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Abstract

In this paper we study the principal spectral theory and asynchronous exponential
growth for age-structured models with nonlocal diffusion of Neumann type. First,
we provide two general sufficient conditions to guarantee existence of the principal
eigenvalue of the age-structured operator with nonlocal diffusion. Then we show that
such conditions are also enough to ensure that the semigroup generated by solutions of
the age-structured model with nonlocal diffusion exhibits asynchronous exponential
growth. Compared with previous studies, we prove that the semigroup is essentially
compact instead of eventually compact, where the latter is usually obtained by showing
the compactness of solution trajectories. Next, following the technique developed in Vo
(Principal spectral theory of time-periodic nonlocal dispersal operators of Neumann
type. arXiv:1911.06119, 2019), we overcome the difficulty that the principal eigen-
value of a nonlocal Neumann operator is not monotone with respect to the domain and
obtain some limit properties of the principal eigenvalue with respect to the diffusion
rate and diffusion range. Finally, we establish the strong maximum principle for the
age-structured operator with nonlocal diffusion.
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1 Introduction

In this paper we study the following age-structured model with nonlocal diffusion and
Neumann boundary condition:

(’Ju(t/zx) + (tax)
= DfQ X — y)(u(t,a,y) —u(t,a,x))dy— u(a,x)u(ta, x), B
(t,a,x) € (0,00) x (0,a™) x Q,
fo u(t,a,x)da, (t,x) € (0,00) x Q,

u(O,a,x) = uo(u,x), (a,x) € (0,a™) x Q,

(1.1)

where 1(t,a, x) denotes the density of a population at time f of age a € [0,a™] at
location x € ), in which at < oo represents the maximum age and Q@ C RN is a
bounded and convex domain with smooth boundary, D > 0 is the diffusion rate. The
nonlocal diffusion kernel ] € C'(RN) is nonnegative and supported in B(0, r) for
some r > 0, and satisfies J(0) > 0 and [ J(x)dx = 1, where B(0,7) C R¥ is the
open ball centered at 0 with radius . We remark that the nonlocal diffusion operator
in (1.1) corresponds to an elliptic operator with Neumann boundary condition. We
assume that the birth rate f(a, x) and death rate y(a, x) are positive and belong to
CO1(]0,a*] x Q) for the convenience to study the spectrum later, where C%! denotes
the continuity with respect to the first variable and continuous differentiability with
respect to the second variable. Define

p(a) ;= inf p(a,x), 7(a) :=sup p(a,x),

x€Q) x€Q)
B(a) := inf B(a,x), P(a):= supp(a,x).
xeq xeQ
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For scalar linear and nonlinear age-structured equations with nonlocal diffusion of
Dirichlet type, recently we (Kang and Ruan [24,25], Kang et al. [26]) developed
some basic theories including the semigroup of linear operators, asymptotic behavior,
spectral theory, asynchronous exponential growth, strong maximum principle, global
dynamics, etc.

In the first part of this paper, we continue to study the principal spectral theory
for the age-structured model (1.1) with nonlocal diffusion of Neumann type based
on our previous work (Kang and Ruan [24]). More precisely, we are interested in the
following eigenvalue problem obtained from (1.1):

w = % IQ Jo(x—y)(u(a,y)—u(a,x))dy—u(a, x)u(a, x)—Au(a,x), ac€(0,at),xeq,
u(0,x) = [ Bla,x)u(a,x)da, xeq,

(1.2)

where ¢ > 0 is the diffusion range and m > 0 is the cost parameter with J,(x) :=
17 (g) for x € RN. Note that (1.2) is with kernel scaling , thus a little bit different
from (1.1) without kernel scaling. In fact, the eigenvalue problem associated with (1.1)
is a specific case of (1.2);i.e.0 = 1.

Now let us first briefly recall some history of principal spectral theory of nonlo-
cal diffusion operators. Berestycki et al. [8] introduced the concept of generalized
principal eigenvalue for second-order elliptic operators in general domains. Coville
[11] studied existence of the principal eigenvalue and gave a non-locally-integrable
condition based on the generalized Krein-Rutman theorem. Berestycki et al. [7] fur-
ther studied the problem in both bounded and unbounded domains and investigated
the asymptotic behavior of generalized principal eigenvalue on the diffusion rate. See
also Brasseur et al. [10], Coville and Hamel [12], Garcia-Melian and Rossi [19], Li
et al. [28], Yang et al. [52], and the references cited therein. On the other hand, Shen
and Xie [39] and Rawal and Shen [36] investigated the existence of the principal
eigenvalue for autonomous and time periodic cases respectively, where they gave suf-
ficient and necessary conditions for both cases by using the idea of perturbation of
positive operators, but they required that the operator has dense domain and generates
a positive semigroup of contractions, which seems to be restrictive and in general
not satisfied in our case. See also Bao and Shen [6], Liang et al. [29] and Liu et al.
[30]. Combining these two directions, recently Shen and Vo [40] and Su et al. [41]
discussed the asymptotic behavior of generalized principal eigenvalue on the diffusion
rate in the time-periodic case. Kang and Ruan [24] combined their treatment of the
nonautonomous case and the theory of resolvent positive operators with their pertur-
bations to deal with age-structured models with nonlocal diffusion of Dirichlet type.
Most recently, Vo [47] proved some important limits of the principal eigenvalue for
nonlocal operator of Neumann type with respect to the parameters. In the first part of
this paper, based on the technique developed in Vo [47], we study the principal spectral
theory for age-structured models with nonlocal diffusion of Neumann type and prove
some limit properties of the principal eigenvalue with respect to the diffusion rate and
diffusion range. Moreover, with the definition of essential compactness in hands, we
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will observe a key fact that the sufficient conditions which we present for the exis-
tence of the principal eigenvalue of an operator from the theory of resolvent positive
operators with their perturbations are equivalent to that in some sense obtained from
the generalized Krein-Rutman theorem (see Edmunds et al. [16], Nussbuam [34] or
Zhang [53]). Furthermore, we improve some limiting properties for m € [0,2) that
were established in Vo [47] for m = 0.

In the second part of this paper, we study asynchronous (balanced) exponential
growth of model (1.1). Asynchronous exponential growth is one of the most important
properties in population dynamics since it is observed in many reproducing popula-
tions before the impacts of crowding and resource limitation take hold. Sharpe and
Lotka [38] were the first to study asynchronous exponential growth in age-structured
populations. Feller [ 18] was the first to give a rigorous proof of asynchronous exponen-
tial growth in age-structured population dynamics. On the one hand it was recognized
that the idea of asynchronous exponential growth can be described in the framework
of strongly continuous semigroups of bounded linear operators in Banach spaces, see
for example, Diekmann et al. [14], Greiner [20], Greiner and Nagel [21], Greiner
et al. [22], Webb [50], and the references cited therein. Webb [49] provided a new
proof of the Sharpe-Lotka Theorem by using the theory of semigroups of operators
in Banach spaces. Thieme [43] characterized strong and uniform approach to asyn-
chronous exponential growth and Thieme [44] derived conditions for the positively
perturbed semigroups to have asynchronous exponential growth. Gyllenberg and Webb
[23] considered asynchronous exponential growth of semigroups of nonlinear oper-
ators. On the other hand, many researchers have studied asynchronous exponential
growth in various structured biological models, see for example, Arino et al. [2,3], Bai
and Xu [4], Banasiak et al. [5], Bernard and Gabriel [9], Dyson et al. [15], Farkas [17],
Piazzera and Tonetto [35], Webb and Grabosch [51], and the references cited therein.

We would like to mention that asynchronous exponential growth in age-structured
models was studied by Webb [50] and was generalized by Thieme [44] to age-
structured models with Laplace diffusion. Here we investigate asynchronous expo-
nential growth in age-structured models with nonlocal diffusion (1.1) which is not
included in [44]. In fact, we have studied asynchronous exponential growth in such a
type of equations in Kang and Ruan [25], where a nonlocal boundary condition was
assumed to make the semigroup generated by solutions to be eventually compact and
further exhibit asynchronous exponential growth. Here we find that the previous two
general sufficient conditions that ensure existence of the principal eigenvalue are also
just enough to guarantee the semigroup to be essentially compact (rather than even-
tually compact as before) and to exhibit asynchronous exponential growth without
additional assumptions on the boundary condition as in [25]. Moreover, we would like
to mention that the property of asynchronous exponential growth also occurs under
the Dirichlet boundary condition.

The paper is organized as follows. In Sect. 2, we first introduce the theory of
resolvent positive operators and asynchronous exponential growth. Then we recall
a few important theorems that will be used later. In Sect. 3, we establish the basic
theory including necessary lemmas and propositions for proving the main results
later. In Sect. 4, we show the main theorem and provide two easily verifiable sufficient
conditions for the existence of the principal eigenvalue and asynchronous exponential
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growth. In Sect. 5, we derive a formula for the asynchronous exponential growth. In
Sect. 6, we study the effects of diffusion rate and diffusion range on the generalized
principal eigenvalue. In Sect. 7, we establish the strong maximum principle which
is of fundamental importance and independent interest. The paper ends with a brief
discussion in Sect. 8.

Finally, we would like to mention that the conditions that | has a compact support
and () is bounded can be relaxed. For the principal spectral theory, we only need () to
be bounded without requiring that | has a compact support. However, in order to study
the limiting properties of principal eigenvalues, | needs to be compactly supported.
In addition, the condition that () is bounded can even be removed if one only defines
the generalized principal eigenvalue, see Berestycki et al. [7]. Here to give a unified
presentation of the results, we assumed both of them.

2 Preliminaries

In this section we present some preliminary notation and results on positive operators
and asynchronous exponential growth.

2.1 Positive operators

Let E be a real or complex Banach space. A nonempty closed subset E; is called a
cone if the following hold: (1) Ex + Ex C E4; (2) AEL C E4 for A > 0; and (3)
E.N(—E;) = {0}.Let E; be the interior of E;, 9E; = E \ E the boundary of
E+, and E+ = E+ \ {0}

Let us define the order in E such that x < yifandonlyify —x € E4, x < yifand
only if y —x € E4,and x < y if and only if y — x € E. The cone E- is said to be
total if the set {¢) — ¢ : ,p € EL } is dense in E. If a cone has a nonempty interior
E., we call it a solid cone. Obviously, if E # @, then E is total. The dual cone E*,
is the subset of E* consisting of all positive linear functionals on E; that is, f € E7}
if and only if (f,1) > Oforall p € E;. f € EZ is said to be strictly positive if
(f,) > 0forall p € E; \ {0}. The cone E is called generating if E = E — E
and is called normal if the associated norm on E is semimonotone; that is, there exists
a constant 6 > 0 such that 0 < f < g implies||f|| < 6|g]-

Let B(E) be the collection of all bounded linear operators from E to E. T € B(E)
is said to be positive if T : E; — E4 and T € B(E) is said to be strongly positive
if T:E; — E,. Leto(T) and 0,(T) denote the spectrum and essential spectrum
of T € B(E) respectively, whose radius are denoted by 7(T) and r.(T), respec-
tively. Let us recall the following strong version of the generalized Krein-Rutman
theorem.

Theorem 2.1 (Zhang [53, Theorem 1.3]) Let E be a Banach space having a cone E C
X with Ey # @ and T € B(E) be a strongly positive operator with (T) > r,(T).
Then r(T) is an algebraically simple eigenvalue of T with an eigenvector x € é+ and
|A| < r(T) for any other eigenvalue of T.

@ Springer



580 H.Kang, S. Ruan

2.2 Resolvent positive operators

Now we recall some results about resolvent positive operators, the readers can refer
to Thieme [44—46] and Webb [50] for details. Let Z denote a Banach space and Z
be a closed convex cone that is normal and generating. Assume that C : Z; — Z
is a positive linear operator defined on a linear subspace Z; of Z, which means that
Cx € Z; forall x € Z; N Z4 and C is not the 0 operator.

Definition 2.2 A closed operator A in Z is said to be resolvent positive if the resolvent
set of A, p(A), contains a ray (w, o) and (AI — A)~! is a positive operator (i.e., it
maps Z into itself) for all A > w.
Definition 2.3 We define the spectral bound of a closed operator A by

s(A) =sup{ReAd e R;A € 0(A)},
the real spectral bound of A by

srR(A) =sup{A € RiA € 0(A)},

and the spectral radius of A by

r(A) = sup{|A;A € 0(A)}.

Definition 2.4 A semigroup {5(t) };>0 is said to be essentially compact if its essential

growth bound w1 (S) is strictly smaller than its growth bound w(S), where the growth
bound and essential growth bound are defined respectively as follows:

w(S) := lim M, w1(S) := lim M, (2.1)

and « denotes the measure of noncompactness, which is defined as follows:
a[L] = inf{e > 0, L(IB) can be covered by a finite number of balls of radius < €},
where L is a closed linear operator in Z and B is the unit ball of Z.

By the formulas

re(S(t)) = e, r(S(1)) = e,

we can see that equivalently r.(S(#)) (the essential spectral radius of S(t)) is strictly
smaller than 7(S(t)) (the spectral radius of S(t)) for one (actually for all) t > 0.

If B is a resolvent positive operator and C : D(B) — Z is a positive linear

operator, then A = B + C is called a positive perturbation of B. If B + C is a positive
perturbation of Band A > s(B), then C(AI — B) ! is automatically bounded (without
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C being necessarily closed). This is a consequence of Z being normal and generating
(De Pagter [13, A.2.11]). 7

Denote the part of A in D(A) by Ag and the part of B in D(B) by By, respectively.
Let Ap and By generate positive Cy-semigroups {S(#) }+>o and {T(#) }+>0. respec-
tively. If A and B are resolvent positive, then by Thieme [44, Proposition 2.4] we
have

s(A) = s(Ap) = w(S), s(B) =s(By) = w(T).

Theorem 2.5 (Thieme [45, Theorem 3.5]) Let the cone Z be normal and generating
and A be a resolvent positive operator in Z. Then s(A) = sr(A) < oo and s(A) €
o(A) whenever s(A) > —oo. Moreover, there is a constant ¢ > 0 such that

H()&I - A)*]H < cH(ReAI — A)*]H whenever ReA > s(A).
Now define
Fy=C(AI—B)"!, A>s(B). (2.2)

Definition 2.6 The operator C : D(B) — Z is called a compact perturbator of B and
A = B+ C a compact perturbation of B if

(M —B)~"'F, : D(B) — D(B) is compact for some A > s(B)
and
(Ml —B) Y (F\)?: Z — Z is compact for some A > s(B).

C is called an essentially compact perturbator of B and A = B + C an essentially
compact perturbation of B if there is some 7 € IN such that (AI — B)~1(F))" is
compact for all A > s(B).

Theorem 2.7 (Thieme [46, Theorem 3.6]) Let Z be an ordered Banach space with
a normal and generating cone Z and let A = B 4 C be a positive perturbation of
B. Then r(F)) is a decreasing convex function of A > s(B) and exactly one of the
following three cases holds:

(i) ifr(Fy) > 1forall A > s(B), then A is not resolvent positive;
(ii) if r(Fy) < 1forall A > s(B), then A is resolvent positive and s(A) = s(B);
(iii) if there exists v > A > s(B) such that 7(F,) < 1 < r(F)), then A is resolvent
positiveand s(B) < s(A) < oo; furthers = s(A) is characterized by r(F;) = 1.

Theorem 2.8 (Thieme [44, Theorems 3.4 and 4.9]) If C is a compact perturbator of B,
then S(t) — T(t) is a compact operator for ¢ > 0. Moreover, if w(T) < w(S), then
{S(t) }+>0 is an essentially compact semigroup.
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582 H.Kang, S. Ruan

Theorem 2.9 (Thieme [45, Theorems 4.7 and 4.9]) Assume that C is an essentially
compact perturbator of B. Moreover assume that there exists A, > A7 > s(B) such
that 7(Fy,) > 1 > r(F),). Then s(B) < s(A) and the following statements hold:

(i) s(A)isaneigenvalue of A associated with positive eigenvectors of A and A*, has
finite algebraic multiplicity, and is a pole of the resolvent of A. If C is a compact
perturbator of B, then all spectral values A of A with ReA € (s(B),s(A)]
are poles of the resolvent of A and are eigenvalues of A with finite algebraic
multiplicity;

(ii) 1 is an eigenvalue of FS( 4) and is associated with an eigenvector w € Z of

Fy(a) such that (Al — B)~'w € Z, and with an eigenvector v* € Z* of Fs*(A)'

Actually s(A) is the largest A € R for which 1 is an eigenvalue of F}.

Moreover, if Z is a Banach lattice and there exists a fixed point of F," in Zi that is
conditionally strictly positive, then the following statements hold:

(iii) s = s(A) is associated with a positive eigenvector v of A such that w =
(s(A)I — B)v is a positive fixed point of Fy(4);
(iv) s is the only eigenvalue of A associated with a positive eigenvector.

2.3 Asynchronous exponential growth

Next we recall the formal definition of asynchronous exponential growth, which is an
important property on the asymptotic behavior of operator semigroups.

Definition 2.10 We say that a Cy-semigroup {S(t)};>o in a Banach space Z has
asynchronous exponential growth with intrinsic growth constant Ag € R if there
exists a non-zero finite rank operator P on Z such that

lim e~ 0!S(t) = P,

t—o0
where the limit is in the operator norm topology.

Definition 2.11 Let {F, } A>s(B) be a positive resolvent output family for the operator
B. A vector x € X is said to be conditionally strictly positive if the following holds:

(a) If x* € Z% and F{x* # 0 for some (and then for all) A > s(B), then (x, x*) > 0.

Similarly we say that a functional x* € Z7 is conditionally strictly positive if the
following holds:

(b) If x € Z and Fyx # 0 for some (and then for all) A > s(B), then (x,x*) > 0.

In addition, {F) } A>s(B) 18 said to be conditionally strictly positive if the following
holds:

(c) Ifx € Zy,x* € Z7 and Fyx # 0, F{x* # 0forsome (and then forall) A > s(B),
then there exist some 7 € IN and some A > s(B) such that (F}'x, x*) > 0.
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Theorem 2.12 (Thieme [44, Theorem 4.13]) Assume that {S(t) };>( generated by A s
an essentially compact semigroup. Let the resolvent output family { F) } A>s(B) for the
operator A be conditionally strictly positive. Then {S(t) };>0 exhibits asynchronous
exponential growth. In particular, there exists positive eigenvectors v of A and v* of
A* associated with s(A) such that (v, v*) = 1 and

He‘s(A)tS(t) —o®0*

— 0 as t — oo,

where v ® v* is the projection defined by (v ® v*)x = (x,v*)v.

The following theorem provides sufficient and necessary conditions for a strongly
continuous semigroup to have asynchronous exponential growth, which was proved
by Webb [50] (see also Magal and Ruan [32, Theorem 4.6.2]).

Theorem 2.13 (Webb [50, Proposition 2.3]) Let {S(#) }+>0 be a strongly continuous
semigroup of bounded linear operators on a Banach space X with infinitesimal gener-
ator A. Then {S(t) }>0 has asynchronous exponential growth with intrinsic growth
constant Ag € R if and only if

(i) wi(A) < Ag;
(i) Ap =sup{Rer: A ec(A)};
(iii) A is a simple pole of (AI — A)~1,

where w1 (A) denotes the essential growth bound of A which is defined by (2.1).

2.4 Abstract setting

In this subsection we introduce our working spaces. Let X be an ordered Banach space
that represents distributions of a population (4, -) with respect to a spatial structure
differing from the age a. Since we consider nonlocal diffusion, let X be a Banach
space such as C(Q) or L'(Q), where QO C RY is a bounded and convex domain. It
is easy to see that X has a normal and generating cone X+ = {f € X : f > 0}.
In order to make the operator A defined in (2.3) contain the initial integral boundary
condition, we define the following function spaces

X =X xLY((0,a"),X),
Xy = {0} x L'((0,a"), X),
X, = {0} x LL((0,a™),X)
= {0} x {u € L'((0,a™),X) : u(a,x) >0,(a,x) € (0,a") x Q},

and define an operator
A =B+ C withdomain D(A) = {0} x W' ((0,a™), X), (2.3)
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584 H.Kang, S. Ruan

where WU represents the weak differentiability in a and that the derivative also
belongs to L', with

BO,f) = (~f(0.), ~f +Lowf),
c<o,f>=< | B (@ )ia o), (0.f)eD(A), @4

in which f/ := % and
Lom(f](a, x)
— o o= (@) = fla, )y = w0 f (@), f € LH(©,7),X).
(2.5)

Note that X)) is a Banach space with a positive cone X0+ which is normal and gen-
erating. X can be identified with L!((0,a"), X) in an obvious way. Define Ay to be
the part of A in &) with

D(Ao) ={(0,f); Af € X}

Then (0, f) € D(Ap) implies that f(0,-) = féﬁ B(a,-)f(a,-)da, the boundary
condition in (1.2). Let {S(t) }¢>0 be the Cy-semigroup generated by Ay, the part of
A in X, see [25] for the existence of {S(t)};>p (Note that the proof is identical
with nonlocal diffusion of Dirichlet type being replaced by Neumann type.); that is,
u(t,a,x) = S(t)ug(a, x) is the solution of (1.1).

Moreover, define the nonlocal operator of Neumann type as

Lulflax) = 2 [ Jole=y)(f(ay) = fax)dy, f e L(0a%),%)

and denote
x(x) := /Q](x —y)dy, xs(x):= /Q]a(x —y)dy. (2.6)

It is obvious that 0 < x(x) < 1 and lim x,(x) = 0. Observe that by standard
T—00
Sobolev embedding we have

WY((0,a™), X) — C([0,a"], X). (2.7
This will enable us to define the strong maximum principle and sub/super-solutions of
(1.2) (see Andreu-Vaillo et al. [1]) and, in particular, to study the limiting properties

in Sect. 6 in the appropriate sense by noting that the functions are defined in D(.A).
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Finally, we would like to mention that the Cauchy problem (1.1) has been investi-
gated in an abstract setting by using the theory of integrated semigroups, see Thieme
[44,46] and, in particular, Magal and Ruan [31] in a more general framework where
the operators are neither densely-defined nor of Hille-Yosida types, for example in LP
spaces (p > 1), see Remark 3.2.

3 Principal spectral theory

In this section we establish some lemmas and propositions that will be used to show
the main results in next section. We would like to mention that all the results in
this section are parallel to those for nonlocal diffusion of Dirichlet type obtained
previously in Kang and Ruan [24, Section 3]. Here for completeness we provide all
proofs including necessary modifications.

We first consider the kernel | without scaling for convenience (since the principal
spectral theory are the same for scaling cases); i.e., A = B + C with

BO,f) = (~f(0,), ~f +Lf),
c(0,f) = (/0'” Bla,)f(a,-)da, o>, (0.f) € D(A),

where

L[f](a,x) =D /Q J(x =y)(f(a,y) — f(a,x))dy — u(a,x)f(a,x),
feL'(0,a"),X). (3.1)

Definition 3.1 The principal spectrum point of A is defined by A1(A) = sup{ReA :
A€ c(A)}. If A1 (\A) is an isolated eigenvalue of .4 with a positive eigenfunction in
D(.A), then it is called the principal eigenvalue of A.

Note that A1(A) = s(.A), where s(.A) denotes the spectral bound of A. Define

Bi(0,f) = (=£(0,),—f = (Dx() +m)f ),
B:(0.f) = (00 [ 16~ n)fady) @ f) e DA, G2

Remark 3.2 If the operator 5 is decomposed as follows:

Bi(0,f) = (~£(0.),~ "),
B3(0.1) = (0.0 [ 16 =) f(a.y)dy — (D) + 1)1 ) (0.f) € D(A),
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then the results in Thieme [44,46] for L} spaces and in Magal and Ruan [31] for L
spaces (p > 1) can be applied directly to obtain the well-posedness of the Cauchy
problem (1.1). Nevertheless, we shall follow our decomposition defined in (3.2) to
study the principal spectral theory which is necessary for our purpose and, in particular,
to obtain the existence of the principal eigenvalue and to investigate the limiting
properties in the following.

One can see that B = B; + B,. Observe that if « € C such that (aI — By —C) !
exists, then

(By+ By +C)u = au
has nontrivial solutions in X{ ® i) is equivalent to
By(al =By —C) o =0
has nontrivial solutions in X @ iX’, where
X @iXy = {u+ivju,ve X}, XDiX ={u+ivlu,ve X}.

-1

Proposition 3.3 The resolvent operator (¢l — By — C) ™" exists when Reax > a**

with a** € R satisfying

H(Gar) = 7 (/0

+

‘B(a,.)e_(a**+DK('))uH(0,g,.)da> = 1, (33)

in which
II(vy,a,-):=e fffﬂ(sf)ds o

and G, : X — X is a linear bounded operator defined by

a+
[Gag](x) :/0 ,B(a,x)e*(“DK(x))“H(O,a,x)g(x)da, geX, (3.5)

where « is defined in (2.6). Moreover, 31 + C is a resolvent positive operator. In
addition, s(B1 + C) = «** and a** also satisfies the following equation

a+ *%
ma}/ B(a, x)e~ @ HPT(0, 4, x)da = 1. (3.6)
xeQ) /0

Proof Writing the resolvent equation (ol — B — C)(0,¢) = (1,9) € X explicitly,
we obtain
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{"’” = —(a+ Dx(x) + p(a,x))p(a, ) + P(a,x),  (a,%) € (0,a*) x O

at =
¢(0,x) = [y Bla,x)p(a,x)da+n(x), x € Q.
(3.7)
Solving the equation, we have
P(a,x) = e_(“+DK(x))”H(O a,x)¢(0,x)
+/ PO (o, 0, 2) (7, 2)d, 3.8)

- [: p(s,x)ds

where IT(7y,a,x) =e , and accordingly

at

(p(O,x)—/O B(a, x)e~ @TPEE)TT(0, 4, x)p(0, x)da
= [ Blax) [ e PN, 0,00 (3, )iy + (),

which is equivalent to

(1-G)g0x)= [ Bla,x) [ e PN, 0,x)9(, x)drda-+y (x),
(3.9)

in which G, is given in (3.5). Thus if 1 € p(Gy), then
9(0,x) = (I - Ga)™ U Bla,x

/Oa e WD @NTT (o, a, x)ip(y, x)dyda +7(x) |, (3.10)

which implies that

.
(0,3) = P00~ G [ plex) (e PEI X))

()] + [ eI, 0, 0)p(y, 10 3.11)

It follows that & € p(B; + C) and thus (aI — By — C)~! exists. Now the problem
becomes to find such an & such that 1 € p(G, ). By assumptions on f and y, we have

Gag > / Bla)e™ “DITI(0,a)dag, g€ X, (3.12)
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where T1(7y,a) := e~ Jy )45 and the fact that 0 < x(x) < 1 forany x € Q) was
used. Now define

Ha ._/ Bla)e™ “DITI(0, a)da.

Then it follows from (3.12) that G, > H, in the sense of positive operators (actually
H, is a function of ) and that (G, ) is a strictly decreasing continuous function
with respect to a, see Kang and Ruan [26, Lemmas 3.3-3.4]. The classical theory of
age-structured models implies that there is a unique a* € IR such that

/ Bla)e @ +DITI(0,a)da = 1

i.e. Hy» = 1. Now by using the theory of positive operators, we have r(G,») >
r(Hy+) = Ha+ = 1 and there exists a unique a** € R satisfying (G, ,W) = 1
Note that for any « € C, when Rew > a** we have 1(Grey) < 1(Gyr+) =
and (I — Greq) ! exists. It follows that &« € p(B; + C) when Rea > a**, Wthh
implies that p(B; + C) contains a ray (a**,00) and (a — By — C)~! is a positive
operator for all « > a** by (3.11). Hence, By + C is a resolvent positive operator.
Moreover, a** is larger than all other real spectral values in (B + C). It implies that
a** = sg(By + C). Now since A) is a Banach space with a normal and generating
cone X" and s(By 4+ C) > a** > —oo due to a** € (B + C), we can conclude
from Theorem 2.5 that s(B1 4+ C) = sr(B1 +C) = a™*.

Notice that G, is actually a positive multiplication operator in X. We can determine
the spectral radius 7(Gy) of G, as follows:

at
7(Gy) = max / B(a, x)e” @HPEETT(0, 4, x)da.
xeQ) /0

Hence, a** satisfies (3.6). Denote

at
Qin i= mig/ B(a, x)e~ @TPx)TT(0, 4, x)da.
xeQ /0

We can see from Liang et al. [29, Proposition 2.7] that 0.(Gy) = 0(Gx) =
U,e0(Ga(x)) = [&min, 7(Ga)], where

Gu(x) = /Ou B(a, x)e @ FPK)T1(0, 4, x)da, (3.13)

and 0, (A) represents the essential spectrum of A. a
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Next consider the following equation corresponding to the age-structured model
without nonlocal diffusion:

ulax) — _ (a4 Dre(x))u(a, x) — p(a, x)u(a,x),  (a,

x) € (0,a%) x 0,
= [ Bla,x)u(a,x)da, req.

(3.14)

The solvability of such an equation is the key in constructing sub- and super-solutions
later. Before proceeding, let us recall an important theorem on the global implicit
function theorem which we will use in the proof of the following proposition.

Theorem 3.4 (Global implicit function theorem, Sandberg [37, Theorem 1]) Let S1, S»
and W be normed vector linear spaces and let U and V denote nonempty subsets of
S1 and S; respectively, such that U is open in S7 and V is open in Sy. Let Oy be the
zero element of W. Let {V;} be any family of compact subsets of V' such that for each
compact subset V of V, there is an V. € {V;} such that V C Vj, and similarly, let
{U,} denote any collection of compact subsets of U with the property that for any
compact set U in U, there is Uy € {U;} such that U C Uj.

Now assume that V' is convex and that f is a continuous map from U x V to W.
Then there is a unique g : U — V such that f(g(y),y) = Ow forally € V, and g is
continuous, if and only if

(i) for some yo € V, there is exactly one xo € U such that f(xo, o) = Ow;
(i) f is locally solvable for x;
(iii) foreach Vi € {V;},thereisa Uy € {U;} suchthaty € Vj,x € Uand f(x,y) =
Ow imply that x € U.

Proposition 3.5 There exists a continuous function & : ) — R such that equation
(3.14) has positive solutions and

/ B(a, x) )P0, x)da =1, Vx € Q,

where x and IT are defined in (2.6) and (3.4) respectively. Moreover, a(x) < a** for
allx € Q.

Proof To prove the proposition, we shall verify that the three hypothesis (i), (ii) and
(iii) in Theorem 3.4 are satisfied. Solving (3.14) explicitly, we obtain a formal positive
solution

u(a,x) = e~ @0, 4, x)u(0, x)

provided u(0,x) > 0. Then plugging it into the integral initial condition, we obtain
after canceling (0, x) that

ﬂ+
/ B(a, x)e~ @TPKTT(0, 4, x)da = 1.
0
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Now define
at
G(a,x) := Gy(x) = /0 B(a, x)e~ @ TPxX)T1(0, 4, x)da. (3.15)

We can verify that G : R x Q3 — (0, 00) is a continuously differentiable function
with respect to « and x due to the continuous differentiability of  and y. Moreover,

?;j —/ B(a, x)ae~ @FTPXXITT(0,4,x)da < 0, Vx e Q, (3.16)
at
gf - / aﬁai 2 e (et DITI(0, 0, x)da

_/0 /0 B(a,x)e_(“+DK(x))”MH(O, a,x)dsda

8xi

at ax(x)
—/ /S(a,x)uDTe*(“+DK("))“H(O,a,x)da, i=1,..., N.
0 i

(3.17)

It follows by implicit function theorem that (ii) G is locally solvable for x € Q) due
to (3.16); i.e. for each (g, x9) € Og := {(a,x) € R x O : G(a, x) = 1}, there are
open neighborhoods Ny, and Ny, of ¢ and xg respectively, and a unique continuously
differentiable map a of Ny, into N, such that for x € Ny, « = a(x) is the unique
solution in Ny, of G(«, x) = 1.

Next, let {V;} be any family of compact subsets of Q) such that for each compact
subset V of Q, there is a subset Vi € {V;} such that V C Vj. Similarly, let {U;}
denote any collection of compact subsets of IR with the property that for any compact
set U in R, there is a subset Uy € {U;} such that I C U}. Note that due to the fact
that 1, B € C¥1([0,a*] x Q), we have from (3.16) and (3.17) that

on G —
—| = —| < Constant, Vx € (),
ax ox
ou G : da _ [ da ox
where | 52 5x | respectively | denotes the length of vector 53 = |{ 5 X By
(% = (%, ceey %) respectively) in the usual sense. Now the mean value theorem

implies that we can extend continuously a up to the boundary of Ny,. In fact if any
sequence {x;} € Ny, converges to b € 3Ny, then

(g)

o |k — x7]

|ae(xg) — a(xy)] <

for some ¢ depending on xj and x;, which implies that {«(x;)} is a Cauchy sequence,
where x and x; are two points in {x;} € Ny,. Thus {a(x))} converges to a(b) by
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the continuity of &. Hence, by the above argument we have (iii) for each V}, € {V;},
there is a Uy € {U;} such that x € Vi, & € R and G(a,x) = 1 imply that & € Uj.

Finally, since ?,S < 0 for all x € Q, then (i) holds for some xy € Q, there is
exactly one ag such that G(«g, x9) = 1. Actually, (i) implies that the extension of &
is unique.

Now we have verified that the three hypotheses (i), (ii) and (iii) in Theorem 3.4 are
satisfied. It follows that we have a unique a : QO — R such that G(«(x), x) = 1 forall
x € Qand « is a continuous function. Moreover, it follows from (3.6) that a(x) < a**.
In fact, a™* = max, 5 a(x). This completes the proof of the proposition. O

Remark 3.6 Note that we split A into A = By + By + C and studied the spectral
bound of By + C;i.e. «** in (3.6) (an algebraic equation) which is easily and explicitly
obtained compared with that in Thieme [44,46], where A was decomposed into A =
B + C and the spectral bound of B was obtained by an operator equation since it
contains the spatial diffusion.

Now assume that B? + CY, the part of By + C in X, generates a positive Cg-
semigroup {T(t)}>0 on Xp. Since By + C is resolvent positive, by Thieme [44,
Proposition 2.4] we know that s(B1 + C) = s(BY + C°) = w(T) when X = L1 (Q)),
since now X is an abstract L space. Next, we provide a lower bound for (al — B —
C)~! when Rea > a**

Proposition 3.7 For any Reax > a**, the resolvent operator (al — By —C) "1 : X —
Xp has the estimate for any 1 € L1 ((0,a™"), X) with ¢(a, x) = 9(x),

(e~ B, -0) ' 0.9)) (a,3) > M(Ga())w $@), (ax) ela] 0,

where M(«, D) > 0 will be determined in the proof.

Proof Define
L(a,D,x) / B(a,x / ¢~ (a+Dx(x )H('y,a,x)dyda,
0
L(x,D,a,x) = e @HP@)ary(0, 4, x).
Then by (3.11), we can see that

¢(a,x) > (1- Ga<x>>*l[ mﬁnﬁbwa-,-)Il(a,D,~>¢(x>
0,at]x

for any ¢(a, x) = (x). Thus M(a, D) is given by
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M(a,D):= min_ L(a,D,-,-)(a,D,").
[0,at]xQ

The result follows. O

Next we consider the following evolution equation

W0x) — D [, J(x —y)(u(a,y) — u(a,x))dy
—u(a,x)u(a,x), (a,x)€ (0,a")xQ, (3.18)
u(t,x) = ¢(x) € X.

Define an evolution family {U(T,a)}o<;<4<,+ associated with (3.18); that is, the
solution u(a, x) of (3.18) can be written as

u(a,x) =U(T,a)p(x). (3.19)

The existence of such an evolution family {1/ (7, @) } o< <,<,+ is guaranteed by results
in Andreu-Vaillo et al. [1]. Moreover, it is positive in X.

Proposition 3.8 The operator A is resolvent positive and s(A) = Ao, where A sat-
isfies

r(My,) = ( / B(a, AO”U(O,a)da) =1, (3.20)

in which U(0, a) is defined in (3.19) and for each A € C, M : X — X is a linear
bounded operator defined by

(M) (x / B(a,x)eU(0,a)p(x)da, V¢ € X.

Proof The proof can be found in [26, Theorem 3.6] or [24, Proposition 3.7], just noting
that nonlocal diffusion of Dirichlet type is replaced by Neumann type and there also
exists a principal eigenvalue equalling to zero for the nonlocal operator of Neumann
type associated with a positive constant eigenfunction. Thus we omit it here. We would
like to recall the solution of the resolvent equation (AT — .A)~1 (8, @) in the following,
which will be used later:

(AT = A)~'(8,¢))(a,x)

= (0, e MU0,a) (1 — My)~ {/ B(s,x / A=Y (y,5) (1, x)dryds + 8(x)
ra
+ [ e MU, a) gy, ). (3.21)
This completes the proof. o
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Moreover, by Thieme [44, Proposition 2.4], when X = L!(Q) we have s(A) =
s(Ap) = w(8) since A is resolvent positive. Next, we have the following lemma in
characterizing the relation between the evolution system family {2/ (T, a) }o<r<g<o+

and {e‘D"(x)(”_T)H(T, a,x) Yo<r<a<at-

Lemma 3.9 We have e‘D"(")“H(O, a,x) < U(0,a) in X, where « is defined in (2.6);
ie.,

0<¢eCQ)= e POTI0,a,x)p(x) <U(0,a)p(x), Vxe Q.

Proof Let uy(a,x) = e~ P*()[1(0,a, x)¢(x) and uz(a, x) = U(0,a)$(x) be the
solutions of the following equations

{aula(:x) = —Dx(x)uq(a,x) — u(a,x)ui(a,x), (a,x) € (0,at)xQ

) €
u1(0,x) = ¢(x), e
(3.22)

and

2282 =D [, ] (x=y) (w2(a,y) ~a(a,0))dy—p(a,Dua(a,x),  (a,2) € (0,a7)x 0
uz(O x) = ¢(x), xeQ,

(3.23)

respectively. Consider the difference of (3.22) and (3.23) in the following

WMD) ~ D [ J(x—yula,y)dy, (a,x) € (0,a") x QO (324
u(0,x) = ¢(x), xeq. '

Define
D/ x —y)o(y)dy, Yo e C(Q).

Then the solution u(a, x) of (3.24) can be written as

2 24) .+anK7’l¢

2! a

u=ekip = p+akep+ -

Let xg € Q) be such that ¢(xg) > 0. Then by the fact that ¢ € C(Q)), there is a
constant 77 > 0 such that ¢(x) > 0 for x € B(xg,#) N Q. This implies that

:D/Q](x—y)(p(y)dy>0 for x € B(xo, 7 +17)NQ
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Then
(K"¢)(x) >0 for x € B(xo,nr+n)NQ.

It then follows that eX%¢ >> 0 for a > 0. O

Remark 3.10 The result in Lemma 3.9 remains valid when X = L'(Q). From
Lemma 3.9, comparing (3.3) with (3.20) plus their monotonicity with respect to &
and A, we can see that s(.A) > s(B1 + C). In fact, this can also be obtained by the
fact that A is resolvent positive from Proposition 3.8 and Theorem 2.7 since case (i)
was ruled out. But we cannot obtain the strict relation, i.e. s(A) > s(B; + C), even
if e~ P*(M11(0,a,x) < U(0,a) holds, because a** and Ag are obtained by taking
the spectral radius of the operators to be equal to 1, where a limit process occurs in
which the strict relation may not be preserved. However, if 7(G,) and (M) are
eigenvalues of G, and M ) respectively, we could obtain the strict relation, see Marek
[33, Theorem 4.3] which is the Frobenius theory for positive operators.

Proposition 3.11 B,(al — B — C) ! is a compact operator in X’ & iX’ when Rea >
a**, where B1, By and C are defined in (3.2) and (2.4) respectively.

Proof By (3.11) we have for Rex > a** that

[Balad =B =€) (,9)] (a,2)
- (o,D [ = e 0, a,) (1 6271 | [ " bsy) [ e, s,

xp(y,y)dyds +11(y) | dy + D /Q J(x=y) /Oa Rl 2 (7 my)llf(%y)dvdy) - (3.25)

It then follows that for any bounded subset E C X @iX, By(al —B; —C)"'E
is a relatively compact subset of X’ @ iX by Aubin-Lions Lemma. In fact, from
(3.25) one can see by the fact ] € C!(IR) that the second component of By (al —
B —C)~(n,¥) belongs to W1 ((0,a*),C1(Q))). Due to Arzela-Ascoli Theorem,
C!(Q) is compactly embedded into C(Q)). Thus W1((0,a™), C'(Q)) is compactly
embedded into L'((0,a*), X) by Aubin-Lions Lemma when X = C(Q) or X =
L'(Q). Hence By (al — By — C)~! is compactin X @ iX. O

Corollary 3.12 3, is a compact perturbator of 81 +C and A = B1+ B, +C a
compact perturbation of B 4 C.

Proof (a1 — By —C)~'By(al — By — C)~! is compact for some a > s(B; + C)
since By (al — By — C) ! is compact by Proposition 3.11. O

We next give a proposition to characterize the relation between the eigenvalues of
M, to those of A = B + C, also see Kang and Ruan [25] or Walker [48].

Proposition 3.13 Let A € C and let m € IN'\ {0}. Then A € 0, (A) with geometric
multiplicity m if and only if 1 € 0,(M,) with geometric multiplicity 1, where
0(A) denotes the point spectrum of A.
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Proof Let A € C. Suppose that A € 0,(.A) has geometric multiplicity 1 so that there
are m linearly independent elements

(0,471) (0,4>m) € D(A) with (AI — A) (o,cpj) = (0,0)forj=1,...,m
Then by solving the eigenvalue problem as above, we obtain

¢i(a,) = e MU(0,a)¢;(0,-) with ¢;(0,-) = M,¢;(0,").

Hence, ¢1(0, ), ..., $m (0, -) are necessarily linearly independent eigenvectors of M,
corresponding to the eigenvalue 1. Now suppose that 1 € o, (M) has geometric
multiplicity m so that there are linearly independent i1, ..., P € X with M, ¢p; =

pjforj=1,...,m. Setting (0, ¢;) = (O e~ MU (0, a)tp]) € X} and noting that for
j=1,...,m, wehave

oP; at
SLAA =gy =0, [ Bla)ga,)da = Moy = ¥y = 9,00, ),
which are equivalent to

A(0, (P]) = /\(O,(p]) and (0, 4)]) € D(A).

Thus A € 0 (A). If aq, ..., &, are any scalars, the unique solvability of the Cauchy
problem

¢+A¢ Lp =0, ¢(0,x)= sz]zp]

ensures that (0,¢1), ..., (0, ¢ ) are linearly independent. This completes the proof.
O

4 Main theorems

In this section, we state and prove the main theorems of this paper which address the
existence of the principal eigenvalue and the property of asynchronous exponential
growth simultaneously.

Theorem 4.1 Assume that s(A) > s(Bj + C), then A1 (A) = s(.A) is the principal
eigenvalue of A. Moreover, {S(t)};>0 exhibits asynchronous exponential growth.
Conversely, if A is an eigenvalue of .4 with a eigenfunction (0, ¢(a, x)) with ¢ being
positive, then A = s(A).

Proof Define

Fr=By(AI—B; —C)7!, ReA > a™. (4.1)
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Note that A = By + C + B is a compact perturbation of By + C by Corollary 3.12.
First, we use Theorem 2.9 to prove that A1(,A) = s(.A) is the principal eigenvalue
of A. We know that A is resolvent positive by Proposition 3.8. It implies that case
(i) in Theorem 2.7 is ruled out. Secondly, by the assumption s(.A) > s(B; +C) we
know that only case (iii) in Theorem 2.7 will occur; otherwise s(A) = s(B; + C),
which is a contradiction if case (ii) in Theorem 2.7 would happen. Hence, there exists
Ay > Ay > s(By +C) such that #(F),) > 1 > r(Fy,). Now the hypothesis in
Theorem 2.9 holds, then s(.A) is an eigenvalue of A with a positive eigenfunction,
has finite algebraic multiplicity, and is a pole of the resolvent of A. It follows that
A1(A) = s(A) is the principal eigenvalue of A.

Next, we show that {S(t) };>0 exhibits asynchronous exponential growth under the
assumption when X = L'(Q). Observing w(S) = s(A) > s(B; +C) = w(T),
it follows that {S(#)};>0 is an essentially compact semigroup by Theorem 2.8. In
addition, it can be seen that the resolvent output family J, is conditionally strictly
positive regarding to (3.25) when s(.A) > s(Bj + C). In fact, first observe that
maps X into Xy = {0} x L1((0,a™"),L'(Q)), then we introduce the restriction of
F) to Xy and the associated operator Ly in Q := L'((0,a™), L (Q)) (see (3.25)),

[Lawl(a,x) = D/QI(X —y)e” MPRTI(0,a,y)[(1— Ga) " g()] (y)dy

—y) [ e A+ Dr)a=7)
4D [ Jr-y) [ e (7,8,9)9(7,y)dvdy,
(4.2)

where

/ ﬁsy/ ~HDKW NI, 5, ) (7, y)dyds.

We use L, for both the operators in Q and the operator in Xy = {Oi X Q. Next for
any 1 € Q4 with Ly # 0, there exists some (ag, xo) € [0,at] x Q, such that

[L/\IIJ](‘Z/ x) 2 1)6I'I'lin{ef)\lfr,]-}efDaJr

) /B(xo,r/z)m 11(0,a™,y)[(I - Gn) g ()] (v)dy > 0,

for all (a,x) € [0,a™] x B(xp,7/2) NQ, since J(x) > € > 0in B(0,) with some
r > 0dueto J(0) > 0and (I — G,)~! and g are positive due to the positivity of f.
Now by the argument similar with Lemma 3.9, one can show that

[Li](a,x) >0, V(a,x) € [0,a"] x B(xg,nr/2) N Q.
On the other hand, for any ¢* € Q7 with L3¢* # 0, one can also similarly
obtain that there exists some subset E of [0,a™] x Q) with positive measure such that

¢*(a,x) > 0in E, otherwise L} ¢* = 0. Observe that when 7 is large enough, one
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has EN ([0,a™] x B(x,nr/2) N Q) # @. It follows that
<L7\1[J, P*) >0, 4.3)

which implies that L) is conditionally strictly positive and so is F.

Now Theorem 2.12 implies that {S(t)};>( exhibits asynchronous exponential
growth. In particular, there exists positive eigenvectors v of A and v* of A* asso-
ciated with s(.A) such that (v,v*) = 1 and

— 0, t— oo,

He_s(“‘l)tS(t) -v®0"

where v ® v* is the projection defined by (v ® v*)x = (x, v*)v. Observe now that we
have obtained the existence of principal eigenvalue s(.A) associated with two positive
eigenfunctions respectively in L'((0,a%), C(Q))) and L'((0,a™*), L' (Q))). Further-
more, we have also verified that {F) } A>s(B1+C) is conditionally strictly positive in
L'((0,at),LY(Q))), it follows from Theorem 4.9 from Thieme [45] that s(.A) is a
first order pole of the resolvent of A and that the eigenspace of A associated with
s(A) is one dimensional. These facts conclude that the two principal eigenfunction
are the same since C(Q) C L'(Q).

Conversely, if A € R is an eigenvalue of A associated to an eigenfunction
(0,¢(a, x)) with ¢ being positive, we prove that s(\A) = A. Let {S(t) }+>0 be the
Cp-semigroup generated by Ay, the part of A in Xp, see Kang and Ruan [25] for the
existence of {S(t)};>0; thatis u(t,a,x) = S(t)ug(a, x) is the solution of (1.1). By
direct computation, we have S(t)¢(a, x) = eM¢(a, x). Since ¢p(a, x) > 0,V(a,x) €
[0,a%] x Q, for any ug € C4([0,a™],C(Q)) C LL((0,a™),L}(Q)) with

up(a,x) < Mog(a,x), V(a,x)€0,a"]xQ,

]
ming 1.0 ¢(a,

[24, Lemma 8.2]) that

where My = ok it follows from the comparison principle for (1.1) (see

S(H)ug < MyS(t)p = MoeMp, Yt > 0.

This, noting that C4 ([0,a™], L'(Q)) is dense in L1 ((0,a™), C(QY)), together with
Thieme [44, Theorem 5.4] and Thieme [46, Theorem 6.2] which state that w(S) =
s(Ap) = s(.A), implies that s(A) = A, where w(S) represents the growth bound of
{5(t)}o0- O

Corollary 4.2 The inequality s(.\A) > s(Bj + C) holds if and only if there is A* >
s(By + C) such that r(Fy«) > 1, where F) is defined in (4.1).

Proof If there exists A* > s(By + C) such that r(F,«) > 1, then case (iii) of
Theorem 2.7 will occur, which implies that s(LA) > s(B; + C), because we can
alway find @ large enough such that 7(F3) < 1 according to (3.25). Conversely, if
s(A) > s(B; + C), by the same argument in Theorem 4.1, we have the desired result.

O
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In applications, the condition s(.A) > s(By + C) is hard to check, so it is desirable
to find easily verifiable conditions to ensure that Aq(.A) is the principal eigenvalue
of A and {S(t) };>0 exhibits asynchronous exponential growth. This leads us to the
following results on the existence of the principal eigenvalue of .4 and the property
of asynchronous exponential growth of {S(#) };>¢ in this section.

Theorem 4.3 (Existence of the principal eigenvalue and asynchronous exponential
growth - I) Assume that for every & > a**,

1 1 =
1—G, ¢ Lloc( )’ (4.3)

then A1(A) = s(\A) is the principal eigenvalue of A and {S(#)}¢>( exhibits asyn-
chronous exponential growth, where

at
Ga(®) = Glax) = [ pla,x)e+PT1(0, 0, x)d,

which is defined in (3.15).

Proof The idea of the proof below traced back to Shen and Vo [40]. For completeness
and reader’s convenience, we include some necessary modifications and provide a
detailed proof.

By contradiction, assume that A1(.4) = s(.A) is not the principal eigenvalue of
A, by the contrapositive statement of Theorem 4.1, s(A) < s(By + C) (in fact,
by Remark 3.10, one can get a stronger result s(.A) = s(By + C)). It follows by
Corollary 4.2 that

r(Fy) =r(Ba(al — By —C)71) <1, VRea > s(B;+C). 4.4

We can see from (3.11) that the operator (ol — By — C )_1 has monotonicity in the
sense that

(uy,uz), (v1,v2) € X with (uq, uz) > (v1,v2)
= (al = By — C) " (uy,u) > (al = By — €)' (vg,02),

where (u1,up) > (vq,v7) represents uy > vy, Uy > vp.
Now Proposition 3.7 implies that

M(a, D)

((aI=B1=C)71(0,1))(a, %) > (0, 1—G,¥(x)> >(0,0), (a,x) €[0,a7]x

Note that in the following estimates, we will focus on the second component of (al —
By —C)~1(0,1) since the first component is always zero. Thus for the convenience
of notation, we will only write down the second component without ambiguity. Now
applying B, to both sides of the above estimate, we find that
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(Ba(al By ) 01)(0,) = D [ J(e—y)((21-By—¢) 7 0,1)) a, )y,
DM(«, D) _
> /Q](x*y)mdy, (a,x) € [0,a%] x Q.
4.5)

By the monotonicity of (al = B1—C )71, (4.5) and Proposition 3.7, we find for each
(a,x) € [0,a™] x Q) that

(a1 = Br =)' By(al = By =€) (0, 1)) (4, %)

- ((u—& oy /Q I —y)%dy) (a,%),

Applying B, to both sides of the above estimate again, we have

((Bz(od _ B —C)*1)2(0,1)) (a,x)

| DM(x, D) DM(w, D)
>/ xX—y W/g](y—z)mdzdy. 4.7)

Repeating the above procedure, we find for each (4, xp) € [0,at] x Q) the following
estimate

((Bz(od By — C)’l)”(O,l)) (a,%0)

>/ / H[ J(xp_1 — 1D—MG(5(JZ1)) dxy - - - dxq.

As a result,

|Bafa1 =B~ )1

> max 7((&(«1—81—6)‘1)"(0,1)) (a,x0)
(a,x0)€[0,at]x Q2

o T s 222

x0€Q)

dxy -+ - dxq,

which implies that for any xg € Q and 6 > 0,

|(Ba(al =B~ )71y

DM(a, D)

n
> e 1 — Xm) — 2| dxy - - - d
- /QnB(xo,a) /QﬁB(xO,zS) ,El l] (1 = xm) 77— Galxm) | ™ .
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DM(a,D) |

S Dy |
- xeorlwrzla(xo,(s) ONB(xy,6) Jx y)l—Ga(y) Y

(4.8)

where B(xg, ) is an open ball in RN centered at xy with radius 6. We can use (4.4)
and Gelfand’s formula for the spectral radius of a bounded linear operator to find that

: DM(w, D)
1 > f / a 76{ = I 151 /D 49
o er:lw%(xo,zs) QNB(xp,4) J(x =) 1— sz(y) Y (x0,6,2,D) (4.9
forall xp € ), > 0 and Rea > s(By +C).

Since ] is continuous and ] (0) > 0, there exist §,, > 0and ¢, > Osuch that ] > c,
on B(O, 4 ), an open ball in RN centered at 0 with radius J,. Hence,

DM(a, D)

. DM(a, D)
— DM(.D),
=¢ errlw%(xo,zs) QNB(x0,8)NB(x6.) 1 — Ga(y) 4

DM(«, D)
= C4 — 7 4.10
‘ /mBuozS) 1— Galy) ™ @10

I(xg,6,0,D) > inf /
xeQNB(x9,8) JONB(x0,6)NB(x,5+)

provided 26 < 4, so that B(xo,) C B(x,dx) whenever x € B(xo,d). In particular,
for any xg € Q) and Rex > s(B1 +C),

I(x0,6./2,0,D) > c. / DM(#, D)

4.11
ONB(x,6./2) 1 — Ga(y) 1D

Since = G ¢ Ll | (Q), there exists x, € () such that

1_Ga ¢ L! (QﬂB(x*,(S*/Z))

which implies the existence of some small enough €, € (0, 1) such that

DM(a, D)
¢ ./QmB(x*,&*/2) T-Guly) +e? =

for all € € (0, €.]. In particular, I(xx,8,/2,a, D) > 2, which contradicts (4.9). O
Corollary 4.4 Assume that z(a, x), B(a, x) and J(x) are CV in x, there is some xq €
Int(Q)) satisfying that G (x9) = max, g Gu(x) = 1 and the partial derivatives of

Gy (x) uptoorder N — 1 at xg are zero, then A (LA) = s(.A) is the principal eigenvalue
of A and {S(t) }+>¢ exhibits asynchronous exponential growth.
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Proof We shall follow the proof of Theorem 4.3 by contradiction. Let xg € () be such
that G, (xp) = 1. Also without loss of generality, we may assume that xy € Int(Q}).
Since the partial derivatives of G, (x) up to order N — 1 at xq are zero, there is M > 0
such that

N
Ga(x0) — Ga(y) < Ml|xo — || fory € RN,
Then following the arguments of Theorem 4.3, we have

I(x0,0+/2,0,D) > c*/ M,D)Ndy,
ONB(x0,0:/2) M||x0 _ y”

see (4.11). Note that fQﬂB(xo 5./2) %d}/ = co. This, together with the argu-
V% xo_y

ments in Theorem 4.3, yields a contradiction. It follows that the desired result is

concluded. O

Next, we give another nonlocally-integrable condition similar to (4.3) to check the
existence of the principal eigenvalue of A and asynchronous exponential growth of

{S(t) }e=o-

Theorem 4.5 (Existence of the principal eigenvalue and asynchronous exponential
growth - II) Assume that for every { > a**,

1 _
g — ¢ Llloc(Q)/ “4.12)

then A1(,A) = s(\A) is the principal eigenvalue of A and {S(#)}¢>( exhibits asyn-
chronous exponential growth, where a(x) is defined in Proposition 3.5.

Proof The idea of the proof below came from Liang et al. [29, Lemma 3.8] or Bao and
Shen [6, Proposition 3.1]. For completeness and reader’s convenience, we provide a
detailed and modified proof.

By the assumption on the kernel ], there exist # > 0 and ¢y > 0 such that J(x —
y) > co for all x,y € Q with |[x — y| < r. By Proposition 3.5 and classical theory
of age-structured models, for each x € Q, B} + C* possesses a strongly positive
eigenfunction

(0,[E(x)](a)) = (0,¢~ *FPCNTI(0, 0, x) ()

corresponding to eigenvalue a(x), where ¢(x) is an arbitrary positive nontrivial fixed
point of G4 (x) and Bf + C* is defined in (3.2) with upper script representing each
fixed x € Q). It then follows from Kato [27, Section IV.3.5] that E(x) is continuous
in x € (). Without loss of generality, we assume that

max _[E(x)](a) =1.
(a,x)ex[0,at]xQd
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Next let c; = min, .10 ,+]xq[E(x)](a). Since ({ —a)” ¢ L] .(Q), we can
choose some § > 0 and x1 € Q such that B(xq,d) C B(x1,28) C Q,

1
— dx > 2(D 71,
Sy 7y = 2(Pe0ct)

and 36 < r, where B(x,r) is the ball centered at x with radius 7. Let p(x) be a
continuous function on () defined by

1, x € B(xy,9),

p(x) = {0, x €O\ B(xy,20) .13)

and [E(x)](a) :

— [E(x)](a),V(a,x) € [0,a™] x Q. It then follows
that for any (a, x)

E( ) = p(x)
€10,a™] x O\ B(x1,26), we have

dy 4
/Q](x—l/)mE(“/y) >0

For any (a,x) € [0,at] x B(x1,26), we see that

dy
> [ G e El@)
> 2coc1(Deger) "t > 2D 1E(a, x). (4.14)
Note that
(g1 —B1—C)71(0,B)](x) = (¢ — Bf —C*) (0, [E(x)])
= (¢ —a(x)) (0, [E(x)]) (4.15)
for all x € Q). It then follows that

F7(0,E) = Bo(¢I— B; —C)1(0,E) > 2(0,E) > (0,E). (4.16)

Thus, there exists { > s(B; + C) such that 7(F;) > 1. Then by Corollary 4.2, it
follows that s(\A) > s(B; + C), which implies the desired result by Theorem 4.1. O

Again parallel to Corollary 4.4, we have the following corollary.
Corollary 4.6 Assume that 1(a, x), B(a, x) and J(x) are CV in x, there is some xq €
Int(Q)) satisfying that a(xp) = max, 5 a(x) and the partial derivatives of a(x) up

to order N — 1 at xg are zero, then A1(.A) = s(.A) is the principal eigenvalue of .4
and {S(t) }+>0 exhibits asynchronous exponential growth.
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Remark 4.7 (a) Observe that the criterion for the existence of the principal eigenvalue
that we provided in (4.3) and (4.12) are reasonable and comparable with the ones
obtained for other nonlocal problems, for instance, see Coville [11] who employed
generalized Krein-Rutman Theorem to obtain existence of the principal eigenvalue of a
nonlocal diffusion operator. In fact, for our case (4.3) and (4.12) imply s(A) > s(B1 +
C). It follows from the proof of Theorem 4.1 that {S(#) }+> is an essentially compact
semigroup which implies that #(\A) > r.(.A). Then by generalized Krein-Rutman
Theorem (Theorem 2.1) we can also conclude existence of the principal eigenvalue.
This shows the equivalence in using the theory of resolvent positive operators with
their perturbations and using generalized Krein-Rutman Theorem to obtain existence
of the principal eigenvalue. In addition, such criteria in (4.3) and (4.12) are sharp
in the sense that if they are not satisfied, A admits no principal eigenvalue, see a
counterexample in [24] for details.

(b) We would like to mention again that such sufficient conditions (4.3) and (4.12)
are also valid for age-structured models with nonlocal diffusion of Dirichlet type
to obtain the existence of the principal eigenvalue and asynchronous exponentially
growth (see [24] in which we only discussed the existence of the principal eigenvalue).

5 Formula of asynchronous exponential growth

In this section, we derive a formula for the projection Py, := v ®v* : Xy —
ker(A — AoI) inspired by Walker [48], where Ag = s(.A).

Note that Ay = s(.A) is the principal eigenvalue of A when the assumptions in
Theorems 4.3 or 4.5 are satisfied. Since {S(t) } >0 exhibits asynchronous exponential
growth, Ag = s(.A) is a simple eigenvalue of .4 by Theorem 2.13-(iii), which implies
that 1 € oy (M )\0) with geometric multiplicity 1. It follows that there is a positive
element &y € X such that

0
ker(I — My, ) = span{®o} and ker(A — AgI) = span (e_AO”U(O,a)CI%)

Let¢ € Q := L'((0,a™),L(Q)) be fixed and let c(¢) € R be such that

0 0
P/\o <¢> - <C(¢)€_/\OEU(O,LZ)CDO> .

0\ . .
Note that we only need to find the second component of Py, since the first one is

¢

always zero. Thus in the following we will write Py ¢ = ¢ (4))67%%{ (0, a)P( without
ambiguity. Recall that A is a simple pole of the resolvent (A — AI)~!. Denote

a

(Hyg)(a) i= [ e (o, a)p(e, )do

0

@ Springer



604 H.Kang, S. Ruan

Then H) ¢ is holomorphic in A and it follows from (3.21) and residue theorem that
Prg¢ = Jim (A — Ao)e MU (0,a) (I — M) W) o,
—A0

where

g = [ Bla) [N (o, a)p(o, doda

Let w' € X’ be a positive eigenfunctional of the dual operator ./\/lﬁ\o of M, corre-
sponding to the eigenvalue (M) = 1. Then for f’ € Q" defined by

o= ([ plowta ), pe
we have due to ./\/li\ow’ = w’ that

c(9) (@', Do) = {f, Pro) = lim (f', (A~ Ao)e MU0, a) (I = My) ™ Wagp)
= 155\10@// (A= Ag)(I = (I = M))(I = Mp) "' Wag)
= Ali_)f%(w// (A= 2A0)(I = M) T W)
Decompose W) ¢ as
Wi = d(W)§)Po & (I — Mj,)8(Wargp). 5.1

According to the decomposition X = R - &g ® rg(I — M A)- it follows that

,\ILH)}(J(w/’ (A= Ao)(I = M) " W) = d(Wy,¢) Aliralo(w’, (A= Ag) (I — My) D)

due to the continuity of M in A. But it follows from (5.1) that
(W', Way) = d(Wy ) (w', Po)

since M) w’ = w', whence d(W),¢) = ¢(w', W), ¢) with &1 = (0!, ®p). Simi-
larly, decomposing

Yy o= (A = 2A0)(I = My) ™'y,

we find that

lim (w',Y)) = (Aliral d(YA)> (w', ®y).

/\4’)\0 — A0

@ Springer



Principal spectral theory and asynchronous exponential growth... 605

Based on these observations, we derive that

c(@)(w', @o) = Co(w', Wyy¢)(w', @o)
for some constant Cy. Consequently,

Pryp = Co(w', Wy p)e U (0, a) Do

Since P, is a projection; i.e., P%O = P),, the constant Cy can be easily computed and
we obtain the following result.

Proposition 5.1 Under the assumptions of Theorems 4.3 or 4.5, the projection Py :=
v ® v* is given by

(W', Wy, o)
(@, [ ap(a,-)e 200U (0,a)Doda)

Py,¢ = e~ M0, a) Dy (5.2)

for ¢ € Q, where

WAo‘P:/O ,B(a,')/o eiAU(“*U)Z/I(U,a)qb(U,')dada

and w’ € X’ is a positive eigenfunctional of the dual operator Mj\o of M, corre-
sponding to the eigenvalue (M) = 1.

6 Limiting properties

In this section we study the effects of diffusion rate on the principal spectrum point
A (A) of A. Following the idea from Berestycki et al. [7,8], we introduce the following
definition.

Definition 6.1 Define the generalized principal eigenvalue by

Ap(A) :=sup{A € R: 3(0,¢) € D(A) N X,

s.t. (—A+21)(0,¢) <(0,0)in[0,a"] x O},
A (A) == inf{A € R: 3(0,9) € D(A) N A+

s.t. (=A+A)(0,¢) > (0,0)in [0,a"] x O},

6.1)

where X, " = {0} x {u € C([0,a"] x Q) : u(a,x) > 0,(a,x) € [0,a*] x O}.
We would like to mention that the sets in Definition 6.1 are nonempty (see the proof of
Theorem 6.5 in the following). This idea has been widely used to prove the existence
and asymptotic behavior of the principal eigenvalue with respect to diffusion rate,
see Coville [11], Li et al. [28] and Su et al. [42] for nonlocal diffusion equations,
Shen and Vo [40] and Su et al. [41] for time periodic nonlocal diffusion equations.
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As Shen and Vo [40] pointed out for the time periodic case, we emphasize that the
parabolic-type operator A containing 9, is not self-adjoint, so we do not have the
usual L2(Q)) variational formula for the principal eigenvalue A1 (.A). The generalized
principal eigenvalues A (A) and A, (A) defined in (6.1) are helpful in addressing this
issue.

6.1 Without scaling

In this subsection first we study the diffusion kernel without scaling; i.e., L defined in
(3.1).

Proposition 6.2 A;(A) = A,(A) = A}, (A) if A1(A) is the principal eigenvalue of
A.

Proof First we prove that Ay = A,. Since Ay (A) is the principal eigenvalue of A,
there exists (0, ¢1) € D(A) N X, such that

A(0,¢1) — A1(0,¢1) = (0,0) in [0,a™] x Q. (6.2)
Since inf[o,u+] a1 > 0, wehave A; < A, Suppose by contradiction that A; < Ap.
From the definition of A, there are A € (A1,Ap) and (0,¢) € D(A) N X, such
that

—A(0,¢) +A(0,¢) < (0,0) in [0,aT] xQ (6.3)

that is,

W0 _p [ J(x—y)(9la,y) — pla,x)dy + u(a, x)p+ Ap < 0,

P (6.4)
¢(0,x) — [y Bla,x)p(a,x)da < 0.
Now solving the first inequality in (6.4), we obtain
¢la,) < e MU(0,a)p(0, ).
Plugging it into the second inequality in (6.4), we have
at
$(0,) < / B(a,-)e214(0,a)$(0, -)da. 6.5)
0

It follows that M ¢(0,-) > ¢(0,-), which implies that r(M,) > 1. But we
know that Aq is the principal eigenvalue of A, then by Proposition 3.13, we have
r(My,) = 1. Since A — (M) is strictly decreasing following a similar argument
as in Proposition 3.3 or [24, Proposition 3.7], one has A1 > A. This contradiction
leads to A; = Ap.
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Next we prove A; = )\;,. Obviously, Ay > /\;,. Assume that A > A;,. There are
A€ (/\;,,./\1) and (0, 4}) € D(A)N X" such that —A(O,qB).wL/\(O,((S) > (0,0).
By reversing the above inequalities, we have the desired conclusion by using a similar
argument as above. O

Next we recall a lemma from Vo [47] on a Poincaré-type inequality of the operator
K :12(Q) — L*(Q) defined by

KIfl) = = [ J&=)lf) - fx)lay, xeQ.

Lemma 6.3 (Vo [47, Lemma 3.2]) Assume that | is symmetric with respect to each
component. Then

LR @dx =35 [ [ 16=)f ) - feo)Pdy,

and there exists C > 0 such that
| K@ f(x)dx = € [ fxd

forall f € L?(Q) with [, f(x)dx = 0.

Lemma 6.4 A < A;(A) < Alforall D > 0, where A and A! are defined in (6.10)
and (6.7), respectively.

Proof Let ‘*I’l(a) be the positive solution of the following age-structured equation
(note that the existence is guaranteed by the theory of age-structured models)

% = —(AM + pu(a))¥(a),

— [ B(a)¥" (a)da

(6.6)

where Al satisfies
at _ ] a i
/ B(a)e™ ag= Jo 1) gy — 1. (6.7)
0

Then (0, ¥') € X;"" N D(A) and it is easy to compute that
— A0, %) + Al (o vl

_ ( fo (a,x)¥!(a)da, 2 qu )
(¥'(a) = ¥'(a ))derPl( ) ¥

= (J§" (Bla) — B(a, ) ¥ (a)da, ((a, x) — p(a))¥")
2( > (6.8)
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It follows by Proposition 6.2 that A1 (A) = A, (A) < A
Similarly, consider the following equation with a positive solution ¥1(a):

3%”f<m+m» ¥ (a),

(6.9)
fo B a)da,

where Aq satisfies
at
/ B(a)e M~ Jo Hs)ds gq — (6.10)
o £
Then similar computation yields —.A(0,¥71) + A1(0,¥1) < (0,0), which implies

that A1 (A) = Ap(A) > Aq. Thus the conclusion is proven. O

Now we give the main theorem about the effects of diffusion rate on A1(.A). We
write AP (A) for A1 (A) to emphasize the dependence on D.

Theorem 6.5 Assume that AP (A) = s(.A) is the principal eigenvalue of A, then the
function D — AP (A) is continuous on (0, c0) and satisfies

6] DILHOI*' AP(A) = s(B) + C), where
B0 f) = (£(0.), —f —uf), (0.f)€D(A):

(i) In addition, if B(a,x) = B(a) and || /3||i2(0a+) > 2] with Aq defined in (6.10),
then Dlim AP(A) = Mg, where A satisfies the following equation
—00

)

Proof Since AP (\A) is an isolated eigenvalue, the continuity of D — AP (A) follows
from the classical perturbation theory (see Kato [27, Section IV.3.5]).
(1) For the limits, we first claim that for every € > 0, there exists D > 0 such that

at

Bla)e Mote o1 Jo Jarlemdxds g, g 6.11)

s(BY4+C) —e < AP(A) <s(BY+C) +¢, VD€ (0,De). (6.12)

Denote ¢ = s(B? + C). Consider the following equation

20X — _(a(x) + p(a,x)p(a,x), (a,x) € (0,a%)x 0,

' + 6.13
= [y Bla,x)¢p(a,x)da, xeQ. (6.13)

By Proposition 3.5, we know that (6.13) has a solution ¢(a, x) = e~ *)2T1(0, a, x)¢
(0,x) € CY8.([0,at] x Q) if the initial data ¢(0,x) is continuous, positive and
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bounded, where C'0([0,a*] x Q), which represents the space of functions which
have continuous differentiability with respect to @ € [0,4"] and continuity with
respect to x € (), the double plus sign ;; denotes the strict positive cone. Thus,
(0,¢) € D(.A) N X, . Moreover, it can be checked that

—A(0,9) + (8 +€)(0,9)
- <¢<o,x>— [ Bt e, 20 —p [ 16— p)o6a,9)

—¢(a,x))dy + p(a, x)¢ + (8 +€)¢

Since min[or a+]x0 ¢ > 0and maXx ,+1q ¢ < o0, itis straightforward to check that
for each € > 0, there exists D1 > 0 such that for each D € (0, Dy, ), we have

WD) b [~ y)@lay) ~ plax)dy + e, x)p+ (0 + )

- D /Q J(x =) (¢(a, ) — p(a, x))dy + (8 — a(x))p + €9

> m/(')f(x — ) (@(a,y) — ¢a,x))dy + e
>0 (6.14)

where we used ¢ > a(x) from Proposition 3.5 in which D = 0. It then follows that
—A(0,¢) + (8 +¢€)(0,¢) > (0,0), which by the definition of )\;,(A) implies that

AP (A) = A(A) < s(BY+C) +e. (6.15)

Next, from Proposition 3.3, we know that s(B) + C) = a; and s(B; +C) = a**,
respectively, which satisfy

at
mag/ B(a,x)e ™*T1(0,a,x)da =1,
xeQ) J0
u+ *k
m@(/ B(a, x)e~ @ P10, 4, x)da = 1. (6.16)
xeQ JO

It follows that &** T aq as D — 0%. Then for the previous same € > 0, there exists
Dye > 0, such that for each D € (0, Dy ), we have

S(B] +C) =m <a™ +e=5(B+C) +e. ©.17)
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Now combing with (6.15), we have by Remark 3.10 that for any € > 0, there exists
D¢ = min{D1¢, Dy¢ } such that for each D € (0, De),

s(BY4C) —e<s(By+C) <s(A)=AP(A) <s(BY+C) +e
Setting D — 0T, we find that

s(BY+C)—e < 1]iam%r+1fA?(A) < limsupAP(A) <s(BY+C)+e, Ve >0,
- D—0*

which leads to AP(A) — s(BY +C) as D — 0T.

(ii) Finally, we prove the other limit AP (A) — Apas D — oo. Assume that
(0,¢) € X,;FT N D(A) is the principal eigenfunction associated with eigenvalue
Ap = AP(A);ie. (Ap, (0,¢)) as an eigen-pair satisfying (6.4) (with < replaced by
=). Multiplying the first equation of (6.4) by ¢ and integrating the resulting equation
over [0,a™] x Q, we find from the normalization H¢HL2((0,a+)xQ) =1 that

o [" [ {1 wiotan ~ otanlay b gta, vinia
_/Of/QM(El,x)clﬂ(a,x)dxda—i—;/Q{/Oa+ ,3(0)4’(a,x)da}2dx

1 + 2 _
_§H¢(u ) iy A0 =0 (6.18)

By the symmetry of |, we have (see Vo [47, Lemma 3.2])

/[z+ {/ / J(x=y)l¢(ay) —<P(a,x)]2dydx} da
72/ / {/ yelay) - ¢(ﬂ/x)]dy} ¢(a, x)dxda. (6.19)

It then follows from (6.18) that

o /{ |16 =plptay) - cp(a,x)wy}dxda— [ [ a0, x)ixdo
s {./O“ ﬁ<a>¢<a,x>da} ax— o lota®, )|

Since p(a, x) and B(a, x) are bounded and {Ap } p=.1 is bounded by Lemma 6.4, there
exists C = C(B, A1) > 0 by Holder’s inequality and the assumption of theorem such
that

Ap =0. (6.20)

2
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2/ /{/ [p(a,y) — 4>(a,x)]2dy}dxda

< EHﬁHLZ(O,zﬁ —Ap— *H4’

i) pming#E)

1 2
< SlBl2ar) =M= C. 6.21)

Define ¢(a) = ‘1@ Ja¢(a,x)dx for a € [0,a"] and set ¢ = ¢ — ¢. Applying
Lemma 6.3, we have from (6.21) that

/ / [¥(a,)](x)p(a,x)dxda

o {/Q/ J(x = y)[g(ay) - l,b(a,x)]2dydx} da

\

E o)
[ ) - gl P d
C

Since [ ¢(a, x)dx = 0 foralla € [0,a™], we can apply Lemma 6.3 to derive
| WPanax<c [ Ky, )@y x)dx, Yoe 00",
for some C; > 0. Hence,
/ / 1,b a,x)dxda < (%C (6.22)

Integrating the first equation of (6.4) (with < replaced by =) over (2 and dividing the
resulting equation by |Q)|, we find

IRt / DI0() = 9la 3}y — a0, ) ~ Ap(a, )

= —Ap¢p — @ /Q w(a, x)p(a, x)dx. (6.23)

Setting 1(a) = ‘1@ Jo m(a, x)dx, we have

40+ 0l = — iy [ (a0 iplax) — Pl
_ _|10| /Q 1(a, x)p(a, x)dx. (6.24)
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It follows from the variation of constants formula that

$(a) = §(0)e fo(Fe) A0 (n/ejﬁ+Md
X /Qy(T,x)lp(T,x)dxdT, acl0,at]

Since p(a,x) and {Ap}psq are bounded, we deduce from (6.22) and Hélder’s
inequality that

1
vD

for all D > 1. Now plugging (6.25) into the initial boundary condition, we obtain

$(a) = §(0)e JolA “DdS+O< ) Va € [0,aT], (6.25)

= g a)p(a)da = a 2)B(0)e~ Jo ) +A0lds 4, L g a)da
50 = [ p@paia= [ paipo)e 1 d+0n@>oﬁwd

Since B(a) is also bounded, after cancellation of ¢(0) in both sides, we have

+ a
1= /Oa ‘B(a)e_AD”ef\lﬁlfO Jopls)dxds g, +0 <\/15>

for all D >> 1. The reason that ¢(0) - 0 is given in Vo [47, Theorem A(3)], we omit
it here. Now letting D — oo, we obtain

7

/u+ ﬁ(u)e’)‘D“e_ﬁ Jo Ja plsx)dxds 3

which leads to Ap = Aq defined in (6.11) by the strict monotonicity of H(A) with
respect to A, where

/ ﬁ oA 7% Jo Jauis, x)dxdsda.

This completes the proof. a

Remark 6.6 1tis worthwhile to point out that s (B? + C) can be explicitly characterized
by using &1 as shown in (6.16). Moreover, it is interesting and open to investigate the
limit Dlim AP (A) without the additional assumption that B(a, x) = B(a) in (ii). We

conjecture that l%im /\? (A) = Aq, where Aq satisfies the following equation
—00

+ a
|10| /a / ,B(u,x)e*/\l“e*ﬁ Jo Jartsxpdxds g g g,
0 (@)
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We leave it for future consideration.

Theorem 6.7 If y(a,x) = pi(a) + pup(x) with pp(-) #constant, B(a,x) = B(a),
and suppose that | is symmetric with respect to each component and in addition the
operator

0 =D | [ 1~ 5)(ol) ~ o )dy] ~pov: X - X

admits a principal eigenvalue, then D — /\? (A) is strictly decreasing.

Proof We write A = 7 + L¢, where
T(0.9) = <—¢<o>+ [ p@otada, —¢'—m¢>, 9 € W(0,a7)),
La(0,0) = (o, D| [ 16 =) ~ o)) —Vﬂ?) , vex

Let (AP (Lq), (0,0q)) be the principal eigenpair of —Lg. Then by using the same
argument as in Shen and Xie [39, Theorem 2.2(1)], we know that D — AlD(LQ) is
strictly increasing. Now define (0, ¢ ) to be the solution of the characteristic equation
7(0,¢) = A1(0,¢) (note that the existence of (A1, ¢7) is guaranteed by the theory
of age-structured models). It follows that AP (A) = —AP(Lg) + Ay is the principal
eigenvalue of A with the principal eigenfunction (0,0 (x)¢;(a)). As D — AP (L)
is strictly increasing, so D — AlD (A) is strictly decreasing. a

6.2 With scaling

In this subsection we investigate the diffusion kernel with scaling; i.e., L, defined
in (2.5). First we give a proposition to address the effects of i and 5 on the principal
eigenvalue. Write A, ,, = By + C for A = B + C to highlight the dependence on
o and m. Also use Bl ,, and CP for B and C to represent the dependence on y and 3
respectively.

Proposition 6.8 Let m > 0 and o > 0. We have the following statements:

(i) Assume that A1 (By, + CP) and A1 (B, + C) are the principal eigenvalues of
Bom+C P and Bg,m + C respectively, then A1 (Bgm + C P ) is non-decreasing with
respect to B and Ag (Bﬁ/m + C) is non-increasing with respect to j;

(ii) Moreover, A; (B, ,, -+ C) is Lipschitz continuous with respect to ¢ in C([0,a7], X)
if A1(Ag ) is the principal eigenvalue of Ay »,,. More precisely,

|)\1(Bg,lm +C) - M (Bg,zm +C)| < Hﬂl - ,”ZHC([OI[ﬁ],X)
for any u1, pz € C([0,a], X);
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The proof is almost identical to [24, Proposition 5.6], thus we omit it. Note that
we do not have the monotonicity dependence of A1(.A) on Q) due to the Neumann
boundary condition, which is different from the Dirichlet boundary condition.

Theorem 6.9 Let B; be defined by (3.2) and

BYO,f) = (=f(0,), —f'=nuf), (0.f)€D(A).

Assume that Aj(Ag,n) = s(Agm) is the principal eigenvalue of Ag ., then the
following statements hold:

(i) For each m > 0, there holds

Hm A (Agm) = s(BY +C); (6.26)

T—00

(i) Ifm € [0,2) and B, u € C4([0,a*] x Q)]), in addition, assume that ] is sym-
metric with respect to each component, then

lim Ay (Agm) = s(B] +C).

c—0t
Before proving Theorem 6.9, we make the following remark.

Remark 6.10 Observing Theorem 6.9-(ii), we obtained a better result for m € [0,2)
compared with Theorem B-(2) only for m = 0 in Vo [47]. In fact, such results when
m € [0,2) for nonlocal operators of Neumann type were also obtained by Su et al.
[41], where they compared the principal eigenvalue of time-periodic nonlocal diffusion
operators with autonomous ones (without time derivative) to get the desired estimates.
Howeyver, their method is not valid for our case, since we do not have an autonomous
operator. We shall follow and improve the estimates of Theorem B-(2) in Vo [47].

Proof Note that Proposition 6.2 holds for Ay 5. (i) Let us consider m > 0. By using

a similar argument as in (6.17) in Theorem 6.5 via replacing D by Ugm, we find that
for any € > 0, there exists 0y > 1 such that for each o > 0y there holds

s(BY4C) —e <s(By +C).
It follows from Remark 3.10 that

liminf Ay (Ag ) > s(By+C) > s(BY +C) —e. (6.27)

T—00

Let us still consider the equation in (6.13) with a solution ¢(a, x) € C}F’%([O,aﬂ X

), under initial data ¢ (0, x), which is continuous, positive and bounded with ¥ =
s$(BY + C). For the previous same € > 0, we see that for each (a,x) € [0,a™] x Q,
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—~Aon(0,4) + (0 +€)(0,9)
- <4><o,x> a0t 0 L8 - D) ptay)

—¢(a,x))dy + p(a,x)p + (8 + 6)4>)
and

847 i) _ / Jo(x—y Jy) — ¢(a,x))dy + u(a,x)p+ (0 +¢€)¢
o /Q Jol(x = ) (9(ay) — 9, ¥))dy + e+ (6 — a(x))
o [ o= ) @(a,y) — pla,x))dy + eg. 6.28)

Since min[oﬂﬂxﬁgb >0, max[o,aﬂxﬁ‘/) < 00, and

— 0 as o — oo,

= JoJo =0 00y) ~ pla |

there is 0 > 0 such that (6.28)> 0 forall ¢ > 0. It then follows that —. A, , (0, $) +
(8 +€)(0,¢) > (0,0) which by the definition of A},(Ag,m) implies that

The arbitrariness of € with (6.27) then yields (i) for m > 0.

Now we consider m = 0. Note that k,(x) — 0 as ¢ — oo. It follows by the same
argument in (6.17) that for any € > 0, there exists o7 > 1, such that for any ¢ > oy
there holds

s(BY4C) —e <s(By +C).
Then by Remark 3.10 we have

liminf Ay (Ag ) > s(By+C) > s(BY +C) —e. (6.29)

T—00

Next note that

— 0 as o — oo.

HD S et = 9@(ay) — pla |

Thus by using the same argument as in (6.28), we obtain
M (-Atf,m) = )‘;(Aa,m) < S(B? + C) +e€
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The arbitrariness of € with (6.29) yields (i) for m = 0.

Now we prove (ii). For m € [0,2), let ¢ be the solution of (6.13) with a C*(Q)
function ¢9 > O asits initial data which is positive and bounded. And we can normalize
¢o such that supy .41, 5¢ = 1. Since 1, p € C'4([0,a™] x Q), by the global

implicit function Theorem 3.4 and Proposition 3.5, we have « € C*(Q)) which implies
that ¢ also belongs to C14([0,a*] x Q). For any € > 0 and (a,x) € [0,a"] x Q,
we have

W) D [ e = 0)(0(0,9) — plax)dy + o, 209 + 0+ ey
> /Q Jo(x = y)(@(@y) = (a,x))dy + &g

D 1 —
>-— /MNICCU’/) (9(a,y) — ¢la,x))dy| +eg
— _U% o J(z)[¢p(a,x + 0z) — ¢(a,x)]dz + €¢. (6.30)

For ¢ small enough, say ¢ < ¢y, we obtain supp] C Q;x for all x € ). Thus by
Taylor expansion and the symmetry of |, we obtain that

—0% o J@e(a,x +02) — p(a,x)]dz + e¢
=D [ I+ oz) — plaxliz e
- ‘a% /) [3x¢<a/x><oz> + 5 (02)82p(a,x)(72) + 0(0?) | dz + e
== Da;—m /IRN J(z)zT82¢(a, x)zdz 4 0(c*> ™) + €. 6.31)

It follows that there exists 0 < 0. < o7 such that

8<P11 x) _ /]a y) — ¢(a,x))dy +u(a,x)p+ (0 +€)p >0

forall ¢ < ce. Using the definition of A1 (Agm ), we have A1 (Agm) < A)(Agm) <
s(BY 4+ C) + €. Hence,

limsup Ay (Ag,m) < S(B? +C)+e

c—0t

The arbitrariness of € implies that

limsup Ay (Agm) < s(BY+C).

c—0t
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Now we prove the inverse inequality

hmlnf)\l(.Agm) >s(B)+0), (6.32)

o—0t

Aom(0,9) = (—w(o,x>+ | Bl x)a,

S8 B e ) ay) — 9la, )y - V(a,x)w(u,x)> .

For any € > 0, there exists an open ball Be of radius € such that a(x) 4+ € > s(B) +
C) := ¢ in Be N Q), where a(x) is from Proposition 3.5 for D = 0 and s(BY + C)
corresponds to the value a; in (6.16). Let g € C4([0,a*] x RN) be nonnegative
and satisfy

$e = ¢in[0,a7] x Be, g =0,in[0,a"] x (RN\ Bye)and sup @< sup ¢=1.
[0,at]xRN [0,at]xRRN

It is obvious that ¢(a,-) € C*(RN) for each a € [0,a™]. Let Ap(p, A,,) be the

principal eigenvalue of the operator AS, , where Aff)’m is defined as follows:

a,m»

AZm(0,9) = <—¢(o,x)+/0a Bla,x)y(a, x)da,

84] %) /]a x—y)¢(a,y)dy — Ugmtp(a,x) — y(a,x)zp(a,x)) .

Note that it is an operator of Dirichlet type. Then we have for (a,x) € [0,a"] x B
that

A% (0,9) + ( —“31') 0,9) = (I, ),
where
— 900~ [ Bla,v)p(a,x)da =0

and
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Iy = 9lax) D [/B Jo(x —y)¢(a,y)dy — 4>(ﬂ,x)}

doa om

+ [ﬂ(a,m b o |h11€|] o(a, %)

=~ B[ o= vptaniy - gt + a0+ o - - 1] glaw
<~ [ 1= votaiy - pta,0) - (e,
= —U% /}RN Jo(x = y)Pe(a,y)dy — pe(a, x) — /Bk\Be Jo(x = y)cﬁe(a,y)dyl

1
*mﬁb(ﬂ, x).

Now by the argument in Shen and Vo [40, Theorem D(2)] after choosing € = ¢ with
k= mJ}\]zN,wehaveforO < 0 < 1 that

—Afj;;;(o,(l)) + (ﬁ_ U'k - |11‘1(10'k)|> (0,¢) < (0,0), in [0,[1+] X Eo'k'

Then by Proposition 6.2, we have

B, 1
Xyt Acin) = Ayt Ac) 2 5(BY +€) = 0% =

Proposition 5.6 (iii) in Kang and Ruan [24] yields that A, (1, A2,)) > A, (1, Ag%)
and thus

1

Ap(p, A2,) > s(BY+C) — ~ TR (6.33)
Let —ji7(a,x) = —p(a, x) am — fg + J(z)dz. Obviously, for a sufficient small
o, one has || 0 J(z)dz = 1, which 1mphes that
lim |77 = p[ . 0,0)5) = O (6.34)
and we derive, by Proposition 5.6 (ii) in [24], that
|)~Lp(ﬁ0/ A?,m) - }\P(V/ Ag’),m)| < Hﬁa - VHC([O,aﬂ,X) , (6.35)
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where Xp( i1, Agm), for ¢ small enough, is the principal eigenvalue of the operator
defined by

A?,m(OMP) = <_1P(0,x)+/0a ,B(a,x)llj(a,x)da,
allf a,x) /]0 x—y ) — ¢(a,x))dy—y(a,x)¢(g,x)> .

Combining (6.33), (6.34) and (6.35), we take the limit as ¢ — 0T and get the desired
inequality

hmlnf)\l(Agm) = liminf A, (i, A ) > s(BY+0),

c—0t o—0t

which proves (6.32). O

7 Strong maximum principle

In this section by using the sign of the principal spectrum point A1 (A) we establish the
strong maximum principle for the operator .A with L defined in (3.1) without scaling.

Definition 7.1 (Strong Maximum Principle) We say that .4 admits the strong maxi-
mum principle if for any function (0, u) € D(.A) satisfying

A(0,u) <(0,0) in [0,aT] xQ,
{(Or“) > (0,0) in [0,a%] x 90, (7.1)

there must hold # > 0in [0,a"] X Q unless u = 0in [0,a"] x Q.

Theorem 7.2 Assume that A1 (.A) is the principal eigenvalue of .4, then .4 admits the
strong maximum principle if and only if A1(A) < 0.

Proof If Ay := A1(A) = s(\A) is the principal eigenvalue of A associated with a
positive eigenfunction ¢ € X" N D(A), then

A(0,¢) = 11(0,¢) = (0,0);

that is

34D [y J(x —y)($(ay) — (a,x))dy — pu(a,x)p — A =0,

) (7.2)
x)— Jo Bla,x)¢(a,x)da =0.

For the sufficiency, that is A1 < 0 implies the strong maximum principle, let
(0,u) € D(.A) be nonzero and satisfy (7.1). Assume by contradiction that there exists
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(a0, x0) € [0,a™] x Q such that u(ap, xo) = miny4+), ¢ < 0. Then consider the
set

F:={e€R:u+ep>0in[0,a"] x Q}.

Denote by €9 = minI and { = u + €g¢. It is clear that €9 > 0 by the assumption
that u(ap, x9) < 0 and the fact that i > 0. Now if €9 > 0, by simple computations,
we have

LD [ J(x—y)(y(ay) — ¢(a,x))dy
+u(a, x)p > —eghi1p >0, (a,x
X

)€ (0,a")xQ, (7.3)
¥(0,x) > féﬁ B(a,x)p(a,x)da, € Q.

That is,

5> D fo ) (x =) ey) — pla,x)dy — p(a,2)p, (a,5) € (0,a7) x D,
$0,3) >[5 pla,x)p(a, x)da, req
(7.4)

It follows from the first inequality in (7.4) that ¢(a,x) > U(0,a)p(0,x) > 0 for
(a,x) € (0,a"] x Q. Plugging it into the second inequality, we have (0, x) > 0,
which implies that ¢ is strictly positive in [0,a™7] x (). This contradicts the fact that
€p is the infimum of I".

If €g = 0, it follows that u(ag, xo) = 0. Then if ag > 0, 2440%0) < 0 which
implies that

02 PU80%0) 5 b [ Jixg — y)ao, ) — e, x0) )y — pla, )0, %) > 0,

(7.5)

This contradicts again that €q is the infimum of I'. If ag = 0, from the integral
boundary condition, we have

/f B(a, xo)u(a, xo)da < u(0,xy) =0,

which by the positivity of 8 and u > 0 implies that u(a, xg) = 0 foralla € [0,a™].
Then integrating (7.5) from 0 to a™t at x = xg, we still have the contradiction as above.
Hence u > 0in [0,a™] x Q, which concludes the desired result.

For the necessity, that is, strong maximum principle implies A; < 0, the proof is
similar to that of Vo [47, Theorem C] and is omitted here. O
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8 Discussion

In this paper, we studied principal spectral theory and asynchronous exponential
growth for age-structured models with nonlocal diffusion of Neumann type. First,
we gave two sufficient conditions to guarantee existence of the principal eigenvalue
of age-structured operators with nonlocal diffusion. Then such conditions were also
used to show that the semigroup generated by the solutions to age-structured models
with nonlocal diffusion is essentially compact and exhibits asynchronous exponen-
tial growth. We would like to mention that, to our best knowledge, it is the first time
that explicit and easily verifiable sufficient conditions are given to guarantee that the
semigroup exhibits asynchronous exponential growth, without additional compact-
ness assumption and without proving the compactness of solution trajectories (which
implies the eventual compactness of the semigroup), in particular, compared with the
results in Thieme [44] in which it was assumed that the evolution family associated
with spatial diffusion (for example Laplace diffusion) is compact. Moreover, such con-
ditions are also valid for age-structured models with nonlocal diffusion of Dirichlet
type to exhibit asynchronous exponential growth.

Next, by employing the generalized principal eigenvalue, we investigated the limit-
ing properties of the principal eigenvalue with respect to the diffusion rate D and
diffusion range o. We improved some estimates in Vo [47] for a wide range of
m € [0,2) instead of m = 0. Finally, we established strong maximum principle
for age-structured models with nonlocal diffusion of Neumann type. We would like
to mention that we also used such principal spectral theory to investigate the global
dynamics and asymptotic behavior of steady states with respect to diffusion rate and
range for an age-structured model with nonlocal diffusion of Dirichlet type and nonlin-
earity on the birth rate or death rate in [24]. In fact, the global dynamics and asymptotic
behavior of steady states with respect to diffusion rate and range of Neumann type are
similar to those for Dirichlet type, thus we omit them here. The interested readers can
refer to [24] for details.

Acknowledgements We would like to thank the two anonymous reviewers for their helpful comments and
valuable suggestions.
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