φ(a, x)da,

∂φ(a, x)
∂a

− D
σm

∫

Ω
Jσ(x − y)(φ(a, y)

−φ(a, x))dy+ μ(a, x)φ + (ϑ + ε)φ

⎞

⎠

and

∂φ(a, x)
∂a

− D
σm

∫

Ω
Jσ(x − y)(φ(a, y) − φ(a, x))dy+ μ(a, x)φ + (ϑ + ε)φ

= − D
σm

∫

Ω
Jσ(x − y)(φ(a, y) − φ(a, x))dy+ εφ + (ϑ − α(x))φ

≥ − D
σm

∫

Ω
Jσ(x − y)(φ(a, y) − φ(a, x))dy+ εφ. (6.28)

Since min[0,a+]×Ω φ > 0, max[0,a+]×Ω φ < ∞, and

∥
∥
∥
∥
D
σm

∫

Ω
Jσ(· − y)(φ(a, y) − φ(a, ·))dy

∥
∥
∥
∥
X

→ 0 as σ → ∞,

there is σε > 0 such that (6.28)≥ 0 for all σ ≥ σε. It then follows that−Aσ,m(0, φ) +
(ϑ + ε)(0, φ) ≥ (0, 0) which by the definition of λ′

p(Aσ,m) implies that

λ1(Aσ,m) = λ′
p(Aσ,m) ≤ s(B0

1 + C) + ε.

The arbitrariness of ε with (6.27) then yields (i) for m > 0.
Now we consider m = 0. Note that κσ(x) → 0 as σ → ∞. It follows by the same

argument in (6.17) that for any ε > 0, there exists σ1 � 1, such that for any σ > σ1
there holds

s(B0
1 + C) − ε ≤ s(B1 + C).

Then by Remark 3.10 we have

lim inf
σ→∞

λ1(Aσ,m) ≥ s(B1 + C) ≥ s(B0
1 + C) − ε. (6.29)

Next note that
∥
∥
∥
∥D

∫

Ω
Jσ(· − y)(φ(a, y) − φ(a, ·))dy

∥
∥
∥
∥
X

→ 0 as σ → ∞.

Thus by using the same argument as in (6.28), we obtain

λ1(Aσ,m) = λ′
p(Aσ,m) ≤ s(B0

1 + C) + ε.
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The arbitrariness of ε with (6.29) yields (i) for m = 0.
Now we prove (ii). For m ∈ [0, 2), let φ be the solution of (6.13) with a C4(Ω)

functionφ0 > 0 as its initial datawhich is positive and bounded.Andwe can normalize
φ0 such that sup[0,a+]×Ω φ = 1. Since μ, β ∈ C1,4([0, a+] × Ω), by the global

implicit function Theorem 3.4 and Proposition 3.5, we have α ∈ C4(Ω)which implies
that φ also belongs to C1,4([0, a+] × Ω). For any ε > 0 and (a, x) ∈ [0, a+] × Ω,
we have

∂φ(a, x)
∂a

− D
σm

∫

Ω
Jσ(x − y)(φ(a, y) − φ(a, x))dy+ μ(a, x)φ + (ϑ + ε)φ

≥ − D
σm

∫

Ω
Jσ(x − y)(φ(a, y) − φ(a, x))dy+ εφ

≥ − D
σm

[
∫

Ω

1
σN J

(
x − y

σ

)

(φ(a, y) − φ(a, x))dy

]

+ εφ

= − D
σm

∫

Ω−x
σ

J(z)[φ(a, x+ σz) − φ(a, x)]dz+ εφ. (6.30)

For σ small enough, say σ ≤ σ1, we obtain suppJ ⊂ Ω−x
σ for all x ∈ Ω. Thus by

Taylor expansion and the symmetry of J, we obtain that

− D
σm

∫

Ω−x
σ

J(z)[φ(a, x+ σz) − φ(a, x)]dz+ εφ

= − D
σm

∫

RN
J(z)[φ(a, x+ σz) − φ(a, x)]dz+ εφ

= − D
σm

∫

RN
J(z)

[

∂xφ(a, x)(σz) +
1
2
(σz)T∂2xφ(a, x)(σz) + o(σ2)

]

dz+ εφ

= −Dσ2−m

2

∫

RN
J(z)zT∂2xφ(a, x)zdz+ o(σ2−m) + εφ. (6.31)

It follows that there exists 0 < σε < σ1 such that

∂φ(a, x)
∂a

− D
σm

∫

Ω
Jσ(x − y)(φ(a, y) − φ(a, x))dy+ μ(a, x)φ + (ϑ + ε)φ ≥ 0

for all σ ≤ σε. Using the definition of λ1(Aσ,m), we have λ1(Aσ,m) ≤ λ′
p(Aσ,m) ≤

s(B0
1 + C) + ε. Hence,

lim sup
σ→0+

λ1(Aσ,m) ≤ s(B0
1 + C) + ε.

The arbitrariness of ε implies that

lim sup
σ→0+

λ1(Aσ,m) ≤ s(B0
1 + C).
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Now we prove the inverse inequality

lim inf
σ→0+

λ1(Aσ,m) ≥ s(B0
1 + C), (6.32)

where

Aσ,m(0,ψ) =

(

−ψ(0, x)+
∫ a+

0
β(a, x)ψ(a, x)da,

−∂ψ(a, x)
∂a

+
D
σm

∫

Ω
Jσ(x − y)(ψ(a, y) − ψ(a, x))dy − μ(a, x)ψ(a, x)

)

.

For any ε > 0, there exists an open ball Bε of radius ε such that α(x) + ε ≥ s(B0
1 +

C) := ϑ in Bε ∩ Ω, where α(x) is from Proposition 3.5 for D = 0 and s(B0
1 + C)

corresponds to the value α1 in (6.16). Let φ̃ε ∈ C1,4([0, a+] × RN) be nonnegative
and satisfy

φ̃ε = φ in [0, a+] × Bε, φ̃ε = 0, in [0, a+] × (RN \ B2ε) and sup
[0,a+]×RN

φ̃ε ≤ sup
[0,a+]×RN

φ = 1.

It is obvious that φ̃(a, ·) ∈ C4(RN) for each a ∈ [0, a+]. Let λ̃p(μ, AO
σ,m) be the

principal eigenvalue of the operator AO
σ,m, where AO

σ,m is defined as follows:

AO
σ,m(0,ψ) =

(

−ψ(0, x) +
∫ a+

0
β(a, x)ψ(a, x)da,

−∂ψ(a, x)
∂a

+
D
σm

∫

O
Jσ(x − y)ψ(a, y)dy − D

σm ψ(a, x) − μ(a, x)ψ(a, x)

)

.

Note that it is an operator of Dirichlet type. Then we have for (a, x) ∈ [0, a+] × Bε

that

−ABε
σ,m(0, φ) +

(

ϑ − ε − 1
| ln ε|

)

(0, φ) := (I3, I4),

where

I3 = φ(0, x) −
∫ a+

0
β(a, x)φ(a, x)da = 0

and
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I4 =
∂φ(a, x)

∂a
− D

σm

[∫

Bε

Jσ(x − y)φ(a, y)dy − φ(a, x)
]

+
[

μ(a, x) + ϑ − ε − 1
| ln ε|

]

φ(a, x)

= − D
σm

[∫

Bε

Jσ(x − y)φ(a, y)dy − φ(a, x)
]

+
[

−α(x) + ϑ − ε − 1
| ln ε|

]

φ(a, x)

≤ − D
σm

[∫

Bε

Jσ(x − y)φ(a, y)dy − φ(a, x)
]

− 1
| ln ε|φ(a, x)

= − D
σm

[
∫

RN
Jσ(x − y)φ̃ε(a, y)dy − φ̃ε(a, x) −

∫

B2ε\Bε

Jσ(x − y)φ̃ε(a, y)dy

]

− 1
| ln ε|φ(a, x).

Now by the argument in Shen and Vo [40, Theorem D(2)] after choosing ε = σk with
k = m+2N

N , we have for 0 < σ � 1 that

−A
B

σk
σ,m(0, φ) +

(

ϑ − σk − 1
| ln(σk)|

)

(0, φ) ≤ (0, 0), in [0, a+] × Bσk .

Then by Proposition 6.2, we have

λ̃′
p(μ, A

B
σk

σ,m) = λ̃p(μ, A
B

σk
σ,m) ≥ s(B0

1 + C) − σk − 1
| ln(σk)| .

Proposition 5.6 (iii) in Kang and Ruan [24] yields that λ̃p(μ, AΩ
σ,m) ≥ λ̃p(μ, A

B
σk

σ,m)
and thus

λ̃p(μ, AΩ
σ,m) ≥ s(B0

1 + C) − σk − 1
| ln(σk)| . (6.33)

Let−μ̃σ(a, x) = −μ(a, x)+ D
σm − D

σm

∫
Ω−x

σ
J(z)dz. Obviously, for a sufficient small

σ, one has
∫

Ω−x
σ

J(z)dz = 1, which implies that

lim
σ→0

∥
∥μ̃σ − μ

∥
∥
C([0,a+],X) = 0, (6.34)

and we derive, by Proposition 5.6 (ii) in [24], that

|λ̃p(μ̃σ, AΩ
σ,m) − λ̃p(μ, AΩ

σ,m)| ≤
∥
∥μ̃σ − μ

∥
∥
C([0,a+],X) , (6.35)
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where λ̃p(μ̃σ, AΩ
σ,m), for σ small enough, is the principal eigenvalue of the operator

defined by

AΩ
σ,m(0,ψ) =

(

−ψ(0, x)+
∫ a+

0
β(a, x)ψ(a, x)da,

−∂ψ(a, x)
∂a

+
D
σm

∫

Ω
Jσ(x − y)(ψ(a, y) − ψ(a, x))dy − μ(a, x)ψ(a, x)

)

.

Combining (6.33), (6.34) and (6.35), we take the limit as σ → 0+ and get the desired
inequality

lim inf
σ→0+

λ1(Aσ,m) = lim inf
σ→0+

λ̃p(μ̃σ, AΩ
σ,m) ≥ s(B0

1 + C),

which proves (6.32). ��

7 Strongmaximum principle

In this section by using the sign of the principal spectrum point λ1(A)we establish the
strong maximum principle for the operator A with L defined in (3.1) without scaling.

Definition 7.1 (Strong Maximum Principle) We say that A admits the strong maxi-
mum principle if for any function (0, u) ∈ D(A) satisfying

{
A(0, u) ≤ (0, 0) in [0, a+] × Ω,
(0, u) ≥ (0, 0) in [0, a+] × ∂Ω,

(7.1)

there must hold u > 0 in [0, a+] × Ω unless u ≡ 0 in [0, a+] × Ω.

Theorem 7.2 Assume that λ1(A) is the principal eigenvalue of A, then A admits the
strong maximum principle if and only if λ1(A) < 0.

Proof If λ1 := λ1(A) = s(A) is the principal eigenvalue of A associated with a
positive eigenfunction φ ∈ X++

0 ∩ D(A), then

A(0, φ) − λ1(0, φ) = (0, 0);

that is
⎧
⎨

⎩

− ∂φ
∂a + D

∫

Ω J(x − y)(φ(a, y) − φ(a, x))dy − μ(a, x)φ − λ1φ = 0,

φ(0, x) −
∫ a+

0 β(a, x)φ(a, x)da = 0.
(7.2)

For the sufficiency, that is λ1 < 0 implies the strong maximum principle, let
(0, u) ∈ D(A) be nonzero and satisfy (7.1). Assume by contradiction that there exists
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(a0, x0) ∈ [0, a+] × Ω such that u(a0, x0) = min[0,a+]×Ω u ≤ 0. Then consider the
set

Γ := {ε ∈ R : u+ εφ ≥ 0 in [0, a+] × Ω}.

Denote by ε0 = min Γ and ψ = u+ ε0φ. It is clear that ε0 ≥ 0 by the assumption
that u(a0, x0) ≤ 0 and the fact that ψ ≥ 0. Now if ε0 > 0, by simple computations,
we have

⎧
⎪⎪⎨

⎪⎪⎩

∂ψ
∂a − D

∫

Ω J(x − y)(ψ(a, y) − ψ(a, x))dy
+μ(a, x)ψ ≥ −ε0λ1φ > 0, (a, x) ∈ (0, a+) × Ω,

ψ(0, x) ≥
∫ a+

0 β(a, x)ψ(a, x)da, x ∈ Ω.

(7.3)

That is,

⎧
⎨

⎩

∂ψ
∂a > D

∫

Ω J(x − y)(ψ(a, y) − ψ(a, x))dy − μ(a, x)ψ, (a, x) ∈ (0, a+) × Ω,

ψ(0, x) ≥
∫ a+

0 β(a, x)ψ(a, x)da, x ∈ Ω.

(7.4)

It follows from the first inequality in (7.4) that ψ(a, x) > U (0, a)ψ(0, x) ≥ 0 for
(a, x) ∈ (0, a+] × Ω. Plugging it into the second inequality, we have ψ(0, x) > 0,
which implies that ψ is strictly positive in [0, a+] × Ω. This contradicts the fact that
ε0 is the infimum of Γ.

If ε0 = 0, it follows that u(a0, x0) = 0. Then if a0 > 0, ∂u(a0,x0)
∂a ≤ 0, which

implies that

0 ≥ ∂u(a0, x0)
∂a

≥ D
∫

Ω
J(x0 − y)(u(a0, y) − u(a0, x0))dy − μ(a0, x0)u(a0, x0) > 0.

(7.5)

This contradicts again that ε0 is the infimum of Γ. If a0 = 0, from the integral
boundary condition, we have

∫ a+

0
β(a, x0)u(a, x0)da ≤ u(0, x0) = 0,

which by the positivity of β and u ≥ 0 implies that u(a, x0) = 0 for all a ∈ [0, a+].
Then integrating (7.5) from 0 to a+ at x = x0, we still have the contradiction as above.
Hence u > 0 in [0, a+] × Ω, which concludes the desired result.

For the necessity, that is, strong maximum principle implies λ1 < 0, the proof is
similar to that of Vo [47, Theorem C] and is omitted here. ��
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8 Discussion

In this paper, we studied principal spectral theory and asynchronous exponential
growth for age-structured models with nonlocal diffusion of Neumann type. First,
we gave two sufficient conditions to guarantee existence of the principal eigenvalue
of age-structured operators with nonlocal diffusion. Then such conditions were also
used to show that the semigroup generated by the solutions to age-structured models
with nonlocal diffusion is essentially compact and exhibits asynchronous exponen-
tial growth. We would like to mention that, to our best knowledge, it is the first time
that explicit and easily verifiable sufficient conditions are given to guarantee that the
semigroup exhibits asynchronous exponential growth, without additional compact-
ness assumption and without proving the compactness of solution trajectories (which
implies the eventual compactness of the semigroup), in particular, compared with the
results in Thieme [44] in which it was assumed that the evolution family associated
with spatial diffusion (for example Laplace diffusion) is compact.Moreover, such con-
ditions are also valid for age-structured models with nonlocal diffusion of Dirichlet
type to exhibit asynchronous exponential growth.

Next, by employing the generalized principal eigenvalue, we investigated the limit-
ing properties of the principal eigenvalue with respect to the diffusion rate D and
diffusion range σ. We improved some estimates in Vo [47] for a wide range of
m ∈ [0, 2) instead of m = 0. Finally, we established strong maximum principle
for age-structured models with nonlocal diffusion of Neumann type. We would like
to mention that we also used such principal spectral theory to investigate the global
dynamics and asymptotic behavior of steady states with respect to diffusion rate and
range for an age-structuredmodel with nonlocal diffusion of Dirichlet type and nonlin-
earity on the birth rate or death rate in [24]. In fact, the global dynamics and asymptotic
behavior of steady states with respect to diffusion rate and range of Neumann type are
similar to those for Dirichlet type, thus we omit them here. The interested readers can
refer to [24] for details.

Acknowledgements We would like to thank the two anonymous reviewers for their helpful comments and
valuable suggestions.
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