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RELAXATION OSCILLATIONS AND THE ENTRY-EXIT FUNCTION
IN MULTIDIMENSIONAL SLOW-FAST SYSTEMS*

TING-HAO HSU' AND SHIGUI RUAN?

Abstract. For a slow-fast system of the form p = ef(p,z,¢) + h(p,z,€), 2 = g(p, z,¢) for
(p, z) € R™ x R™, we consider the scenario that the system has invariant sets M; = {(p, 2) : z = z;},
1 < i < N, linked by a singular closed orbit formed by trajectories of the limiting slow and fast
systems. Assuming that the stability of M; changes along the slow trajectories at certain turning
points, we derive criteria for the existence and stability of relaxation oscillations for the slow-fast
system. Our approach is based on a generalization of the entry-exit relation to systems with multi-
dimensional fast variables. We then apply our criteria to several predator-prey systems with rapid
ecological evolutionary dynamics to show the existence of relaxation oscillations in these models.
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1. Introduction. We consider a system of ordinary differential equations for
(p,z) € R™ x R™ of the form
= ef(p7z76) +h(p7z76)7

(1) 9(p, z,€),

z
where - denotes %, the functions f, g, and h are smooth, and ¢ > 0 is a parame-
ter. When h is identically zero, the system reduces to the standard slow-fast systems
in Fenichel [18]. Note that slow-fast systems in nonstandard forms can be locally
converted to the standard form near normally hyperbolic critical manifolds (see,
e.g., Wechselberger [60, Lemma 3.6]). This more general setting of singularly per-
turbed problems provides different global return mechanisms which induce different
types of relaxation-type behavior not observed in the standard setting.

In the scenario that g and h both vanish on some level sets M; = {(p,2) : z = 2}

for e € [0,€0], ¢ = 1,2,..., N, where z; € R™ and ¢, > 0 are constants, each M; is
invariant under (1.1) since 2 = 0. System (1.1) restricted on M; becomes
(12) p/:f(pvzi76)7 Z = Zis

where / denotes % with 7 = et. Hence system (1.1) has two distinguished limits: the

limiting fast system

(13) p = h(p,Z,O), z= g(pazao)a
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obtained by setting ¢ = 0 in system (1.1), and the limiting slow system

(1'4) p/:f(p7zz70)7 ZZZZ?

obtained by setting ¢ = 0 in (1.2). When there are trajectories 7; of (1.3) and
trajectories o; C M; of (1.4) such that

(1.5) yrUoiUynUoyU---UynyUoy

forms a closed configuration, in the spirit of geometric singular perturbation theory
(GSPT) (see, e.g., Fenichel [18], Jones [32] and Kuehn [38]), there is potentially a
periodic orbit of (1.1) near configuration (1.5) for all small ¢ > 0. However, in
the case that o; contains turning points, at which the stability of M; changes, the
so-called entry-exit function is needed to determine whether there are trajectories
of (1.1) near the singular orbit. The classical entry-exit function was defined for
system (1.1) with p being a one-dimensional variable (see de Maesschalck [13], de
Maesschalck and Schecter [15], Hsu [26], Wang and Zhang [59] and references therein).
The entry-exit function can be traced back to Benoit [4] and is called the way-in
way-out function in Diener [16]. This phenomenon, that the landing and jumping
points satisfy the entry-exit function, has been called bifurcation delay in Benoit [5],
Pontryagin delay in Mishchenko et al. [46], and delay of instability in Liu [43]. In the
present paper we generalize the entry-exit function (see section 2.2) for system (1.1)
with a multidimensional variable p. Using our generalized entry-exit function, we
provide criteria under which periodic orbits near the singular orbit exist. Note that
if such periodic orbits exist, they must form a relazation oscillation because for a
trajectory of (1.1) to travel along the vicinity of ; (where h and g are nonvanishing)
and o; (where |h| < € and |g| < €), respectively, the time lengths need to be of orders
O(1) and O(1/e).

Our motivation is to understand the mechanism of rapid regime shifts in ecological
systems.

Ezxample 1. One example is trait oscillations exhibited in an eco-evolutionary
system proposed by Cortez and Weitz [12]. The system takes the following form:
J)/ = F(.’IJ,O{) - G(%%%ﬁ)y
y/ = H(‘rvyvavﬂ) - D(yvﬁ)v

(1.6) ea/ =a(l - a)a% <Z/) ,
e =p-ng (L),

where z(t) and y(t) are the prey and predator densities, respectively, and «(t) and
B(t) are the average trait values of the prey and predators, respectively, at time ¢.
The functions F' and H are related to the growth rates of the prey and predators,
respectively, G is related to the encounter rate, and D is related to the death rate
of predators. The equations of o and 8 were derived from the assumption that the
adaptive change in the trait follows fitness-gradient dynamics (see Abrams, Mat-
suda, and Harada [1]), i.e., the rate of change of the mean trait value is proportional
to the fitness gradient of an individual with this mean trait value. In Cortez and
Weitz [12], numerical evidences of periodic orbits oscillating between the level sets, for
(o, B) = (0,0),(0,1),(1,1) and (1,0), were provided for certain functional responses.
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A simulation of a periodic orbit with data from that paper is shown in Figure 1. Note
that system (1.6) is an example of system (1.1) with A = 0 and the variables (z,y)
and («a, ) playing the roles of p and z, respectively. Applying one of our criteria
(Theorem 2.6) in section 4.3, besides confirming the existence of periodic orbits, we
will determine the limiting configuration (see Figure 2) of the periodic orbits as e — 0.
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F1G. 1. A periodic orbit for system (1.6) with e = 0.25. (a) On the (x,y)-plane the trajectory
can roughly be split into four segments. (b) The value of a remains close to 0 along segments i and
ii and becomes close to 1 in segments iii and iv. The value of B is close to 0 in segments i and iv
and is close to 1 in segments ii and iii.

Fic. 2. (a) A periodic orbit for system (1.6) with € = 0.10. (b) A singular closed orbit which
consists of trajectories of limiting subsystems.

Ezample 2. Another example, proposed by Cortez and Ellner [10], is a predator-
prey system with rapid prey evolution:

24
z’:x(oz—kr—kx)—xy(aa +ba )

)

1+
2
+ba+c)
1.7 r_ wylaa —d
(1.7) Y T2 Y,
2ac +b)
—a(l—a) (1o Y2 _ R
o’ =a(t—a) (1- L5 = a1 - @) (a0,
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which can be regarded as a special case of (1.6) with § being constant. Periodic orbits
that travel back and forth between the manifolds My and M; corresponding to o = 0
and a = 1, respectively, were discovered numerically by Cortez and Ellner [10] (see
Figure 3 for a simulation with data from that paper). Note that the sign of E(z,y, ),
where o = 0 (resp., & = 1), determines whether M, (resp., M;) is attracting or
repelling at that point. It was indicated in [10] that if the trait oscillation occurs,
at the landing and jumping points on each M, the value of E has opposite signs.
Note that system (1.7) is an example of system (1.1) with & = 0 and the variables
(z,y) and « playing the roles of p and z, respectively. In section 4.1, applying our
criterion (Theorem 2.5) we will determine two pairs of landing and jumping points,
Ay, B; € My and As, By € My, by the equations

(1.8) / E(z,y,0) dt = / E(x,y,1)dt =0,

o1 o2
where o7 is a trajectory on My connecting A; and Bj, and o5 is a trajectory on M,
connecting As and Bz (see Figure 3). The derivation of (1.8) is based on the entry-
exit functions on M;. Also we will prove that the corresponding periodic orbits are
locally orbitally asymptotically stable.

3 3
) )
a a
=
Predator (y) 0 Trait () Predator (y) 0 Trait ()

F1G. 3. (a) The trajectory of (1.7) with e = 0.1 and initial data (z,y, o) = (10,0.5,0.5) converges
to a periodic orbit. (b) A singular configuration consists of trajectories of limiting subsystems and
1s locally uniquely determined by (1.8).

Ezxample 3. The third example is a 1-predator-2-prey system with rapid prey
evolution proposed by Piltz et al. [49]:

Pl1 =rip1 — qf1(p1)z,

Py = 12p2 — (1 —q) f2(p2)2,

2" = c19f1(p1)z + ca(1 = q) f2(p2)z — m2,
eq = q(1—q) (lel(p1) - szz(pz)),

where p; and py are population densities of two prey species, z is the population
density of predators, and ¢ is the mean trait value of predators. The equation of ¢’

(1.9)
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is analogous to the equation of o’ in (1.6). A two-parameter family of closed singular
configurations formed by trajectories of limiting slow and fast systems of (1.9) has
been derived in Piltz et al. [49]. Note that system (1.9) is an example of system (1.1)
with h = 0 and the variables (p1, p2, 2) and ¢ playing the roles of p and z, respectively.
In section 4.2, using our criterion (Theorem 2.5) we will prove that there is a locally
unique closed singular configuration that admits periodic orbits (see Figure 4(a)).
Moreover, with parameters adapted from that paper, by computing the linearization
of the singular transition maps we will prove that the periodic orbits are orbitally
unstable (see Figure 4(b)) for all small € > 0.

Prey #2 (p2)
Prey #2 (p2)

. — 05 T — 05

Prey #1 (p1) 0 Trait (q) Prey #1 (p1) 0 Trait (q)
(a) (b)

F1G. 4. (a) A periodic orbit for (1.9) (red solid curve) with € = 0.01 is close to the singular
configuration (blue dotted curve) with vertices A; and B;. (b) A trajectory for (1.9) with e = 0.01
and initial value (black open circle) close to the periodic orbit leaves the vicinity of the periodic orbit
as time evolves, which suggests that the periodic orbit is unstable.

The rapid evolution model, i.e., system (1.6) with 0 < € < 1, has been studied by
Cortez [6, 7, 8, 9], Cortez and Ellner [10], Cortez and Patel [11], Cortez and Weitz [12],
and Haney and Siepielski [21]. System (1.6) with slow evolution, i.e., € > 1, has been
studied by Khibnik and Kondrashov [34] and Shen, Hsu, and Yang [55]. Transient
behaviors, which are related to regime shifts in ecological systems, have been studied
by Hastings [22], Wysham and Hastings [61], and Hastings et al. [23]. Model (1.9) is
a continuous version of the piecewise-smooth model in Piltz, Porter, and Maini [48].
A comparison of the numerical solutions of (1.9) with real data was given in Piltz,
Veerman, and Maini [48].

Ezxample 4. In section 4.4, we consider the planar system studied by Hsu and
Wolkowicz [28]:

(1.10) a=eF(a,be) +bH(a,be), b=0bG(a,b,e).

The a-axis is a critical manifold for the limiting fast system of (1.10). Note that the
variables a and b in system (1.10) play the roles of p and z, respectively, in (1.1).
For singular closed orbits of this system, a criterion on the existence and stability of
corresponding relaxation oscillations was derived in Hsu and Wolkowicz [28], which
generalizes the criterion in Hsu [27]. In the present paper, we provide an alternative
proof of that result. The derivations in those papers were based on the asymptotic
expansion of Floquet exponents for system (1.10) with ¢ > 0. Here we will analyze
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the transition maps for the limiting slow and fast systems with € = 0 directly, which
provides a better understanding of the slow-fast feature in the system.

y R — ) . --y=F(z)
— Fast Trajectories —Fast Trajectories

Fi1G. 5. (a) For system (1.11) with € = 0, all trajectories are horizontal. The closed loop
ABCD starting from the mazimum point A of the nullcline y = F(z) is the limiting configuration
of the relazation oscillation as ¢ — 0. (b) For system (1.12) with ¢ = 0, there is a family of
heteroclinic orbits connecting points on the y-axis. For a certain value xq, the closed loop formed by
the heteroclinic orbit passing (zo, F(x0)) and a portion of the y-azis is the limiting configuration.

The main contribution of this study is to provide criteria on the existence and
stability of relaxation oscillations near slow-fast trajectories passing through turning
points in multidimensional systems away from fold points (i.e., singular points of
the slow flow). Our criteria are generalizations of those given by Hsu [27] and Hsu
and Wolkowicz [28], where planar systems (i.e., system (1.1) with n = m = 1) were
considered. Relaxation oscillations in planar or three-dimensional systems with similar
settings were also investigated by Hsu and Shi [24], Huzak [29], Jardén-Kojakhmetov
et al. [31], Li et al. [40], Shan [54], and Shen, Hsu, and Yang [55]. A recent work by
Ai and Yi [3] generalized the results in Example 4 for a class of systems including
(1.10) using a different approach based on the construction of invariant regions.

We would like to point out that the absence of fold points makes our study
significantly different from existing theories in the literature involving folds points.
Here we use two examples to emphasize the effect of fold points. A well known example
of relaxation oscillation involving fold points, besides the van der Pol oscillator, is the
predator-prey system studied by Rinaldi and Muratori [50], which can be written as

(1.11) i=p()(F(z)—y), §=c¢(cplx)—d)y,

where ¢, d, and € are positive constants and functions p(z) and F(x) satisty p(0) = 0,
p'(0) > 0, p(z) > 0 for x > 0, and, for some constant K > 0, F'(z) > 0 for z € [0, K)
and F(K) = 0. Assuming that F(x) takes certain forms, it was proved in [50] that,
as € — 0, there is a family of periodic orbits that converges to a closed loop formed
by trajectories of the limiting systems of (1.11). The trajectories forming the closed
loop have four end points, which we label as A, B, C, and D in Figure 5(a). A crucial
feature for the existence of relaxation oscillations for this system is that the flow
of (1.11) in the vicinity of the segment from D to A is exponentially contracting as
€ — 0 (see Krupa and Szmolyan [36, Theorem 2.1]). In contrast, for the predator-prey
system studied by Hsu [27], which can be written as

(1.12) i=p()(F(z)-y), §=(cp(z)-—e)y,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/01/21 to 52.149.185.78. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3723

the limiting fast system of (1.12) has a family of heteroclinic orbits connecting points
on the y-axis, and it was proved that, under the assumption that F'(z) has a single
interior maximum point £ in (0, K), as € — 0 system (1.12) has a family of relaxation
oscillations that converges to a closed loop passing through (xg, F/(z)) for a unique
xo € (%, K) (see Figure 5(b)). Different from the former example (1.11), where the
Poincaré map along the singular configuration is exponentially attracting as e — 0,
the limiting Poincaré map in the later example has full rank due to the absence of
fold points. In fact, for system (1.12) the exponential attraction and repelling forces
are balanced through the passage of the slow trajectory containing the turning point
(xz,y) = (0, F(0)), so the limiting Poincaré map does not contract exponentially.

Relaxation oscillations involving both turning points and fold points, different
from the context in this present work, for planar or three-dimensional systems have
been studied by Ai and Sadhu [2], de Maesschalck, Dumortier, and Roussarie [14],
Ghazaryan, Manukian, and Schecter [20], Li and Zhu [39], Liu, Xiao, and Yi [44], and
Szmolyan and Wechselberger [57] (for which the proof also holds for multidimensional
systems, as indicated in the proof of [60, Proposition 5.1]). Our work is complemen-
tary to those results since our singular orbits are away from fold points. Relaxation
oscillations in multidimensional slow-fast systems without turning points have been
studied by Soto-Trevifio [56]. Boundary value problems for slow-fast systems have
been studied by Lin [42] and Tin, Kopell, and Jones [58].

The proofs of our criteria were based on a generalization of methods in Hsu [25, 26]
for studying the dynamics along the passage between entry and exit points. The idea
is to apply a sequence of transformations on system (1.1). Each successive transform
in the sequence is obtained simply by appending or dropping an auxiliary variable.
This approach is a variation of the classical blow-up method developed by Dumortier
and Roussarie [17] and Krupa and Szmolyan [36, 37], where the equation ¢ = 0 is
appended to the system, but all succeeding transformations are homeomorphisms.

The classical blow-up method has been applied extensively to study various
problems, including Gasser, Szmolyan, and Wéchtler [19], Iuorio, Popovié, and Sz
molyan [30], Kosiuk and Szmolyan [35], Manukian and Schecter [45], Schecter [51],
and Schecter and Szmolyan [53]. We do not claim that our method can be applied to
those problems.

This paper is organized as follows. In section 2, we state our criteria for the
existence and stability of relaxation oscillations. Proofs of the criteria are given in
section 3. In section 4 we apply our criteria to the three models described in section 1.
Some computable formulas for verifying the conditions of our criteria numerically are
shown and derived in the appendix.

2. Main theorems. Before stating the general theorem, in section 2.1 we pres-
ent two special cases in order to motivate the definitions in the subsequent sections.
Assumptions needed for our main results are stated in section 2.2. The criteria for
the existence of relaxation oscillations are split into sections 2.3-2.5, from single to
multiple dimensional fast variables.

2.1. Special cases. Having systems (1.6) and (1.7) in mind, we present two
basic forms of our main theorems, which are stated in later sections.

THEOREM 2.1. Consider a system for (p,a) € R™ x R of the form

p'=F(p a,e),
!

(21) e = (OZ — Oémin)(amax - a)E(p, «, 6)7
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where F and E are smooth functions, and g, < Qmax are constants. Assume that
there are points Ay, Ay € R™ satisfying the following conditions (see Figure 3(b)):
(R.) There exist A1, Az € R™, T1 > 0, and T5 > 0 such that

(bl(AlaTl) == A2 and (I)Q(AQ’T2) = 1417

where ®1 and P are the solution operators for p' = F(p, a,0) with & = qmin
and aumax, TEspectively.
(Rll) E(Al, Qmin, O)7 E(AQ, Omax, O) <0 and E(AQ, Qmin, O)7 E(Al, Omax, O) > 0.
(R.iii) There hold

S 0 O T
/ E((I)I(A17t)7amin;0) dt < fOT’ <s <y,
’ =0 fors=1T

and

S T
/ E((I)z(AQ’t)vamax,O) dt <0 for0<s<Ty,
’ =0 fOTS :TQ.

Let Q1 and Q2 be functions defined in neighborhoods of A1 and As, respectively, such
that Q1(A1) = As, Q2(A2) = Ay, the point Q;(A) lies in the forward trajectory of A
along the flow of ®;, and

/ E(p(t), amin, 0) dt =0 and E(p(t), e, 0) dt = 0,
£1(A,Q1(A)) £2(A,Q2(A))

where £;(A, B) is the trajectory from A to B following ®; and p(t) = ®;(A,t). If the
function P = Q4 o Q1 satisfies

det(DP(Ar) — 1) 0,

where DP(A) is the Jacobian matriz of P at A and 1, is the identify matriz of
rank n, then the configuration (£1(A1, A2) X {amin}) U (¢2(Az, A1) X {Qmax}) admits
a relaxation oscillation. Furthermore, the corresponding periodic orbits are orbitally
asymptotically stable if r(DP(A1)) < 1 and orbitally unstable if r(DP(A1)) > 1,
where r(DP(A)) is the spectral radius of DP(A).

Note that system (1.7) satisfies (2.1) with p = (2,y), @min = 0, and apax = 1.
Theorem 2.1 is a special case of Theorems 2.5 in section 2.3.

For treating system (1.6), we have the following result.

THEOREM 2.2. Consider a system for (p,a, 8) € R™ X R x R of the form

p/ = F(paaaﬂae)v
(2.2) ea =a(l - a)Ei(p,a,B,¢),

65/ = 6(1 - B)EQ(paaaﬁae)a
where F', E1, and Ey are smooth functions. Let My, My, Mz, and My be the level
sets of R™ x R x R with (o, 8) = (0,0), (0,1), (1,1), and (1,0), respectively. For
convenience, we also denote M; = My, g,), where (ay, B;) is the constant value (v, 3)

on M; (see Figure 6). Assume that there are points A1, As, Az, and Ay in R™ such
that the following conditions hold (in the manner that Axy4 = Ag, Jxya = Ji, ete.).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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IVI(O,O) M(OJ) M(1,1) M(1 0) M(O,O)

FiG. 6. Each M, g,) is the level set of (e, Bi). Solid and dotted curves on M, p,) are
trajectories p’ = F(p,ai, 3i,0). The curves between M, .5,) and M(a¢+1,ﬂi+1) are line segments.

(S.i) Aiy1 lies in the forward trajectory of A; along the flow of p' = F(p, a;, B, 0)
for alli e {1,2,3,4}.
(Sll) El(A1,070,0), EQ(A27O’ 1,0), El(Ag, 1, 1,0)7 EQ(A4, 1,0,0) <0 and
Ea(A5,0,0,0), Ey(A3,0,1,0), Ex(Ay,1,1,0), Er(A;,1,0,0) > 0.
(S.ii) With (J1,J2, J3, Js) = (1,2,1,2), for eachi € {1,2,3,4} if we denote £;(A, B)
the trajectory of the flow of p' = F(p,a;,B;,0) from A to B, then for any
Beli1(Ai—1, Ai) \ {Ai_1},

/ Ej,. . (p(t), i1, Pi—1,0) dt <0,
i (Aifl,B)

where p(t) is the parametrization of the curve of integration along the flow,
and if we define

(2.3) G=- / By, (p(t), 051, Bi1,0) dt,
Li—1(Ai—1,Aq)
then

<0 if Be (A, Aig1) \ {Ait1},

_EZ—'_/ Ei1pt7ai76iao dt .
4;(A;,B) it ( ( ) ) =0 ZfB :Ai+1-

Let @i(A,g) be the function implicitly defined by @1(141,@) = (Aiz1,iv1) and that,
denoting Q;(A, () = (A, (), A is a point in the forward trajectory of A along the flow
of p' = F(p, ay, 3:,0) satisfying

- C*/ By (p(t), a4, Bi,0) dt = 0,
0;(A,A)

and Z is the number defined to be

(2.4) E=— /@ B (p(t), 00, 5:,0) dt.

i(A,A)
Letﬁ:©40@30@20©1- If
det(DP(Ay, 1) —Iny1) #0,

then the configuration U?Zl(fi(Ai,AiH) x {(au, Bi)}) admits a relaxation oscillation.
Furthermore, the corresponding periodic orbits are orbitally asymptotically stable if
r(DP(A1,(1)) < 1 and orbitally unstable if r(DP(A1,¢1)) > 1.
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Note that (2.3) means

25) G=- / Ba(p(t),1,0,0) dt, G = — / E1(p(1),0,0,0) dt
l4(A4,A7) l1(A1,A2)

and

(26) G=- / Es(p(t),0,1,0)dt, & =~ / B (p(t), 1,1,0) dt.
lo(Az,A3) l3(A3,Ay)

Theorem 2.2 is a special case of Theorem 2.6 in section 2.4. In section 2.2 we
show how systems (2.1) and (2.2) satisfy the conditions in the general theorems.

2.2. Assumptions. Let N be a fixed positive integer. Throughout this paper
we adopt the notion that A; = A;;n for any integer 7 and any object A. For any

vector z in R™, we denote z/) the jth component of z. We denote {e1,e2,...,em}
the standard basis of R™.
Assumption 1. For each j = 1,2,...,m, there exist —oco < Zr(le)n < z(])x < >

such that for all sufficiently small e > O,

h(p,z,€) =0 and g¢¥(p,z,€) =0

() — ) _
whenever zV) = z0 or z =z .

Note that system (2.1) satisfies Assumption 1 with z = z(l) = «a. System (2.2)
satisfies the assumption with z = (21, 2(®) = (a,3) and ( 29 ) = (0,1) for

m1n7 max
j=12.

Assumption 2. For each i =1,2,..., N, where N is a positive integer, there exist
Ai,Bi eR” J;, € {1,2,...7m},

(€]

min? max} {Zmll’l’ max} X -

z; € {z - X {zr(nrﬁz, max} with |z;] < o0,
and smooth functions p; : R — R™ and ¢; : R — R such that ¢; is nonconstant and

the curve

vi(t) = ( i(t), zi + qi(t)eJ,L,), —00 < t < 00,

is a heteroclinic orbit of (1.3) that connects (B;_1,2;—1) and (A;, z;). In addition, for
each j =1,2,...,m, there exists i € {1,2,..., N} such that J; = j.

Since the limiting fast system of (2.1) leaves (z,y) values constant, system (2.1)
satisfiles Assumption 2 with By = Az, By = Ay, 11 (t) connecting (A1, dmax) to
(A1, amin) and ~o(t) connecting (Az, min) t0 (A2, max). Similarly, system (2.2)
satisfies Assumption 2 with B; = A;y1, pi;(t) = 0 and ¢;(t) being scalar functions
mapping onto either interval (0,1) or (—1,0).

The expression of the heteroclinic orbit in Assumption 2 implies that z; differs
from z; 41 at no more than one component. Note that we do not exclude the possibility
that z; = z;41.

The assumption of the existence of ¢ such that J; = j means that each component
2\ of (p, z) must be nonconstant along at least one ~;. If it is not the case, then we
can treat () as a constant and replace the equation of () in (1.1) by 20) = 0 because

the space {(p, z) : z2U) = zr(njl)n or z(ril)ax} is invariant under (1.1) by Assumption 1.
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We define M; = {(p,z) : p e R",z = 2;} for i = 1,2,..., N. Then Assumption 1
implies that M; is invariant under (1.1) for all sufficiently small € > 0. The restriction
of (1.1) on M; is (1.4). We denote the solution operator of (1.4) by ®;.

Assumption 3. For each i = 1,2,..., N, fi(Ai, z,0) # 0 and there exists 7; > 0
such that (I)l(A,“ Ti) = Bi.

In systems (2.1) and (2.2), since each A; 1 lies in a trajectory of the corresponding
limiting systems passing through A;, Assumption 3 is satisfied with B; = A;41.

Denote o; = ®;(4;,[0,7]) x {2z;}. Then by Assumptions 2-3 the configuration
(1.5) forms a closed orbit. The idea of GSPT is that trajectories of the full system can
potentially be obtained by perturbing a union of trajectories of the limiting systems.
Limiting systems (1.3) and (1.4) provide a family of uncountably many loops. Our
goal is to establish a criterion for the existence of a locally unique periodic orbit near
this singular closed orbit.

We impose the following nondegeneracy condition.

Assumption 4. Fori=1,2,..., N,

ag(Ji) 6g(J'i+1)

7(‘42,2“0) <0 and W(B“Z“O) > 0.

Assumption 4 corresponds to (R.ii) and (S.ii) in Theorems 2.1 and 2.2, respec-
tively, for systems (2.1) and (2.2).

Remark 2.3. By Assumption 1, the linearization of (1.3) at any point (p, z;) in
M; has the Jacobian matrix

Onxn *
(0D a9\ | -
Omxn diag (az(l) Y P (m)

where the partial derivatives are evaluated at (p, z;,0). In the case that m = 1, the
inequalities in Assumption 4 imply that M; is normally hyperbolic at (A4;,z;) and
(Bi,z;) and that there is a turning point on M; between these two points.

In the case that m = 1, where z and g are scalar, the classical entry-exit relation
for (1.1) between A; and B; can be expressed by

$ dg <0 if0<s<m,
2.7 99 (®;(Ai, 1), zi,0) dt
27) /032( ( )2 ) {:0 if s =m;.

Under (2.7) and Assumption 4, in some neighborhood 7 of A; in R™ we can implicitly
define T; : &% — (0,00) by T;(A;) = 7; and

Ti(p) dg
(2.8) / == (®;(p, t), 2;,0) dt = 0.
0 82:

The entry-exit function is then defined by

(2.9) Qi(p) = ®i(p, Ti(p))-

Each pair of points (p, z;) and (Q;(p), 2;), where p € &7, is a pair of landing and
jumping points on M;.
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For the general case that m > 1, we first introduce some notation. Let J;, where
i1=1,2,..., N, be the numbers defined in Assumption 1. For each j =1,2,...,m, let

I; =max{i € {0,-1,-2,...,—(N = 1)} : J; = j}.

This means that I; is the largest nonpositive i for which the value of 2(/) changes
along the trajectory v;. By Assumption 2, each I; is well-defined and is finite. We
define

1—1 1
p % §gld)
(2.10) (== < i o @Ak ), 22,0) dt>
k=1I;

fori =1,2,...,N and j = 1,2,...,m. Also we denote (; = (Ci(l),...,g“i(m)). The
following assumption is a generalization of (2.7).

Assumption 5. For each i € {1,2,...,N}, j € {1,2,...,m} and s € (0, 7],
5 9gl9)

_ ) (A )
¢+ | 9.0 (®i(A;,1), 2, 0) dt{

=0 lf.]:JH_l ands:n-,

< 0 otherwise.

Assumption 5 corresponds to (R.iii) and (S.iii) in Theorems 2.1 and 2.2, respec-
tively, for systems (2.1) and (2.2). More specifically, for system (2.1) both Assump-
tions 5 and (R.iii) are equivalent to (2.7). In the settings of Theorem 2.2 for sys-
tem (2.2), we have I; = —1 and Iz = 0 (because J_1 = J3 =1 and Jy = Jy = 2), so
(2.10) under Assumption 5 with (Jy, Ja, J3, Js) = (1,2, 1,2) gives

G = (0761)’ G2 = (5270)’ Gz = (07(?3)’ and (4 = (§4a0)7

where (1, (2, (3, and {4 are the numbers defined by (2.3), or (2.5)-(2.6), in Theo-
rem 2.2.
For each : =1,2,..., N, we consider the system

d
Ep - f(paziao)a

(2.11) ; 040
@Gy _ , _
dTC T 920) (P,2,0), J=12,...,m.
Let
(2.12) Ai={cer™ 0— ¢l <6, ¢V =P},

where § > 0. Let ®; be the solution operator for (2.11). From Assumption 4, by
shrinking <7 and § if necessary, we can define T;(p,{) on < x A; implicitly by
TZ(A,,CZ) =0 and

'fz‘(P;C) o (Jit+1)
_ Wign) 99 (. _ —
(213) < o+ /0 Oz(Ji+1) ((I)l(pa t)7 Zis 0) dt = 0.

Finally, we define the generalized entry-exit function Q; (p,¢) on o x A; by

~ ~

Note that T;(p,¢;) = Ti(p) and therefore Q;(p,¢i) = (Q;(p), Cig1) for all p € 7. In
particular, Q;(As, (;) = (Bi, Giy1)-
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Remark 2.4. In the case that m = 1, we have (i(j) = 0 for all 4 and j, so As-

sumption 5 is reduced to the classical entry-exit relation (2.7), and @z defined by
(2.13)—(2.14) coincides with @; defined by (2.8)—(2.9).

2.3. Systems in the standard form with a single fast variable. For the
case where the fast variable has simple dynamics, namely, h = 0 in (1.1), the system
is in the standard form of geometric singular perturbation theory in Fenichel [18].
First we state our results for system (1.1) with n > 1, m = 1, and h = 0, which can
be applied to study models (1.7) and (1.9). These restrictions mean that the system
has a single variable and that the slow variable is steady in the fast system (1.3).

Since the slow variable is steady in the fast system (1.3) in the case that h = 0, the
function p; in Assumption 2 is constant for each ¢ = 1,2,..., N. Hence B; = A;1; for
each i, where B; and A;;; and the points given in Assumption 2. Since Q;(4;) = B;,
where @Q; is defined in (2.9), it follows that Q;(A;) = A;41. Let

(2.15) P=Qno---0Q20Q)1.

Then P(A;) = A; and P maps a neighborhood of A; in 2 into 2.
Our first main result is as follows.

THEOREM 2.5. Suppose that Assumptions 1-5 hold for system (1.1) with m =1
and h = 0. Let P be defined by (2.15). If

det(DP(A1) — 1) # 0,

then the configuration (1.5) admits a relazation oscillation. Furthermore, the cor-
responding periodic orbits are orbitally asymptotically stable if r(DP(A;)) < 1 and
orbitally unstable if r(DP(Ay)) > 1.

The proof of the theorem is shown in section 3.1, and the computation formula
of the Jacobian matrix is given in the appendix.

2.4. Systems in the standard form. System (1.1) with n, m > 1 and h =0
can be applied to (1.6). For this case, we introduce the following notation.

Under the assumption that h = 0, we have B; = A;;1 as in section 2.3. Since
@i(Ai,Ci) = (By,(i+1), where @1 is defined by (2.14), it follows that @i(Ai,Ci) =
(Ait1,Giv1). Let

(2.16) P=Qno-00500;.
Then ﬁ(Ah(l) = (A1,¢() and P maps a neighborhood of (A1,¢1) in 4 x A; into

/1 x A1. Our second result is as follows.

THEOREM 2.6. Suppose that Assumptions 1-5 hold for system (1.1) with h = 0.
Let P be defined by (2.16). If

det(DP(A1,¢1) = Lnym-1) # 0,

where DP is the Jacobian matriz with respect to the standard coordinate of @) X
A1, then the configuration (1.5) admits a relaxzation oscillation. Furthermore, the
corresponding periodic orbits are orbitally asymptotically stable if r(DP(A;1)) <1 and
orbitally unstable if r(DP(Ay)) > 1.

Theorem 2.6 is resulted from a more general theorem, Theorem 2.7, stated below.
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2.5. Systems with multiple slow and fast variables. Now we consider sys-
tem (1.1) with general h, which can be used to treat system (1.10).
Fori=1,2,...,Nand j=1,2,...,m, let

‘ 1 if 29— ,0)
(2.17) wf‘j) — Z min
-1t ) =2
where z( , and z . are the numbers given in Assumption 1. Let
(J5)
) Ji i
(72) if Zz( 1) = Z( 1)7
q—z;
PD=N " gy o
i i—1

£ Z(Ji) # Z(Jz')

i—1>

q—z q—z

where J; is the index defined in Assumption 2. By the construction of ¢;, we have
$i(279) > 0 for all (p,z) on ~;, where 7; is the trajectory defined in Assumption 2.
Define functions g; and h; of (p,q) € RY x R by

(218) (9 h)(®:0) = dila) |97 By zim1 + g0, 0] for g # 27 2.

That is, g; and h; are rescaled values of ¢(/*) and h, respectively, along ;. By Assump-
tion 1, (g4, h;) can be continuously extended at ¢ = zi(J”’) and zl(‘]l)7 which correspond
to (p,z) = (Bi—1, 2i—1) and (A;, z;), where A; and B;_; are points in R” introduced in

Assumption 2. We identify (g;, h<) With its continuous extension. Thus g;(B;_1, 2 Z(Jl))

and g;(A;, zZ( ‘)) are multiples of 2 o (J Ty (Bi_l, zi—1,0) and ng, ; (4, 2z, ) respectively,
by nonzero constants. By Assumption 4, it follows that g¢;(B;_1,z2;"~ 1) # 0 and

Ji
9i(Ai 2(™) # 0.
Note that the functions p; and ¢; in Assumption 2 satisfy that {(p;, ¢;)(t)) : t € R}
is a trajectory of the system

(2.19) p=hip,q), q=gip.q),
; (B, (Ji) o (J8) : , (J3)
which connects (B;_1, ;"7 ) and (A;,z;"*’). Since g;(B;—1, #;~ 1) # 0and g;(4;,2"") #

0, there exists a neighborhood %;_;1 of B;_; such that we can define 7; : 8;_1 — <
implicitly by the fact that

(2.20) (p, zz(il)) and (m;(p), Z(Ji)) are connected by a trajectory of (2.19).

K2

Let ; xid be the map from %;_1 X A; to o x A\; given by (m; xid)(p, ¢) = (m;(p), ¢).
Define

(2.21) ﬁz(ﬂ']\]Xid)OQ\NO(ﬂ'NXid)O”-O@QO(’]TQXid)O@l.

THEOREM 2.7. Suppose that Assumptions 1-5 hold for system (1.1). Let P be
defined by (2.21). If

det(Dﬁ(Ala Cl) - In—i—m—l) 7£ Oa
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where DP is the Jacobian matriz with respect to the standard coordinate of @A X
Ay, then the configuration (1.5) admits a relaxation oscillation. Furthermore, the
corresponding periodic orbits are orbitally asymptotically stable if r(DP(A1)) < 1 and
orbitally unstable if r(DP(A7)) > 1.

The proof of the theorem is given in section 3.2, and the computation formula of
the Jacobian matrix is given in the appendix.

3. Proofs of the main theorems. Note that Theorem 2.7 is a generalization
of Theorems 2.6 and 2.5. While Theorem 2.7 can be proved without relying on the
results of the other theorems, for clarity we prove Theorem 2.5 first in section 3.1 and
then prove the general Theorem 2.7 in section 3.2.

3.1. Proof of Theorem 2.5. In this section we assume m = 1 and h = 0 in
system (1.1). With A = 0 in the limiting system (1.3) of system (1.1), the curve ~;
given in Assumption 2 can be written as v; = {(4;,¢;(t)}, where A; € R™ is given
in Assumption 2 and ¢; satisfies g;(—o0) = z;_1 and ¢;(+00) = z;. Since ¢; is a
nonconstant function by assumption, we can choose a point (A;, z9;) € ~; at which
gi # 0. Let T'; be a cross section of 7; at (4;, z0;) of the form

(3.1) Iy ={(p,2) : |p — Ail <o, 2= 20i},

where §p > 0 is to be determined. Our strategy is to track trajectories that evolve
from T'; along the flow (1.1) and reach I';y; near the configuration v; U o; U 7y;41.
We set a cross section ¥; of o; and analyze the dynamics between T'; and X; (see
Figure 7). By symmetry, the dynamics between ¥; and T';11 can also be treated.
Near I'; we will use the original coordinates (p, z); near 3; we will use the coordinates
(p, ¢), where ( is a blow-up variable for z to be defined later; and near (A4;, z;) we will
use the coordinates (p, z, () to connect the other two coordinates. We will choose two
cross sections, «™ and «/°" near (A;, z;) to analyze the transition map from T'; to
P

F1G. 7. The transition map from I'; to I'i4+1 can be split into transition maps between I';, 3;,
and I'; 1. By symmetry, the dynamics between ¥; and I'; 1 are similar to that between I'; and X;.

Here we give heuristic reasonings for the use of these charts. If we start from a
cross section <7, (of dimension n) of «; in the original (p, z)-coordinates, following
the limiting fast flow this cross section projects onto a subset o, C M; of dimen-
sion n (see Figure 8). If we evolve & along the limiting slow flow on M;, then the
evolved manifold still has the same dimension n as .o7;. This means that some infor-
mation is missing. The remedy is to introduce a blow-up variable ¢, which is obtained
essentially by setting ( = eln(1/|z — z]). The image of <" in the e-dependent
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l;’:, Bin

(a) (b)

Fic. 8. ﬂZi“ is the image of Jz{iin in the (p, z,C)-space with e-dependent coordinates. bQZ is the
projection of ﬁ;in on M; along the limiting fast system. (a) In the (p, z)-space, the image of the
manifold evolved from ; and the image ofJaZ- itself both have dimension n. (b) In the (p,()-space
with € = 0, the image of the evolved manifold has dimension n + 1.

(p, z, ¢)-coordinates, denoted by &ZTH, has the limit <7 x {0} as ¢ — 0. The images
of &™ and ¢ in the (p, {)-space with € = 0 both lie in the space {¢ = 0}. Following
the extended limiting slow flow (associated to @); defined in section 2.2), the mani-

fold evolved from the image of .;z//lv in the (p,()-space has the full dimension n + 1.
Therefore, our approach consists of the following three steps:
1. Use the original (p, z)-coordinates to track the transition from the cross sec-
tion T'; of 7; to another cross section 7™ that is closer to M;.
2. Use the (p, z,()-coordinates to track the manifold evolved from 7. (This
corresponds to Proposition 3.2.)
3. Use the (p,()-coordinates to track trajectories in the vicinity of M;. (This
corresponds to Proposition 3.1.)
We refer interested readers to Hsu [26] for a
We define a set of transforms between various coordinates. Analogous to the

notation k,j in Krupa and Szmolyan [36], we use the notation ng) to denote an e-
dependent transform from the kth space to the jth space in the vicinity of M; (explicit
fomulas are given in later paragraphs). In particular, these transforms satisfy that
Hifj)ongk) (k) (k) _ ()

is the identity map and that ;"' ok, K&

A list of symbols used in this section is given in Table 1.

whenever they are defined.

TABLE 1
Notation in section 3.1.

Variables Charts Objects
(p.2) €Q KGD (02,0 = (p.2) | T
=R" X (Zmin, 2 max) | K4 (0,0) = (p, 2)
p €R™ oy, By
(p.%¢) EQXR kG (p,2) = (0,2,0) | S, d®, ot
SV (0,0) = (9,2,0)
(p.¢) €R™ xR B2 =m0 | Fo, 8
B (p,2,0) = (0,0)

Let w;, 1 <i < N, be the numbers defined in (2.17) for m = 1, which means that

w; = wgl). By Assumption 4, in a neighborhood of (A4,,z2;), for §; > 0 sufficiently
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small, there is a unique point (A;, z; + w;d1) that lies in the curve ~;. Here B(p, ) is
the open ball centered at p with radius r. Let

(3.2) Wiin ={(p,2) :p € B(A;,02), 2 = 2 + w01},

where 0; and 0o are positive constants to be determined. By shrinking g in the
definition of T'; in (3.1) if necessary, under the assumption that A = 0 the transition

map Hﬁ of the flow of system (1.3) from T; to @™ is well-defined and satisfies

in

o o7 in
(33) Hd"li (pa Z) = HOIEL (pa Z) = (p7 Zi + Cdi(S]_)

for all small € > 0.
Next we investigate the dynamics near o;. Let © = R™ X (Zmin, 2max). We define

an e-dependent chart /»15’1) on Q) by

In this chart system (1.1) with A = 0 is converted to

P = f(p 26,
3.4
(3:4) = —w; M, where z = z; + e w; exp(—(; /€).
z— Z;

Formally, the limiting system of (3.4) as € — 0 with z = z; 4+ o(e) is

p/ = .f(p7 Ziao)v

CI = —Ww; 87‘2(])7 2130)

(3.5)

Let ®; to be the solution operator of (3.5). Let

(3.6) oy = B(Ai, ba)
and
(3.7) A2 = B;(o x {0},05),

where d3 > 0 and 4, > 0 are constants to be determined. Let 75(7) = D ((As, &), 7),
0 <7 <T, Let$; be a cross section of the curve &; at 5;(T;/2) in R" x R. We

denote TI> 0.7 out the transition map from 42{ out 6 5, following the flow of (3.5).

PROPOSITION 3.1. Let < and ,°" be defined by (3.6) and (3.7), respectively.

For any fized 53 > 0, if 64 > 0 is sufficiently small, then the transition map I1> e ot

fmm .@70‘“ to E for system (3.4) is well-defined for all small € > 0. Moreover,

HM{Qut is O(e€)-close to szout in the Cl(do‘“) -norm as € — 0.

Proof. Let X be the image of S via the projection (p,{) — p. Since the trajectory
o; of (1.4) connects A; and X;, we can choose A > 0 such that the transition map
from & to ¥; whenever §, > 0 is sufficiently small.
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Note that the p-component of ®;(A;, 7) equals o;(7) = ®;(A;, 7) in Assumption 3.
Also note that Assumption 5 gives

inf {¢ : (,0) € B:((4;,0),7), 7 € [d5,7: — 8]} > 0.
Therefore, by decreasing A if necessary, for <7 defined by (3.6) with d5 € (0, A),
(38) it {C:(p.C) € Bil(p0,0).7). po € A, 7€ BT~ )| > C
for some C > 0. Substituting (3.8) into (3.4), we have
P = f(p,2,0)+O(e+ 6_0/5/6)7

i, 99 .
¢ = wlaz(pvzl70)+0(e)'

(3.9)

Hence (3.4) is a regular perturbation of (3.5) in a neighborhood of the set

{O(z,7):x € ", 1 €0,7; — 265]}.

Therefore, by regular perturbation theory, H? ' out is well-defined for small € > 0 and
is O(e)-close to e in the C’l(,&i(’“t)-norm as e — 0. 0

O'Q?_O‘“

Finally we investigate the dynamics near the union of 7; and o;. We define

) = (.20 with =eln( 2] for (po) e ex0

Z— Z;

Note that /iifl)(p, z) = (p, 2, () can be obtained by appending z to IiSl)(p, z) = (p, ().

(21)

The transformation ;' converts system (1.1) with h =0 to

p = 6f(p7 2:76)7
(310) Z :g(p727€)7
C‘- = —ew; g(p,Z,e)
Ca—z
We define .
Kgi )(paZ,O = (p7 Z)
and
(3.11) A" =1 (™) for e >0,

which means that
%,iin = {(pﬂzvc) ‘pE B(p6?762)7 2=z +wi517 C = 611’1(51} .

Note that n((il)(p, z) = (p, 2,0) for all (p,2) € o7,
Taking € — 0 in (3.10) leads to system (1.3) companioned with {( = 0. By
Assumptions 2 and 4, the projection

I ™ — oty x {2}
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following the flow of (1.3) is well-defined and is a local homeomorphism. We define

Hgfg;m e /in % id, which means

Hfﬁ,t, (P, 2 ) = (I, (p. 2), Cs)-

In the slow time variable 7 = et, taking e — 0 in (3.10) with z = z; 4+ o(e€) leads
to (3.5) appended by the equation z = z;. We define <I>1-((p, Zi, C),T) on p; % [0,7;]
to be the image of &J((p, <), 7') in the space {(p, z,¢) : z = z;}. Also we define

kS (0,0) = (p,2,¢)  with 2 = 2; + w; €9/¢
and

(3.12) A" = kCV () for € > 0.

Note that I = &;(-, 83) by (3.7).
02704

PROPOSITION 3.2. There exists A > 0 such that the following assertions hold.
Let o™ and <7,°"* be defined by (3.11) and (3. 12) with 0; <A, j=1,2,3. Then for

all sufficiently small 4 > 0, the transition map H <t fmm %m to 4270“ following
the flow of (3.10) is well-defined for all small € > 0 Moreover

o o 21 Ao 21
(3.13) HH CRYT L | LR | TR = 0(e)

)
6.127”‘ 0A; OE{m c1 ((Q{_in)

as € — 0.

A schematic diagram representing Proposition 3.2 is shown in Figure 9. The

out

significance in estimate (3.13) is that the transition map H “ in can be approximated

ut
by the composition function of HO;;; and H“Si‘; in” which are determlned only by the
04

limiting systems.

o7 out
€1
(21) =i
K ~ . e/ 1N ~
sz%m <y gfin - o7, 0ut
€1 €1
Ao Aot
2D 2 Mim I -
in 0i in 0i . 04 out
2, S0y 04 o LA

F1G. 9. A schematic diagram representing Proposition 3.2. Here — indicales injection and ~
indicates the limit as e — 0. The transition map from ;" to szsg’“t along (3.10) is approzimated
by the composition function of transition maps for the limiting systems.

To prove Proposition 3.2, we consider in general a system for (a,b) € R™ x R,
n > 1, of the form

a=eF(a,b,e) +bH(a,b,e),
(3.14) )

b= bG(a,b,e),

where - denotes %, and F, G, and H are smooth functions. Note that the expression
(3.14) is identical to (1.10), but the variable a is a vector in (3.14) and is a scalar in
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(1.10). In this section we will only use system (3.14) with H = 0 but will consider
general H for convenience in next section.
The limiting fast system, obtained by setting ¢ — 0 in (3.14) is

a="bH(a,b,0),

(3.15) )
b=bG(a,b,0),

which has a line of equilibria {b = 0}. The limiting slow system on {b = 0} is
(3.16) a’ = F(a,0,0).

The following is a variation of the exchange lemma in Jones and Tin [33] and
Schecter [52].

LEMMA 3.3. Consider system (3.14) for (a,b) € R™ x R. Assume that for some
a € R™ satisfies that G(a,0,0) < 0 and that the point (a,0) is the omega limit point
of a trajectory v of system (3.15). Then there exists A > 0 such that the following
assertions hold:
Suppose that {@Cn}ee[o,eo] is a smooth family of ¢-dimensional manifolds, 0 <
¢ < N, that intersects v at a point in B((a,0),A) and satisfies that
(H1) <™ is nontangential to the flow of (3.15),
and the projection A C R™ of o/, along the flow of system (3.15) satisfies that
(H2) @ € A and A is compact and is nontangential to the flow of (3.16).
Let ® the solution operator for the system (3.16). Let 1. : K — &/ be a smooth
parameterization of ™ for € € [0, €], where K is an (-dimensional manifold. Let
T € ™ Ny be the preimage of @ along (3.15) and k € K be the preimage of T by 1o.
If . > 0 satisfies that
(H3) the trajectory o = ®(a,[0,71]) lies in B(a, A) and is rectifiable and not self-
intersecting,
and o7 °" is an n-dimensional manifold that intersects transversally at an interior
point of o x {0} in R™ x R, then there is an open neighborhood V of k in K such that
the transition map 11 o from te(V) C ™ to o °U following the flow of (3.14) is
well defined for all suﬂ?eciently small € > 0. Moreover,

dout dout A
(3.17) HHE»@“‘ 01— TE™ 0TI} 010

=0
. (¢)
as € = 0, where H(/)\% is the transition map from <y to A along the flow of (3.15),
and HO*‘Z’;\M is the transition map from A to &7 °** N {b = 0} along the flow of (3.16).
Proof of Lemma 3.3. Using a Fenichel type coordinate (see Jones [32]), in the
open ball B(0,2A) in the (a, b)-space, for sufficiently small A > 0 we can choose an
e-dependent change of variables (a,b) — (@, b) with

(@)],_o = (a,0)
such that system (3.14) is converted to
a=eF(a,e),
(3.18) s
b=0bG(a,b,e).

We will drop the tildes in the rest of the proof. We write

A = {(a,b) 1 a € A,b = Be(a)}.
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Since 7 °“ intersects o transversally, for some neighborhood U of @ in R", we can
write

12" (a) = ®(a, To(a)) YaeANT,

where Ty is a smooth function with 7 < Ty < 74 for some 7_, 74 € (0,71). To prove
(3.17), it suffices to show that

=0(e)

(319) 27t @ o)) = (@@ Tofa). O, -

as € — 0. Let (ae,be)(t;ap) be the solution of (3.18) at time ¢ with initial data
(ao, Be(ap)). Define

(3.20) (ae1,be1)(a0, 7) = (ae,be)(7/€;a0) for ag € Ay, 7 € [1—,74].
By the general exchange lemma (see Schecter [52]),

(321) H(CLEl, bd)(ag, 7') — (@(ao, 7'), 0) HCl(Al ><[7;,T+]) = O(E)

as € — 0. Since the graph of (®(ag, 7),0) is transversal to &/ °"*, it follows from the
implicit function theorem that there exists a function T (ag) defined for all small € > 0
such that

(322) HTE — TO”Cl(AﬁU) = 0(6)

and

(ac1,be1)(ao, Te(ag)) € " Yag € ANU.
Note that the last relation means that
(3.23) 117, (a0, 8) = (ac1, ber)(ao, Te(ap)).
From (3.21), (3.22), and (3.23) we then obtain (3.19). 0
Proof of Proposition 3.2. Setting s = z — z; in system (3.10) yields

p= Ef(p, Zi + 870) + O(|(67S)|2)7

= s%(p, zi,0) + O(|(6,s)\2),

¢ = 22 p,20,0) + O(e5)P)

as (€,s) — 0. Note that system (3.14) with H = 0 can be written as
i = eF(a,b,0) + O(|(e, b)),
b="bG(a,b,0)+O(|(e, ).

Slnce @(AZ, 2;,0) < 0 by Assumption 5, applying Lemma 3.3 with b = s, a = (p, (),
= (f,0g9/0z), and G = 0g/0z, we obtain (3.13). 0
We denote Hé‘fii the transition map from T'; to <% X {z;} along the flow of (1.3)

and H?;?_ the transition map from &7 to 3; along the flow of (3.5).
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PROPOSITION 3.4. There exist §; >0, 0 < j < 4, such that if I';, o, ¥; are de-

fined in the preceding paragraphs, then the transition map HEEF from T'; to X; following
the flow of (1.1) is well-defined for all small € > 0, and

(3.24) ’

ROV 0TS I o k() o TIgH

€1

= O(e)

cH(Ty)
as € — 0.

Proof of Proposition 3.4. First we fix constants 0y, d2, and d3 in (0, A), where A
is the number given in in Propositions 3.2. Then we choose positive constants dg and
d4, such that (3.3) and the results in Proposition 3.1 hold. Then

5 B Q{out :Q{.in
Hf =1 pf@ut oH i mOHeﬂ

= (%(13) o HE o /@(31)) o ( (12) o H”Q{O"t o (21)) o Hdm.

€1 'd out €1 E’L d in E’L

From (3.3) and Propositions 3.1 and 3.2, it follows that

s, (13) bop (31) (12) «fo“t o (21)
HEFi - ( HOngut HO’L ) o ( H HO;m HO'L ) + O(E)
=¥ o (5, 0 ni? omZ " ) o (Hzfz; wors ol )+ 0(6).
Since
M oy o =T o0 nf7Y

and

H”%‘ o néfl) oll

'Q{m (21)
0«52{”1 OF -

=FKg;  © Hgfii,
it follows that
S = k¥ o (HE o Héﬁ:@)) (néj” o H(j‘fii) +O(e)
13 S d
= ki oI, 0 kG o TG + O(e).
(3

Applying both sides of equation by g, b yields (3.24). d

Proof of Theorem 2.5. By areversal of the time variable and applying Proposition
3.4, we obtain
‘ = O(e).

Taking the inverse of the mappings in the last equation, we obtain

(31) S (31)
Rei " © Hel"b+1 H()g’a? O kg = © OFZ+1

CH(Tit1)

= 13 r; (13) gg
(3.25) HHCFi o “Ei ) My5" o kg™ © IS lersy = O(e).
By (3.24) and (3.25), it follows that
= (13 o) o (s o)
(3.26) = (Hggl o Kjél Vo H”@ ) (1_[E 0 nél )o s ) + O(e)

— Hg;gl o /f(()i?’) o H‘%: o /iéfl) o Hgi{l‘i + O(e).
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Define o(p, z) = p. Since we assumed h = 0 in (1.3), it follows that
i1 o
QOH&%@- (p,z)—p V(p,z)E,@Z

Hence (3.26) implies that

(3.27) oI = Qi + O(e),

where @; is defined in (2.9). (Here and in the rest of the proof we identify T'; with
R™ since the z-coordinate is constant on each I';.) Let
P =TI, o oIl oL .

Then
poP.=Qno--0Q20Q1+0(e) =P+ O(e),

where P is defined by (2.15). Since the z-component on I'; is a constant, we conclude
that
det (P, — id) = det (DP — id) + O(e).

Since we assumed det(DP(A) —1,,) # 0, it follows that det(P. —id) # 0 for all small
€ > 0. Consequently, for all small € > 0 there exists a locally unique fixed point
pe € T'1 of P.. Then the trajectory passing through (p.,z01) is a periodic orbit of
system (1.1), where zp; is given in (3.1) with ¢ = 1, and p. — A; as e — 0. If
r(DP(A1)) < 1 (resp., r(DP(A;)) > 1), then P, is a contraction (resp., expansion),
and hence the periodic orbit is orbitally asymptotically stable (resp., unstable). This
proves the theorem. ]

3.2. Proof of Theorem 2.7. The approach in this section is to generalize the
proof of Theorem 2.5. First we give a heuristic explanation of our approach. To show
the idea, we assume that z = (21, 2(?)) (i.e., m = 2) and that, for some index 1,
Ji = 1 and J;41 = 2 (see Figure 10(a)). Since J; # 2, we have zi(i)l = zZ@), so the
value |2(?) — 252)| is expected to remain small during the transition from M;_; to
M;, which suggests that the blow-up variable ¢(?) = eln(1/[2(?) — zi(?) |) remains valid
throughout this transition. Hence, we transform 7™ from the (p, 21, 2(?))-space
into the (p,z(l),C(l),C(z))—space7 which has e-dependent coordinates. The image of
/™ in this blow-up space is denoted by <7 ™. Since (1) is away from the value 2"
on ™ in the limit € = 0 the ¢((M-coordinate equals 0 on Jz/%?“ (see Figure 10(b)).
The fact that ¢ is defined in the vicinity of the union of M,_; and M, implies that

the limiting value of ¢ on 42%?“ as € — 0 is Ci(Q) = Ci(z)l — fa,_l gg—gj dt, as defined

in (2.10). We denote A; the projection of gii“ along the extended fast system into
(1)

M;. Then the manifold evolved from fL with € = 0 has constant z; ’-coordination.

Hence, we drop the z§1)—coordination and adapt the (p, ¢, C(z))—coordinates in the
vicinity of M; to ensure that the evolved manifold has the full dimension. Therefore,
the treatment of M; consists of the following three steps:
1. Use the (p, 21 ¢®))-coordinates to track the transition from I'; to another
manifold <7 that is closer to M;. (This corresponds to Proposition 3.5.)
2. Use the (p, 20 ¢ ¢ )-coordinates to track the manifold evolved from o7, ™.
(This corresponds to Proposition 3.7.)
3. Use the (p, C(l),C(z))—coordinates to track trajectories in the vicinity of M;.
(This corresponds to Proposition 3.6.)
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Fic. 10. (a) In the (p, z)-space, with € = 0 the image of mf?“ (dark segment with z( > 0) and
the image of the manifold evolved (light segment in the p-axis) from ;42 both have dimension n. (b)
In the (p,()-space with € = 0, the image of JZ%;in has dimension n + m — 1 and the image of the
evolved manifold has dimension n + m.

TABLE 2
Notation in section 3.2.

Variables Charts Objects
(p,2) €2 CR™ X R™ Va0 =w2 | QT
with 2(9) € (zl(nj?n,zﬁ)ax)
pEeR™ gy, B
(p,4,0) kG (0,2) = (0,0,0) | T,
ER™ X (2 2ee) X B | GV (0,0 = (0,20 | A, o
(p,4:¢) &Y 0,0,0) = 0,0,Q) | %, F*, T
€ R X (7 Zome) X B | 65V (0.0) = (P 4,0)
(p,¢) ER™ xR™ B p,2) = (p,0) PARND
BY(p,4,0) = (9,0)

As illustrated by Figure 7, we will set a cross section X; of o; and analyze the
dynamics between I'; and ¥;. By symmetry, the dynamics between ¥; and I';;1 can
also be obtained. Near T'; we will use the original coordinates (p, ¢, Z ), where ¢ = 2(74),
and Z , to be defined later, is a blow-up variable of all but the J;th components of z.
Near ¥; we will use the coordinates (p, (), where ¢ is a blow-up variable for z to be
defined later; near A; we will use the coordinates (p,q, () to connect the other two
coordinates. Some notation to be used is listed in Table 2. Let

Q=R"x (z(l) 2 ) X e X (z(N) z(N)> CR"™ x R™,

min’ “ max min’ “ max

where Zfr{i)n and z(gléx are the numbers given in Assumption 1. Motivated by the

classical blow-up method, we define the e-dependent chart on by

~ S fest if j = J;,
k0 (p,2) = (p,299.0) with () = RO
€ hl m lf ] 7& Ji,

where J; is the index in Assumption 2. On the curve (p;(t),q;(t)) € R™ x R in
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Assumption 2, since ¢;(t) is nonconstant, we can choose a point (pg;, go;) at which
qi(t) # 0. Let

(3.28) r; = {(pa%Z) ER" X R x A;: [p—pos| <o, ¢ = qoi, |~ G| < 50}7

where dp > 0 is to be determined. Let I'; = HSO)(FZ'). Our strategy is to track

=

the transition map from I'; to I';4;1 in the (p, ¢, {)-space to find a fixed point of a
(

composition map from I'y to I'; and then convert it back via Iﬁ:ﬁl) to obtain a periodic

orbit passing through T'; in the (p, z)-space.
Let

(3.29) 2 ={(p,0,0) : p € B(p}",82), ¢ = 27 +wiby, [ — G| < 82},

where §; and 05 are positive constants to be determined.

PROPOSITION 3.5. Let I'; and «7,™ be defined by (3.28) and (3.29), respectively.
For any fized 61 > 0 and 62 > 0, if 69 > 0 is sufficiently small, then the transition

map H'gf:n from T; to o™ following the flow of (1.1) is well-defined for all small

€ > 0 and is O(e)-close to Hﬁi;n in the C*(T';)-norm as € — 0.

Proof. Chart KZSO) converts system (1.1) to

p = Gf(p,Z,ﬁ) + ]’L(p,Z,G),

i=g")(p,z,e),
3.30 =) g9 (p,z,€)
(B30 BRI G m\ (),
Z(J)—zij

with 2(/) =¢ and 20) = z§j) +w§j) exp(—g(j)/e) for j # J;.

By Assumption 5, all components of Zz € A; are bounded away from zero. Therefore,
for each j € {1,2,...,m}\ {J;},

2w exp(—CD fe) 2 as e 0,
which implies that
99V (p,2,0) | 9g

S0 L0 920

i

(p,zi—1 +qey,,0) ase—0.

=(J)
Hence the expression of ¢ in (3.30) tends to zero as € — 0. Consequently, (3.30) is
a regular perturbation of the system

p = h(pa Zi—1+qey,_q, 0)7

(3.31) q=g")(p,zi_1 +qey,_,,0),
={(J)
C =0, jefL2....m\{J}

n

Hence Hf{l:‘ is well-defined and is O(e) C'-close to H‘g{ii as € — 0. d
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We define charts KZSO) for (p,z) € Q by
30

. (7)
with ¢U) =¢ln

20) — 29

for j=1,2...,m.

In this chart system (1.1) is converted to

d
Ep - f(pazve) + h(p,Z,€)/€,

(3.32) dicm _ 0wz,
-

20) — 29

with 20) = zi(j) —i—ng) exp(—C/e) for j=1,2,...,m.

Let C/I;,» be the solution operator of

d
Ep:f(p7zi70)7
(3.33) i —0g0 |
(0 = e (p.zi,0) forj=12.m.

Let <7 and /™ be defined by (3.6) and (3.2), respectively. We define
(3.34) o =y x Ny and A" = O;( <, 53),

where d3 > 0 is a constant to be determined. Let 7;(7) = (TDZ-((AZ-, ¢i),7),0< 17 <T;.
b

0.7 out the transition

Let f]l be a cross section of the curve o; at 0;(7;/2). We denote II

map from 4271-0‘“ to &; following the flow of (3.5).

PROPOSITION 3.6. Let <7 and JZZ-O‘“ be defined by (3.6) and (3.34), respectively.

P
7 out
esfl;

from ;Zfi"ut to f]z for system (3.32) is well-defined for all small € > 0. Moreover,

II is O(e€)-close to H(i??out in the Cl(QAin”t)—norm as € = 0.

For any fized 63 > 0, if 4 > 0 is sufficiently small, then the transition map 11

s
egzo‘“
Proof. By Assumption 5, we have
lnf{c(]) : (p7 C) = &i(T)7T € [53aTi - 63]’j = 1a25 B am} >C
for some C' > 0. Therefore, similar to the proof of Proposition 3.5, system (3.32) is a

regular perturbation of (3.33), and the desired result follows. |

Define chart HSO) for (p,z) € Q by

k2 (p, 2) = (p,4,€)

with ¢ = 27 and 20 = zi(j) +w§j) exp(—g(j)/e) forj=1,2...,m.
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This chart converts system (1.1) to

p=ef(p,z€) + hip, z,6),
¢=9"(p,z.0),
(3.35) () — ¢ —99(p, 2,¢)
L) — Z(J)
with  z(?) —Z(J)—i—w exp(—C9) /e).

, J=12,....m

)

(Jl

Here we temporarily ignore the relation z(/i-1) = =z 1) + ¢q. Formally, the limiting

slow system of (3.35) at z = z; is

P~ f(p,20),
d
(3.36) Eq —0,
d oy —0gW
=@ = _ o
¢ = 92z(9) (p,2:,0), j=12,...,m.

Denote ®; the solution operator for (3.36). Let 7™ and «/,°" be the sets defined
by (3.2) and (3.34). We define chart Iig-l) : R™ x (zr(r‘lllrz,z(r;l]a)x) x Rm~1 — R™ x
(Z( i) (i) ) x R™ by

min ? maX

UJ(J) . .
eln o if j = J;,

k2 (p,q,0) = (p,q,¢) with ¢V) = ’
it A g
and chart HS3) ‘R* x R™ - R” x R x R™ by

k29 (p,¢) = (p,q,¢)  with ¢ = w’? exp(—¢!7) /e),

and we define sets

(3.37) A =wG (™), 8 = kG (M) fore>0.
Note that

AR

02‘{'01 - (1)7.('»53)-

PROPOSITION 3.7. There exists A > 0 such that the following assertions hold.
Let /™ and o,°" be defined by (3.37), (3.29), and (3.34) with 0; <A, j=1,2,3.
Then for all sufficiently small 64 > 0, the transition map IT ;ZL:: from ﬁ?m to &Z?”t
following the flow of (3.35) is well-defined for all small € > 0. Moreover

(3.38) HH‘Z"~ PRI L | CORRCE = 0(e).

of in 005 Q{ in 0%

C1 (gfiiu)
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Proof. Note that we have z(/i-1) = z 1 Y 4 ¢ when converting (1.1) to (3.35).

297D 4 LU

Let s =q — . By Absumptlon 1, (3.35) can be written as

p = Ef(pv 2770) + h(p7 zi + SeJi—uO) + O(|(€a 5)|2)7
§= g(pv Zi + seJi—17O> + O(|(€,S)‘2),

()
097 (1) 200) + O((e, 5)P)

SG) —
==

as (e,5) — 0. Since ggifz (A;,2;,0) < 0 by Assumption 5, applying Lemma 3.3 with

b= s and a = (p,() we obtain (3.38). O

We denote Hgi: the transition map from T'; to o7 x {z(‘]i)} {¢;} along the flow
of (3.31) and Hzl the transition map from 0 & to 3; along the flow of (3.33). We
define chart ff(?’l) o (20 200 ) S Rm=1 o R x R™ by

mm ’ max

(J3)
) In i —— if = J
K (p,0,0) = (p,¢) with ¢ ={ "2 NI T
¢ if j# J;.

PROPOSITION 3.8. There exist 6; > 0, 0 < j < 4, such that if I';, 2/, ¥; are de-

fined in the preceding paragraphs, then the transition map H?F from T; to X; following
the flow of (1.1) is well-defined for all small € > 0, and

@Yo HZ ok oI

e =0(e)

cH(Ty)

(3.39) ’ K

as € — 0.

Proof. Analogous to the proof of Proposition 3.4, the assertions can be derived
from Propositions 3.5, 3.6, and 3.7. We skip it here. 0

Proof of Theorem 2.7. By a reversal of the time variable and applying Proposi-
tion 3.8, we have

Taking the inverse of the mappings in the last equation, we obtain

= 0O(e),

(31) o sz

Kei eliq1

21 (B _ 112
H o Kg; OHOI‘LH

= O(e).
CH(Ti41) (©

(3.40) i o Y = g o sl

EZ

illc1(S)
where /1( 3 R" x R™ — R" x R x R™~! is the chart defined by

kG (0.C) = (0,¢.Q) with g =z +w™ exp(—¢17) fe),
and (W) =¢V) for j=1,2,...,Ji—1,Ji+1,...,m.
By (3.39) and (3.40),

M = (o sl o (w20 o1

€

o;

= (Mg o nfi¥ oTZ ) o (115, 0 w3V o TG ) + O(e)
=yt o rbi? oTIZ: o k2D 0TI +O(e)

= Hg.%bl ° Ql °© Hg{ijl + 0(6)7
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where Q; is defined in (2.14). Therefore,

I'ipo Tigq
H€F7+1 © HeF~

(341) | Lito i1 1+1 o
(M52, 0 Quva o TG, ) o (Mo 0 Qi o I, ) + O(e).

We denote

_ 171 F3 I
Pe=1lgp o---oll# ollf .

By (3.41) and the relation that Hgijgi_l = m; X id, we have
P. :Hgf@N o@No(ﬂ'N X id)o---o@20(ﬂ'g X id)o@l oﬂgi{}l + O(e).

Writing Hg? = H(‘)Z%N o Hg;’;’ = (m xid)o (H%N)fl, it follows that

P =T33, 0 Po (T, ) +0(),

where P is defined by (2.21). This implies that

det (DP, — id)

— det (Dng;% oDPo (DI, ) - id) +0(e)

= det (DJI5 - id) +O(e).

Hence, the linearization of the limiting return map P, at (p01,q01,21) € I'; does
not have a singular value equal to 1 if det(DP(A41,(1) —id) # 0. Consequently,

by the implicit function theorem for all small € > 0 there exists a locally unique
. ~ 01 i~ o1
fixed point (per,ger,Ca1) € Ty of Pe. Let (per, 1) = £ (Pet, e, Cer), where #{0") :

R™ x (21 U0y 5 Rm=1 _ R® « R™ is defined by

min ’ ~ max

(01) N a1 L) )Y ity =i
,q,C) = (p, with =
mer (P:0:¢) = (p2) with z {ZZ —i—w exp( C(])/e) if j # Ji.

Then the trajectory passing through (pei,ze1) is a periodic orbit of system (1.1).
If r(DP(A1,¢1)) < 1 (vesp., 7(DP(Ay,¢1)) > 1), then P. is a contraction (resp.,
expansion), and hence the periodic orbit is orbitally asymptotically stable (resp.,
unstable). |

4. Examples. In this section we apply the main results to study the examples
(1.6), (1.7), (1.9) and the planar system (1.10) mentioned in section 1.

4.1. Trade-off between encounter and growth rates. Consider system (1.7)
from Example 2, which takes the form

33 F(J},O&)—G(ﬂf,y,()&),

y = H(z,y,a) = D(y),
ed =a(l —a)E(z,y,)
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with
F(z,a) =z(a+r— k),
ry(aa® + ba + c)
= H =
G y,0) = H(z,y,a) = 0 E20ED,
D(y, ) = dy
and

0 (1 2a0 + b
E(xvyva) = 5 <> :1_%

The limiting fast system is
=0, y=0, a=o(l—-a)E(z,y,a).
The critical manifolds are
M, ={(z,y,a) :a=0} and My = {(z,y,a):a=1}.
On the critical manifolds M;, the limiting slow system is

¥ = F(z,a) — G(z,y, &),
y/ = H('ray76‘) - D(y)a

where @ = 0,1. Let ®; and ®5 be the solution operators for (4.1) with @ = 0 and
a = 1, respectively. The transition maps @1 and @5 in Theorem 2.5 are determined

(4.1)

by

T1 b
Ql(A]_):(bl(Al,Tl) with / (1— Y ) dt =0

0 L4+ /o y)=e, (a1.0)

and

T2 2
QQ(AQ) = ‘I)Q(AQ,TQ) with / <1 - M) dt = 0.
0 L4z ) y)=s(A0.0)

Following [10], we set a = —0.1, b =3, c=1,d = 2.8, k = 1, and r = 10.
By implementing Newton’s iteration, we find points Ay = By =~ (5.57,11.03) and
B; = Ay ~(9.96,0.36) satisfying

Ay = By = Q1(A1) and Ay = By = Q2(Az).

This means that A; and B; satisfy the following conditions (see Figure 3(b)):
(i) Ay and Bj are connected by a trajectory o of (4.1) with @ = 0;
(ii) A2 and By are connected by a trajectory og of (4.1) with @ = 1;
(i) [,, E(z,y,0)dt =0and [ E(x,y,1)dt=0.
Using the formulas in Proposition A.1 and Remark A.2, we obtain

~0.0001  —0.0029 0.02 1891
bay(4y) ~ ( 0.0009 0.0258) and - DQz(Az) ~ (—0.02 —16.95)’

Hence, the eigenvalues of DP(A;) = DQ2(As) DQ1 (A1) are A\; ~ 2.86-107* and \y =
—0.42. Note that although J\; is close to zero, it is nonzero since P is induced by the
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flow of systems of differential equations and is thus a composition of diffeomorphisms.
The reason that A\ is close to zero is that the endpoint B; of the slow trajectory oy
of system (4.1) with @ = 0 is close to the asymptotically stable equilibrium (10, 0),
which causes contraction of surface areas (see, e.g., Li and Muldowney [41]).

Since A1 and Ay are both of magnitude less than one, by Theorem 2.5 or its special
case, Theorem 2.1, the configuration

1Yo Uy Uos

corresponds to a relaxation oscillation formed by locally orbitally asymptotically sta-
ble periodic orbits.

For system (1.7) with e = 0.1, taking initial data (z,y,«) = (10,0.5,0.5) we find
that the trajectory converges to a periodic orbit (see Figure 3(a)) near the singular
configuration.

4.2. Prey switching. Consider system (1.9) from Example 3. Following Piltz
et al. [49], we assume that the response functions f;(p;) in (1.9) are linear. After
rescaling, the system is converted to

= (1 —q2)p1,

= (r—(1-q)2)p2,

( p1+ (1—q)ps — 1)z,
q(1 = q)(p1 — p2).

/
P =
/
P2 =
P

(4.2)

m

The critical manifolds for (4.2) are

My ={(p1,p2,2,9) : q=0} and My = {(p1,p2,2,q9) : ¢ =1}

On M, the restriction of (1.9) is

P = D1,
(43) p/2 = (T - Z)p27
Z/ = (p2 - 1)27

which means that the predators hunt exclusively only the first prey population. On
My, the restriction of (1.9) is

P =
(4.4) ph = rzps2,
/

=(m -1z

which means that the predators hunt exclusively only the second prey population.
Let ®; and ®; be the transition maps for (4.3) and (4.4), respectively. The
transition maps (@1 and @2 in Theorem 2.5 are determined by

Q1(A1) = @1(141,7’1) with / (p1 —pg)’ dt =0
0

(p1,p2,2)=P1(A1,t)

and

T2
Ay) = Bo(As, ith - ] dt = 0.
Qz( 2) 2( 2 72) W /0 (pl Pz) (p1.p2.2) =B (Ao 1)
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With the parameters given in Piltz et al. [49], » = 0.5 and m = 0.4, we find
A1 = By ~(0.92,1.08,1.50) and Ay = By =~ (1.08,0.92,1.50) such that the transition
maps @; in Theorem 2.5 satisfy Q1(A41) = By and Q2(A2) = By (see Figure 4(b)).
Using the formulas in Proposition A.1 and Remark A.2, we obtain

—6.78 574 —1.00 ~156 338  0.55
DQi(A1)~ | 677 —4.03 070 |, DQs(4Ay) ~ | 2.80 —2.80 —0.99
034 —0.16 1.04 —0.07 034  1.06

Hence, the eigenvalues of DP(A;) = DQ2(A2) DQ1(A1) are A\ = 60.55 and Ay 3 =
0.9740.26y/—1. Since \; is greater than 1, by Theorems 2.5 or 2.1, the configuration
connecting A; and B; corresponds to a relaxation oscillation formed by orbitally
unstable periodic orbits (see Figure 4(b)).

4.3. Coevolution. Consider system (1.6) from Example 1. The system has
critical manifolds M;, 1 < i < 4, corresponding to («,8) = (ay, 5;) with («y, 5;),
1 =1,2,3,4, being equal to (0,0), (0,1), (1,1), and (1,0), respectively (see Figure 6).
The limiting slow system on each M; is

= F(I‘,Oéi) - G(x7y7ai75i>7

(4.5) H(z,y, i, B;) — D(y, Bi).

z
’
Y

The numbers w; = (wi(l),wf)) defined by (2.17) are wy = (1,1), we = (1,—1), wg =
(—1,—1), and wy = (—1,1). Equations for ¢ = (¢V,¢®)) in (2.11) on M; are

d d
(46) %C(l) = wz‘(l)El (LE, Y, ay, 61) and EC(Q) = wZ@)EQ(Iv Y, g, ﬂl)v

where

Ey(z,y,a,8) = % (F(W) - i(%%aﬂ))
and

@@ﬂﬂﬂﬁn%<H@®_EWWﬂﬁ».

Let ®;, 1 < i < 4, be the solution operators for system (4.5)—(4.6). Then the transition
maps ; in Theorem 2.6 are determined by

Q1(A1,¢) = @1((A1,¢), 1) with ¢+ / Es(x,y,0,0) dt =0,
0 (z,y)=®1(A1,t)
Q\Q(A% C) = $2((A27 <)77—2) with C(l) + / El(xvyv 07 1) dt = 07
0 (m,y):<I>2(A2,t)
Qa(43.0) = Ba((4a,0),70) with €@~ [ Ea(ap.1,1) at =0,
0 (z,y)=21(A1,t)
@4(A4a<) :EI\)4((A47<)7T4) with C(l) - El(z7y71a0) dt =0

0 (2,9)=Pa(Ag,t)
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Following Cortez and Weitz [12, Supporting Information D], we consider (1.6) with

X
F = 1 - —
(7, a) = x(s0 + 5100) ( o +k1a> ,

_ (ro+ria+ 1B +r3af +ryf?)ay
G(x7yaaa/8)_ 1+h$

H('Taya a, 6) = COG(J"7:U7 Oé,B),
D(y, 8) = y"° (80 + 01),

and parameters so = 2.5,81 = 3.5,kg = 1,k; = 0.1,7g = 0.65,r1 = 3,70 = 2.3,1r3 =
—0.2,74 = 0.01,¢0 = 1.7,00 = 0.76,01 = 1.77, and h = 1. Implementing Newton’s
iteration for Ql(Alacl) = (Ai+1a<i+1)7 1 < ) < 47 we find B4 = A1 =~ (033,199),
Bl = A2 ~ (092,056), B2 = A3 ~ (060,055)7 and B3 = A4 ~ (030,093) (see
Figure 2(b)), and (1 =~ (0,0.98), (2 ~ (3.84,0), (3 ~ (0,1.12), and ¢4 ~ (0.55,0).

Let {e;,ey,eq,e3} be the standard ordered basis of the (z,y, a, 3)-space. Note
that the tangent space of @ x Ay at (Ai,(;) is spanned by {e;,e,, ez}, and the
tangent space of %1 x Ay at (Bi,(2) is spanned by {e;,e,,eq}. Using formulas in
Proposition A.3, we obtain

)

e, e, eg

~ 0.013  0.004 —0.007\ e,
DQ1(A1,C1) %(0.080 ~0.254 0.038> ey -
329 —242 067 / e,

Similarly,

e, e, €
R —0.00040 —0.0058 0.00024\ e,
DQ2(Asz, () = (0.00003 0.00024 0.00030)
0.37 —1.44  —0.26

ey7
€s

and the approximations of D@g,(Ag, ¢3) and DC§4(A47 (4) are, respectively,

€ €x €s € €z €q
029 —-0.04 —0.22\ e, —-0.10 —-0.09 0.03 \ e,
(0.26 —-0.67 049 > e, and < 0.42 0.38 0.13) ey -

249 013 —-0.86/ e, —-0.36 —-0.33 0.11/ eg

Hence, the eigenvalues of

DP(Ay1,¢1) = DQ4(As, C1) DQs(As, (3) DQa(Az, (o) DQ1(A1, 1)

are A\; ~ 0.39, Ay = —6.14-107°, and A3 =~ —5.11 - 10~!!, which are all of magnitude
less than one. Therefore, by Theorem 2.6 or its special case, Theorem 2.2, this sin-
gular configuration corresponds to a relaxation oscillation formed by locally orbitally
asymptotically stable periodic orbits.

4.4. A planar system. Consider system (1.10) from Example 4. The limiting
fast system is

(4.7) a=bH(a,b,0), b=bG(a,b,0).
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Fi1G. 11. For system (4.7) with € = 0, the a-azis is a line of equilibria and v is a heteroclinic
orbit connecting (ap,0) and (a1,0).

On the critical manifold M = {(a,b) : b = 0}, the limiting slow system is
a’ = F(a,0,0).

We assume the following (see Figure 11):
(i) There is a trajectory v of (4.7) satisfying

lim ~(t) = (a0,0), lim ~(t) = (a1,0).

t——o0

(ii) F(a,0,0) >0 for all a € [ag, a1].
(iii) G(ap,0,0) < 0 and G(a1,0,0) > 0.
(iv) G(a,0,0) G(a,0,0)

a F(a,0,0) ao F(a,0,0)
We provide an alternative proof of the following theorem from Hsu and Wolkowicz [28].

da =0 and da <0 Vs € (ag,a1).

THEOREM 4.1. Consider system (1.10). Assume (1)—(iv) and let

% da + %G db.

H G

F(al,0,0)’
Y Y

F(ao,0,0)

)\zln‘

If X\ # 0, then v admits a relaxzation oscillation which is formed by locally unique
periodic orbits for small € > 0. Moreover, the periodic orbit is orbitally asymptotically
stable if A < 0 and unstable if A > 0.

Remark 4.2. Assumptions (i) and (iv) are weaker than the conditions assumed in
[28]. In that paper, the assumption corresponding to (i) is that there exists a smooth
family of heteroclinic orbits; the assumptions corresponding to the inequalities in (iii)
and (iv) are G(a,0,0) < 0 for ¢ < @ and G(a,0,0) > 0 for a > a. However, the
analysis in that paper is also valid under these weaker assumptions.

Proof. Define a function @ implicitly by Q(ap) = a; and

Q@) G(r,0,0)
4 S0 g = 0.
(4.8) L F(r,0,0) “" 0

0
By (A.6) in Proposition A.1,

dQ(ao) - F(al,0,0) G(a070,0)
da  G(a1,0,0) F(ag,0,0)

(4.9)

(Alternatively, (4.9) can be derived directly by differentiating (4.8).)
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Let 7 be the transition map of (4.7) from a neighborhood of (a1, 0) to a neigh-
borhood (ag,0) in the a-axis. By (A.18) in Proposition A.4,

d G(a17 Oa 0)
41 £ = 2\, 00 H .
(4.10) o) = G e ( L 0.H + 0,G dt)

By (4.10) and (4.9), we obtain

dm(ay) dQ(ag
da da

_ (F(alaovo) G(a070a0)> G(a1a070) exp </T8 H+abG dt) )
0

~—

d
T (roQ) =

G(al,0,0) F(ao,0,0) G(ao,0,0)

Using the relations da/dt = H and da/dt = G in (4.7), it follows that

d (al,O 0 8 abG
— —— db.
da(™ o Q)a) = F(ao,0,0) (L L H
Hence
d F(a1,0,0) 0,G
—- =1 — db.
(o @) = | oG+ [ S das [ 2
Hence A < 0 if and only if |d%(7r o Q)(a0)| < 1. By Theorem 2.7, the desired result
follows. 0
Appendix A. Some computable formulas. Under Assumptions 1-5, we

define f;(p) = f(p,2:,0) and p;(7) = ®,(7, A;) for each i = 1,2,...,N. Let L;(7) be
the fundamental matrix for the variational equations of (1.4) along ¢;. This means
that for any v € R™, w(r) = L;(7)v is the solution of

(A1) L= [Ditpi(r)w, w(0) = v, for 0<T<7

It can be shown that, for v € R® and 0 <7 < 7,
(A2) Li(T)Q) = D(P(A“ T)?),
which implies

(A.3) Li(tyv=v+ /OT [Dfi(pi(s))] Li(s)v ds.

We define a linear functional p; on R™ by

Ti 0 (Ji)
(A4) wi(v) = / <Li(7')v,Da‘;m(pi(T), Zi 0)> dr for v e R",
0

where D denotes the derivative with respect to p.
PROPOSITION A.l. Let Q; be defined by (2.9). Then

(A.5) DQ;(A;, G)v = Li(r)v — Wfﬁ#ﬂBi, 2;,0) Vv e R",
g (B“Z“O)
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where L; and p; are defined by (A.2) and (A.4), and J; is the index in Assumption 2.
In particular,

5g(<7i)
7 (A 2, 0)
(A.6) DQi(A;, Gi) f(Ai, 2i,0) = 8Z—f(3i7 2i,0).

dgt:
62(‘] (BZ, Z’La O)

Proof. By differentiating (2.8) with respect to p we obtain

<DT( ) A,Ti),Zi,O)

dg7e)

>a <J>( il
T;(A) ag(Ji

+/ <D8 (J,)( i(A,7),2,0), D(I)i(A,T)’U> dr=0 VveR"™
0 Zh

Evaluating this equation at A = A; yields

69(‘]) Ti ag(Jq,)
(DT:(p), v) 555 (Bir 26, 0) = _/0 <Daz(m(pi(7'),zi,0),[zi(7')v> dr.
By (A.4) it follows that
(v
(A7) (DT, (p),v) = — A1

dg7e) '
a (J ) (BZ7ZZ7O)

On the other hand, since ®; is the solution operator for (1.4), the definition of Q;
n (2.9) means that

T;(p)
Qilp) =p +/0 fi(®i(p, 7)) dr.

Differentiating both sides of the equation with respect to p gives

DQZ( )U_U+< ( ) >f1( z( z(p)))
Ti(p)
+/ Dfi(®;(p,7))DP®;(p, T)v dr Vv e R"™.
0

Evaluating the equation at p = A4; and using (A.2) we have

DQ;i(4;)v =v + (DT;(4;), / Dfi(pi(7))L;(7)v dr.
By (A.3) it follows that
(A.8) DQi(Ai)v = Li(ri)v + (DTi(Ai), v) fi(Bi).

Substituting (A.7) into (A.8), we then obtain (A.5).
Since f;(p;(7)) is a solution of (A.1) with vy = f;(4;),

Using p;(1) = fi(pi(7)) and (A.9), evaluating (A.4) at v = f;(p) gives
(A10)  p(fi(Ai)) = m(pi(ﬂ,%o) T W(Biaziyo) .00 (Azazu 0).
Substituting (A.10) into (A.5) we obtain (A.6). d
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Remark A.2. Numerical approximations of L; and u; can be computed by ex-
tending system (1.3) of p to a system of (p,w, ) by appending equations (A.4) and

(Ji)
i = <L ()0, DL (i), zz-,0>>~

PROPOSITION A.3. Let Q; be defined by (2.14). Then
D@i(A'h Ci)(vu O)

A1l i (v
Ay i)

9z(Ji)
where v;(v) is defined by (A.4), and

DQ;(Ai, ¢:)(0,¢;)

g
( ) E 9.0 (Bi,Zi,O) €; Yv € Rn,
B;,2;,0) ; <
1y “1) i#Ji

(A.12) (O,Ej) Zf] 7é Ji
= ) .
m (f(Bz',Zu 0)s Dkt gz(k) (Bi, 2,0) ek) if j=Ji
02070y (BisZis

Proof. We identify vectors v € R™ with their images (v,0,,) € R™ x R™ and
identify the vector e;, j € {1,2,...,m}, in the standard basis of R™, with the vector
(05, €5) in R™ x R™. The function Q;(p, () defined by (2.14) can be written as

(A.13)

= (2@ Tip.0). >

k#J;

Since T (p, (V) = Ti(p) and ®(p, Ty(p)) = Q(p) for all p €

0z ()

TecYD) gok)
¢® +/ g ((I)(p,T),Zi,O) dT] ex
0

~ T(p) (k)

k#J;

Hence,
DQi(p, G:)(v,0)

ag(] "
= | DQi(p)v Z 5.0 (2(0.7),2,00e; | Vo ER™

Evaluating this equation at p = A;, by (A.7) we then obtain (A.11).

For each j € {1,2,...,m} \ {J;}, differentiating (A.13) with respect to (/) gives
%Qi(p, ¢) = e; for all (p,¢). On the other hand, by differentiating (A.13) with
respect to ((/+), from the relation 2 ®(p,7) = f(®(p, 7)) we obtain

GC(J)QZ(p’C)
(A.14) . .
or ) (Js) Ea . o (k)
= gz(g)) f(2, Ti(pvg(J’)))aZnO),]; 3g(k) (Bi,2i,0) ex
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Note that differentiating (2.13) with respect to (/) gives

ﬁ A;, U9 -1
(A.15) 0 (ac(f) S — .
52071) (Bz; Zis 0)

By (A.14) and (A.15) it follows that

0 = -1 dg®)
—5Qi(4i,¢) = =7 | [(Bi,2:,0), Y 7757 (Bir i, 0) e
T; ) k
¢ gZun (Bz-,zi,O) k£J; 0z
This means that (A.12) holds. |

Let ¥, be the solution operator for (2.19). Let ¢; be the positive number such
that

W, (t;, (Biflazi(iil)» = (Az;hZ(Ji))-

%

Let
5i(t) = Wi(t, (Bi_1,2L7))), 0<t<t,.

Thus 4 has the same trajectory as the curve v given in Assumption 2.

We define R;(t) : R” — R™ and v;(t) : R* = R, 0 <t <t;, to be the linear oper-
ators so that for any vy € R™, R;(t)[v] and v;((t)[vg] are the v- and w-components,
respectively, of the variational equations of (2.19) along 7;(¢) with initial data (vg, 0).
This means that for any (vg,wo) € R™ x R, (v,w) = (R;(t)[vo],v;((t)[vo]) is the
solution of

wwo A= (b oy () (= (3),

where g; and h; are defined by (2.18).
PROPOSITION A.4. Let m; be defined by (2.20). Then

(Al?) D?Ti(Bi_l)[U] = Ri(ti)[’l}] — I/l(tz)[v]m Vv € R"™.
Moreover, if n =1, then
(A.18) Dri(Bi_1) = W exp ( /0 (Dyhi + Dyg) Gs(®) dt) .

Proof. The first part of the proof is similar to that of Proposition A.1, so we only
sketch it briefly. Define S; : %;,_1 — (0, 00) implicitly by S;(p) = ¢; and

Si(p)
(A19) D [ ) @ = o)
Then
(A.20) (mi(p), Zzui)) =U; (Si(p), (p, zl(ill)))
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Differentiating (A.19) gives (similar to the derivation of (A.7))
(A.21) (DSi(p),v) gi(Ai, 27)) = vi(ti)[v].
Differentiating (A.20) gives (similar to the derivation of (A.8))
(A22) Dri(p)[v] = Ri(t:)[v] — (DSi(p), v) hi(Ai, 2{™).

By (A.21) and (A.22) we obtain (A.17).
Now we assume n = 1. Then (A.22) gives

Ri(ti)gi(Ai, zi) — vi(ti)hi(As, 2)

D?Ti(Bi_l) =

g’L (Au ZZ)
1 Ri(t) hi(Fi(t)
A.23 = ———det
(A.29) gi(Aiz) (Vz t)  9i(7(t)) )
On the other hand, when n = 1, (R;,v;)(t) is the solution of (A.1 ) with v9 = 1. Note
that (hi, g:)(3:(t)) also satisfies the differential equations in (A.16). Hence,

d (Ri(t) hi(%(t))>_ Dpg  Dgg <Ri(t) hz-(%(t»)
dt \vi(t)  g:(%()) Dyh Dgh) . - vi(t)  gi(7:(t))

ey o). = (o wimi).

By Abel’s formula for the Wronskian, it follows that

e (B0 MO

=%:(t)

and

vi(t)  gi(3i(t))
= det (Rl i(3i(t) ) exp tr (ngi Dqgi) dt
vilt) - gi(t) 0 Dphi Dahi) , 5.0
— det ((1) zg Ij 3) exp (/ti( b9 + Dyhi) (i (t)) dt),
(A29) = gu(Bi1 2 1) exp ( / Dy + Doha) Gt dt) .
By (A.23) and (A.24), we then obtain (A.18). ad
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