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Abstract

We introduce Video Transformer (VidTr) with separable-
attention for video classification. Comparing with com-
monly used 3D networks, VidTr is able to aggregate spatio-
temporal information via stacked attentions and provide
better performance with higher efficiency. We first introduce
the vanilla video transformer and show that transformer
module is able to perform spatio-temporal modeling from
raw pixels, but with heavy memory usage. We then present
VidTr which reduces the memory cost by 3.3 x while keep-
ing the same performance. To further optimize the model,
we propose the standard deviation based topK pooling for
attention (poolyop K _sta), which reduces the computation by
dropping non-informative features along temporal dimen-
sion. VidTr achieves state-of-the-art performance on five
commonly used datasets with lower computational require-
ment, showing both the efficiency and effectiveness of our
design. Finally, error analysis and visualization show that
VidTr is especially good at predicting actions that require
long-term temporal reasoning.

1. Introduction

We introduce Video Transformer (VidTr) with separable-
attention, one of the first transformer-based video ac-
tion classification architecture that performs global spatio-
temporal feature aggregation. Convolution-based archi-
tectures have dominated the video classification literature
in recent years [19, 32, 55], and although successful, the
convolution-based approaches have two drawbacks: 1. they
have limited receptive field on each layer and 2. informa-
tion is slowly aggregated through stacked convolution lay-
ers, which is inefficient and might be ineffective [31, 55].
Attention is a potential candidate to overcome these limi-
tations as it has a large receptive field which can be lever-
aged for spatio-temporal modeling. Previous works use at-
tention to modeling long-range spatio-temporal features in
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videos but still rely on convoluational backbones [31, 55].
Inspired by recent successful applications of transformers
on NLP [12, 52] and computer vision [ 14, 47], we propose
a transformer-based video network that directly applies at-
tentions on raw video pixels for video classification, aiming
at higher efficiency and better performance.

We first introduce a vanilla video transformer that di-
rectly learns spatio-temporal features from raw-pixel inputs
via vision transformer [14], showing that it is possible to
perform pixel-level spatio-temporal modeling. However,
as discussed in [56], the transformer has O(n?) complex-
ity with respect to the sequence length. The vanilla video
transformer is memory consuming, as training on a 16-
frame clip (224 x 224) with only batch size of 1 requires
more than 16GB GPU memory, which makes it infeasible
on most commercial devices. Inspired by the R(2+1)D con-
volution that breaks down 3D convolution kernel to a spa-
tial kernel and a temproal kernel [50], we further introduce
our separable-attention, which performs spatial and tempo-
ral attention separately. This reduces the memory consump-
tion by 3.3 x with no drop in accuracy. We can further re-
duce the memory and computational requirements of our
system by exploiting the fact that a large portion of many
videos have redundant information temporally. This notion
has been explored in the context of convolutional networks
to reduce computation previously [32]. We build on this in-
tuition and propose a standard deviation based topK pooling
operation (topK _std pooling), which reduces the sequence
length and encourages the transformer network to focus on
representative frames.

We evaluated our VidTr on 6 most commonly used
datasets, including Kinetics 400/700, Charades, Something-
something V2, UCF-101 and HMDB-51. Our model
achieved state-of-the-art (SOTA) or comparable perfor-
mance on five datasets with lower computational require-
ments and latency compared to previous SOTA approaches.
Our error analysis and ablation experiments show that the
VidTr works significantly better than I3D on activities that
requires longer temporal reasoning (e.g. making a cake
vs. eating a cake), which aligns well with our intuition.
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This also inspires us to ensemble the VidTr with the 13D
convolutional network as features from global and local
modeling methods should be complementary. We show
that simply combining the VidTr with a I3D50 model (8
frames input) via ensemble can lead to roughly a 2% per-
formance improvement on Kinetics 400. We further il-
lustrate how and why the VidTr works by visualizing the
separable-attention using attention rollout [!], and show
that the spatial-attention is able to focus on informative
patches while temporal attention is able to reduce the
duplicated/non-informative temporal instances. Our contri-
butions are:

1. Video transformer: We propose to efficiently and effec-
tively aggregate spatio-temporal information with stacked at-
tentions as opposed to convolution based approaches. We in-
troduce vanilla video transformer as proof of concept with
SOTA comparable performance on video classification.

2. VidTr: We introduce VidTr and its permutations, including
the VidTr with SOTA performance and the compact-VidTr
with significantly reduced computational costs using the pro-
posed standard deviation based pooling method.

3. Results and model weights: We provide detailed results
and analysis on 6 commonly used datasets which can be used
as reference for future research. Our pre-trained model can
be used for many down-streaming tasks.

2. Related Work
2.1. Action Classification

The early research on video based action recognition re-
lies on 2D convolutions [28]. The LSTM [25] was later
proposed to model the image feature based on ConvNet
features [30, 51, 63]. However, the combination of Con-
vNet and LSTM did not lead to significantly better perfor-
mance. Instead of relying on RNNs, the segment based
method TSN [54] and its permutations [22, 35, 64] were
proposed with good performance.

Although 2D network was proved successful, the spatio-
temporal modeling was still separated. Using 3D convolu-
tion for spatio-temporal modeling was initially proposed in
[26] and further extended to the C3D network [48]. How-
ever, training 3D convnet from scratch was hard, initializ-
ing the 3D convnet weights by inflate from 2D networks
was initially proposed in I3D [7] and soon proved applica-
ble with different type of 2D network [10, 24, 58]. The I3D
was used as backbone for many following work including
two-stream network [19, 55], the networks with focus on
temporal modeling [31, 32, 59], and the 3D networks with
refined 3D convolution kernels [27, 33, 39, 44].

The 3D networks are proved effective but often not ef-
ficient, the 3D networks with better performance often re-
quires larger kernels or deeper structures. The recent re-
search demonstrates that depth convolution significantly re-
duce the computation [49], but depth convolution also in-
crease the network inference latency. TSM [37] and TAM

[17] proposed a more efficient backbone for temporal mod-
eling, however, such design couldn’t achieve SOTA perfor-
mance on Kinetics dataset. The neural architecture search
was proposed for action recognition [ 18, 43] recently with
competitive performance, however, the high latency and
limited generalizability remain to be improved.

The previous methods heavily rely on convolution to ag-
gregate features spatio-temporally, which is not efficient. A
few previous work tried to perform global spatio-temporal
modeling [31, 55] but still limited by the convolution back-
bone. The proposed VidTr is fundamentally different from
previous works based on convolutions, the VidTr doesn’t re-
quire heavily stacked convolutions [59] for feature aggrega-
tion but efficiently learn feature globally via attention from
first layer. Besides, the VidTr don’t rely on sliding convolu-
tions and depth convolutions, which runs at less FLOPs and
lower latency compared with 3D convolutions [ 18, 59].

2.2. Vision Transformer

The transformers [52] was previously proposed for NLP
tasks [13] and recently adopted for computer vision tasks.
The transformers were roughly used in three different ways
in previous works: 1.To bridge the gap between different
modalities, e.g. video captioning [65], video retrieval [20]
and dialog system [36]. 2. To aggregate convolutional fea-
tures for down-streaming tasks, e.g. object detection [5, | 1],
pose estimation [61], semantic segmentation [|5] and ac-
tion recognition [21]. 3. To perform feature learning on raw
pixels, e.g. most recently image classification [ 14, 47].

Action recognition with self-attention on convolution
features [21] is proved successful, however, convolution
also generates local feature and gives redundant computa-
tions. Different from [21] and inspired by very recent work
on applying transformer on raw pixels [14, 47], we pio-
neer the work on aggregating spatio-temporal feature from
raw videos without relying on convolution features. Dif-
ferent from very recent work [41] that extract spatial fea-
ture with vision transformer on every video frames and
then aggregate feature with attention, our proposed method
jointly learns spatio-temporal feature with lower computa-
tional cost and higher performance. Our work differs from
the concurrent work [4], we present a split attention with
better performance without requiring larger video resolu-
tion nor extra long clip length. Some more recent work
[2, 4, 4, 16, 40, 42] further studied the multi-scale and dif-
ferent attention factorization methods.

3. Video Transformer

We introduce the Video Transformer starting with the
vanilla video transformer (section 3.1) which illustrates our
idea of video action recognition without convolutions. We
then present VidTr by first introducing separable-attention
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Figure 1: Spatio-temporal separable-attention video trans-
former (VidTr). The model takes pixels patches as input and
learns the spatial temporal feature via proposed separable-
attention. The green shaded block denotes the down-sample
module which can be inserted into VidTr for higher effi-
ciency. 7 denotes the temporal dimension after downsam-

pling.

(section 3.2), and then the attention pooling to drop non-
representative information temporally (section 3.2).

3.1. Vanilla Video Transformer

Following previous efforts in NLP [13] and image clas-
sification [ 14], we adopt the transformer [52] encoder struc-
ture for action recognition that operates on raw pixels.
Given a video clip V. € REXTXWXH where T denotes
the clip length, W and H denote the video frame width and
height, and C denotes the number of channel, we first con-
vert V to a sequence of s x s spatial patches, and apply a

linear embedding to each patch, namely S € RTZ¥xc"
where C" is the channel dimension after the linear em-
bedding. We add a 1D learnable positional embedding
[13, 14] to S and following previous work [13, 14], append
a class token as well, whose purpose is to aggregate features
from the whole sequence for classification. This results in
5" e RUZFHDXE yhere S, € RIC” s the attached
class token. S’ is feed into our transformer encoder struc-
ture detailed next.

As Figure 1 middle shows, we expand the previous suc-
cessful ViT transformer architecture for 3D feature learn-
ing. Specifically, we stack 12 encoder layers, with each
encoder layer consisting of an 8-head self-attention layer
and two dense layers with 768 and 3072 hidden units.
Different from transformers for 2D images, each atten-
tion la}}ier learns a spatio-temporal affinity map Aétn €

R +1)x(FFH+1)

3.2. VidTr

In Table 2 we show that this simple formulation is ca-
pable of learning 3D motion features on a sequence of lo-
cal patches. However, as explained in [3], the affinity at-
tention matrix Attn € RS2 DX 41 peeds to be
stored in memory for back propagating, and thus the mem-
ory consumption is quadratically related to the sequence
length. We can see that the vanilla video transformer in-
creases memory usage for the affinity map from Q(W?2H?)
to O(T?W?2H?), leading to T?x memory usage for train-
ing, which makes it impractical on most available GPU de-
vices. We now address this inefficiency with a separable
attention architecture.

3.2.1 Separable-Attention

To address these memory constraints, we introduce a multi-
head separable-attention (MSA) by decoupling the 3D self-
attention to a spatial attention MSA; and a temporal atten-
tion MSA, (Figure 1):



k. Following MSAg, we apply a similar 1D sequential self-
attention MSA; on spatial dimension:



S model to converge, the training process also scales well
with fewer GPUs (e.g. 8 GPUs for 4 days). During in-
ference we adopted the commonly used 30-crop evaluation
for VidTr and compact VidTr, with 10 uniformly sampled
temporal segments and 3 uniformly sampled spatial crop on
each temporal segment [55]. It is worth mentioning that
we can further boost the inference speed of compact VidTr
by adopting a single pass inference mechanise, this is be-
cause the attention mechanism captures global information
more effectively than 3D convolution. We do this by train-
ing a model with frames sampled in TSN [54] style, and
uniformly sampling N frames in inference (details in sup-
plemental materials).

4. Experimental Results
4.1. Datasets

We evaluate our method on six of the most widely used
datasets. Kinetics 400 [8] and Kinetics 700 [6] consists
of approximately 240K/650K training videos and 20K/35K
validation videos trimmed to 10 seconds from 400/700 hu-
man action categories. We report top-1 and top-5 clas-
sification accuracy on the validation sets. Something-
Something V2 [23] dataset consists of 174 actions and con-
tains 168.9K training videos and 24.7K evaluation videos.
We report top-1 accuracy following previous works [37]
evaluation setup. Charades [45] has 9.8k training videos
and 1.8k validation videos spanning about 30 seconds on
average. Charades contains 157 multi-label classes with
longer activities, performance is measured in mean Aver-
age Precision (mAP). UCF-101 [46] and HMDB-51 [29]
are two smaller datasets. UCF-101 contains 13320 videos
with an average length of 180 frames per video and 101 ac-
tion categories. The HMDB-51 has 6,766 videos and 51
action categories. We report the top-1 classification on the
validation videos based on split 1 for both dataset.

4.2. Kinetics 400 Results
4.2.1 Comparison To SOTA

We report results on the validation set of Kinetics 400 in
Table 2, including the top-1 and top-5 accuracy, GFLOPs
(Giga Floating-Point Operations) and latency (ms) required
to compute results on one view.

As shown in Table 2, the VidTr achieved the SOTA per-
formance compared to previous I3D based SOTA architec-
tures with lower GFLOPs and latency. The VidTr signifi-
cantly outperform previous SOTA methods at roughly same
computational budget, e.g. at 200 GFLOPs, the VidTr-
M outperform I3D50 by 3.6%, NL50 by 2.1%,and TPN50
by 0.9%. At similar accuracy levels, VidTr is significantly
more computationally efficient than other works, e.g. at
78% top-1 accuracy, the VidTr-S has 6 x fewer FLOPs than
NL-101, 2x fewer FLOPs than TPN and 12% fewer FLOPs

Model Input GFLOPs Lat. top-1 top-5
13D50 [60] 32 x 2 167 74.4 75.0 92.2
13D101 [60] 32 x 2 342 1183 | 774 92.7
NL50 [55] 32x2 282 53.3 76.5 92.6
NL101 [55] 32x2 544 134.1 77.7 93.3
TEASO [34] 16 x 2 70 - 76.1 92.5
TEINet [39] 16 x 2 66 49.5 76.2 92.5
CIDC [32] 32x2 101 82.3 75.5 92.1
SF50 8x8 [19] (32+8)x2 66 493 77.0 92.6
SF101 8x8 [19] (32+8)x2 106 71.9 77.5 92.3
SF101 16x8 [19] | (64+16)x2 213 1243 | 789 93.5
TPNS50 [60] 32x2 199 89.3 77.7 93.3
TPN101 [60] 32x2 374 1334 | 78.9 93.9
CorrNet50 [53] 32 x2 115 - 77.2 N/A
CorrNet101 [53] 32 x 2 187 - 78.5 N/A
X3D-XXL [18] 16 x 5 196 - 80.4 94.6
Vanilla-Tr 8x8 89 32.8 77.5 93.2
VidTr-S 8x8 89 36.2 71.7 93.3
VidTr-M 16 x 4 179 61.1 78.6 93.5
VidTr-L 32x2 351 1102 | 79.1 93.9
En-13D-50-101 32 x 2 509 192.7 | 77.7 93.2
En-I13D-TPN-101 32 x 2 541 207.8 | 79.1 94.0
En-VidTr-S 8x8 130 732 79.4 94.0
En-VidTr-M 16 x 4 220 98.1 79.7 94.2
En-VidTr-L 32 x 2 392 1472 | 80.5 94.6

Table 2: Results on Kinetics-400 dataset. We report top-
1 accuracy(%) on the validation set. The ‘Input’ column
indicates what frames of the 64 frame clip are actually sent
to the network. n X s input indicates we feed n frames to the
network sampled every s frames. Lat. stands for the latency
on single crop.

than Slowfast-101. We also see that our VidTr outperforms
I3D based networks at higher sample rate (e.g. s = 8, TPN
achieved 76.1% top-1 accuracy), this denotes, the global at-
tention learns temporal information more effectively than
3D convolutions. X3D-XXL from architecture search is the
only network that outperforms our VidTr. We plan to use ar-
chitecture search techniques for attention based architecture
in future work.

4.2.2 Compact VidTr

We evaluate the effectiveness of our compact VidTr with the
proposed temporal down-sampling method (Table 1). The
results (Table 3) show that the proposed down-sampling
strategy removes roughly 56% of the computation required
by VidTr with only 2% performance drop in accuracy. The
compact VidTr complete the VidTr family from small mod-
els (only 39GFLOPs) to high performance models (up to
79.1% accuracy). Compared with previous SOTA compact
models [34, 39], our compact VidTr achieves better or sim-
ilar performance with lower FLOPs and latency, including:
TEA (+0.6% with 16% fewer FLOPs) and TEINet (+0.5%
with 11% fewer FLOPs).
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Model Input Res. GFLOPs Latency(ms)  top-1
TSM [37] 8fTSN | 256 69 29 74.7
TEA [34] 16 x4 256 70 - 76.1
3DEffi-B4 [ 18] 16x5 224 7 - 72.4
TEINet [39] 16 x4 256 33 36 74.9
X3D-M [ 18] 16%5 224 5 40.9 74.6
X3D-L[18] 16x5 312 19 59.4 76.8
C-VidTr-S 8x8 224 39 17.5 75.7
C-VidTr-M 16 x4 224 59 26.1 76.7

Table 3: Comparison of VidTr to other fast networks. We
present the number of views used for evaluation and FLOPs
required for each view. The latency denotes the total time
required to get the reported top-1 score.'

Top 5 (+) Acc. gain Top 5 (-) Acc. gain
making a cake +26.0% shaking head -21.7%
catching fish +21.2% dunking basketball -20.8%
catching baseball +20.8% lunge -19.9%
stretching arm +19.1% playing guitar -19.9%
spraying +18.0 % tap dancing -16.3%

(a) Top 5 classes that VidTr works (b) Top 5 classes that I3D works
better than I3D. better than VidTr.

Table 4: Quantitative analysis on Kinetics-400 dataset. The
performance gain is defined as the disparity of the top-1 ac-
curacy between VidTr network and that of I3D.

4.2.3 Error and Ensemble Analysis

We compare the errors made by VidTr-S and the I3D50
network to better understand the local networks’ (I3D) and
global networks’ (VidTr) behavior. We provide the top-5 ac-
tivities that our VidTr-S gain most significant improvement
over the I3D50. We find that our VidTr-S outperformed
the I3D on the activities that requires long-term video con-
texts to be recognized. For example, our VidTr-S outper-
formed the I3D50 on “making a cake” by 26% in accuracy.
The I3D50 overfits to “cakes” and often recognize making
a cake as eating a cake. We also analyze the top-5 activi-
ties where I3D does better than our VidTr-S (Table 4). Our
VidTr-S performs poorly on the activities that need to cap-
ture fast and local motions. For example, our VidTr-S per-
forms 21% worse in accuracy on “shaking head”.

Inspired by the findings in our error analysis, we ensem-
bled our VidTr with a light weight I3D50 network by av-
eraging the output values between the two networks. The
results (Table 2) show that the the I3D model and trans-
former model complements each other and the ensemble
model roughly lead to 2% performance improvement on Ki-
netics 400 with limited additional FLOPs (37G). The per-
formance gained by ensembling the VidTr with I3D is sig-
nificantly better than the improvement by combine two 3D
networks (Table 2).

1

we measure latency of X3D using the authors’ code and fast depth
convolution patch: https://github.com/facebookresearch/
SlowFast/blob/master/projects/x3d/README.md, which

4.2.4 Ablations

Model FP. top-1 Model Mem.  top-1
Cubic (4x162) 23G | 73.1 WH 2.1GB | 74.7
Cubic (2x16?) 45G | 755 WHT 7.6GB | 77.5

WH+T 23GB | 71.7
W+H+T. | 1.5GB | 723

Square (1x162) | 89G | 77.7
Square (1x322) | 21G | 71.2

(a) Comparison between different (b) Comparison between different

patching strategies. factorization.
Init. from FP. top-1 Configurations top-1  top-5
T2T [62] 34G | 76.3 Temp. Avg. Pool. | 74.9 91.6
VIiT-B [14] | 89G | 77.7 1D Conv. [62] 75.4 92.3
VIT-L [14] | 358 | 775 STD Pool. 75.7 92.2

(c) Comparison between differ- (d) Comparison between different
ent backbones. down-sample methods.

Layer T FP. top-1 Layer T FP. top-1
[0,2] [4,2] | 26G | 729 [1,2] [4,2] | 30G | 73.9
(1,3] [4,2] | 32G | 749 [1,3] [4,2] | 32G | 749
(2,4] [4,2] | 47G | 749 (1,4] [4,2] | 33G | 75.0
6, 8] [4,2] | 60G | 753 [1,5] [4,2] | 34G | 752

(e) Compact VidTr down-sampling
twice at layer k and k + 2.

(f) Compact VidTr down-sampling
twice starting from layer 1 and
skipping different number of layers.

Table 5: Ablation studies on Kinetics 400 dataset. We use
an VidTr-S backbone with 8 frames input for (a,b) and C-
VidTr-S for (c,d). The evaluation is performed on 30 views
with 8 frame input unless specified. FP. stands for FLOPs.

We perform all ablation experiments with our VidTr-S
model on Kinetics 400. We used 8 x 224 x 224 input with
a frame sample rate of 8, and 30-view evaluation.
Patching strategies: We first compare the cubic patch
(4 x 162), where the video is represented as a sequence of
spatio-temporal patches, with the square patch (1 x 162),
where the video is represented as a sequence of spatial
patches. Our results (Table 5a) show that the model using
cubic patches with longer temporal size has fewer FLOPs
but results in significant performance drop (73.1 vs. 75.5).
The model using square patches significantly outperform all
cubic patch based models, likely because the linear embed-
ding is not enough to represent the shot-term temporal asso-
ciation in the cubic. We further compared the performance
of using different patch sizes (1 x 162 vs. 1x 322), using 322
patches lead to 4 x decreasing of the sequence length, which
decreases memory consumption of the affinity matrices by
16, however, using 162 patches significantly outperform
the model using 322 patches (77.7 vs. 71.2). We did not
evaluate the model using smaller patching sizes (e.g., 8 X 8)
because of the high memory consumption.

Attention Factorization: We compare different factoriza-
tion for attention design, including spatial modeling only
(WH), jointly spatio-temporal modeling module (WHT,

only has models for X3D-M and X3D-L and not the XL and XXL variants
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Figure 2: The comparison between different models on ac-
curacy, FLOPs and latency.

vanilla-Tr), spatio-temporal separable-attention (WH + T,
VidTr), and axial separable-attention (W + H + T). We first
evaluate an spatio-only transformer. We average the class
token for each input frame for our final output. Our re-
sults (Table 5b) show that the spatio-only transformer re-
quires less memory but has worse performance compare
with spatio-temporal attention models. This shows that
temporal modeling is critical for attention based architec-
tures. The joint spatio-temporal transformer significantly
outperforms the spatio-only transformer but requires a re-
strictive amount of memory (7' times for the affinity matri-
ces). Our VidTr using spatio-temporal separable-attention
requires 3.3 x less memory with no accuracy drop. We fur-
ther evaluate the axial separable-attention (W + H + T),
which requires the least memory. The results (Table 5b)
show that the axial separable-attention has a significant per-
formance drop likely due to breaking the X and Y spatial
dimensions.

Sequence down-sampling comparison:  We compare
different down-sampling strategy including temporal aver-
age pooling, 1D temporal convolution and the proposed
STD-based topK pooling method. The results (Table
5d) show that our proposed STD-based down-sampling
method outperformed the temporal average pooling and the
convolution-based down-sampling strategies that uniformly
aggregate information over time.

Backbone generalization: We evaluate our VidTr ini-
tialized with different models, including T2T [62], ViT-B,
and ViT-L. The results on Table 5c show that our VidTr
achieves reasonable performance across all backbones. The
VidTr using T2T as the backbone has the lowest FLOPs but
also the lowest accuracy. The Vit-L-based VidTr achieve
similar performance with the Vit-B-based VidTr even with
3x FLOPs. As showed in previous work [14], transformer-
based network are more likely to over-fit and Kinetics-400
is relatively small for Vit-L-based VidTr.

Where to down-sample:  Finally we study where to

Model Input K700  Chad SS UCF HM
I3D [7] 32x2 58.7 329 | 50.0 | 95.1 | 743
TSM [37] 8(TSN) - - 593 | 945 | 70.7
I3D101 [59] 32 x4 40.3 - -
CSN152 [49] 32 %2 70.1 - - -
TEINet[39] 16 (TSN) - - 62.1 | 96.7 | 733
SF101 [19] 64x2 70.2 - 60.9 - -
SF101-NL [19] 64x2 70.6 45.2 - -
X3D-XL [18] 16 x5 - 47.1 - -

VidTr-M 16 x 4 69.5 - 619 | 96.6 | 744
VidTr-L 32x2 70.2 435 | 63.0 | 96.7 | 74.4
En-VidTr-L 32x2 70.8 47.3 - - -

Table 6: Results on Kinetics-700 dataset (K700), Cha-
rades dataset (Chad), something-something-V2 dataset
(SS), UCF-101 and HMDB (HM) dataset. The evaluation
metrics are mean average precision (mAP) in percentage for
Charades (32x4 input is used), top-1 accuracy for Kinet-
ics 700, something-something-V2 (TSN styled dataloader
is used), UCF and HMDB.

perform temporal down-sampling. We perform temporal
down-sampling at different layers (Table Se). Our results
(Table 5e) show that starting to perform down-sampling af-
ter the first encoder layer has the best trade-off between
the performance and FLOPs. Starting to perform down-
sampling at very beginning leads to the fewest FLOPs but
has a significant performance drop (72.9 vs. 74.9). Per-
forming down-sampling later only has slight performance
improvement but requires higher FLOPs. We then analyze
how many layers to skip between two down-sample layers.
Based on the results in Table 5f, skipping one layer between
two down-sample operations has the best trade-off. Per-
forming down-sampling on consecutive layers (0 skip lay-
ers) has lowest FLOPs but the performance decreases (73.9
vs. 74.9). Skipping more layers did not show significant
performance improvement but does have higher FLOPs.

4.2.5 Run-time Analysis

We further analyzed the trade-off between latency, FLOPs
and accuracy. We note that the VidTr achieved the best bal-
ance between these factors (Figure 2). The VidTr-S achieve
similar performance but significantly fewer FLOPs compare
with I3D101-NL (5x fewer FLOPs), Slowfast101 8 x 8
(12% fewer FLOPs), TPN101 (2x fewer FLOPs), and Cor-
rNet50 (20x fewer FLOPs). Note that the X3D has very
low FLOPs but high latency due to the use of depth con-
volution. Our experiments show that the X3D-L has about
3.6 higher latency comparing with VidTr-S (Figure 2).

4.3. More Results

Kinetics-700 Results:  Our experiments show a consis-
tent performance trend on Kinetics 700 (Table 6). The
VidTr-S significantly outperformed the baseline I3D model
(+9%), the VidTr-M achieved the performance comparable
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to Slowfast101 8 x 8 and the VidTr-L is comparable to pre-
vious SOTA slowfast101-nonlocal. There is a small perfor-
mance gap between our model and Slowfast-NL [19], be-
cause Slowfast is pre-trained on both Kinetics 400 and 600
while we only pre-trained on Kinetics 400. Previous find-
ings that VidTr and I3D are being complementary is consis-
tent on Kinetics 700, ensemble VidTr-L with 13D leads to
+0.6% performance boost.

Charades Results: We compare our VidTr with previ-
ous SOTA models on Charades. Our VidTr-L outperformed
previous SOTA methods LFB and NUTA101, and achieved
the performance comparable to Slowfast101-NL (Table 6).
The results on Charades demonstrates that our VidTr gener-
alizes well to multi-label activity datasets. Our VidTr per-
forms worse than the current SOTA networks (X3D-XL) on
Charades likely due to overfitting. As discussed in previ-
ous work [14], the transformer-based networks overfit eas-
ier than convolution-based models, and Charades is rela-
tively small. We observed a similar finding with our ensem-
ble, ensembling our VidTr with a I3D network (40.3 mAP)
achieved SOTA performance.

Something-something V2 Results: We observe that the
VidTr does not work well on the something-something
dataset (Table 6), likely because pure transformer based ap-
proaches do not model local motion as well as convolutions.
This aligns with our observation in our error analysis. Fur-
ther improving local motion modeling ability is an area of
future work.

UCF and HMDB Results: Finally we train our VidTr on
two small dataset UCF-101 and HMDB-51 to test if VidTr
generalizes to smaller datasets. The VidTr achieved SOTA
comparable performance with 6 epochs of training (96.6%
on UCF and 74.4% on HMDB), showing that the model
generalize well on small dataset (Table 6).

5. Visualization and Understanding VidTr

We first visualized the VidTr’s separable-attention with
attention roll-out method [!] (Figure 3a). We find that
the spatial attention is able to focus on informative regions
and temporal attention is able to skip the duplicated/non-
representative information temporally. We then visualized
the attention at 4th, 8th and 12th layer of VidTr (Figure 3b),
we found the spatial attention is stronger on deeper lay-
ers. The attention does not capture meaningful temporal
instances at early stages because the temporal feature relies
on the spatial information to determine informative tempo-
ral instances. Finally we compared the 13D activation map
and rollout attention from VidTr (Figure 3c). The I3D mis-
classified the catching fish as sailing, as the I3D attention
focused on the people sitting behind and water. The VidTr is
able to make the correct prediction and the attention showed
that the VidTr is able to focus on the action related regions
across time.
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(a) The spatial and temporal attention in Vidtr. The attention is able
to focus on the informative frames and regions.

(b) The rollout attentions from different layers of VidTr.
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(c) Comparison of I3D activations and VidTr attentions.

Figure 3: Visualization of spatial and temporal attention of
VidTr and comparison with I3D activation.

6. Conclusion

In this paper, we present video transformer with
separable-attention, an novel stacked attention based
architecture for video action recognition. Our experi-
mental results show that the proposed VidTr achieves
state-of-the-art or comparable performance on five public
action recognition datasets. The experiments and error
analysis show that the VidTr is especially good at modeling
the actions that requires long-term reasoning. Further
combining the advantage of VidTr and convolution for
better local-global action modeling [38, 57] and adopt
self-supervised training [9] on large-scaled data will be our
future work.
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