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Abstract

High-dimensional depth separation results for neural networks show that certain functions
can be efficiently approximated by two-hidden-layer networks but not by one-hidden-layer
ones in high-dimensions. Existing results of this type mainly focus on functions with
an underlying radial or one-dimensional structure, which are usually not encountered in
practice. The first contribution of this paper is to extend such results to a more general
class of functions, namely functions with piece-wise oscillatory structure, by building on
the proof strategy of (Eldan and Shamir, 2016). We complement these results by showing
that, if the domain radius and the rate of oscillation of the objective function are constant,
then approximation by one-hidden-layer networks holds at a poly(d) rate for any fixed error
threshold.

The mentioned results show that one-hidden-layer networks fail to approximate high-
energy functions whose Fourier representation is spread in the frequency domain, while
they succeed at approximating functions having a sparse Fourier representation. However,
the choice of the domain represents a source of gaps between these positive and negative
approximation results. We conclude the paper focusing on a compact approximation do-
main, namely the sphere S?~! in dimension d, where we provide a characterization of both
functions which are efficiently approximable by one-hidden-layer networks and of functions
which are provably not, in terms of their Fourier expansion.
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1. Introduction

Learning in high-dimensions is a challenging task for computational, statistical and approxi-
mation reasons. Even in the classic supervised learning setup, current empirical successes of
deep learning algorithms remain largely out of reach for existing theories, despite phenom-
enal recent progress. Amongst the algorithmic aspects enabling this success, depth remains
a major non-negotiable element. Depth in structured neural networks such as convolu-
tional neural networks provides a multiscale processing of information, but more generally
it defines an intricate function class with powerful approximation biases.

Understanding the benefits of depth for approximating certain functions of interest rep-
resents a long-standing problem. The classic result of the universal approximation theorem
ensures approximation by neural networks of any continuous function, but it focuses on shal-
low (that is, one-hidden-layer) models and does not provide any approximation rates. The
seminal work (Barron, 1993) provides quadratic approximation rates by shallow networks
under a condition of sparsity of the Fourier transform.

Recent works (Eldan and Shamir, 2016; Daniely, 2017) suggest that this property (spar-
sity of Fourier transform) is essentially necessary in order to recover polynomial approx-
imation rates, by constructing examples of deep networks which are spread in direction
and away from zero in the frequency regime, and by showing that these function can not
be efficiently approximated by a shallow counterpart. These depth-separation phenomena
occur in the high-dimensional regime, where approximation by neural networks of standard
Sobolev spaces is cursed (see e.g. (Maiorov and Meir, 2000)). On the other hand, proofs
of such high-dimensional depth-separation phenomena are currently limited to radial func-
tions, that is of the form f(x) = ¢(||Ax + b||2). In this work we extend the results just
cited.

We describe rates of approximation by one-hidden-layer networks in terms of the num-
ber of units N of the network, by looking at the Fourier representation of the function to be
approximated. We consider two types of approximation rate, inspired by the work (Safran
et al., 2019): (i) the rate of approximation is polynomial in both the input dimension d
and the error estimation ¢, that is N ~ poly(d,e™!) — we refer to this rate of approxima-
tion as universal approximation (ii) for any fixed error threshold e, the number of units
N needed for approximation of approximation depends at most polynomially on d, that
is N ~ poly(d) for any fixed error threshold ¢ — we refer to this rate of approximation
as fized-threshold approximation. We distinguish two fundamentally different regimes of
approximation: relative to a heavy-tailed, unbounded data distribution, or relative to a
concentrated distribution. Whereas the former captures the most general setup, the latter
is motivated by practical machine learning applications. Our contributions are as follows.

e First, we consider a class of two-hidden-layer networks exhibiting piece-wise oscillatory
behavior, namely functions of the form

fr,w,v = Rd — 627ri7” (vITx+wTxy) )

In section 3, we show that, under appropriately heavy-tailed data distributions, ap-
proximation at a rate N ~ poly(d) cannot hold (unconditionally on the weights of the
approximant network), as long as the rate of oscillations r grows faster than d. On
the other hand, fw v can be universally approximated (that is, at a rate poly(d, 1))
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by a two-hidden-layer network with any practical activation of choice. The proof of
this result (Theorem 4) extends the main idea introduced by the results of Eldan and
Shamir (Eldan and Shamir, 2016) beyond the radial case.

e In section 4, we show that the poly(d)-oscillatory aspect and the heavy-tailed data
distributions are necessary in the depth-separation result mentioned above. More
specifically, we show that any deep network, with O(1)-bounded weights and O(1)-
Lipschitz activation, can be fixed-threshold approximated by one-hidden-neural net-
works over a compact set of radius O(1) (Theorem 11). This extends an equivalent
result in (Safran et al., 2019), from the class of radial functions to the one of deep
neural networks with Holder activations.

e Aforementioned depth separation results consider functions whose Fourier represen-
tation is spread in high frequencies. On the other hand, universal approximation
results often require the function to be approximated to be, in some sense, sparse
in the Fourier domain. Unfortunately, there are currently many gaps between these
two types of results, one of them being the definition of approximation domain. In
order to reduce the gap between the two results above, we consider approximation on
a fixed compact domain, namely the unit sphere S*~!, where Fourier analysis can be
done using spherical harmonics. We individuate two conditions on the spherical har-
monics decomposition of a function f € C(S?1). The first is a sparsity condition on
the decomposition, which we show to be sufficient to prove universal approximation
(that is, at a rate N ~ poly(d,e')) of f by one-hidden-layer networks. The second
is a high-energy spreadness condition on the spherical harmonics decomposition of
f, which we show to imply that universal approximation of f by one-hidden-layer
networks cannot hold. This is the content of section 5, of which the main results are
summarized in section 5.2.

1.1 Related works

There is a huge literature of approximation results for neural networks. Early approxi-
mation results provided upper and lower bounds on the approximation of some functional
spaces such as Sobolev spaces (Maiorov and Meir, 2000) or LP spaces (Pinkus, 1999) by
neural networks. For high input dimensions d, such results hold for functions with smooth-
ness proportional to d, or require an approximation rate that scales as N ~ e~ (see e.g.
(Petersen, 2020; Giihring et al., 2020) for a review), where N denotes the number of units
of the network and € the error threshold.

In more recent years, quite a few works pointed out the benefits of deep networks versus
their shallow counterparts from the point of view of approximation rates. For example,
this has been shown for sawtooth function (Telgarsky, 2016), functions with positive cur-
vature (Liang and Srikant, 2016; Yarotsky, 2017; Safran and Shamir, 2017), functions with
a compositional structure (Poggio et al., 2017), piecewise smooth functions (Petersen and
Voigtlaender, 2018), Gaussian mixture models (Jalali et al., 2019), polynomials (Rolnick
and Tegmark, 2017), or model reduction models (Rim et al., 2020). The result of (Telgar-
sky, 2016) has been further generalized using a notion of periodicity (Chatziafratis et al.,
2019). It must be noticed that most of the cited works show depth separation that is inde-
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pendent of the dimension d and that increases exponentially with the depth of the network.
Another line of works (Eldan and Shamir, 2016; Daniely, 2017; Safran et al., 2019) on the
other hand shows depth separation exponential in the dimension d, between networks with
one and two hidden layers. This is the framework of this work. It was also shown recently
that depth separation results between fixed depths greater than this are arguably difficult
to prove (Vardi and Shamir, 2020; Vardi et al., 2021).

This depth-width trade-off has been analyzed through different lens than approxima-
tion capabilities, such as classification capabilities (Malach and Shalev-Shwartz, 2019), exact
representability (Arora et al., 2016), Betti numbers (Bianchini and Scarselli, 2014), number
of linear regions (Pascanu et al., 2013; Montufar et al., 2014; Raghu et al., 2017; Hanin
and Rolnick, 2019a,b), trajectory lengths (Raghu et al., 2017), globale curvature (Poole
et al., 2016) or topological entropy (Bu et al., 2020). In essence, all these results state
that networks expressivity improve exponentially as we increase the depth. Another re-
lated question is whether depth-separation holds from a learnability (therefore, not solely
approximation) point of view as well (Malach and Shalev-Shwartz, 2019; Malach et al.,
2021). In this work we focus on approximation and we consider the Fourier representation
as a complexity measure. This is the approach followed by e.g. (Eldan and Shamir, 2016;
Daniely, 2017), which construct examples of deep neural networks, whose Fourier energy
is exponentially higher than those of shallow neural networks with a moderate number of
units.

On the other hand, sparsity of the Fourier transform has been used to show polynomial
rates of approximation of functions by neural networks (Klusowski and Barron, 2018; Ongie
et al., 2019; Bresler and Nagaraj, 2020). In the last part of the paper, we show that an
equivalent condition can be described in terms of spherical harmonics decomposition.

2. Preliminaries

2.1 Neural networks

For L > 1, we call an L-hidden-layer feed-forward neural network a function
fixeRY - xUEH(x) e clrtr | (1)
where x() is defined by recursion by x(¥)(x) = x,
x®(x) = oW (AP xED(x)) for ke [L] and xEHD(x) = ALHDxE) (%) |
where

A® — P ‘a&’z)]T e R#>de-1 for k e [L],

AL+1) [agL-i-l)‘ - (L+1)]T € Qdr+1xd

' ‘adL+1
(with dy = d) and o®) : R% — R% are activation functions, that is (a(k) (x))l = agk) (z;)
(k)

;R — R. A neural network is therefore a sequence of sums and
compositions of ridge functions, that is functions of the form x ++ o(w’'x). In the following,
unless specified, we only consider neural networks (or, more simply, networks) as defined in

for some function o
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(1). Most of the times we will deal with real-valued networks, that is A(+1) ¢ Réz+1xdr,

We say that a network has activation o if ai(k) (z) = o(x +bF) for some bias term b¥ € R for
all k,i. We refer to the function

x € R%-1 — ¢ (AFx) € RO
as k-th hidden (or inner) layer of width dy, for k € [L], while we refer to the linear function

defined by A(X+Y as the last (or L+ 1-th) layer. We refer to the value W(f) = maxye(r) dk

as width of the network f and to the vectors al(»k) as weights (of the k-th layer), for all k, i.
A basic complexity measure for neural network (1) is given by the total number of units,

or size: .
=Y di .
k=1

The number of layers L(f) = L is also a relevant measure of complexity, which we refer
to as depth. Finally, in the following we sometimes require a control on the value of the
weights; such controls are expressed in terms of norm p of the weights, that is

mp(f) = maxfayllp ,
for some p € [1, o0].

2.2 Neural network approximation rates

We measure the approximation error between two functions f,g: Q C R? — C in terms of
the L?(u) norm (with respect to a probability measure or density p)

I - gu%—/u ) du(x) |

or L*° norm

1f = gllo,eo = sup|f(x) — g(x)] .
xeN

Notice that a (uniform) L? lower bound implies a L one, and viceversa for an upper
bound. The focus of this chapter is to establish upper and lower bounds for approximation
of certain function classes by shallow neural networks, in high dimensions d. We distinguish
two different approximation regimes of interest. In the following we will denote by F7; the
space of one-hidden-layer neural networks fx : R — R with width at most N and activation
o (where the dimension d is inferred from the context); similarly, we will denote by Fy the
space of one-hidden-layer neural networks with width at most N and any (continuous)
activation.

Definition 1 We say that a sequence { f@. 0, CRY— (C} 4> s universally approximable

by one-hidden-layer networks with activation o if it is approzimable at a poly(d,e') rate;
that is if there exists some constants o > 0 and > 0 such that it holds

Hftco _

for some one-hidden-layer fy € F% satisfying N + moo(fn) < a(de 1)P.
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Definition 2 We say that { f(d) } 4 '8 fixed-threshold approximable if for any € € (0,1) it is
e-approzimable at a poly(d) rate; that is if for any € > 0 there exists some constants o > 0
and B > 0 such that it holds

-

<e
Qd,OO

for some one-hidden-layer fy € F%, satisfying N + meo(fn) < adP.

These approximation schemes were introduced in (Safran et al., 2019). To ensure signifi-
cance of the approximation rates, in the following upper and lower bounds are stated for
objective functions f(9 normalized such that ||f(@ |y <1 or || f9 ]| < 1.

Notice that some of the inapproximability results shown below are for target networks
with complex values. Although, one can obtain equivalent results with a real-valued tar-
get network by simply taking the real (or imaginary) part of such complex-valued target
networks.

2.3 Activation assumptions

Finally, the results in the next sections generally hold for activations satisfying the following
assumptions, which are satisfied by common activation such as the ReLU ReLU(z) = =4 or
the sigmoid sigmoid(z) = (14 ¢~®)"" (Eldan and Shamir, 2016). Most of the results can
be easily generalized to hold under less strict conditions, but we take these assumptions for
sake of simplicity.

Assumption 1 Given an activation o : R — R, there exist constants v, and v, such that
1. it is vo-Lipschitz and 0(0) < 14

2. for any L-Lipschitz function f : R — R constant outside of an interval [—R, R] and
any € > 0 there exits fy € FS with || f— fn oo < € such that N +woo(fn) < voLRe™ .

Notice that this assumption implies that, given a (deep) neural network f with poly(d)
weights and activations satisfying Assumption 1, then we are always able to replace the
activations in f by any other activation satisfying Assumption 1, by paying an at most
polynomial cost. This is formalized in the following lemma.

Lemma 3 Let {f(d) : Ky C R — (C}d be neural networks with activations satisfying As-
sumption 1 and such that N(f9) + weo (@) + diam(K@) < poly(d); also let o be any
activation function satisfying Assumption 1. Then the sequence {f(d)}d is universally ap-

proximable by networks (of the same depth as f(d)) with activation o.

2.4 Notation

We introduce notation we use throughout the rest of the paper. We denote scalar valued
variables as lowercase non-bold; vector valued variables as lowercase bold; matrix and tensor
valued variables and multivariate random variables (r.v.’s) as uppercase bold. Given a
vector v € R%, we denote its components as vy; given a matrix W € R™*™_ we denote its
columns as wy. For a matrix W, we denote by ||W]||f,, its entrywise p-norm, by |[W]||,4
its (p, q) operator norm (that is [W/{|, 4 = max)y —1||Wylly) and by [[W]|, its p operator
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norm (that is ||[W/||, = [|[W]||,,). We denote by ST~* C R" the (d — 1)-dimensional sphere
{x eR?:|x[]2 =1} and by Bﬁp the (7 ball of radius r in R?, that is {x € R? : |[x]|, < r}.
We denote by LP(Q), LP(u), LP(¢) the spaces of functions f : Q — R which are p-integrable
with respect to the Lebesgue measure, the measure p or the density ¢, respectively. The
respective norms (and scalar products for p = 2) are denoted by || fll¢c, ((f,9)¢) for ¢ €
{Q, 1, p}; we simply write || f||, when the measure is clear from the context. For a finite
signed Borel measure u, we denote its total variation as ||u|/;. Finally, we denote by f or
Z(f) (vesp. f or .Z*(f)) the Fourier transform (resp. the inverse Fourier transform) of f
(meant in the following in the sense of tempered distributions).

3. A depth separation example

Our starting point for the study of depth-separation is to consider a generic data distribution
u with adversarial properties against shallow approximations. In the seminal work (Eldan
and Shamir, 2016), Eldan and Shamir establish an unconditional (with no restrictions on
the norms of the weights of the network) depth-separation result by considering a density p
in RY with tails p(||x|l2) ~ ||x[5;*""/? and a radial function f@ (x) = hy(|x||2) with hq |
R — R a carefully chosen oscillating function with compact support. The proof in (Eldan
and Shamir, 2016) reveals the limitations of shallow neural networks at approximating
high-dimensional functions via a powerful harmonic analysis insight, that is particularly
convenient in the setting of radial functions. In this section, we show that their proof
strategy can be extended to include more diverse function classes, namely those arising
naturally from ReLLU networks. Specifically, we consider networks of the form

frwv iX€E R? s o, (VTX + WTX+) (2)

where x; denotes the element-wise ReLU activation, v, w € R? and o,(t) = €™, We
are thus considering a function which is piece-wise oscillatory, with constant envelope
| frwv(x)| =1, and where the frequency of oscillations is controlled by r. The main result
of this section can be summarized as follows.

Theorem 4 (Informal) Assume that |[w|s = O(1), ||Vl = O(1) and that r = ©(d*) for
some k > 2. Then there exists a (low-decay) product measure . on R? such that the function
frow,v is uniersally approzimable by two-hidden-layer networks but it is not fized-threshold
approzimable by one-hidden-layer networks.

3.1 The lower bound

Let ¢ € L*(R) N L*(R) with ||¢||2 = 1, and such that its Fourier transform ¢ is compactly
supported in [—K, K], for some K > 0. Assume also that

¥l < V2/K . (3)

The condition ensure that the density 1 is sufficiently spread away from zero (see Remark
8). Our first objective is to establish depth separation for the approximation of f, v . under
the L? metric defined by the probability density ¢?, where ¢ : x € R? — H;lzl P(x5).
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Theorem 5 Let f(4) = frawang, for somerg € R, wy, vy € RE. For a fived v > 0, define

. - 1 ‘ Q
Ta= sup [vg+wasll, Q= {J € [d] : ralwa| = 7d2} and 4 = w ’
SCld]

where wq g € R? is defined by wq,s,; = w;il{i € S}. Assume that

(i) oscillations grow polynomially, that is 74 - rq = ©(d®) for some constant k > 0;

(ii) the vectors wq are sufficiently spread, that is ng > n for some n > 0 independent of d;
(iii) the density ©? is sufficiently spread, i.e. 2K||1]|? < 227.
Then there exists a constant « € (0,1) (independent of d) such that for all d it holds

: (d) _ 2 _ A0 k+1
g 7@~ fyly 21— N a0 (@

Notice that this lower bound is unconditional on the weights of the neurons meo(fn).

The proof follows a similar strategy as in the work (Eldan and Shamir, 2016). The
approximation error can be expressed in the Fourier domain as

1 frawava — fNHiZQ = frawava -0 = In - 90||§ = frawava * & — [N * @”% :

Thanks to the assumptions, the target function f,, w, v, satisfies a key property, namely
that its Fourier transform has its energy sufficiently spread in the high-frequencies, after the
convolution by ¢. Such frequency spread is caused by the shattering of the first ReLLU layer,
which effectively creates ©(2"?) different frequencies. The piece-wise structure arising from
the ReLLU can be handled in the Fourier domain by the Hilbert transform of the function
1, which has sufficient decay thanks to the assumptions. Noticing that || £ swavg *Pll2 =1,
this is formalized in the following.

Lemma 6 (Informal) It holds that

| (Framava ¥ 2)©) S 2" lellili€l! for €] Z poly(d)

On the other hand, since ¢ is compactly supported and the Fourier transform of a
single-unit network is localised in a frequency ray, the Fourier transform of f,, w,v, - ¢ is
localised in a union of N tubes, of the form T, = span({a}) + [~ K, K]?. This implies that

. 2 . 2
fNHelﬁ__Nwa,Wd,Vd - fN||<p2,2 2 leen,;,;N)”frd:deVd - fN||<p2,2
where 7y denotes the set of L? functions such that their Fourier transform is supported on

the union of NV tubes T4, ,..., T, as above, for some arbitrary ay,...,ay € R?. Thanks
to Plancherel’s identity, and since || f;; wyvqll2,2 = 1, it further holds that

N 2
HTa : (de,Wd,Vd * 95) H2 )

inf — 2,,>1—N- su
fNE,T(N)Hde,Wd,Vd fNng2,2 = aeS‘Rl
where 17, denotes the indicator function of T,. Lemma 6 can then be used to show that
such projections are exponentially (in d) small, which implies equation (11). The detailed
proof is deferred to section A.1.
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Remark 7 Theorem 5 asks for two main conditions to hold. First, the magnitude of os-
cillations of the objective function (parametrised by rq) must grow at least polynomially
with d, similarly to the assumptions in the works (Eldan and Shamir, 2016) and (Daniely,
2017). Second, the data distribution u with density ¢* should be heavy-tailed, in order for
its Fourier transform to be sufficiently localised. When rq does not grow fast enough with
d, the energy starts piling up at the low frequencies, creating an important roadblock to
establish approximation lower-bounds, and leaving open the possibility of efficient shallow
approximation. Sitmilarly, when u concentrates too quickly, the proof strategy also fails, due
to the fact that in that case ¢ is too spread in the Fourier domain, creating full overlap of
the energies.

Remark 8 The admissibility condition (3) is necessary since n < 1 by definition. Notice
that R R
L=[9[13 = 1913 < CE)IY[I5% < CK)|[I

and therefore condition (3) can be considered as a requirement on 1 not being too con-
centrated in the origin. The choice (t) = +/3/2sinc*(rt) corresponds to K = 1,
|l = /3/2 and |||z = 1, which verifies (3). In that case, from condition (ii) we
need n > bgT??’ ~ 0.79 . However, the choice ¥ (t) = Csinc(nt) (the equivalent separable
version of the of density considered in (Eldan and Shamir, 2016)) is not admissible, since
W is not in L*. The lower bound may be optimized by finding compactly supported windows
with an optimal L' to L? ratio of their Fourier transforms.

Remark 9 The theorem considers a separable ReLU transform x — x4, combined with a
separable data distribution p with density ©*>. One could expect a similar lower bound to
apply in the more general case of a layer of the form x +— (Ux+b);, U € RY>d b e RY .
Such general case replaces the Hilbert transform of ¢ with the Fourier transform of indicators
of convex polytopes, which has been used in the context of ReLU networks to characterize
spectral properties (Rahaman et al., 2019).

Example 1 We give an explicit example of a family of function {f(d) ‘R4 — ]R} which
satisfy the assumptions of Theorem 5. Consider the functions

d
FO(x) = exp (2”'612 2 max{, m) |

k=1
Then, if g is the product probability measure defined by the density in Remark 8, that is
d

) = T | sinet ) |

k=1
then it holds that

inf H fr(x) — f@ (x)‘ S 1 1300N -2 (0.75)" .

INEFN 1,2

For example, this implies that

uf |0 - 196 >3

fNEFN
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unless

1.34
N > 101 -
The numbers are obtained by explicitly tracking the constant in the proof of Theorem 5 (see
section A.1 for more details). Finally, notice that the functions 9D are not radial. Indeed,
they show different behaviour over each orthant, thanks to the ReLU layer. On the other
hand, radial functions would behave equally over any orthant. A similar reasoning would
generally hold for radiality in certain directions of the input.

3.2 The upper bound

According to the definition of neural networks we gave in section 2.1, the function f,w v is
naturally a two-hidden-layer neural network. Although, while there are cases of sinusoidal
activations being used in practice, activations such as ReLLU or sigmoid are more relevant
to practical applications. The following theorem, proved in section A.2, shows that we can
efficiently represent the function f;w v in the hypothesis of the Theorem 5 as a two-hidden-
layer neural network with fixed activation, such as the ReLU or the sigmoid. The main
technical difference with Lemma 3 is that the result is proved for approximation w.r.t. the
probability measure with density 2 introduced above.

Theorem 10 Let o be an activation satisfying Assumption 1. Assume that there exists a
constant k > 1 such that Mmoo (fryvywy) < O(d¥) and assume that 1 is such that |(x)| =
O(|z|™1). Then, for every € > 0, there exists fn € F§ with

N +ms(fn) < O<d2(1+k)e’3/2> such that || fn — frd7wd7vd|]i272 <e.

Theorems 5 and 10 therefore estabilish a depth separation result. If f(@ = f, o are
defined with rg, wg, vy satisfying the assumptions of both theorems (that is, they satisfy
assumptions (i)-(ii)-(iii) of Theorem 5 with 74 - rq = ©(d¥)), then Theorem 5 says that
{ f (d)} 4 is not fixed-threshold approximable by one-hidden-layer networks, while Theorem
10 says that the sequence is universally approximable by two-hidden-layer networks with a
fixed activation satisfying Assumption 1. For example, the family of functions considered
in Example 1 satisfies such assumptions.

We thus identify two key aspects responsible for such depth separation: heavy-tailed
data and oscillations growing with dimension. In the next sections we want to understand
how necessary these two conditions are. The next section shows that if these two condition
do not hold anymore, then a lower bound such as the one in Theorem 5 is not achievable;
more specifically we show that the objective function is fixed-threshold approximable by
one-hidden-layer networks.

4. Approximation of deep networks by shallow ones

In this section, we show that any deep neural network f (which include the target functions
considered in the previous section) can be approximated by shallow ones at a rate which
is polynomial in d, as long as the rate of oscillation in the inner layers of f is constant in
d and the metric is concentrated in a ball of constant radius. We start by reporting the

10
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result in a general form for two-hidden-layer networks and we discuss some consequences
and extensions afterwards.

Consider a family of two-hidden-layers neural network {f® : K; ¢ R? — C} of the
form

@ x e R ')élpg(WdTh(Ude)) eC, (5)

where h = h(® : RPa — RPd and g = g(d) : R% — R are, respectively, component-wise 1-
Lipschitz and (1, a)-Holder! activation functions, and Uy € R¥*Pd, W, € RPa*%d ~,; c C,
We wish to approximate f(?) by one-hidden-layer neural networks with a given activation.

Theorem 11 Assume that diam(K,) = O(1) and that the networks @ have €' bounded
weights, that is my(f\) = O(1). Then, for every activation o satisfying Assumption 1.2
and every € € (0,1) it holds that

f;’vlgg‘,‘(,nf ¥l K oo <€ for some N < exp(O(e log(pd/e)>> :

Moreover, f§ can be chosen such that moo(f§) < (14 N?) = exp(O(e172/*log(pa/e))) -

The proof is constructive and based on the following observation. Consider the case
where og = 1, 7 = 1, pg = p and g(z) = 2" some positive integer r. If hy(z) = €@ for all
k € [p], then the function f = (9 at (5) has form

N T
F(x) = (Z wk)
k=1
for some w € RN, u;, € RY, where N = p. By expanding the power we can write

o= X () (k) eS

jibtan=r 1IN

that is a formulation of f as a one-hidden-layer network with activation o (t) = €2™ (in the
following we refer to this type of networks as shallow Fourier networks) and a number of
units that scales as N”. Since both polynomials and trigonometric polynomials are universal
approximators, with well known convergence rates, in the general case one can proceed as
follows. Each of the non-linearities applied to the first hidden layer can be approximated by
a trigonometric polynomial at a polynomial rate on the interval of interest. Similarly, every
non-linearity applied to the second hidden layer can be approximated by a polynomial at
a linear (in the degree of the polynomial) rate on the interval of interest. Assuming for
simplicity that both rates behave as e, where € > 0 denotes the approximation error, the
composition of the two approximation following the structure of the target network results
in a shallow Fourier network (that is with activation o1 (t) = €*™) whose size N behaves,
roughly speaking, as

N ~ (9(]96_2)671

1. We say that a function g : R — R is (1, «)-Holder if it holds that |g(z) — g(y)| < |z — y|“ for all z,y € R.

11
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Moreover, it is also possible to control the value of the coefficients appearing in the final
approximation. With this, we can approximate each summand in the shallow Fourier net-
work by a one-hidden-layer network with activation ¢ with a controlled number of units,
thanks to Assumption 1.2. A more detailed statement and a formal proof are reported in
appendix B.

In essence, in the Theorem 11, we show that it is possible to fixed-threshold approximate
a two-hidden-layer neural network with constant(d) oscillations at a poly(d) rate over a
compact set of constant(d) radius. On the other hand, it easy to show that it is also possible
to obtain approximation at a poly(e~!) rate (see section B.7), for fixed d. Finally, existing
results in the literature (see (Safran et al., 2019)) show that universal approximation is not
possible, the counterexample being essentially a radial function.

Interestingly, the upper bound in Theorem 11 does not depend on the number of units
in the second layer of the objective function. This parameter is hidden in the control we
impose on the ¢! norm of the objective weights. The proof technique of this upper bound
highlights how the difficulty of approximating at poly(d,e~!) rate stems from the high-
energy of the second layer, which requires the shallow network used for approximation to
have a (potentially) exponential (in d) number of directions. Notice that the lower bound
in Theorem 5 actually tells that the function is not fixed-threshold approximable. High
oscillations in the lower bound (4) essentially ensure that an exponential (in d) number of
neurons are necessary. An open question is then whether a low-decaying measure is, in
general, necessary for such a result to hold.

Expanding on the proof technique above, it is possible to extend the result of Theorem
11 to approximation of L-hidden-layers networks by shallow ones, which gives a rate scaling

as exp(O (e T'log(p/e))).

Theorem 12 Let f9 as in (1), with O(1)-Lipschitz activations, first hidden layer width
dy = pq, depth Ly = L and bounded weights, that is my(f®) = O(1). Then for every e > 0
there exists a shallow Fourier network fn € Fg; with

<e€.
B¢ oo

L\ o (+1)
N < <pd-0<1+62>> such that Hf<d>—fNj
{ oos
See section B.6 for a formal statement and its proof. While it has been shown that
generic O(1)-Lipschitz function can not be (computably) represented by neural networks
with N ~ poly(d) units (Vardi et al., 2021), an interesting related follow-up conjecture
is whether our result can be generalized to any generic O(1)-Lipschitz function which is
poly(d)-computable. Notice that this is dependent on the choice of the uniform norm to
measure the approximation error. For example, it has been shown that a rate N ~ poly(d)
is achievable for approximation in the L? norm with the uniform measure (Hsu et al., 2021).
Finally, notice that the approximation rate shown in Theorem 11 and Theorem 12 are
actually polynomial in the size pg of the first hidden layer of f(? rather than in the input
dimension d. Although, up to choosing a worse (yet constant) exponent in €, we can replace
pa by d in the statement, by considering the function as a (L + 1)-hidden-layer network,
where the first layer is the identity.

12
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4.1 Two cases of interest

Theorem 11 allows to recover, for any fixed threshold € > 0, a poly(d) rate for the approx-
imation of f,w v by one-hidden-layer networks and it can be seen as a generalization of
Theorem 1 in (Safran et al., 2019). This is the content of the following corollaries.

Corollary 13 (Radial functions) Let f(@(x) = ¢q(||x|]2), where pq : [-1,1] — R are
1-Lipschitz, and Kg = B{I’Q. Then, for any € € (0,1) it holds that

inf

<€ for some N < exp(O(e_5 log(d/e))) -
IREFR

1% = 19|

Kd,OO

Moreover, f§ can be chosen so that meo(f§) < exp(O(e?log(d/e))).

Consider the functions f@ : x € R4 eWa(UaX)1 for some wg € RPe, Uy € Rpaxd,
This is a more general version of the function f, v considered in section 3. If the weights
are bounded, that is m;(f(®) = O(1), then Theorem 11 implies the following.

Corollary 14 (Shallow approximation of (2)) If rg = O(1) and K; = Bf,ld’Q, for any
e € (0,1) it holds that

dnf [|fR - F DKoo <€ for some N < exp(O (e % log(pa/e))) -
fReEFy

Moreover, f§ can be chosen so that moo(f§) < exp(O(e 2log(pa/e)))-

Although the result of Corollary 14 is established for approximation in the uniform
norm over the unit ball, it is not difficult to extend it to a result in L? over a measure that
concentrated over a compact set of constant (in d) radius, such as a normalized Gaussian.
A formal statement of this fact, along with the proof, is reported in section B.5. Compared
with the result of section 3, Corollary 14 implies the following. The function f@ can be
approximated, at a poly(d) rate over a compact set of constant radius if its weights wg, Uy
are uniformly bounded. On the other hand, if the norm of the weights grows polynomially in
d, then approximation at a poly(d) rate is not possible, under a polynomially slow decaying
measure. An open question is whether approximation at a poly(d) rate is possible if only
one of these two conditions hold, that is if either (1) the norm of the weights is constant
but the measure is polynomially slow decaying or (2) the measure is concentrated over a
compact set of constant radius but the norm of the weights grows (at least) polynomially.

5. Approximation by shallow networks: a spherical harmonics analysis

As already discussed, difficulties in approximating functions in high dimension by shallow
networks appear when the function has a Fourier transform spread in a (exponential) num-
ber of directions in (polynomial) high energy. On the other hand, the presence of only
one of these two conditions is not enough to prevent efficient approximability. While the
previous results highlight this, the lower bound presented in Theorem 5 applies to a specific
choice of error measure, with (polynomially) slowly decaying tails.

13
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In this section, we aim to disentagle the role of the measure tail and understand how
the Fourier representation can tell whether a function is efficiently approximable by a one-
hidden-layer network or not. In particular, we focus on approximation results for functions
defined over the (d — 1)-dimensional sphere S, for which a rich literature of Fourier
analysis is available.

First, we give a sufficient condition on the target function in terms of its spherical
harmonics decomposition to be not efficiently approximable by shallow one-hidden-layer
networks. This condition captures a slowly decaying and sufficiently spread spherical har-
monic expansion. We also show that certain symmetry properties imply this condition.
On the other hand, one may ask if a reverse statement holds. In this direction, building
on existing theory, we provide a sufficient condition for approximation by one-hidden-layer
networks.

5.1 Spherical harmonics decomposition

Let d > 2 and S%! (S when the dimension is clear from the context) be the uniform
measure over S?~1. The spherical harmonics are a particular orthonormal basis for L2(.S).
They consists of

00 d N’? 00 d
Ur=o span {Yk,i}izl = Urzo Hi
where kai is a restriction to S%~! of an homogeneous harmonic polynomial of degree k. The
projection operator over H. g is given by

Pl:fel’(S) = fi=> (fYYd .

i=1

Similarly, Py denotes the operator &;¢ 173{1, for any I C N. The function fj is referred to as
the degree k spherical harmonic component of the function f. Since the spherical harmonic
form an orthonormal basis of L%, it holds that f = Y2, fx and || f]|3 = Y32, || f&||3 for every
f € L%(S), where ||-||2 denotes the norm in L?(S). As spherical harmonics decomposition
can be seen as a generalization of Fourier series to dimensions d > 3, in the following we
refer to the spherical harmonics decomposition of a function as its Fourier representation,
interchangeably. The operator Py can be associated with a kernel given by

N
> YELYE(y) = NiF (x"y)
i=1

where

N =

(2k+d—2)(k+d—3)!_@ k+d(k+drd @2
kl(d — 2)! N kd  kFdd  (k+d)2

is the dimension of HI and P is the ((d — 2)/2)-Gegenbauer polynomial defined as

Lk/2] NG k2]
d—1 . 1 —x%)lgh==I
sz(iﬂ):klf() d (—1)— ( .) i
2 41k = 2§)T (5 + 45+)

14
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Let wy be the Lebesgue area of the sphere:

\/%F(@) o7rd/2 (2me)4/? ome\ V2
Wi r(g)2 () ®<dd/2—1/2> - @<\/g<d> '

The polynomials {(Ng)l/ QPg }e>o form a basis of orthonormal polynomials for L2?(u,),
where 114 is the probability measure on [—1, 1] defined by

dpa(t) = (1 =)= at

where oy = wy_1/wq = ©(v/d). Notice that, given a function f € L?(S), it holds

fr(x) = N} Fy) P (x"y) dS(y) -

gd—1

Moreover, if the function f only depends on a linear projection of the input, the Funk-Hecke
formula holds.

Theorem 15 (Funk-Hecke formula) For every o : [~1,1] — C such that x € S¥1 s
o(x1) is in L*(S), and for every w € S, it holds that

/sd—1 o(w'x)P{(£"x) dS(x) = AP (€7 w)

where A\, = (o, P3),,,.
Functions of the form
x € S = aP(wTx)

for some o € R and w € S% !, are called zonal harmonics. By the Funk-Hecke formula it
follows that

[, P TXPET ) dS o) = (V) PR

Sd-1

for any w,v € S¥~1. This implies that H g has an RKHS structure with kernel K given by
K(v,w) = NZPI(vlw) .

In particular, zonal harmonics actually span H ,‘j Moreover, it can be shown that there
d
exists wi, ... Y Wa € S%1 such that Hg = span({P,gl(wiT-)}j,Vz’fl) (Efthimiou and Frye, 2014,

Theorem 4.13). For these facts and more details about spherical harmonics we refer to the
books (Atkinson and Han, 2012; Dai and Xu, 2013).

5.2 Concentration and spreadness in H g and main results

Intuitively, one can say function f € C(S%!) is concentrated over S~ if there is an area
Q c S% 1 such that the mass of f is concentrated over 2. On the other hand one could
say that f is spread if it assumes non-negligible values uniformly over the sphere. The
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spreadness/concentration of the function f can be quantified by looking at ratios of the

type

win

for 1 < p < g < co. Since the norms above are with respect to a probability measure, it
holds that ¢, , > 1. Intuitively, the closest this ratio is to 1, the more spread is the function.
On the other hand, the largest this ratio, the more concentrated the function is. Consider
the case of a function f; € Hg. Then, it holds that

goo,2(fk:) < N]g

The equality is attained for functions of the type fix(x) = aPZ(w’x) for some o € C and
w € S ie. zonal harmonics. In this sense, zonal harmonics could be considered as the
most concentrated functions in H. A similar inequality can be shown for the quantity ¢ :
it holds that

loi(fr) </ N{ (6)

for fr, € H g. Nevertheless, in this case, zonal harmonics do not attain equality; the inequal-
ity is actually not tight; a more detail discussion on this quantity is reported in section
5.4.

Thanks to the Funk-Hecke formula, it holds that a one-hidden-layer fy € Fy, with
hidden layer weights given by wi, ..., wy, satisfies

d
Pifn =D a;P(w]x)
j=1

for some o« € CV. In other words, its Fourier representation is concentrated along N
directions. According to the remarks above, this implies that if the width N is relatively
small, the Fourier components of the neural network fy are relatively concentrated in
space. One would then expect that such concentration can be used to determine whether
a function can be approximated efficiently by a one-hidden-layer neural network or not. In
the next sections, we show that this is indeed the case. Let f € C(S?!); assuming that

I ]E;d)HQ ~ poly(d, k~1), the results can be informally summarized as follows:

e If the spherical components of f are (exponentially) spread in {2 sense, that is, for
example,

loo2(fr) S k. \/Nf = ek sup /o0 2(g) for some € € (0,1)
geHE

then f is provably not universally approximable by one-hidden-layer networks.

e If the spherical components of f are (polynomially) concentrated in ¢ sense, that
is, for example,

Ca1(fi) Z poly(d™, k™) /N

then f is universally approximable by one-hidden-layer networks.

16
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Notice that, on the other hand, if || fx||2 decreases exponentially fast then universal approx-
imation follows, and similarly if || fx||2 decreases exponentially slower than a power of k=1
then universal approximation can not hold. The first of the two conditions above expresses
concentration of the Fourier decomposition, while the second expresses spreadness of the
same. We notice at least two gaps between the two conditions. The first one is the expres-
sion of the concentration phenomena: one is with respect to £ 2, while the other one is with
respect to f21. Second, the two regimes above do not include many other possible ones.
For example, we suspect the existence of a regime which prevents universal approximability
but allows for fixed-threshold one, a topic worth of future study. These results are properly
formalized, stated and discussed in section 5.3 and section 5.4, respectively.

5.3 Inapproximability of functions with spread Fourier representation

As discussed above, one-hidden-layer functions have a zonal structure. In more detail, if
h(x) = o(wTx + b) for some w € S9~! and b € R, then it is easy to see that

his(x) = sk||hxll2y/ N{P(w'x)

with s, € {£1}. In particular, it follows that ||hg|lec = |hr(EW)| = (N&)Y/2| hs|l2. This can
be interpreted by saying that the Fourier components of single neurons are most concen-
trated (along the neuron direction) in space. Therefore, it is natural to expect that functions
with spread Fourier decomposition are difficult to approximate by neural networks. The
proposition below formalizes this fact. The proof follows a technique similar to the one
used in (Daniely, 2017) (see Remark 17 for a comparison) and essentially upper bounds the
scalar product between the objective function and the network.

Proposition 16 Let {f(d)}d a sequence of functions such that f@ C(S1) and M > 0.
Assume that for every d there exists I; C N such that

1. It holds that || f@ |y < Od™) - | P, f D

2. There exists a non-negative sequence {cq}trer, such that ||f/,£d)|\Oo < capr/ NEFD |2

1/2 .
for all k € I and such that (Zkeld c§’k> < €. O0(d™M) for some e € (0,1) and
a > 0.

Moreover, assume that ||fD || = O(1) and ||f D]y = Qd~™) . Then the sequence
{f(d)}d>2 s not universally approximable by one-hidden-neural networks.

The proof of Proposition 16 is reported in section C.1. We discuss a few particular cases
where the assumptions of Proposition 16 hold. Let { f (d)} 4>2 Pe a sequence of functions

f@ecst1.

Example 2 (Constant control on ( 2) Assume that assumption 1 in Proposition 16
holds with Iy = {k € N: k > d*} and that £ D]y = Qd=M) for some constant M > 0. If
it holds that

() <2

17
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for all k > d? for some constant £ > 1, then it is easy to check that Proposition 16 holds.
This condition could be thought as the spherical harmonic components of the function f(9
being uniformly spread for high energy (k > d?). Indeed assumption 2 holds with

- d
7079,

Cdk = —F="1 (a1
I 171

i Cip < ﬁd = 0(d*7) .
k=d? N

since

This is similar to the condition used in (Daniely, 2017), discussed in the remark below.

Remark 17 Daniely (Daniely, 2017) showed a depth-separation result using a result sim-
ilar to Proposition 16. The difference in this case is that the author considers functions
defined on SY=1 x ST, Although, since L*(ST1 x §41) = L2(S41) @ L?(S?1), the space
L2(ST1 x S4=1Y admits a decomposition in spherical harmonics

o
L(S™ ! xsty=>" Hie H .
7,k=0
In particular, Daniely considers functions of the type
FD 5 (x,y) € ST x s s @D (xTy)

for some h\® e C([—1,1]). Such functions belong to Yo H,‘j ® Hg and satisfy

e <7 (N0) 7 =1 ()

. . - , .
when? Gk ‘—.ma)ffeHg(on;j U 2(f). The equation above resembles condition 2 in Proposition
16, since it implies that

_ d
7D

I 171

d *
|#2] < G 17D

and since

_ () 291/2 _

o= Z 14 ka,k”Q 14
d — >

izra /e 1712 Mg,

which, for kg > d? implies that cq < d32~%.  The proof is then concluded by choosing

Ij = {(k,k) : k > kq}, since (using the same notations as in the proof of Proposition 16),
it holds

AN

N
% \—1 d o, Wi
I = F D)3 > [P, f D)3 - 2 Z Z(%‘) |ui|||f;,j)”w|’fj,j 2

which is an equivalent of formula (44).
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Example 3 Assume that assumption 1 in Proposition 16 holds with 15 = {k eN: k> pdﬁ}

for some p > 0, > 0 and that ||fD||; = Q(d=M) for some constant M > 0. If it holds
that

loa(fi") < - 0@M) /N
for all k > pd® for some constant M > 0, then Proposition 16 holds, since

o] B
P

DR

k=pdP

This condition could also be thought as the spherical harmonic components of the function
D being uniformly spread for high energy (k > d?), although in this case the spreadness
18 required to increase exponentially, as the degree increases, with respect to the maximum
concetration achievable (that is (N{)Y/2).

Example 4 (Invariant functions) Finally, we show that certain symmetry assumptions
can imply energy spreadness. Consider the case of a sign-invariant function f € C(S%1),
that is such that f(eox) = f(x) for every € € {£1}¢ and x € ST

Lemma 18 Let f € C(S%Y) be a sign-invariant function. If

[filloc = sup_ |fi(€)] (7)

ec{*1}d

for some k > 16d2 then it holds

I filloo <2274/ NZ|I fillo -

Proof [Proof] Notice that since f is sign-invariant, so is fr. Consider the function

P:xe St 27dNd Z Pl(el'x) .
ec{£1}4

The function P satisfies ||Plls < 22792, /N{ (see Lemma 46). Let € € {£1}%. Then it
holds

1 filloo = Ifx(€)] = [(fis P)| < 1Pll2ll frlla < 2- 2742/ NI fllo -
This concludes the proof. |
The statement of the above lemma therefore says that if [ is sign-invariant and achieves
mazximum energy in a specific frequency then it satisfies Assumption 2 from Proposition 16.

Under polynomial decay of || fx||2, it should be possible to relax the condition (7) to ask for
the frequency w*) € [0,00) such that || fi||oo = ’fk(w(k))‘ to satisfy

jiél[g] w](-k)’ > poly(d™!) .
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5.4 Efficient approximation under a sparsity condition of the spherical
harmonics decomposition

Works by Barron (Barron, 1993; Klusowski and Barron, 2018) essentially show that efficient
approximation holds under a sparsity condition on the Fourier transform of the function
to approximate; more specifically, for f € L'(R?), the rate of (uniform) approximation is
controlled by the quantity [pa|lw|| f(w)|dw. In this section we show that an equivalent
control can be determined for approximation on the sphere, in terms of spherical harmonics
decomposition. For technical reason, the result is estabilished for functions in H?=H {l @
@72, HY, (which correspond to the space of function in L% whose odd part is linear) and
mainly for ReLu activation. We briefly discuss extensions to different activation functions
in Remark 24. Consider the space of homogeneous one-hidden-layer neural networks with
ReLLU activations:

N
ff}eLU’O = {f cx eSSt Zuk(ng)Jr cueRY, wy e Sdl} )
k=1

Since

1
(W), = Lw"x| + L (w"x)

ReLU,0
]:N

every function in is the sum of a linear function with an even one. In other words,

f]%eLU’O C H?. Since any linear function belongs to ]_-2R eLU’O, it is equivalent to consider the

problem of approximating even functions by homogeneous one-hidden-layer neural networks
with activation abs(z) = |z|, that is, elements of the space

N
f]?,bs’o = {f :xe S Zuk‘ng‘ cueRY, w, e Sd_l} .
k=1

To study this, consider the corresponding functional space
H' = {h, : 7 is a signed even Radon measure}

where h, is defined to be the function

he:x € ST ‘WTX’ dm(w) .
Sd—1

The space H! is a Banach space endowed with the norm ~;(h) = infy . p—p_||7|[1. As
discussed in the introduction, the space H! consists of functions which are efficiently ap-
proximable by one-hidden-layer networks. More formally, the following holds.

Theorem 19 (Bourgain et al. (1989)) Let f € H!'. Then it holds that

7(f)
N1/3

inf 1/~ flloe <
INEFN™

where ¢ > 0 is a numerical constant. Moreover, fn satisfying the bound can be chosen to
satisfy 11 (fn) < n(f).
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The question of interest can now be transposed to: which functions f € C(S%!) have a
(polynomially) small norm 7;(f)? One way to approach this problem is by the so-called
Blaschke-Levy operator. Consider the transformation

Ty = /Sd_l}xTy\sO(:Y) ds(y)

for functions ¢ € C(S%"1). T can be described in terms of spherical harmonics (Rubin,
1998) as

(—)"R2T((k - 1)/2)T(d/2)
or  T((k+d+1)/2)

Ty = Z orpr where op =

k>0 even

In particular, it holds that the functional 7' is an automorphism of C2°,, (S9~!) (the set of

even function in C*°(S%1)) (Rubin, 1998) . Clearly, its inverse can be defined in terms of
spherical harmonics by

T l:pe ngen(Sd—l) > Z Jk_lgpk )
k>0 even

The following is immediate.

Proposition 20 For any ¢ € C,,,(SY1) it holds that ¢ € H' and

n(e) = T"¢ll -

Using these results, we can proceed similarly to the work (Ongie et al., 2019) and obtain
the following.

Proposition 21 Let f € C(S%1) even. It holds that f € H' if and only if

sup (Tl f) < oo (8)
wecggen(gdil) H<p||00§1

In this case,

T (f) = sup (T, f) .
PECSS (5971 : ]| o <1

The proof of Proposition 21 is reported in section C.3. Functions that satisfy equation
(8) include all even functions in C9+2(S?~1) if d is even and all even functions in C4*3(S91)
if d is odd (Weil, 1976). This is inline with existing results that show approximability by
neural networks for functions whose regularity is proportional to the dimension d (e.g.
(Maiorov and Meir, 2000)).

Given f € C(S?1) even, the condition of Proposition 21 is implied by the (weak)
convergence (as N — oo) of the series

N
Snf=> o5 fon

k=0
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to a finite signed measure 7. In this case f = h,. In particular, a stronger condition is
convergence in L(S). This is implied if it holds that

D donl THifrlh < oo (9)

k>0 even

Notice that, instead, the series converges in L% if and only if

Y. okl < oo

k>0 even

This is equivalent to asking that f € #?, the RKHS given by the kernel function
k:(x,y) €St x st / x"w||wy|dS(w) .
Sd—1

Since in this case H2 can be described as
Ho = { hr : m is a signed even Radon measure with an L% density} ,

it is clear that H' C H2. We refer to (Bach, 2017) for more details about these statements.
On the other hand, notice that the condition (9) is potentially much stronger than simply
asking for f € H!.

Example 5 (Highly concentrated function) Some computations show that

o7t < @<d3/4k2\/N;j> . (10)

Using these observations it is then straightforward to prove the following.

Proposition 22 Let {f(d)}d a sequence of even functions in C(S1). Assume that there
exist some constant M, N > 0 constant such that

o¢]
d d d
N <O aY) 5Pl and S KM D) = O@Y) .
k=0
Then the sequence {f(d)}d>2 s universally approrimable by the space f]%,bs’o.

Proof [Proof] By Proposition 20 and equation (10) above we get that

Ny < 3T ol A < 0@ 3T AP < 0@ )

k>0 even k>0 even

The application of Theorem 19 concludes the proof. |

The proposition above requires essentially two conditions to hold. First, that the energy
of the functions decreases fast enough (yet polynomially in k and d). The second condition
1s that the Fourier components of the function are concentrated enough, that is they are
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polynomially close to the bound (6). We remark that this condition is infact pretty strong;
it requires the function f to be band-limited. According to (Dai et al., 2016), it holds that

d a—2 d
£ D)2 < C@k T £

for some function C(d). Then f9 would satisfy

||fk ||2
14

Since \/]\Tg > c(d)k% for some c(d), this implies that k‘%poly(k‘*l) < H(d) for some
function H(d). It follows that k must satisfy k < K(d) for some K(d). Although, the rate of
the function K(d) does not follow from (Dai et al., 2016); we conjecture that K(d) behaves
as a power of d.

N < poly(k, d) < poly(k, d)k“T

Example 6 (High energy zonal harmonics) The properties discussed in this section
indicate that high-energy only does not yield not-universal-approzimability. As an ‘extreme’
case, consider the case of a zonal harmonic f(x) = Pg(wa), for x,w € S*1 where w is

fizxed. Notice that ||f||co = 1. It holds that
)V, fk

Sellt
7(f) = H\UkH\ < O(k*d™) W NE sl < O k*d3/4)
which implies universal approximability by Theorem 19. Similarly, polynomial combinations
of zonal harmonics can be well approrimated, as expected.

k2d3/4) :

Remark 23 (Ridge functions) For a single neuron network f(x) = |wlx|, it holds
1 fllso =1 and ||f||2 = d='/2. The spherical components of f are given by

fi) = N[ (T | PG| ) (w)] = (V) P (w )

In particular, it holds

L= =| X o'fl| =| X MNP

k>0 even 1 k>0 even 1

Therefore, understanding how tight (or strong) condition (9) is highly correlated with un-
derstanding convergence of the series Y ;< cven N,‘jHP,f(WT-)‘ or equivalently, computing

1’
1.,

Remark 24 While the result of this section mainly concern approximation by homogeneous
one-hidden-layer networks with the ReLU (or absolute value) activation, they can easily be
extended to any other activation satisfying Assumption 1, under the same assumptions.
Moreover, notice that, thanks to Theorem 19, universal approximation by f]%eLU’O

alent to universal approximation by Hi & H1

18 equiv-
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Appendix A. Proofs of depth-separation results
A.1 Proof of Theorem 5

The proof of the lower bound follows the same strategy as (Eldan and Shamir, 2016). For
sake of simplicity in the following we remove the dimension d from the following notations:
wg = w and vg = v. In the following we always assume d > 3. Let S C [d] a subset and
let Ig be the truncated identity matrix defined as

Ig := Z ese;,r .
seS
Moreover, define the function Hg(x) as
Hs(x) = H 150i>0 H 1:(:j§0 .
1:19E€S j:g€ld\S

Lastly, for a subset S C [d], let v := v 4+ Isw and define the function o, g(x) := o, (vLx).
Therefore, the expression of f,, w v can be rewritten as:

Frawn(®) = Y gs(x) = Y Hs(x)or,.5(x)
SCld]

SCld]

where gg(x) := Hg(x)o,, s(x). Let the space of N-units one-hidden-layer networks be

N
Fy = {fN xeR"— Z ak(afx) . a;, € R, o, are 1-Lipschitz activations}.
k=1

Assume that

(A1) it holds that 74 -4 > Bd* for some constant k > 1;

(A2) it holds that 7 > 1og2(u¢uh/K/2)
Then, for large enough d, it holds

. 2 1-2 2\d
fg;fNHfm,w,v —fllz > 1=N Q27 K|¢[If)" O(d-7a-74) , (11)

where we denote

ol = [ o) 262 x) dx

for g € Liz. In particular, if N ~ poly(d), then the error (11) tends to 1 as d — oc.

To show equation (11), we proceed as follows. Let F = {fg; : f € Fi}, and denote
by F := @%’V = frd’w,v % ¢. Since ¢ has compact support in [~K, K]? and the
Fourier transform of a one-unit shallow network f(x) = o(x’a) has support in the line
{€ : £ = aa, a € R}, it follows that any function in F is supported in a tube T'={£ : £ =
aa+ [-K,K]% a € R} of radius K. For each tube T of radius K, we consider 77 = {¢ €
L? : supp(¢) C T} and

K= Sup HPTT<F)”2 ’
T tube of radius K
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where Pr,.(F) = argmin, . ||h — F||3. We claim that

. 2 2

0 frgw = F2 2 1= No? (12)
Indeed, given f € Fn, denote by Ti,...TnN the associated N tubes, and by Tr, .1y =
eak-e[N} Tr, the corresponding subspace spanned by 77, k € [N]. Then, by using the
isometry of the Fourier transform, we have that

inf - 2 _ inf Iy — F?

fIGI.IFN Hf frd,WNHcp fler.lFN HfSO H2
> inf  inf ||h—F|3

Ty,.. TN hETTl,H.TN

_ _ )2
= b Pry o (F) = Fl3

_ 2 2
= (1Flz = 1Py, (F)I2) - (13)

1IN

Now, observe that supr, [ Prs, . (F)3 < N supy |[ Py (F) 3. Equation (1) therefore
becomes

. 2
fleI}EfN If — frawy |go

> || FI5 - Nsup 1P (F)II3

which proves (12) by plugging in the definition of s and recalling that || F||3 = || fry w5 =1
by Parseval. To establish (11), it is therefore sufficient to prove that

w2 < ([Bl32 2 K) O - 74 - ) - (14)

The rest of the proof will be devoted to establishing a sufficiently sharp upper bound for
|| Pr;. (F')||]2. Observe that Py, (F) is simply obtained by setting to zero all frequencies of F’
outside T'. We start by computing an upper bound on |F(§)|. We claim the following.

Lemma 25 It holds that

|F(&) < 2l Z ﬁmin (1 2K ) .
I e e (1€ — €l — Kt
Let D(§) = > ¢ Ds(§), with Dg(§) = H?Zl min (1, W), so that from Lemma
25 we have
IF(€)] < 27lelD(&) - (16)

Recall that 74 = supge[q) [[Vsloo- Given & non-zero, we claim the following.

Lemma 26 It holds that

D(&) < Og2% " min {1, 2K (7(||€l 0o — rama — K)4) 7'} (17)

where Ck ~ = Qexp(, /%).
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Now, pick any arbitrary non-zero direction v such that ||v|. = 1. Let
T={¢: it € - av]w < K} (18)
a€cR

denote the tube of radius K in the direction v. It holds that

/ D(e)dE - / D(€)2de + / D(€)2de .
T TN{||€llco<27474} TN{||€]lco>2747a}

t1 to

In order to control the two terms t; and to, we use the following lemma to upper bound the
measure of a f-cylinder.

Lemma 27 Let T be an lx-tube of radius K as defined in (18). If p denotes the d-
dimensional Lebesgue measure, then

u (T N[-R, R]d) < 8e2(d — 1)(K + R)(2K)*" . (20)

Moreover, if g: R — R is in L'(R) and non-increasing, then

/ o€l dg < a6*@ - () [ glwydu,  (21)
T{||€lloo>R}

R—K(2+3/(d—1))

as long as R > K(2+3/(d—1)).
From (17) and (20), the first term of (19) can be bounded as
ty < 8e2CF 22 HAD gd=1(q — 1) (K + 2741q)

d
<D -d- (Tdrd)<22<1*">+1K) (22)

for D'} )W = 16e2K~1C% ~ and d large enough, such that 274r4 > K. Similarly, using (21),
the second term t9 in turn can be bounded as

d
ty < 8e?n2C% 7al<22(1_77)+1K) / (u—1qrg — K) % du
' 2rgra—K (2+43/(d—1))

d
- 8627—21(0%{7705(22(1—")“;() (rarg — 3K(1+1/(d— 1))
d
<D .d- (22(1*77)*11() , (23)

for D'? )7 = 16e2m _QC%( and and d large enough, such that 74rgy > 10K. Thus, collecting
(22) and (23) and using (16) we obtain

/T F(E)de < |2 - 272 (t + t2)
_ d
<d-|lpl} (2" 2K)" (D rara + D)

< Diy-d- o3 (22 K)  max(1, 74rq) |
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where

|8K
Dy = Dﬁ(),y + D<2> = 32exp (2 + m) (m 2+ K.

I1Pr(PI = | IP@FdE < Dicy - (d-7a-ra)- (1013 2~21K)’

It follows that

as long as d > [ﬁfl max(1, 1OK)]1/k (where 8 and k satisfy 74ry > Bd*). We have just
established (14), and this concludes the proof of the theorem. In the remaining part of this
section we prove the auxiliary lemmas used above.

Proof [Proof of Lemma 25] We start by computing fr .w,v- From the definition of o, it
follows that

6r5(8) =0(& —1vs) ,

which combined with the definition of H yields

Fraw &) = > (Hs % 67,8)(€) = > Hs(€ —ravs) -

SCld] SCld]

Let &5 = ryvg. It holds that

/fm,wv €-vydv= 3 [ Fristw—€s)o(e —v) v

SC[d]
/HS HE— €5 —v)dv . (24)

=Fs(&§—¢&s)

5C[d]

We can now bound each term Fjg separately. It holds that
d
A T
G R B | I
J=1

where

Fi(t) = /R 1{e;z > 0} ™%y (2) da (26)
with €; = £1. Assume without loss of generality that e¢; = 1. Observe that F; = @, where
Q(u) = 1{u > 0}tp(u)

Since ¥ € L'(R) and its Fourier transform v has compact support in [— K, K], it holds that
()| < |[¢ly for 7€ [-K,K] and #(r)=0 for |r|> K . (27)

On the one hand, since % is even, it holds, by directly bounding (26), that
1 1
B0 < 5 [ Ww)ldu= ol for all .
R
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and from (27) and the Hilbert transform of @) we deduce on the other hand that

1| K () 2K|[¥[x
F;(t)| = — d for |t| > K
B0 = 5| [ ] < 2R o
so that it follows that
K F— ( 2K )
Fi(t)] < min (1, ———«~— | . 28
Thus, from equations (24), (25) and (28) it follows that
IF(E)] < Y |Fs(€— &)l
SCld]
lells d 2K
< > [ min <1 )
— d 9 L | 9
which proves Lemma 25. |

Proof [Proof of Lemma 26] Let define for any & € R? and A > 0

n(&A) =i eld:|&]> A} -
Recall that vg = v+ Igw and &g = rgvs. Observe that € — &g/ = rq(Is — Igr)w, so

_ { rqlw;| if je (SUS)\(SNS)

€55 — &5 0 otherwise (29)

If d(S, S") denotes the Hamming distance between two subsets S, S’, then for all S, S’, the
following holds.

Lemma 28 It holds that
n(és — €g,7d?) =d(SNQy, ' NQY) . (30)

This immediately implies that

n<£—§5,fyg2>+n<§—§s/,vg2)>d(SﬁQ,S'ﬂQ) forall ¢ and S#5" . (31)

Indeed, if that was not the case, applying the triangle inequality coordinate-wise would
contradict equation (30). The first upper bound is obtained by first noticing that, for

d > 24/K/~, it holds
Ds(€) < (r(7d?/2 — K)/(2K)) "2 g a1 § and €.
Now, defining S¢ = arg mingcg) n(€ — &€g,vd?/2), from (31) it follows that

d(S N Qyq, SN Qd)

n(€ — &s,7d?/2) > 5

for all S # S¢
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and thus, for d > 21/K/~, it holds

D(¢) = Ds: (&) + > Ds(é

S#5;
$24]

< Ds:(6)+ 3 (r(yd?/2 — K)/(2K)) 2

s=1 5 : d(SMQ4,5;N2)=s
24l

< Dy (€) + 2 mz(l d!) (r(vd?/2 — )/ 2K)) 2

1 €24
<1247l g o
Vr(yd?/2 - K)/(2K)
< CK,'de(l_n) (32)

since [{S:d(SNQq, 5 N Q) = s} < Qd_m”(‘%‘i'). The term Ck . is a constant that
depends only on K and +; in particular, we can choose Cx, = 2exp % . The second

upper bound is obtained using the above argument as follows. Let g¢ = arg max; |¢;|. Since
1€s]lc0 < 1474 for any S C [d], it holds that

2K 2K
D(¢) < ‘ (1
o= 5%[%} m(18s = Es.0cl = K+ jgg o < (|65 — €s.4l — K)+>
2K
< 2K S
< 2K (€] — 7ara S%Jgg min < o K)+>
< Cr 2K (m(||€lloc — Tara — K)4)~ 1, 9d(1—n) (33)

by noticing that the argument leading to (32) can now be repeated for the (d—1)-dimensional
vector & = (£1,- -+, 8ge—1,8ge+1, - - - &), S0 that

d((5 N Q) \ {ge}, (5N Q) \ {ge})

n(€ — €s,vd*/2) > 5

for all S # S¢

which proves (33) and concludes the proof of Lemma 26. [ |

Proof [Proof of Lemma 28] In fact, it holds that the two sets A; := {j € [d] : |{s,; — &g 5] >
vd?} and Ay == {j € [d]:7 € (SN Q)\(S N Qy)} are equal. Let j € A;. Then
|€s,j — &s.j1 > vd*. Since this quantity is nonzero, equation (29) indicates that there-
fore j € S\S” without loss of generality. Moreover, |£s; — {s ;| = rq|w;| which implies that
ralw;| > vd* and j € Q4. We conclude that j € (SN Qy)\(S" N Qy) which implies that
j € Aa. Now, let j € Ay. Then, without loss of generality, j € (S N Q) \(S’ N Q). Then,
it holds r|w;| > vyd? since j € S\ according to (29) and |£s; — &g ;| = ralw;|. Combining
these two facts, it follows that |£s; — £g j| > vd? which means that j € As. [ |
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Proof [Proof of Lemma 27] Let

Tr(v) = T(v) N [-R, R

={& : inf sup |{; — av;| < K and [|£] < R} .
OéERjE[d]

The aim is to upper bound the volume of Tr(v) for any v. Assume, without loss of generality,
that ||V|lcc = 1. The cut-off tube Tr(v) can be covered with f-balls of radius K’ = 9K
centered along the ray defined by v, that is

(K +R)/s)
Trv) < | (jsu-+p—ﬁkgﬁzqd). (34)
j=— (K +R)/s]

Now, we optimize both the sampling rate s € (0, K) and the radius ratio ¢ > 1 while
satisfying (34). Given s, let us first compute the smallest admissible ¥. Any x € Tr(v)
satisfies

[x =+ y)svfec < K

for some j € N and |y| < 1. This implies that ||x — jsv|lec < K +ys < K + s. Therefore
an admissible ¥ is given by the solution of K + s = 9K, that is ¥ = 1 + sK~!. Now, the
volume of

L(K+R)/s]

se= | (pu+L{ﬁ+2)K«1+;)Kr>

j=—l(K+R)/s]

is upper bounded by
K+R

I(s) =4 (2(K + )" .

Minimizing over s gives s = %. Therefore, for all v € R?, it holds

Tr(v) < (K + R)K* 1 (d - 1) (1 - d11>d < (K + R)(d — 1)K 1e?,

which proves (20). Equation (21) is established analogously. Let Tvgr(v) = T(v) N
{€ :||€|lcc > R}. Then we have that

T-r(v) C U (jsu + [ (K +s),(K+ 3)]d> ’

i>[BE |
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where we set s = K/(d — 1). Since g is non-increasing, it follows that

/ g€ ]l) de < / g€ ]10) dE
Tsr(v) |J|>LR KJ [€—jsv||cc <K+s

22(K +5)7 Y g(js — (K +5))

iz EE)

<2(2(K +s)) Z / e (u) du

—1)s— K+s)

< g(u) du .
K R—K(2+3/(d—1)) )

This establishes (21) and concludes the proof. [ |

A.2 Proof of Theorem 10

The proof consists in approximating the activation ¢, using Assumption 1.2 on . Since o,
is (27rr)-Lipschitz, we obtain that there exists, for any r,@Q > 0, ax, fr € R such that over
the interval [—@, Q] it holds

ol 2Qr
sup |o,(t) — ago(t — Br)| < ——
H=Q| Z} N
as well as
N
Zaka(t — B <1+4+2Qr/N forteR.
k=1

Let fn € F3; be defined as

N

In(x) = Z aka(rd(vgx + W§X+) — Br)

k=1

Now, let 74 = [|[vall1 + ||wall1 and Qg = Qd , 50 that by definition when ||x||oc < Qq it holds
that

vix+wix,|<Qq.

34



DEPTH SEPARATION BEYOND RADIAL FUNCTIONS

The approximation error can be decomposed as follows:

\/]\{d('frd,wdvvd (X) - fN(X))2¢(X)2 dx =
- / (rawasw () — fv(3)) () dxe + / (rawaa() — fiv () %0(x)? dx
Hx”ooSQd

[1%]lco >Qq
4Q%r? Qara

2
2 2 2
4(1 — -1
a1 2 el e 1 1B
4Q33rs Qara ~
< =Ll + a1+ =) (1-(1-aQz)?)

4@2727“2 -
< llellz (j’v;‘d +160dQg" |

since [y ()| < alz|72/2 for some o > 0, as long as Qq > a and N > r4Q4. Optimizing
this upper bound with respect to Qg4 gives

5 N?2 1/3
Qd = <2ad> s
rivi

which results in
2 drygrq 2/3
HfT,W,V_f”SO S ( N ) )

as long as N > argyg. This concludes the proof.

Appendix B. Proofs of poly(d) upper bounds
B.1 Proof of Lemma 3

We show this for the case L(f(®) = 2, but the proof it is analogous for the other cases. The
function f(@ has the form

FD(x) = 45 p2(Wap1 (Ugx))

where pgd),pgd) are component-wise activations satisfying Assumption 1, and ~v4 € RY%,

W € R%*Pi U € RPaX4, with

P> ds [V lloos W[ 00, [[Ul| 00 < poly(d) -

Thanks to Assumption 1.2, there exists A € RVNPaxd B ¢ RPa*Npa ¢ € RNP4 guch that

€
Su2‘7Tp2(Wp1 (Ux)) — v p2(WBo(Ax +c))| < 3
XE

and

N, llc]loo, 1Bl Foos 1Al Foc < €7 - poly(d) -
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Let K1 = {Bo(Ax +c) : x € K}; it holds diam(K;) < poly(d). Similarly as before, we get
that there exists D € RM4axPa E ¢ R%*Mda f ¢ RMaa gyuch that

sup [v' p2(Wy) —v"Eo(Dy +f)| <
YEK1

DN

and
M, ||f]loo; [ Bl Fro0: Dl Foc < €' - poly(d) .

By calling 4 = ET, W = DWB and U = UA, we get that
9°(x) = ’yTU(Wa(ﬁx +c)+f)
satisfies the statement of the theorem.

B.2 Preliminary lemmas
The first lemma is a known results in approximation theory.
Lemma 29 (Jackson’s Theorem, Theorem 1.4 in (Rivlin, 1981)) Let f : [a,b] — R with

modulus of continuity w. Then there exists a polynomial p,(t) = > }_, pit®, pr € R, such
that

sup 170 = pult) < 60 ("5.1 )

te[—r,r] n

The next lemma yields a worst approximation rate but allows us to control the coeffi-
cients of the polynomial. It is a small modification of Lemma 4 in (Safran et al., 2019).

Lemma 30 Let f : [—r,r] = R (1,«)-Holder. Then for any e > 0 there exists a polynomial

L
pu(t) => 0 0 reth, e € R, of degree n = {41(:_7”2 such that
€

@

sup [f(t) —pa(t)| < €.
te[—r,r]

Moreover, py, can be chosen such that |ry| < 2"~k k€ [n], and |ro| < r® + |f(0)|.

Proof [Proof] Notice that we can assume f(0) = 0 without loss of generality. Define
g(t) = f(r(2t — 1)) for t € [0,1] and notice that g is ((2r)%, a)-Holder. Also, define the n
Bernstein polynomial b, ;, i € [0,n], as

n

bni(t) = ( >ti(1 — )i

i
for t € [0,1]. Notice that they form a partition of unity. We define
—~ (i
()= % )oni).
i=0
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We have that

=0
1 i

S S G TR |F SR I MORI ]

i:‘%—t‘<e i |%_t|>

r
< €* 4 2r¢ Z bn,i(t) < e* + 5c?
ic|L—t|>e
In particular 27;;2 < e”if
,ra

If we define p,(t) = g, (& + %), then we have that

sup [f(t) —pn(t)] <€

x€[—r,r]
if
1
dare
n>—s .
(e
Finally, we want to upper bound the coefficients of p,,. Notice that we have
" /n 1
_ —n o (g . \n—1t
putt) = 203 (oD mite-nyt.
=0
It follows that the coefficients of p, can be bounded by those of
" /n 1
)" v n & no-n n
(2r) Z<Z>‘g(n)’(t+r) <r*Mt+r)
=0
Let ry the k-th coefficients of 7" (¢ + r)™. Then

n
rp =ro " (k) Pk < onpa—k

This concludes the proof. |

B.3 Approximation by shallow Fourier neural networks

We start by reporting a known result ((Burkill, 1959), Theorem 18).

Lemma 31 Let g : [—m,m] = R 2w-periodic with modulus of continuity w. Then there exists
a trigonometric polynomial g, (t) = S p__ bre't, by € C, with real values (i.e. q,(t) € R
for allt € [—m,m), such that

sup_19(8) =~ an(0)] < 22 ) |2 wm) —t0guo( 2)]

te[—m,m]
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Moreover, it holds that

1 ™
il < 5= [ loto)ldt

—T
Proof [Proof] The polinomyal ¢, is given by the Fejer sum of the Fourier series of g, that

1S
n—1 J n—1

1 o n—|kl. .
mt) =3 Y gt = 3 Mg
5=0 k=—j k=—(n—1)
where
R e ikt
9k = Gy g(t)e "™ dt .
—TT

The proof of the upper bound can be found in (Burkill, 1959), Theorem 18. Finally, notice
that ¢, is real-valued since

gkeikt + g_ke—ikt — 2Re (gkeikt>

because §_j = g since g takes values in R. |

The above result immediately implies a convergence rate for univariate approximation by
shallow Fourier networks (that is, with activation oy () = e2™%).

Lemma 32 Let f : [-r,r] — R be L-Lipschitz. Then there exists a real-valued Fourier
shallow network gn(t) = > p_ . bre'rt by € C, wi, € R, such that

sup |f(x) — gn(z)] < 3(1 + 2L2r2)loﬂ

zE€[—r,r]

m|k|
T

for any n > 2. Moreover q, can be chosen such that |wy| < and |bg| < || flleo for any

k € [-n,n].

Proof [Proof] Assume, w.l.o.g., that f(r) < f(—r) (otherwise we can consider f(—z) in
place of f(x)). First, we want to transform f into a 2-pi periodic function on [—7,x]. To
do this we consider g defined as

Lz +7r)+ f(-r) ifze[-r—5 —r]
g(z) = 4 f(x) if x € [—r,7]
L(z—r)+ f(r) if:ce[r,r+ﬁ]

where ¢ = f(—r) — f(r). Notice that g is L-Lipschitz and 2(r 4+ 55 )-periodic. Finally, let

g :[—m, 7] = R defined as
() = 2Lr +c
K =9I\ oLr *) -

We have that g is 2m-periodic and ¢-Lipschitz for

_2Lr+c<27Lr
- 27 T

14
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Therefore, we can apply Lemma 31 to g. This gives us a (real-valued) trigonometric poly-
nomial r,(t) = Y7 bre** such that

4¢ 20
sup |g(x) —rp(z)] < — [2 + ¢ — log }
™™ n

z€[—m,7]
1
< 3(1+20%?) 250
n
for n > 2. Since

flx)—ry (?w) ‘ < sup

v€[-r—gzr+57]

sup
zE€[—r,7]

i)~ o) \ — sup |9(z) — (@)

¢ zE€[—m,7]
the thesis follows. [}

To conclude we make some remarks about shallow Fourier networks. Note that a generic
shallow Fourier network fny with NV units can be represented as

N
f(x)= Zukeing . (35)
k=1
Indeed we have that
N N
Z ukei(ngerk) Lh= Z(ukezbk)eing L b ei07x
k=1 k=1

for any b, by € C. Let ]-"]J:, be the space of networks as in equation (35). Notice that
a universal approximation theorem holds for shallow Fourier networks as well. This is
because the universal approximation theorem holds for shallow networks with activation
o(t) = cos(t) and since cos(t) = (e 4+ e~*)/2, the thesis follows. Finally, the following
lemma will be used in the proof of Theorem 11.

Lemma 33 If f is a (real-valued) shallow Fourier neural network, then so is f*, for k
non-negative integer. Moreover, if f has n units, then the number of units of f* is upper

bounded by
n+k—1
(")

Proof [Proof] Let f(x) =>_" UjeiWJ‘T * be a shallow Fourier neural network. Then, by the

j=1
multinomial formula, we have that
k
n . T Z k ﬁ D .7 pj
fk(x) = Zujele x = < > (ujg (ezwj x) >
j:l p1+"'+pn=k' p1> e 7pn j:1

_ < k >Hu§3 (S pyws) x
pn) \

prtpa=h L

Clearly, if f is real-valued, so is f*. Finally notice that by the formula above, the number
of units of f* is upper bounded by [{(p1,...,pn) : p1 + -+ pn = k}|. [ |
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B.4 poly(d) upper bounds for two-hidden-layers networks
Consider a two-hidden-layers neural network f defined as
fixeRY s 4Tg(WTh(U'x)) e C,

where h : R? — RP and g : R — R? are, respectively, component-wise 1-Lipschitz and
(1, )-Holder activation functions, and U € R¥*P, W € RPX° ~ € C°. We wish to ap-
proximate f with a one-hidden-layer neural network with a given activation o satisfying
Assumption 1.2, for some constant v, > 0. We start by proving a result for approximation
by shallow Fourier networks at a poly(d) rate.

Proposition 34 Let K C R? be a compact set. There exist fn € .7:]{, such that

I =
Hf fN K,oo_6

with
N »
f]{/(x) = Zbyezvyx ’
v=1
for
N=_2np+1)"
with

9 4u 4|2 [WA (1 + 202)? 2.16% 1 a “

. @ . @ = € @

n= 7 7 and m = — I2lEs < ) + M )
€a elta 2[|vl1

where we denoted

C = sup|UTx||oe and M = supHWTh(UTx)HOO
zeK zeK

Moreover f]]\c, can be chosen such that it holds

1t ((w) +M> ](4an||wrF,oo>m (36)

|=

sup‘vfx! <mmn and |b,| <2||v]|1
xeK

where H = supye|_ccpa /| (X) || o

Proof [Proof] Let ¢ given by Lemma 32 to approximate h; over [-C, C] and
() S '
g, (x) = > wi g} (u] x)
j=1
for k € [o]. We have that
P
o (%) = WER(UTX)| <D el (u] %) — by (u] )|
j=1

1
< 3 Wil (14 20) 225 = [ W (1 -+ 2C%)es
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for x € K. It holds that q,g " is a real—valued shallow Fourier network with (2n — 1)p terms
and first layers weights given by Z u] for k € [—=(n —1),n — 1]. Moreover, it holds that

}q;(c")(x)‘ < ‘qém(x) — Wgh(UTx)’ + [ Wih(UTx)| < [[Wlloo(1+2C?)en + M = L .

Let pk (1) = S0 0 ﬂkth given by Corollary 3 to approximate g; over the interval [—L, L]
and ¢, the relative error. Let then

fn m Z ’Ykpm qk
It holds that

169 = fam(X)] < D el [ g (W R(UT)) = b (4" (x)

k=1

< Zlmlgk Fh(UT%)) = gi(af (x \+Z\w!’gk (a1 (%)) — vk, (a" (%))

< [I¥[lx sup
ke[o]

< I WIS (1 +2C%)%e + ¥ ]l em -

wih(UTx) = g ()| + [y

It holds that

VI WS (1 +2C%)%€ < %
as long as ) ,
L2 2 2
s AW+ 207 )
Similarly
Irlhem < 5
as long as

1 1
m> L<12”7”1>“ - (12”:‘1>a [[W]loo(1 +2C?)e, + M] .

€

Moreover, by Lemma 30, p¥,(t) = S°7" ) BFt" can be chosen with

2. 16a 2 16a

m = S LY = S I [IWlee(L + 276+ M)

such that its coefficients ﬁ}’f, k € [m], are bounded by

1Br| < maX{2mL“"“, L* + 19(0)!} <2"™(1+4 L%) +19(0)]
=2"(1+ [|[W]leo(1 +2C%)e, + M%) + |g(0)] -
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Notice that we can assume ¢(0) = 0 without loss of generality. Therefore

sup|f(x) — fn,m(x)| <e

zeK

1 5 1

( ‘ ) T M| =63 1+M<H7”1> . (38)
2[lvlh €

as long as (37) holds and

1
12 o
> (1200)
€

If we further assume that

we can also assume that

1

(m%)a+Ma>

for k € [m]. Finally, notice that, by Lemma 33, f,,, is a shallow Fourier neural network
with number of units upper bounded by

N Z( n—1p+k—1> <(2n—2p+m>

—(2n = Dp+hm) (20— Dt 1)

<(@n—-Dp+1)™

1
142152

B <2 7

1+

() ¥+ (

Therefore, it holds that

inf sup| f(x) — fr(x)| < e
fNE]'— xeK
as long as
N> (2np+1)™

with n and m given by (37) and (38) respectively. Finally, notice that the first layer weights

of fn,m are given by
n—1

k
Z Sk i
=—(n—1)

p
J=1k
n—1

over all non-negative integers s, ; such that Z§:1 k= (n—1) Sk.j < m. Therefore, if

Frm(x Zbe ,

then
m(n—1)
max\u x| < mnm .

J€[p

‘VSXl <m
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On the other hand, the coefficients by have the form

b, = (ZL) > B (wiy(gh)) ™

k=1

for all non-negative integers s = (s ;), ; such that > Z?:__l(n_l) s1; = h < m, where

(q%)l denotes the I-th coefficients of ¢f,. By Lemma 31, we know that

‘(%]z)l’ < sup |h;(t)].

te|-C,C]|
Therefore
o
b, < (2n—=1)p)" sup [h(t)[*5 > |l IR w4
te[-C,C)| 1
< [@n—DpH [[Wlro]" VI8 Foo -
This concludes the proof. |

We can now conclude with a detailed version of Theorem 11.

Theorem 35 Let K be a compact set and

C = sup|UTx|0e, M = supHVVTh(UTx)HOO and H= sup |h(x)|s -
xeK xeK xe[-C,C)4

It holds that
inf |[f(x) = fR&®) |00 <€

ff\r,Ef]‘\’,
for some
16 « "
TV € .
N<— Z|yllimn(4np + 1)*™(H||[W || poe)™ |1 + <<2H’YHl> +M> ] :
where
1 1 1 @
9 4% |y |2[[W]12. (1 4+ 202)2 2-16a, 1 “
W OAERIWIR 20t 2 (e e N
ca At 2/l

Proof [Proof]| Let fy given by Proposition 34 such that

sup | f(x) — fn(x)] <
xeK

N ™

We know that N
vlx c . rS
Fn(x) = bpe™EX = fR(x) +ify(x)
k=1
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where

= Z bpcos(vix) and fy(x Z by, sin(vix)

and |by| < B and |vix| < V for x € K, where B and V are given by (36). Using the
assumption on o, we know that, for each k € [N], there exist shallow networks f¢ and f;
with activation ¢ and number of units

4VBN
n < ¢y
€
such that
T € . T €
— < — d — < .
itelg}fk cos(vix)| < ivg on ig}z!fk sin(vi x)| < iNE

Letting far(x) = S0 brfe(x) 4+ 3 a, befi (x) it holds that

N
sup\f/\[( ) — fn(x)| < sup Zbk (fe(x) — cos(wkx + sup Zbk fi(x) — sin(wfx))
xeK xeK |, 7 x€K |1
< Z\bk| sup|f/1€ — cos(wix)| + Z]bk| S.upm€ — sin(wj x)|
k=1  *€ k=1 XK
€ € €
< NB NB ==
- ANB + ANB 2

which implies that

sup | far(x) — f(x)[ < €.
xeEK

Moreover notice that we can assume that all second layer weights of far are real; indeed,
if this is not the case, one can replace them by the real part, and upper bound above can
only decrease. Finally, we have that the number of units of fas is given by

J\/<SC” V.-B-N .

Applying Proposition 34 concludes the proof. |

B.5 Proofs of special cases
B.5.1 RADIAL FUNCTIONS

Let f(x) = o(||x||) with ¢ 1-Lipschitz. Then it holds that f(x) = g¢(17h(x)) where
g(t) = p(v/t) and h : RY — R? is defined as h;(x) = z2. Clearly, SuPyepd (X[l =1

2
SUPxep , ‘1 h(x } = SUPxep{, [x[* = 1 and Supxe[—l,l]dHh(X>H00 = Sque[—l,lﬂx\ = L

Moreover, 1|y = d and g is (1 1/2)-Holder. Then, by applying Theorem 35, we get the
following.

)
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Corollary 36 (Radial functions) It holds that

f <
legpllfN Flipg 00 <€

for some

F(2+e)
s (4+e?( 5
N S VO * d . GT Ckej -+ 1

where o > 0 is a numerical constant.

B.5.2 SHALLOW APPROXIMATION OF PIECE-WISE OSCILLATORY FUNCTIONS

. K—
Consider fwu : x € RY — ™ (V¥4 for some w € RP, U € RP*4, Then Theorem 35
implies the following.

Corollary 37 (Approximation of (2) by shallow networks) It holds that

mf waU FRllpg oo <€
fRer

for some

2 (er2rwi1[Ullp,0)

Vo
N < l 2+ e + 2wl U

4
poo)? [r||w||oo||U||p,oo( po +1>

where B = afwl|? - (1+ 27“2||U||12)7OO)2 and « is a numerical constant.

B.5.3 APPROXIMATION BOUNDS UNDER THE (GAUSSIAN METRIC

For sake of simplicity in this section we consider approximation bounds for the function of
interest

fwu:x€ R? s W (UX)+

for some w € RP, U = [uy]---|u,]T € RP*% Notice that the following results can be
naturally extended to any three-layer network target. We are interested in upper bounding

the error )

inf (Bl fu,u(X) = fx (X))
fNGJ:J{,
where the expectation is taken over X ~ N(0,0%I). For sake of simplicity of notation, we

denote )

I = glloz = (EIFX) - g(X)P)" .

It is a well known fact that Gaussian vectors concentrates in a ball of radius v/d. We recall
a quantitative version of this fact in the following.

Lemma 38 Let X ~ N(0,0%I) a d-dimensional Gaussian vector. Then it holds that

2

PIX|p > oV +1t} < e 27 .
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Thanks to Proposition 34, the following holds.
Lemma 39 Let r > 0. Then it holds that

inf |[fy — fwullp, e <0 (39)

fNEFyN

as long as
N> (2np+1)™

where 36 16
2
n= w1+ 20BL) and m> 55+ 20wl [Ulec)

Moreover, under the same assumption, we can also assume that the function fx that satisfies
(39) also satisfies

[N lloo < N(2+ 0+ 2r[|wl1[[U

2,00) (4npr [ w0 || Ull2,00)™ -
Thanks to these two lemmas, the following proposition follows.

Proposition 40 Let 0 = d~'/? and assume that | U||2.00 < 1. Then it holds

inf HfN - fW7U”0',2 <e (40)
IneF

as long as
K(1+(52)7) (145 ) (1+Iwlif)
Nz a1+ )+ i)

where K > 0 and s > 1 are some numerical constant.

Proof [Proof] Let ¢ = ||wl|;. First, notice that || fw ullcc = 1. Let x,(x) = L{||x|]2 <}
and fx given by Lemma 39 for a certain § > 0. Then it holds that

Ifn = fw.ullo2 < I(fv = fwu)(X = x2)llo2 + [(fn = fwu)xrlloz
< v = fwullpe, o0 + Pxl2 > r)([1fxlloo + | fwlloc) -

If r =1+t for ¢t > 0, it follows

_d?
Ifn = fwull2e <0+ (T4 [[fn]leo)

as long as
L (5+42r¢)
2p 2)2 7

Moreover, one can assume

>

16
72 <3 (6+2rc) 16 (5421)
HfNHOO S (2 + (5 + 27‘@) <62ch(]— + T2)2 + 1 (144%03(1 + T‘2)2) 53
32 (5+2rw)
< (240 + 2rw) (144%@”71(1 +72)? + 1) 53
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where w = max(1,¢c). Let 6 = §. If t > 1, it holds that
ﬁ(E—i-QuJ-‘,-QL/Jt)
x5 ]loo < (4w + € + 2wt) (5766%w3(1 +t)(1+(1+ t)2)2 + 1) <

K

5= (etw—wt)

< K(e—l—w+wt)<K%w2t5 + 1) <
€

In the equation above above and in the following, K denotes a (large enough) numerical
constant. Therefore

5 (14 [ fiv]loo) < (41)

N ™

as long as

dt? (etwtot)
2—log<1+K(e+w+wt)<Kp2w2t5+l>€3 e )—i—log;ZO.
€

Since log(1 + Cs®) <log(1+ C) + alog(s) if s > 1, C > 0 and a > 0, the above is implied
by

dt? K D 9,5 €
7—log(1+K(e+w+wt))——3(e+w+wt)log<K—2w t +1> +log§ >0.
€ €

Since
log(l+ K(e+w+wt)) < K(e+w+ wt)

and

2 2
10g<K%w2t5 + 1) < 10g<1 +Kp°‘;> +5logt < log<1 +Kp“;> 4 5VE
€ € €

equation (41) holds if

where

K 2
a:K(e+w)+3(e—|—w)log<1+Kpc;)> —logg >0,
€ €

K
=— >0
f=letw)>0,
K 2
y:Kwt+3wlog<1+Kpu;> >0,
€ €
K
n=—Zzwt>0.
€
It follows that eq. (41) holds if

a+ﬁ+’y+n>2

t>1+4
> (2
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It follows that the error bound (40) holds as long as

4 5 (e (1 (o252t )
N> I?(l+c)2(1+4<w> ) +1
€

The thesis follows. |

B.6 Extension to generic L-layers networks

The results presented in the previous section can be generalized to hold for approximating
generic multi-layer neural networks. In this section we present an analogous result to
Theorem 11 for this more general case. Consider a multi-layer neural network f defined as

fixeR! = 2H(x)eC

where z(I) is defined by recursion by x(¥) (x) = x,
T
xF(x) = e® (AW xE=D(x)) for ke [L] and 2FH)(x) = [a(LH)} xD(x) ,

where A®) = [a{")|.-[al"]" € RUX41 for k € [L] (with do = d), a*+D € C% and
o®) . RI& — R are %—Lipschitz component-wise activation functions and verify a*(0) = 0
for k € [L]. In the following we also assume that [|A®)| . <1 for k € [L] and |lap; 1|1 < 1.
Note that these assumption can easily be relaxed, but we adopt them here for sake of
simplicity.

Proposition 41 Let f as above. It holds that

int (1~ fvllpy_ oo S
fNGf]{] e

B 1 cL(1+1)"
N> (2 C<1 + 2)d1>
€

where C' is a numerical constant.

as long as
—1

Before proving the above proposition, we prove two preliminary lemmas.

Lemma 42 Let W = {w},c(x) C R? and h : R — RP such that h; is a shallow Fourier
neural networks with first layer weights given by W, for all j € [p]. Consider q : RP — R™
of the form

q(x) = Bo(x)
where o : RP — RP is a component-wise polynomial activation function of degree at most
D and B € C™*P. Then there exists V C R? finite such that £ = q o h is such that fjisa
Fourier neural nets with first layer weights given by V for each j € [p] and such that

V| < (2K)P .
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Proof [Proof] The functions f; have the form

!
Zb]kzakl hu(x Z%kZ%l(Zﬁme ) :
k=1 = k=1 =

By Lemma 33, we see that each f; is a Fourier neural network with the same set of first
layer weights of size at most

§<K+ll—1> = <K;D> < (K +1)P < 2K)P

This concludes the proof. |

Lemma 43 Consider the same assumption as Proposition 41. Then, there exists a poly-
nomial

le?"'yNL X € Rd — y(L+1) (X) eC

given by the recursion y(©) (x) = x,
y®60) = pl, APy ) for k € [L
y D) (x) = {a(m)ry(m (x)
where pﬁ“vk are component-wise polynomial activation functions of degree Ny, such that
1 = v llpg o <€ (42)
as long as Ny, > %—I— (L—1) for k € [L]. In particular, f is a polynomial of degree H£:1 Ny.

Proof [Proof] We can show this by induction over L. First, consider the case L = 1. By
Lemma 29, for each j € [dy], there exist polynomials py j : R — R of degree N which verify

1 1 1 1
o (@) = V(@) x| <
since ‘(agl))Tx‘ < 1 by assumption. Since [|a(?||; < 1, it follows that
‘(a(z))TpN( AWx) = (a®)T o (AWx )‘ %

This implies the thesis for the case L = 1. Now consider the induction step, that is, assume
that, for every 6 > 0 and j, there exists a certain fjj\,1 ..Ng_, such that

\xﬁ Yix) - ffvl,...,NL,1<X>\ =
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as long as Ny, > £=1 + (L —2) for k € [L — 1]. Notice that this implies that

@ty ()| <144,

where fn, N, , = (fll\/l,...,NLfl""’ J(illez.l.,NLq)' Therefore for each j € [dr], by Lemma

29, there exist polynomials py ; of degree N such that

1+06

L L L
P () v vy (0)) = 037 (@) vy () < -

Let then fn,,. n, , ~n be defined as

N
L+1 L
e (®) = > al" oy (@) Ty, v, ()
j=1
Since [JaL*D)]||; <1, it holds that

| NN N (%) = F(X)| <[ Fvgvp oy v (X) — aj ottt (SN N N (X))

+|af 10" (v N (X)) = f(x)]

<—+9.
_N—i-

If§ = %e then equation (42) holds as long as

L-1
N>].+T6

=%+@—n.

)

This concludes the proof of the lemma. |

Proof [Proof of Proposition 41] It holds that
f(x) = g(eM(AWx))

where g is a (L — 1)-hidden-layers neural network with input dimension d;. By Lemma 31,
for every 6 > 0 and j € [dy], there exists Fourier networks ¢, ;(x) with 2/N; — 1 units such

that
C

VM

where C' > 0 is a numerical constant. Notice that this implies that, for N; > 4C?, it holds

(@) x) — an () x)| <

fontao] <1

[e.e]

Now, we can approximate g with a polynomial neural network gy, . n, as given by Lemma
43. In particular, for any 6 > 0, there exist gn, . n, such that

SUp  |gng,.,.N2 (%) — g(x)[ < 0
x€[—1,1]¢
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as long as Ny, > &=L + (L — 2) for k € [2, L]. It follows that

95 (v, (AT)) = f(x)] <5+ ﬁv .

Let fn(x) = gn,...N, (an, (AMx)). By choosing 6 = €/2, it holds that

sup | fn(x) — f(x)] <€
x€[—1,1]¢

as long as Ny > 221 4 (L —2) for k € [2,L] and Ny > C?(1 + ;%) We claim that fy is a
Fourier network with at most ;
N = (2N dy )= (43)
units. We can prove this by induction over L > 2. Remember that gy, .. n, is is the form
T
gNyp,...,Ny (X) = |:a(L+1)} g%L (A(L)g][\/f;i1 (A(Lfl) T g?\fz (A(2)X)>>

where gka is a component-wise polynomial of degree at most Ny, for k € [2, L]. We start

by the case L = 2. Notice that each component of A®qy, (AMx) is a Fourier network
with the same set of first layer weights, of size at most (2N — 1)d;. Then, by Lemma 42,
we have that each component of

£ v (%) = AP}, (AP gy, (AVx))
is a Fourier network with the same set of first layer weights of size at most
(2(2N; — 1)dy) ™2 .
Finally, consider the induction step. By the assumption hypothesis, the function

£ ) = APl (ACTD g} (APVqy, (ADx)))

—1

is such that each component is a Fourier network with the same set of first layer weights of
size at most

L—1
(2572(2Ny — 1)dy )= ™

Then, by Lemma 42, the function

fn(x) = [a(L“)}Tg%L(fﬁ;ll,...,zvl (x))

is a Fourier network with at most
-1 Ni _
(2 (25722 - 1)611)Hk=2 N’“) — oNLgL=D T2 N (2, — 1)dy [ Ti=2 Ve
which implies equation (43). Plugging in the lower bounds on Ny in terms of ¢, the thesis

follows. [ |
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B.7 Fixed-dimension approximation

The results of Section 4 on fixed-threshold approximation can be complemented by the
following result on fixed-dimension approximation. The proposition below is a straight-
forward generalization of Theorem 3 in (Safran et al., 2019).

Proposition 44 Let o be an activation satisfying Assumption 1. Then there exists a con-
stant B > 0 such that for any f : B{{Q — C 1-Lipschitz function and € > 0 there exists a
network fn € F3; such that

1f = INlipg oo <€
for some N <2+ ﬁd7(ﬁe_1)d6_6.

Proof [Proof]| The result is proved by noticing that the proof of Theorem 3 in (Safran et al.,
2019) actually holds for any function f as in the statement. Moreover, using Assumption
1, fn can also be chosen so that an equivalent bound holds for m..(fn). |

Appendix C. Proofs related to spherical harmonics analysis of shallow
networks

C.1 Proof of Proposition 16
Let fx : R? - R a one-hidden-layer network defined by

N N
In) =D uifrVi(x) =D wio (wi x)
=1 i=1

where u € RN, w; € S 1, and o; are linearly bounded activations. Thanks to Parseval’s
formula, it holds that

i = F N3 > 1Prfy — Prof D13

N
2 [Pe,f OB =237 3wt 1)

jely i=1
N 1 p
> P15 =237 3 = lual L o572 (44)
jelg i=1 /V;
N 1/2
> [[Pr, f DN =20l Yl 712 | 3 g
=1 Jj€lq

N
> [Pr f DN = 2- 0@ - e[ £ D2 Y a1 £7 |2 -
=1

Finally, notice that it holds that

1777 2 < 2moo(fN)
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and therefore
Ifx = FDUS > Q™M) —4-0@dM) - e - mZ (fv) - N .

This concludes the proof.

C.2 Low-coherence zonal harmonics frames

In this section, we wish to quantify how much incoherent can a frame composed of zonal
harmonics be. More specifically, we wish to find a lower bound for

N(d, k,e) :Sup{NZ 1:3wy,...,wy eSi: sip Pg(w;-fwj)‘ Se}
i#]

for € € (0,1).

Lemma 45 It holds that
d—1 T d
N(d,k,e) >sups N >1:3wy,...,wy €S :sup‘wiwj‘g 1-——
i ket/d

fork>d>5 and (%)d/4§e<1.

Proof [Proof] We recall that it holds

Vf@ﬂf;Q;r<d;1)<ku%¢%>«#mm

for d > 2 and t € (—1,1) (cfr. eq. (2.117) in (Atkinson and Han, 2012)) and that

< ()"

for z > 2. Therefore it holds that

L (@92 (d-2)/2
P < o= (45 -
VAW K1 =)

<) i) <(wtm)

for d > 5 and [t| < 1. In particular, for € € (0,1), it holds that |PZ(t)| < € if

d 4
% A
K(1—2) = ¢
that is if
d
<qf1——— .
The thesis follows. [ |
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Define

N(d,9) :sup{N >1:3wy,...,wy eSS sup}wiTwﬂ < 5}
i#]

for § € (0,1). The previous lemma says that

d
N(d,k,€)2N<d, 1_]%4/d>

Example 7 Taking

N 1 }d
Wit =€e€EqEt—7, 161 >0 45
{ }171 { { \/& 1 ( )
it holds that N = 291 and
HlaX‘WTW" =1- 2 .
g d

Therefore

2
N(d1-2)>241,
(41-7) =

Taking € = 2=%, it holds that, if k > 8d2, then
N(d,k,Q—d) > 9d-1

Using this fact it is possible to explicitly construct a high energy sparse function.

Lemma 46 Take k > 16d? even and let

2d71

P(x) = fa ) (N2 P (wx)
i=1

with By = 2(2% 4+ 2)~Y2 and w; as in equation (45). Then ||P|ls = ©4(1) and it is exponen-
tially spread, that is 60072(15) < Od(2*d/2)\/]\7>g.

Proof [Proof] It holds that

1PII3 = 57 |27+ > B (wiw;)
i

2
< 9d—1 (224—2 _ 2d—1)2—d}
—2d-1 41 [ +
2
— 2 Jgd-1 4 gd-2 _ 271} <3
2d-1 41 { + -
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and that

A 2
I1P|2 > ST [2d—1 _ (22d—2 _ 2d—1>2—d}
2

= s 2 e 2

On the other hand, it holds that

9d—1

1Plloc < Ba(N{)? sup Z‘Pg(wfx)‘ :
mESd71 i=1

By definition of the vectors {Wi}?i_ll, it holds

2d— 1

sup Z‘Pg(w?x)) = ; sup Z ’P,gl(xTe)‘
1

xGSd—l = xESd—l,x>O €€{id71/2}d
(d—2)/2

1 1
<1l+ - sup E 5
XESLx0-0 g iy ey \ 164(1 = [xXT€?)

1 1 (=272 9d—1 _q
<1+-2¢-2)f ——— <14+ "——s-<2.
<143 ) I

This proves the claim. |

C.3 Proof of Proposition 21

Assume first that f € H'. Then f = h, for some 7 even signed Radon measure. Thus

n(f) ==l

swp [ p(w)dr(w

PeC(S1) :lpllo<1

- sup /S plw)dn(w)

l,DECgSen Sdil) H@DHOOSI

= sup / T(Tflgo)(w) dT('(W)
PECn (S971) 1 [|plloc <1 J/SI1

= su wlx|(T71p)(x)dS(x) dr(w
P L ase drw

peCs,, (S771)

= sup (T Y, f) .
0€CESen (ST71) 1 [lplco<1

This shows one side of the statement. On the other hand, assume that

sup (T, f) < oo
PECEn(S) : [pllows1
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Then, the transformation
Sile) = (T, f)

defines a bounded linear operator Sy : CS,,, — R. Since C22,,(S471) is dense in Cepen (S¥71)

even even
(the set of even function in C(S%71)), Sy can be extended to a bounded linear operator on

Cooven(S¥1). By setting
Sf((p) = Sf((Pefuen)

we can extend it on C(S?!). By the Riesz representation theorem, there exists a signed
Radon measure 7 on S%~! such that

Sr(e) = [ elwydn(w)

for every ¢ € C(S?1). Moreover, since S¢(¢p) = 0 for every odd ¢, we can assume that 7
is even. Let h, be the function in H! defined by 7. Then it holds that

(T, f) = lImlly = (T, hx)

for every ¢ € C22,,(S%1). Since T is an automorphism over C2°,, (S%~1), then it holds

(0, f) = (s )

for every p € C°,, (S?1). Since f and h, are even, this implies that f = h,. This concludes
the proof.
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