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RELAXATION OSCILLATIONS AND THE ENTRY-EXIT FUNCTION
IN MULTIDIMENSIONAL SLOW-FAST SYSTEMS\ast 

TING-HAO HSU\dagger AND SHIGUI RUAN\ddagger 

Abstract. For a slow-fast system of the form \.p = \epsilon f(p, z, \epsilon ) + h(p, z, \epsilon ), \.z = g(p, z, \epsilon ) for
(p, z) \in Rn \times Rm, we consider the scenario that the system has invariant sets Mi = \{ (p, z) : z = zi\} ,
1 \leq i \leq N , linked by a singular closed orbit formed by trajectories of the limiting slow and fast
systems. Assuming that the stability of Mi changes along the slow trajectories at certain turning
points, we derive criteria for the existence and stability of relaxation oscillations for the slow-fast
system. Our approach is based on a generalization of the entry-exit relation to systems with multi-
dimensional fast variables. We then apply our criteria to several predator-prey systems with rapid
ecological evolutionary dynamics to show the existence of relaxation oscillations in these models.
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1. Introduction. We consider a system of ordinary differential equations for
(p, z) \in Rn \times Rm of the form

(1.1)
\.p = \epsilon f(p, z, \epsilon ) + h(p, z, \epsilon ),

\.z = g(p, z, \epsilon ),

where \cdot denotes d
dt , the functions f , g, and h are smooth, and \epsilon > 0 is a parame-

ter. When h is identically zero, the system reduces to the standard slow-fast systems
in Fenichel [18]. Note that slow-fast systems in nonstandard forms can be locally
converted to the standard form near normally hyperbolic critical manifolds (see,
e.g., Wechselberger [60, Lemma 3.6]). This more general setting of singularly per-
turbed problems provides different global return mechanisms which induce different
types of relaxation-type behavior not observed in the standard setting.

In the scenario that g and h both vanish on some level sets Mi = \{ (p, z) : z = zi\} 
for \epsilon \in [0, \epsilon 0], i = 1, 2, . . . , N , where zi \in Rm and \epsilon 0 > 0 are constants, each Mi is
invariant under (1.1) since \.z = 0. System (1.1) restricted on Mi becomes

(1.2) p\prime = f(p, zi, \epsilon ), z = zi,

where \prime denotes d
d\tau with \tau = \epsilon t. Hence system (1.1) has two distinguished limits: the

limiting fast system

(1.3) \.p = h(p, z, 0), \.z = g(p, z, 0),
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3718 TING-HAO HSU AND SHIGUI RUAN

obtained by setting \epsilon = 0 in system (1.1), and the limiting slow system

(1.4) p\prime = f(p, zi, 0), z = zi,

obtained by setting \epsilon = 0 in (1.2). When there are trajectories \gamma i of (1.3) and
trajectories \sigma i \subset Mi of (1.4) such that

(1.5) \gamma 1 \cup \sigma 1 \cup \gamma 2 \cup \sigma 2 \cup \cdot \cdot \cdot \cup \gamma N \cup \sigma N

forms a closed configuration, in the spirit of geometric singular perturbation theory
(GSPT) (see, e.g., Fenichel [18], Jones [32] and Kuehn [38]), there is potentially a
periodic orbit of (1.1) near configuration (1.5) for all small \epsilon > 0. However, in
the case that \sigma i contains turning points, at which the stability of Mi changes, the
so-called entry-exit function is needed to determine whether there are trajectories
of (1.1) near the singular orbit. The classical entry-exit function was defined for
system (1.1) with p being a one-dimensional variable (see de Maesschalck [13], de
Maesschalck and Schecter [15], Hsu [26], Wang and Zhang [59] and references therein).
The entry-exit function can be traced back to Beno\^{\i}t [4] and is called the way-in
way-out function in Diener [16]. This phenomenon, that the landing and jumping
points satisfy the entry-exit function, has been called bifurcation delay in Beno\^{\i}t [5],
Pontryagin delay in Mishchenko et al. [46], and delay of instability in Liu [43]. In the
present paper we generalize the entry-exit function (see section 2.2) for system (1.1)
with a multidimensional variable p. Using our generalized entry-exit function, we
provide criteria under which periodic orbits near the singular orbit exist. Note that
if such periodic orbits exist, they must form a relaxation oscillation because for a
trajectory of (1.1) to travel along the vicinity of \gamma i (where h and g are nonvanishing)
and \sigma i (where | h| \ll \epsilon and | g| \ll \epsilon ), respectively, the time lengths need to be of orders
O(1) and O(1/\epsilon ).

Our motivation is to understand the mechanism of rapid regime shifts in ecological
systems.

Example 1. One example is trait oscillations exhibited in an eco-evolutionary
system proposed by Cortez and Weitz [12]. The system takes the following form:

(1.6)

x\prime = F (x, \alpha ) - G(x, y, \alpha , \beta ),

y\prime = H(x, y, \alpha , \beta ) - D(y, \beta ),

\epsilon \alpha \prime = \alpha (1 - \alpha )
\partial 

\partial \alpha 

\biggl( 
x\prime 

x

\biggr) 
,

\epsilon \beta \prime = \beta (1 - \beta )
\partial 

\partial \beta 

\biggl( 
y\prime 

y

\biggr) 
,

where x(t) and y(t) are the prey and predator densities, respectively, and \alpha (t) and
\beta (t) are the average trait values of the prey and predators, respectively, at time t.
The functions F and H are related to the growth rates of the prey and predators,
respectively, G is related to the encounter rate, and D is related to the death rate
of predators. The equations of \alpha and \beta were derived from the assumption that the
adaptive change in the trait follows fitness-gradient dynamics (see Abrams, Mat-
suda, and Harada [1]), i.e., the rate of change of the mean trait value is proportional
to the fitness gradient of an individual with this mean trait value. In Cortez and
Weitz [12], numerical evidences of periodic orbits oscillating between the level sets, for
(\alpha , \beta ) = (0, 0), (0, 1), (1, 1) and (1, 0), were provided for certain functional responses.
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3719

A simulation of a periodic orbit with data from that paper is shown in Figure 1. Note
that system (1.6) is an example of system (1.1) with h = 0 and the variables (x, y)
and (\alpha , \beta ) playing the roles of p and z, respectively. Applying one of our criteria
(Theorem 2.6) in section 4.3, besides confirming the existence of periodic orbits, we
will determine the limiting configuration (see Figure 2) of the periodic orbits as \epsilon \rightarrow 0.
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(a) (b)

Fig. 1. A periodic orbit for system (1.6) with \epsilon = 0.25. (a) On the (x, y)-plane the trajectory
can roughly be split into four segments. (b) The value of \alpha remains close to 0 along segments i and
ii and becomes close to 1 in segments iii and iv. The value of \beta is close to 0 in segments i and iv
and is close to 1 in segments ii and iii.
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Fig. 2. (a) A periodic orbit for system (1.6) with \epsilon = 0.10. (b) A singular closed orbit which
consists of trajectories of limiting subsystems.

Example 2. Another example, proposed by Cortez and Ellner [10], is a predator-
prey system with rapid prey evolution:

(1.7)

x\prime = x(\alpha + r  - kx) - xy(a\alpha 2 + b\alpha + c)

1 + x
,

y\prime =
xy(a\alpha 2 + b\alpha + c)

1 + x
 - dy,

\epsilon \alpha \prime = \alpha (1 - \alpha )

\biggl( 
1 - y(2a\alpha + b)

1 + x

\biggr) 
\equiv \alpha (1 - \alpha )E(x, y, \alpha ),
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3720 TING-HAO HSU AND SHIGUI RUAN

which can be regarded as a special case of (1.6) with \beta being constant. Periodic orbits
that travel back and forth between the manifolds M0 and M1 corresponding to \alpha = 0
and \alpha = 1, respectively, were discovered numerically by Cortez and Ellner [10] (see
Figure 3 for a simulation with data from that paper). Note that the sign of E(x, y, \alpha ),
where \alpha = 0 (resp., \alpha = 1), determines whether M0 (resp., M1) is attracting or
repelling at that point. It was indicated in [10] that if the trait oscillation occurs,
at the landing and jumping points on each Mi the value of E has opposite signs.
Note that system (1.7) is an example of system (1.1) with h = 0 and the variables
(x, y) and \alpha playing the roles of p and z, respectively. In section 4.1, applying our
criterion (Theorem 2.5) we will determine two pairs of landing and jumping points,
A1, B1 \in M0 and A2, B2 \in M1, by the equations

(1.8)

\int 
\sigma 1

E(x, y, 0) dt =

\int 
\sigma 2

E(x, y, 1) dt = 0,

where \sigma 1 is a trajectory on M0 connecting A1 and B1, and \sigma 2 is a trajectory on M1

connecting A2 and B2 (see Figure 3). The derivation of (1.8) is based on the entry-
exit functions on Mi. Also we will prove that the corresponding periodic orbits are
locally orbitally asymptotically stable.

(a) (b)

Fig. 3. (a) The trajectory of (1.7) with \epsilon = 0.1 and initial data (x, y, \alpha ) = (10, 0.5, 0.5) converges
to a periodic orbit. (b) A singular configuration consists of trajectories of limiting subsystems and
is locally uniquely determined by (1.8).

Example 3. The third example is a 1-predator-2-prey system with rapid prey
evolution proposed by Piltz et al. [49]:

(1.9)

p\prime 1 = r1p1  - qf1(p1)z,

p\prime 2 = r2p2  - (1 - q)f2(p2)z,

z\prime = c1qf1(p1)z + c2(1 - q)f2(p2)z  - mz,

\epsilon q\prime = q(1 - q)
\bigl( 
c1f1(p1) - c2f2(p2)

\bigr) 
,

where p1 and p2 are population densities of two prey species, z is the population
density of predators, and q is the mean trait value of predators. The equation of q\prime 
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3721

is analogous to the equation of \alpha \prime in (1.6). A two-parameter family of closed singular
configurations formed by trajectories of limiting slow and fast systems of (1.9) has
been derived in Piltz et al. [49]. Note that system (1.9) is an example of system (1.1)
with h = 0 and the variables (p1, p2, z) and q playing the roles of p and z, respectively.
In section 4.2, using our criterion (Theorem 2.5) we will prove that there is a locally
unique closed singular configuration that admits periodic orbits (see Figure 4(a)).
Moreover, with parameters adapted from that paper, by computing the linearization
of the singular transition maps we will prove that the periodic orbits are orbitally
unstable (see Figure 4(b)) for all small \epsilon > 0.

(a) (b)

Fig. 4. (a) A periodic orbit for (1.9) (red solid curve) with \epsilon = 0.01 is close to the singular
configuration (blue dotted curve) with vertices Ai and Bi. (b) A trajectory for (1.9) with \epsilon = 0.01
and initial value (black open circle) close to the periodic orbit leaves the vicinity of the periodic orbit
as time evolves, which suggests that the periodic orbit is unstable.

The rapid evolution model, i.e., system (1.6) with 0 < \epsilon \ll 1, has been studied by
Cortez [6, 7, 8, 9], Cortez and Ellner [10], Cortez and Patel [11], Cortez and Weitz [12],
and Haney and Siepielski [21]. System (1.6) with slow evolution, i.e., \epsilon \gg 1, has been
studied by Khibnik and Kondrashov [34] and Shen, Hsu, and Yang [55]. Transient
behaviors, which are related to regime shifts in ecological systems, have been studied
by Hastings [22], Wysham and Hastings [61], and Hastings et al. [23]. Model (1.9) is
a continuous version of the piecewise-smooth model in Piltz, Porter, and Maini [48].
A comparison of the numerical solutions of (1.9) with real data was given in Piltz,
Veerman, and Maini [48].

Example 4. In section 4.4, we consider the planar system studied by Hsu and
Wolkowicz [28]:

(1.10) \.a = \epsilon F (a, b, \epsilon ) + bH(a, b, \epsilon ), \.b = bG(a, b, \epsilon ).

The a-axis is a critical manifold for the limiting fast system of (1.10). Note that the
variables a and b in system (1.10) play the roles of p and z, respectively, in (1.1).
For singular closed orbits of this system, a criterion on the existence and stability of
corresponding relaxation oscillations was derived in Hsu and Wolkowicz [28], which
generalizes the criterion in Hsu [27]. In the present paper, we provide an alternative
proof of that result. The derivations in those papers were based on the asymptotic
expansion of Floquet exponents for system (1.10) with \epsilon > 0. Here we will analyze
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3722 TING-HAO HSU AND SHIGUI RUAN

the transition maps for the limiting slow and fast systems with \epsilon = 0 directly, which
provides a better understanding of the slow-fast feature in the system.

(a) (b)

Fig. 5. (a) For system (1.11) with \epsilon = 0, all trajectories are horizontal. The closed loop
ABCD starting from the maximum point A of the nullcline y = F (x) is the limiting configuration
of the relaxation oscillation as \epsilon \rightarrow 0. (b) For system (1.12) with \epsilon = 0, there is a family of
heteroclinic orbits connecting points on the y-axis. For a certain value x0, the closed loop formed by
the heteroclinic orbit passing (x0, F (x0)) and a portion of the y-axis is the limiting configuration.

The main contribution of this study is to provide criteria on the existence and
stability of relaxation oscillations near slow-fast trajectories passing through turning
points in multidimensional systems away from fold points (i.e., singular points of
the slow flow). Our criteria are generalizations of those given by Hsu [27] and Hsu
and Wolkowicz [28], where planar systems (i.e., system (1.1) with n = m = 1) were
considered. Relaxation oscillations in planar or three-dimensional systems with similar
settings were also investigated by Hsu and Shi [24], Huzak [29], Jard\'on-Kojakhmetov
et al. [31], Li et al. [40], Shan [54], and Shen, Hsu, and Yang [55]. A recent work by
Ai and Yi [3] generalized the results in Example 4 for a class of systems including
(1.10) using a different approach based on the construction of invariant regions.

We would like to point out that the absence of fold points makes our study
significantly different from existing theories in the literature involving folds points.
Here we use two examples to emphasize the effect of fold points. A well known example
of relaxation oscillation involving fold points, besides the van der Pol oscillator, is the
predator-prey system studied by Rinaldi and Muratori [50], which can be written as

(1.11) \.x = p(x)
\bigl( 
F (x) - y

\bigr) 
, \.y = \epsilon 

\bigl( 
c p(x) - d

\bigr) 
y,

where c, d, and \epsilon are positive constants and functions p(x) and F (x) satisfy p(0) = 0,
p\prime (0) > 0, p(x) > 0 for x > 0, and, for some constant K > 0, F (x) > 0 for x \in [0,K)
and F (K) = 0. Assuming that F (x) takes certain forms, it was proved in [50] that,
as \epsilon \rightarrow 0, there is a family of periodic orbits that converges to a closed loop formed
by trajectories of the limiting systems of (1.11). The trajectories forming the closed
loop have four end points, which we label as A, B, C, and D in Figure 5(a). A crucial
feature for the existence of relaxation oscillations for this system is that the flow
of (1.11) in the vicinity of the segment from D to A is exponentially contracting as
\epsilon \rightarrow 0 (see Krupa and Szmolyan [36, Theorem 2.1]). In contrast, for the predator-prey
system studied by Hsu [27], which can be written as

(1.12) \.x = p(x)
\bigl( 
F (x) - y

\bigr) 
, \.y =

\bigl( 
c p(x) - \epsilon 

\bigr) 
y,
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3723

the limiting fast system of (1.12) has a family of heteroclinic orbits connecting points
on the y-axis, and it was proved that, under the assumption that F (x) has a single
interior maximum point \^x in (0,K), as \epsilon \rightarrow 0 system (1.12) has a family of relaxation
oscillations that converges to a closed loop passing through (x0, F (x0)) for a unique
x0 \in (\^x,K) (see Figure 5(b)). Different from the former example (1.11), where the
Poincar\'e map along the singular configuration is exponentially attracting as \epsilon \rightarrow 0,
the limiting Poincar\'e map in the later example has full rank due to the absence of
fold points. In fact, for system (1.12) the exponential attraction and repelling forces
are balanced through the passage of the slow trajectory containing the turning point
(x, y) = (0, F (0)), so the limiting Poincar\'e map does not contract exponentially.

Relaxation oscillations involving both turning points and fold points, different
from the context in this present work, for planar or three-dimensional systems have
been studied by Ai and Sadhu [2], de Maesschalck, Dumortier, and Roussarie [14],
Ghazaryan, Manukian, and Schecter [20], Li and Zhu [39], Liu, Xiao, and Yi [44], and
Szmolyan and Wechselberger [57] (for which the proof also holds for multidimensional
systems, as indicated in the proof of [60, Proposition 5.1]). Our work is complemen-
tary to those results since our singular orbits are away from fold points. Relaxation
oscillations in multidimensional slow-fast systems without turning points have been
studied by Soto-Trevi\~no [56]. Boundary value problems for slow-fast systems have
been studied by Lin [42] and Tin, Kopell, and Jones [58].

The proofs of our criteria were based on a generalization of methods in Hsu [25, 26]
for studying the dynamics along the passage between entry and exit points. The idea
is to apply a sequence of transformations on system (1.1). Each successive transform
in the sequence is obtained simply by appending or dropping an auxiliary variable.
This approach is a variation of the classical blow-up method developed by Dumortier
and Roussarie [17] and Krupa and Szmolyan [36, 37], where the equation \epsilon \prime = 0 is
appended to the system, but all succeeding transformations are homeomorphisms.

The classical blow-up method has been applied extensively to study various
problems, including Gasser, Szmolyan, and W\"achtler [19], Iuorio, Popovi\'c, and Sz-
molyan [30], Kosiuk and Szmolyan [35], Manukian and Schecter [45], Schecter [51],
and Schecter and Szmolyan [53]. We do not claim that our method can be applied to
those problems.

This paper is organized as follows. In section 2, we state our criteria for the
existence and stability of relaxation oscillations. Proofs of the criteria are given in
section 3. In section 4 we apply our criteria to the three models described in section 1.
Some computable formulas for verifying the conditions of our criteria numerically are
shown and derived in the appendix.

2. Main theorems. Before stating the general theorem, in section 2.1 we pres-
ent two special cases in order to motivate the definitions in the subsequent sections.
Assumptions needed for our main results are stated in section 2.2. The criteria for
the existence of relaxation oscillations are split into sections 2.3--2.5, from single to
multiple dimensional fast variables.

2.1. Special cases. Having systems (1.6) and (1.7) in mind, we present two
basic forms of our main theorems, which are stated in later sections.

Theorem 2.1. Consider a system for (p, \alpha ) \in Rn \times R of the form

(2.1)
p\prime = F (p, \alpha , \epsilon ),

\epsilon \alpha \prime = (\alpha  - \alpha min)(\alpha max  - \alpha )E(p, \alpha , \epsilon ),
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3724 TING-HAO HSU AND SHIGUI RUAN

where F and E are smooth functions, and \alpha min < \alpha max are constants. Assume that
there are points A1, A2 \in Rn satisfying the following conditions (see Figure 3(b)):

(R.i) There exist A1, A2 \in Rn, T1 > 0, and T2 > 0 such that

\Phi 1(A1, T1) = A2 and \Phi 2(A2, T2) = A1,

where \Phi 1 and \Phi 2 are the solution operators for p\prime = F (p, \alpha , 0) with \alpha = \alpha min

and \alpha max, respectively.
(R.ii) E(A1, \alpha min, 0), E(A2, \alpha max, 0) < 0 and E(A2, \alpha min, 0), E(A1, \alpha max, 0) > 0.
(R.iii) There hold \int s

0

E
\bigl( 
\Phi 1(A1, t), \alpha min, 0

\bigr) 
dt

\Biggl\{ 
< 0 for 0 < s < T1,

= 0 for s = T1

and \int s

0

E
\bigl( 
\Phi 2(A2, t), \alpha max, 0

\bigr) 
dt

\Biggl\{ 
< 0 for 0 < s < T2,

= 0 for s = T2.

Let Q1 and Q2 be functions defined in neighborhoods of A1 and A2, respectively, such
that Q1(A1) = A2, Q2(A2) = A1, the point Qi(A) lies in the forward trajectory of A
along the flow of \Phi i, and\int 

\ell 1(A,Q1(A))

E(p(t), \alpha min, 0) dt = 0 and

\int 
\ell 2(A,Q2(A))

E(p(t), \alpha max, 0) dt = 0,

where \ell i(A,B) is the trajectory from A to B following \Phi i and p(t) = \Phi i(A, t). If the
function P = Q2 \circ Q1 satisfies

det(DP (A1) - In) \not = 0,

where DP (A) is the Jacobian matrix of P at A and In is the identify matrix of
rank n, then the configuration (\ell 1(A1, A2)\times \{ \alpha min\} ) \cup (\ell 2(A2, A1)\times \{ \alpha max\} ) admits
a relaxation oscillation. Furthermore, the corresponding periodic orbits are orbitally
asymptotically stable if r(DP (A1)) < 1 and orbitally unstable if r(DP (A1)) > 1,
where r(DP (A)) is the spectral radius of DP (A).

Note that system (1.7) satisfies (2.1) with p = (x, y), \alpha min = 0, and \alpha max = 1.
Theorem 2.1 is a special case of Theorems 2.5 in section 2.3.

For treating system (1.6), we have the following result.

Theorem 2.2. Consider a system for (p, \alpha , \beta ) \in Rn \times R\times R of the form

(2.2)

p\prime = F (p, \alpha , \beta , \epsilon ),

\epsilon \alpha \prime = \alpha (1 - \alpha )E1(p, \alpha , \beta , \epsilon ),

\epsilon \beta \prime = \beta (1 - \beta )E2(p, \alpha , \beta , \epsilon ),

where F , E1, and E2 are smooth functions. Let M1, M2, M3, and M4 be the level
sets of Rn \times R \times R with (\alpha , \beta ) = (0, 0), (0, 1), (1, 1), and (1, 0), respectively. For
convenience, we also denote Mi = M(\alpha i,\beta i), where (\alpha i, \beta i) is the constant value (\alpha , \beta )
on Mi (see Figure 6). Assume that there are points A1, A2, A3, and A4 in Rn such
that the following conditions hold (in the manner that Ak+4 = Ak, Jk+4 = Jk, etc.).
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3725

Fig. 6. Each M(\alpha i,\beta i)
is the level set of (\alpha i, \beta i). Solid and dotted curves on M(\alpha i,\beta i)

are
trajectories p\prime = F (p, \alpha i, \beta i, 0). The curves between M(\alpha i,\beta i)

and M(\alpha i+1,\beta i+1)
are line segments.

(S.i) Ai+1 lies in the forward trajectory of Ai along the flow of p\prime = F (p, \alpha i, \beta i, 0)
for all i \in \{ 1, 2, 3, 4\} .

(S.ii) E1(A1, 0, 0, 0), E2(A2, 0, 1, 0), E1(A3, 1, 1, 0), E2(A4, 1, 0, 0) < 0 and
E2(A2, 0, 0, 0), E1(A3, 0, 1, 0), E2(A4, 1, 1, 0), E1(A1, 1, 0, 0) > 0.

(S.iii) With (J1, J2, J3, J4) = (1, 2, 1, 2), for each i \in \{ 1, 2, 3, 4\} if we denote \ell i(A,B)
the trajectory of the flow of p\prime = F (p, \alpha i, \beta i, 0) from A to B, then for any
B \in \ell i - 1(Ai - 1, Ai) \setminus \{ Ai - 1\} ,\int 

\ell i - 1(Ai - 1,B)

EJi+1
(p(t), \alpha i - 1, \beta i - 1, 0) dt < 0,

where p(t) is the parametrization of the curve of integration along the flow,
and if we define

(2.3) \=\zeta i =  - 
\int 
\ell i - 1(Ai - 1,Ai)

EJi+1(p(t), \alpha i - 1, \beta i - 1, 0) dt,

then

 - \=\zeta i +

\int 
\ell i(Ai,B)

EJi+1
(p(t), \alpha i, \beta i, 0) dt

\Biggl\{ 
< 0 if B \in \ell i(Ai, Ai+1) \setminus \{ Ai+1\} ,
= 0 if B = Ai+1.

Let \widehat Qi(A, \zeta ) be the function implicitly defined by \widehat Qi(Ai, \=\zeta i) = (Ai+1, \=\zeta i+1) and that,

denoting \widehat Qi(A, \zeta ) = ( \widehat A, \widehat \zeta ), \widehat A is a point in the forward trajectory of A along the flow
of p\prime = F (p, \alpha i, \beta i, 0) satisfying

 - \zeta +

\int 
\ell i(A, \widehat A)

EJi+1(p(t), \alpha i, \beta i, 0) dt = 0,

and \widehat \zeta is the number defined to be

(2.4) \widehat \zeta =  - 
\int 
\ell i(A, \widehat A)

EJi
(p(t), \alpha i, \beta i, 0) dt.

Let \widehat P = \widehat Q4 \circ \widehat Q3 \circ \widehat Q2 \circ \widehat Q1. If

det(D \widehat P (A1, \zeta 1) - In+1) \not = 0,

then the configuration
\bigcup 4

i=1(\ell i(Ai, Ai+1)\times \{ (\alpha i, \beta i)\} ) admits a relaxation oscillation.
Furthermore, the corresponding periodic orbits are orbitally asymptotically stable if
r(D \widehat P (A1, \zeta 1)) < 1 and orbitally unstable if r(D \widehat P (A1, \zeta 1)) > 1.
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3726 TING-HAO HSU AND SHIGUI RUAN

Note that (2.3) means

(2.5) \=\zeta 1 =  - 
\int 
\ell 4(A4,A1)

E2(p(t), 1, 0, 0) dt, \=\zeta 2 =  - 
\int 
\ell 1(A1,A2)

E1(p(t), 0, 0, 0) dt

and

(2.6) \=\zeta 3 =  - 
\int 
\ell 2(A2,A3)

E2(p(t), 0, 1, 0) dt, \=\zeta 4 =  - 
\int 
\ell 3(A3,A4)

E1(p(t), 1, 1, 0) dt.

Theorem 2.2 is a special case of Theorem 2.6 in section 2.4. In section 2.2 we
show how systems (2.1) and (2.2) satisfy the conditions in the general theorems.

2.2. Assumptions. Let N be a fixed positive integer. Throughout this paper
we adopt the notion that Ai = Ai+N for any integer i and any object A. For any
vector z in Rm, we denote z(j) the jth component of z. We denote \{ \sanse 1, \sanse 2, . . . , \sanse m\} 
the standard basis of Rm.

Assumption 1. For each j = 1, 2, . . . ,m, there exist  - \infty \leq z
(j)
min < z

(j)
max \leq \infty 

such that for all sufficiently small \epsilon \geq 0,

h(p, z, \epsilon ) = 0 and g(j)(p, z, \epsilon ) = 0

whenever z(j) = z
(j)
min or z = z

(j)
max.

Note that system (2.1) satisfies Assumption 1 with z = z(1) = \alpha . System (2.2)

satisfies the assumption with z = (z(1), z(2)) = (\alpha , \beta ) and (z
(j)
min, z

(j)
max) = (0, 1) for

j = 1, 2.

Assumption 2. For each i = 1, 2, . . . , N , where N is a positive integer, there exist
Ai, Bi \in Rn, Ji \in \{ 1, 2, . . . ,m\} ,

zi \in \{ z(1)min, z
(1)
max\} \times \{ z(2)min, z

(2)
max\} \times \cdot \cdot \cdot \times \{ z(m)

min , z
(m)
max\} with | zi| < \infty ,

and smooth functions pi : R \rightarrow Rn and qi : R \rightarrow R such that qi is nonconstant and
the curve

\gamma i(t) =
\bigl( 
pi(t), zi + qi(t)\sanse Ji

\bigr) 
,  - \infty < t < \infty ,

is a heteroclinic orbit of (1.3) that connects (Bi - 1, zi - 1) and (Ai, zi). In addition, for
each j = 1, 2, . . . ,m, there exists i \in \{ 1, 2, . . . , N\} such that Ji = j.

Since the limiting fast system of (2.1) leaves (x, y) values constant, system (2.1)
satisfies Assumption 2 with B1 = A2, B2 = A1, \gamma 1(t) connecting (A1, \alpha max) to
(A1, \alpha min) and \gamma 2(t) connecting (A2, \alpha min) to (A2, \alpha max). Similarly, system (2.2)
satisfies Assumption 2 with Bi = Ai+1, pi(t) = 0 and qi(t) being scalar functions
mapping onto either interval (0, 1) or ( - 1, 0).

The expression of the heteroclinic orbit in Assumption 2 implies that zi differs
from zi+1 at no more than one component. Note that we do not exclude the possibility
that zi = zi+1.

The assumption of the existence of i such that Ji = j means that each component
z(j) of (p, z) must be nonconstant along at least one \gamma i. If it is not the case, then we
can treat z(j) as a constant and replace the equation of \.z(j) in (1.1) by \.z(j) = 0 because

the space \{ (p, z) : z(j) = z
(j)
min or z

(j)
max\} is invariant under (1.1) by Assumption 1.
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3727

We define Mi = \{ (p, z) : p \in Rn, z = zi\} for i = 1, 2, . . . , N . Then Assumption 1
implies that Mi is invariant under (1.1) for all sufficiently small \epsilon > 0. The restriction
of (1.1) on Mi is (1.4). We denote the solution operator of (1.4) by \Phi i.

Assumption 3. For each i = 1, 2, . . . , N , fi(Ai, zi, 0) \not = 0 and there exists \tau i > 0
such that \Phi i(Ai, \tau i) = Bi.

In systems (2.1) and (2.2), since each Ai+1 lies in a trajectory of the corresponding
limiting systems passing through Ai, Assumption 3 is satisfied with Bi = Ai+1.

Denote \sigma i = \Phi i(Ai, [0, \tau i]) \times \{ zi\} . Then by Assumptions 2--3 the configuration
(1.5) forms a closed orbit. The idea of GSPT is that trajectories of the full system can
potentially be obtained by perturbing a union of trajectories of the limiting systems.
Limiting systems (1.3) and (1.4) provide a family of uncountably many loops. Our
goal is to establish a criterion for the existence of a locally unique periodic orbit near
this singular closed orbit.

We impose the following nondegeneracy condition.

Assumption 4. For i = 1, 2, . . . , N ,

\partial g(Ji)

\partial z(Ji)
(Ai, zi, 0) < 0 and

\partial g(Ji+1)

\partial z(Ji+1)
(Bi, zi, 0) > 0.

Assumption 4 corresponds to (R.ii) and (S.ii) in Theorems 2.1 and 2.2, respec-
tively, for systems (2.1) and (2.2).

Remark 2.3. By Assumption 1, the linearization of (1.3) at any point (p, zi) in
Mi has the Jacobian matrix\left(  0n\times n \ast 

0m\times n diag
\Bigl( 

\partial g(1)

\partial z(1) , . . . ,
\partial g(m)

\partial z(m)

\Bigr) \right)  ,

where the partial derivatives are evaluated at (p, zi, 0). In the case that m = 1, the
inequalities in Assumption 4 imply that Mi is normally hyperbolic at (Ai, zi) and
(Bi, zi) and that there is a turning point on Mi between these two points.

In the case that m = 1, where z and g are scalar, the classical entry-exit relation
for (1.1) between Ai and Bi can be expressed by

(2.7)

\int s

0

\partial g

\partial z

\bigl( 
\Phi i(Ai, t), zi, 0

\bigr) 
dt

\Biggl\{ 
< 0 if 0 < s < \tau i,

= 0 if s = \tau i.

Under (2.7) and Assumption 4, in some neighborhood Ai of Ai in Rn we can implicitly
define Ti : Ai \rightarrow (0,\infty ) by Ti(Ai) = \tau i and

(2.8)

\int Ti(p)

0

\partial g

\partial z

\bigl( 
\Phi i(p, t), zi, 0

\bigr) 
dt = 0.

The entry-exit function is then defined by

(2.9) Qi(p) = \Phi i(p, Ti(p)).

Each pair of points (p, zi) and (Qi(p), zi), where p \in Ai, is a pair of landing and
jumping points on Mi.
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3728 TING-HAO HSU AND SHIGUI RUAN

For the general case that m \geq 1, we first introduce some notation. Let Ji, where
i = 1, 2, . . . , N , be the numbers defined in Assumption 1. For each j = 1, 2, . . . ,m, let

Ij = max\{ i \in \{ 0, - 1, - 2, . . . , - (N  - 1)\} : Ji = j\} .

This means that Ij is the largest nonpositive i for which the value of z(j) changes
along the trajectory \gamma i. By Assumption 2, each Ij is well-defined and is finite. We
define

(2.10) \zeta 
(j)
i =  - 

i - 1\sum 
k=Ij

\biggl( \int \tau k

0

\partial g(j)

\partial z(j)
\bigl( 
\Phi k(Ak, t), zk, 0

\bigr) 
dt

\biggr) 

for i = 1, 2, . . . , N and j = 1, 2, . . . ,m. Also we denote \zeta i = (\zeta 
(1)
i , . . . , \zeta 

(m)
i ). The

following assumption is a generalization of (2.7).

Assumption 5. For each i \in \{ 1, 2, . . . , N\} , j \in \{ 1, 2, . . . ,m\} and s \in (0, \tau i],

 - \zeta 
(j)
i +

\int s

0

\partial g(j)

\partial z(j)
\bigl( 
\Phi i(Ai, t), zi, 0

\bigr) 
dt

\Biggl\{ 
= 0 if j = Ji+1 and s = \tau i,

< 0 otherwise.

Assumption 5 corresponds to (R.iii) and (S.iii) in Theorems 2.1 and 2.2, respec-
tively, for systems (2.1) and (2.2). More specifically, for system (2.1) both Assump-
tions 5 and (R.iii) are equivalent to (2.7). In the settings of Theorem 2.2 for sys-
tem (2.2), we have I1 =  - 1 and I2 = 0 (because J - 1 = J3 = 1 and J0 = J4 = 2), so
(2.10) under Assumption 5 with (J1, J2, J3, J4) = (1, 2, 1, 2) gives

\zeta 1 = (0, \=\zeta 1), \zeta 2 = (\=\zeta 2, 0), \zeta 3 = (0, \=\zeta 3), and \zeta 4 = (\=\zeta 4, 0),

where \=\zeta 1, \=\zeta 2, \=\zeta 3, and \=\zeta 4 are the numbers defined by (2.3), or (2.5)--(2.6), in Theo-
rem 2.2.

For each i = 1, 2, . . . , N , we consider the system

(2.11)

d

d\tau 
p = f(p, zi, 0),

d

d\tau 
\zeta (j) =

\partial g(j)

\partial z(j)
(p, zi, 0), j = 1, 2, . . . ,m.

Let

(2.12) \Lambda i =
\Bigl\{ 
\zeta \in Rm :

\bigm| \bigm| \zeta  - \zeta i
\bigm| \bigm| < \delta , \zeta (Ji) = \zeta 

(Ji)
i

\Bigr\} 
,

where \delta > 0. Let \widehat \Phi i be the solution operator for (2.11). From Assumption 4, by

shrinking Ai and \delta if necessary, we can define \widehat Ti(p, \zeta ) on Ai \times \Lambda i implicitly by\widehat Ti(Ai, \zeta i) = 0 and

(2.13)  - \zeta (Ji+1) +

\int \widehat Ti(p,\zeta )

0

\partial g(Ji+1)

\partial z(Ji+1)
(\Phi i(p, t), zi, 0) dt = 0.

Finally, we define the generalized entry-exit function \widehat Qi(p, \zeta ) on Ai \times \Lambda i by

(2.14) \widehat Qi(p, \zeta ) = \widehat \Phi i((p, \zeta ), \widehat Ti(p, \zeta )
\bigr) 
.

Note that \widehat Ti(p, \zeta i) = Ti(p) and therefore \widehat Qi(p, \zeta i) = (Qi(p), \zeta i+1) for all p \in Ai. In

particular, \widehat Qi(Ai, \zeta i) = (Bi, \zeta i+1).
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3729

Remark 2.4. In the case that m = 1, we have \zeta 
(j)
i = 0 for all i and j, so As-

sumption 5 is reduced to the classical entry-exit relation (2.7), and \widehat Qi defined by
(2.13)--(2.14) coincides with Qi defined by (2.8)--(2.9).

2.3. Systems in the standard form with a single fast variable. For the
case where the fast variable has simple dynamics, namely, h = 0 in (1.1), the system
is in the standard form of geometric singular perturbation theory in Fenichel [18].
First we state our results for system (1.1) with n \geq 1, m = 1, and h = 0, which can
be applied to study models (1.7) and (1.9). These restrictions mean that the system
has a single variable and that the slow variable is steady in the fast system (1.3).

Since the slow variable is steady in the fast system (1.3) in the case that h = 0, the
function pi in Assumption 2 is constant for each i = 1, 2, . . . , N . Hence Bi = Ai+1 for
each i, where Bi and Ai+1 and the points given in Assumption 2. Since Qi(Ai) = Bi,
where Qi is defined in (2.9), it follows that Qi(Ai) = Ai+1. Let

(2.15) P = QN \circ \cdot \cdot \cdot \circ Q2 \circ Q1.

Then P (A1) = A1 and P maps a neighborhood of A1 in A1 into A1.
Our first main result is as follows.

Theorem 2.5. Suppose that Assumptions 1--5 hold for system (1.1) with m = 1
and h = 0. Let P be defined by (2.15). If

det(DP (A1) - In) \not = 0,

then the configuration (1.5) admits a relaxation oscillation. Furthermore, the cor-
responding periodic orbits are orbitally asymptotically stable if r(DP (A1)) < 1 and
orbitally unstable if r(DP (A1)) > 1.

The proof of the theorem is shown in section 3.1, and the computation formula
of the Jacobian matrix is given in the appendix.

2.4. Systems in the standard form. System (1.1) with n, m \geq 1 and h = 0
can be applied to (1.6). For this case, we introduce the following notation.

Under the assumption that h = 0, we have Bi = Ai+1 as in section 2.3. Since\widehat Qi(Ai, \zeta i) = (Bi, \zeta i+1), where \widehat Qi is defined by (2.14), it follows that \widehat Qi(Ai, \zeta i) =
(Ai+1, \zeta i+1). Let

(2.16) \widehat P = \widehat QN \circ \cdot \cdot \cdot \circ \widehat Q2 \circ \widehat Q1.

Then \widehat P (A1, \zeta 1) = (A1, \zeta 1) and \widehat P maps a neighborhood of (A1, \zeta 1) in A1 \times \Lambda 1 into
A1 \times \Lambda 1. Our second result is as follows.

Theorem 2.6. Suppose that Assumptions 1--5 hold for system (1.1) with h = 0.

Let \widehat P be defined by (2.16). If

det(D \widehat P (A1, \zeta 1) - In+m - 1) \not = 0,

where D \widehat P is the Jacobian matrix with respect to the standard coordinate of A1 \times 
\Lambda 1, then the configuration (1.5) admits a relaxation oscillation. Furthermore, the
corresponding periodic orbits are orbitally asymptotically stable if r(DP (A1)) < 1 and
orbitally unstable if r(DP (A1)) > 1.

Theorem 2.6 is resulted from a more general theorem, Theorem 2.7, stated below.
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2.5. Systems with multiple slow and fast variables. Now we consider sys-
tem (1.1) with general h, which can be used to treat system (1.10).

For i = 1, 2, . . . , N and j = 1, 2, . . . ,m, let

(2.17) \omega 
(j)
i =

\left\{   1 if z
(j)
i = z

(j)
min,

 - 1 if z
(j)
i = z

(j)
max,

where z
(j)
min and z

(j)
max are the numbers given in Assumption 1. Let

\phi i(q) =

\left\{           
\omega 
(Ji)
i

q  - z
(Ji)
i

if z
(Ji)
i - 1 = z

(Ji)
i - 1 ,

\omega 
(Ji)
i

q  - z
(Ji)
i

\omega 
(Ji)
i - 1

q  - z
(Ji)
i - 1

if z
(Ji)
i \not = z

(Ji)
i - 1 ,

where Ji is the index defined in Assumption 2. By the construction of \phi i, we have
\phi i(z

(Ji)) > 0 for all (p, z) on \gamma i, where \gamma i is the trajectory defined in Assumption 2.
Define functions gi and hi of (p, q) \in RN \times R by

(2.18) (gi, hi)(p, q) = \phi i(q)
\Bigl[ 
(g(Ji), h)(p, zi - 1 + q\sanse Ji

, 0)
\Bigr] 

for q \not = z
(Ji)
i , z

(Ji)
i - 1 .

That is, gi and hi are rescaled values of g(Ji) and h, respectively, along \gamma i. By Assump-

tion 1, (gi, hi) can be continuously extended at q = z
(Ji)
i and z

(Ji)
i - 1 , which correspond

to (p, z) = (Bi - 1, zi - 1) and (Ai, zi), where Ai and Bi - 1 are points in Rn introduced in

Assumption 2. We identify (gi, hi) with its continuous extension. Thus gi(Bi - 1, z
(Ji)
i - 1 )

and gi(Ai, z
(Ji)
i ) are multiples of \partial g(Ji)

\partial z(Ji)
(Bi - 1, zi - 1, 0) and

\partial g(Ji)

\partial z(Ji)
(Ai, zi, 0), respectively,

by nonzero constants. By Assumption 4, it follows that gi(Bi - 1, z
(Ji)
i - 1 ) \not = 0 and

gi(Ai, z
(Ji)
i ) \not = 0.

Note that the functions pi and qi in Assumption 2 satisfy that \{ (pi, qi)(t)) : t \in R\} 
is a trajectory of the system

(2.19) \.p = hi(p, q), \.q = gi(p, q),

which connects (Bi - 1, z
(Ji)
i - 1 ) and (Ai, z

(Ji)
i ). Since gi(Bi - 1, z

(Ji)
i - 1 ) \not = 0 and gi(Ai, z

(Ji)
i ) \not =

0, there exists a neighborhood Bi - 1 of Bi - 1 such that we can define \pi i : Bi - 1 \rightarrow Ai

implicitly by the fact that

(2.20)
\bigl( 
p, z

(Ji)
i - 1

\bigr) 
and

\bigl( 
\pi i(p), z

(Ji)
i

\bigr) 
are connected by a trajectory of (2.19).

Let \pi i\times id be the map from Bi - 1\times \Lambda i to Ai\times \Lambda i given by (\pi i\times id)(p, \zeta ) = (\pi i(p), \zeta ).
Define

(2.21) \widetilde P = (\pi N \times id) \circ \widehat QN \circ (\pi N \times id) \circ \cdot \cdot \cdot \circ \widehat Q2 \circ (\pi 2 \times id) \circ \widehat Q1.

Theorem 2.7. Suppose that Assumptions 1--5 hold for system (1.1). Let \widetilde P be
defined by (2.21). If

det(D \widetilde P (A1, \zeta 1) - In+m - 1) \not = 0,
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3731

where D \widetilde P is the Jacobian matrix with respect to the standard coordinate of A1 \times 
\Lambda 1, then the configuration (1.5) admits a relaxation oscillation. Furthermore, the
corresponding periodic orbits are orbitally asymptotically stable if r(DP (A1)) < 1 and
orbitally unstable if r(DP (A1)) > 1.

The proof of the theorem is given in section 3.2, and the computation formula of
the Jacobian matrix is given in the appendix.

3. Proofs of the main theorems. Note that Theorem 2.7 is a generalization
of Theorems 2.6 and 2.5. While Theorem 2.7 can be proved without relying on the
results of the other theorems, for clarity we prove Theorem 2.5 first in section 3.1 and
then prove the general Theorem 2.7 in section 3.2.

3.1. Proof of Theorem 2.5. In this section we assume m = 1 and h = 0 in
system (1.1). With h = 0 in the limiting system (1.3) of system (1.1), the curve \gamma i
given in Assumption 2 can be written as \gamma i = \{ (Ai, qi(t)\} , where Ai \in Rn is given
in Assumption 2 and qi satisfies qi( - \infty ) = zi - 1 and qi(+\infty ) = zi. Since qi is a
nonconstant function by assumption, we can choose a point (Ai, z0i) \in \gamma i at which
\.qi \not = 0. Let \Gamma i be a cross section of \gamma i at (Ai, z0i) of the form

(3.1) \Gamma i = \{ (p, z) : | p - Ai| < \delta 0, z = z0i\} ,

where \delta 0 > 0 is to be determined. Our strategy is to track trajectories that evolve
from \Gamma i along the flow (1.1) and reach \Gamma i+1 near the configuration \gamma i \cup \sigma i \cup \gamma i+1.
We set a cross section \Sigma i of \sigma i and analyze the dynamics between \Gamma i and \Sigma i (see
Figure 7). By symmetry, the dynamics between \Sigma i and \Gamma i+1 can also be treated.
Near \Gamma i we will use the original coordinates (p, z); near \Sigma i we will use the coordinates
(p, \zeta ), where \zeta is a blow-up variable for z to be defined later; and near (Ai, zi) we will
use the coordinates (p, z, \zeta ) to connect the other two coordinates. We will choose two
cross sections, A in

i and A out
i , near (Ai, zi) to analyze the transition map from \Gamma i to

\Sigma i.

Fig. 7. The transition map from \Gamma i to \Gamma i+1 can be split into transition maps between \Gamma i, \Sigma i,
and \Gamma i+1. By symmetry, the dynamics between \Sigma i and \Gamma i+1 are similar to that between \Gamma i and \Sigma i.

Here we give heuristic reasonings for the use of these charts. If we start from a
cross section A in

i (of dimension n) of \gamma i in the original (p, z)-coordinates, following
the limiting fast flow this cross section projects onto a subset Ai \subset Mi of dimen-
sion n (see Figure 8). If we evolve Ai along the limiting slow flow on Mi, then the
evolved manifold still has the same dimension n as Ai. This means that some infor-
mation is missing. The remedy is to introduce a blow-up variable \zeta , which is obtained
essentially by setting \zeta = \epsilon ln(1/| z  - zi| ). The image of A in

i in the \epsilon -dependent
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3732 TING-HAO HSU AND SHIGUI RUAN

(a) (b)

Fig. 8. \widetilde A in
i is the image of A in

i in the (p, z, \zeta )-space with \epsilon -dependent coordinates. \widetilde Ai is the

projection of \widetilde A in
i on Mi along the limiting fast system. (a) In the (p, z)-space, the image of the

manifold evolved from \widetilde Ai and the image of \widetilde Ai itself both have dimension n. (b) In the (p, \zeta )-space
with \epsilon = 0, the image of the evolved manifold has dimension n+ 1.

(p, z, \zeta )-coordinates, denoted by \widetilde A in
i , has the limit A in

i \times \{ 0\} as \epsilon \rightarrow 0. The images

of \widetilde A in
i and \widetilde Ai in the (p, \zeta )-space with \epsilon = 0 both lie in the space \{ \zeta = 0\} . Following

the extended limiting slow flow (associated to \widehat Qi defined in section 2.2), the mani-

fold evolved from the image of \widetilde Ai in the (p, \zeta )-space has the full dimension n + 1.
Therefore, our approach consists of the following three steps:

1. Use the original (p, z)-coordinates to track the transition from the cross sec-
tion \Gamma i of \gamma i to another cross section A in

i that is closer to Mi.
2. Use the (p, z, \zeta )-coordinates to track the manifold evolved from A in

i . (This
corresponds to Proposition 3.2.)

3. Use the (p, \zeta )-coordinates to track trajectories in the vicinity of Mi. (This
corresponds to Proposition 3.1.)

We refer interested readers to Hsu [26] for a
We define a set of transforms between various coordinates. Analogous to the

notation \kappa jk in Krupa and Szmolyan [36], we use the notation \kappa 
(jk)
\epsilon i to denote an \epsilon -

dependent transform from the kth space to the jth space in the vicinity of Mi (explicit
fomulas are given in later paragraphs). In particular, these transforms satisfy that

\kappa 
(kj)
\epsilon i \circ \kappa (jk)

\epsilon i is the identity map and that \kappa 
(jk)
\epsilon i \circ \kappa (kl)

\epsilon i = \kappa 
(jl)
\epsilon i whenever they are defined.

A list of symbols used in this section is given in Table 1.

Table 1
Notation in section 3.1.

Variables Charts Objects

(p, z) \in \Omega \kappa 
(12)
\epsilon i (p, z, \zeta ) = (p, z) \Omega , \Gamma i

= Rn \times (zmin, z max) \kappa 
(13)
\epsilon i (p, \zeta ) = (p, z)

p \in Rm Ai, Bi

(p, z, \zeta ) \in \Omega \times R \kappa 
(21)
\epsilon i (p, z) = (p, z, \zeta ) \widetilde Ai, \widetilde A in

i , \widetilde A out
i

\kappa 
(23)
\epsilon i (p, \zeta ) = (p, z, \zeta )

(p, \zeta ) \in Rn \times R \kappa 
(31)
\epsilon i (p, z) = (p, \zeta ) \widehat A out

i , \widehat \Sigma i

\kappa 
(32)
\epsilon i (p, z, \zeta ) = (p, \zeta )

Let \omega i, 1 \leq i \leq N , be the numbers defined in (2.17) for m = 1, which means that

\omega i = \omega 
(1)
i . By Assumption 4, in a neighborhood of (Ai, zi), for \delta 1 > 0 sufficiently
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3733

small, there is a unique point (Ai, zi + \omega i\delta 1) that lies in the curve \gamma i. Here B(p, r) is
the open ball centered at p with radius r. Let

(3.2) A in
i = \{ (p, z) : p \in B(Ai, \delta 2), z = zi + \omega i\delta 1\} ,

where \delta 1 and \delta 2 are positive constants to be determined. By shrinking \delta 0 in the
definition of \Gamma i in (3.1) if necessary, under the assumption that h = 0 the transition

map \Pi 
A in

i

\epsilon \Gamma i
of the flow of system (1.3) from \Gamma i to A in

i is well-defined and satisfies

(3.3) \Pi 
A in

i

\epsilon \Gamma i
(p, z) = \Pi 

A in
i

0\Gamma i
(p, z) = (p, zi + \omega i\delta 1)

for all small \epsilon \geq 0.
Next we investigate the dynamics near \sigma i. Let \Omega = Rn \times (zmin, zmax). We define

an \epsilon -dependent chart \kappa 
(31)
\epsilon i on \Omega by

\kappa 
(31)
\epsilon i (p, z) = (p, \zeta ) with \zeta = \epsilon ln

\biggl( 
\omega i

z  - zi

\biggr) 
.

In this chart system (1.1) with h = 0 is converted to

(3.4)

p\prime = f(p, z, \epsilon ),

\zeta \prime =  - \omega i
g(p, z, \epsilon )

z  - zi
, where z = zi + \epsilon \omega i exp( - \zeta i/\epsilon ).

Formally, the limiting system of (3.4) as \epsilon \rightarrow 0 with z = zi + o(\epsilon ) is

(3.5)
p\prime = f(p, zi, 0),

\zeta \prime =  - \omega i
\partial g

\partial z
(p, zi, 0).

Let \widehat \Phi i to be the solution operator of (3.5). Let

(3.6) Ai = B(Ai, \delta 4)

and

(3.7) \widehat A out
i = \widehat \Phi i(Ai \times \{ 0\} , \delta 3),

where \delta 3 > 0 and \delta 4 > 0 are constants to be determined. Let \widehat \sigma i(\tau ) = \widehat \Phi i((Ai, \zeta i), \tau ),

0 \leq \tau \leq Ti. Let \widehat \Sigma i be a cross section of the curve \widehat \sigma i at \widehat \sigma i(Ti/2) in Rn \times R. We

denote \Pi 
\widehat \Sigma 
0 \widehat A out

i

the transition map from \widehat A out
i to \widehat \Sigma i following the flow of (3.5).

Proposition 3.1. Let Ai and \widehat A out
i be defined by (3.6) and (3.7), respectively.

For any fixed \delta 3 > 0, if \delta 4 > 0 is sufficiently small, then the transition map \Pi 
\widehat \Sigma 
\epsilon \widehat A out

i

from \widehat A out
i to \widehat \Sigma i for system (3.4) is well-defined for all small \epsilon > 0. Moreover,

\Pi 
\widehat \Sigma 
\epsilon \widehat A out

i

is O(\epsilon )-close to \Pi 
\widehat \Sigma 
0 \widehat A out

i

in the C1( \widehat A out
i )-norm as \epsilon \rightarrow 0.

Proof. Let \Sigma be the image of \widehat \Sigma via the projection (p, \zeta ) \mapsto \rightarrow p. Since the trajectory
\sigma i of (1.4) connects Ai and \Sigma i, we can choose \Delta > 0 such that the transition map
from Ai to \Sigma i whenever \delta 4 > 0 is sufficiently small.

D
ow

nl
oa

de
d 

07
/0

1/
21

 to
 5

2.
14

9.
18

5.
78

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3734 TING-HAO HSU AND SHIGUI RUAN

Note that the p-component of \widehat \Phi i(Ai, \tau ) equals \sigma i(\tau ) = \Phi i(Ai, \tau ) in Assumption 3.
Also note that Assumption 5 gives

inf
\Bigl\{ 
\zeta : (p, \zeta ) \in \widehat \Phi i((Ai, 0), \tau ), \tau \in [\delta 3, \tau i  - \delta 3]

\Bigr\} 
> 0.

Therefore, by decreasing \Delta if necessary, for Ai defined by (3.6) with \delta 3 \in (0,\Delta ),

(3.8) inf
\Bigl\{ 
\zeta : (p, \zeta ) \in \widehat \Phi i((p0, 0), \tau ), p0 \in Ai, \tau \in [\delta 3, \tau i  - \delta 3]

\Bigr\} 
> C

for some C > 0. Substituting (3.8) into (3.4), we have

(3.9)
p\prime = f(p, zi, 0) +O

\bigl( 
\epsilon + e - C/\epsilon /\epsilon 

\bigr) 
,

\zeta \prime =  - \omega i
\partial g

\partial z
(p, zi, 0) +O(\epsilon ).

Hence (3.4) is a regular perturbation of (3.5) in a neighborhood of the set

\{ \widehat \Phi (x, \tau ) : x \in \widehat A out
i , \tau \in [0, \tau i  - 2\delta 3]\} .

Therefore, by regular perturbation theory, \Pi 
\widehat \Sigma 
\epsilon \widehat A out

i

is well-defined for small \epsilon > 0 and

is O(\epsilon )-close to \Pi 
\widehat \Sigma 
0 \widehat A out

i

in the C1( \widehat A out
i )-norm as \epsilon \rightarrow 0.

Finally we investigate the dynamics near the union of \gamma i and \sigma i. We define

\kappa 
(21)
\epsilon i (p, z) = (p, z, \zeta ) with \zeta = \epsilon ln

\biggl( 
\omega i

z  - zi

\biggr) 
for (p, z) \in \Omega , \epsilon \geq 0.

Note that \kappa 
(21)
\epsilon i (p, z) = (p, z, \zeta ) can be obtained by appending z to \kappa 

(31)
\epsilon i (p, z) = (p, \zeta ).

The transformation \kappa 
(21)
\epsilon i converts system (1.1) with h = 0 to

(3.10)

\.p = \epsilon f(p, z, \epsilon ),

\.z = g(p, z, \epsilon ),

\.\zeta =  - \epsilon \omega i
g(p, z, \epsilon )

z  - zi
.

We define
\kappa 
(21)
\epsilon i (p, z, \zeta ) = (p, z)

and

(3.11) \widetilde A in
\epsilon i = \kappa 

(12)
\epsilon i (A in

i ) for \epsilon \geq 0,

which means that

\widetilde A in
\epsilon i =

\bigl\{ 
(p, z, \zeta ) : p \in B(p in

0i , \delta 2), z = zi + \omega i\delta 1, \zeta = \epsilon ln \delta 1
\bigr\} 
.

Note that \kappa 
(21)
0i (p, z) = (p, z, 0) for all (p, z) \in A in

i .

Taking \epsilon \rightarrow 0 in (3.10) leads to system (1.3) companioned with \.\zeta = 0. By
Assumptions 2 and 4, the projection

\Pi Ai

0A in
i

: A in
i \rightarrow Ai \times \{ zi\} 
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following the flow of (1.3) is well-defined and is a local homeomorphism. We define

\Pi 
\widetilde A0i

0 \widetilde A in
0i

= \Pi Ai

0A in
i

\times id, which means

\Pi 
\widetilde A0i

0 \widetilde A in
0i

(p, z, \zeta i) =
\bigl( 
\Pi Ai

0Ai
(p, z), \zeta i

\bigr) 
.

In the slow time variable \tau = \epsilon t, taking \epsilon \rightarrow 0 in (3.10) with z = zi + o(\epsilon ) leads

to (3.5) appended by the equation z = zi. We define \widetilde \Phi i

\bigl( 
(p, zi, \zeta ), \tau 

\bigr) 
on \widetilde A0i \times [0, \tau i]

to be the image of \widehat \Phi \bigl( (p, \zeta ), \tau \bigr) in the space \{ (p, z, \zeta ) : z = zi\} . Also we define

\kappa 
(23)
\epsilon i (p, \zeta ) = (p, z, \zeta ) with z = zi + \omega i e

\zeta /\epsilon 

and

(3.12) \widetilde A out
\epsilon i = \kappa 

(23)
\epsilon i

\bigl( \widehat A out
i

\bigr) 
for \epsilon > 0.

Note that \Pi 
\widetilde A out
0i

0 \widetilde A0i
= \widetilde \Phi i(\cdot , \delta 3) by (3.7).

Proposition 3.2. There exists \Delta > 0 such that the following assertions hold.
Let \widetilde A in

i and \widetilde A out
i be defined by (3.11) and (3.12) with \delta j < \Delta , j = 1, 2, 3. Then for

all sufficiently small \delta 4 > 0, the transition map \Pi 
\widetilde A out
\epsilon i

\epsilon \widetilde A in
\epsilon i

from \widetilde A in
\epsilon i to \widetilde A out

\epsilon i following

the flow of (3.10) is well-defined for all small \epsilon > 0. Moreover,

(3.13)
\bigm\| \bigm\| \bigm\| \Pi \widetilde A out

\epsilon i

\epsilon \widetilde A in
\epsilon i

\circ \kappa (21)
\epsilon i  - \Pi 

\widetilde A out
0i

0 \widetilde A0i
\circ \Pi \widetilde A0i

0 \widetilde A in
0i

\circ \kappa (21)
0i

\bigm\| \bigm\| \bigm\| 
C1(A in

i )
= O(\epsilon )

as \epsilon \rightarrow 0.

A schematic diagram representing Proposition 3.2 is shown in Figure 9. The

significance in estimate (3.13) is that the transition map \Pi 
A out

\epsilon i

\epsilon A in
\epsilon i

can be approximated

by the composition function of \Pi 
\widetilde A out
0i

0 \widetilde A0i
and \Pi 

\widetilde A0i

0 \widetilde A in
0i

, which are determined only by the

limiting systems.

A in
i

\widetilde A in
\epsilon i

\widetilde A out
\epsilon i

A in
i

\widetilde A in
0i

\widetilde A0i
\widetilde A out
\epsilon i

\kappa 
(21)
\epsilon i

\Pi 
\widetilde A out
\epsilon i

\epsilon \widetilde A in
\epsilon i

\kappa 
(21)
0i

\Pi 
\widetilde A0i

0 \widetilde A in
0i

\Pi 
\widetilde A out
0i

0 \widetilde A0i

Fig. 9. A schematic diagram representing Proposition 3.2. Here \lhook \rightarrow indicates injection and \rightsquigarrow 
indicates the limit as \epsilon \rightarrow 0. The transition map from \widetilde A in

\epsilon i to \widetilde A out
\epsilon i along (3.10) is approximated

by the composition function of transition maps for the limiting systems.

To prove Proposition 3.2, we consider in general a system for (a, b) \in Rn \times R,
n \geq 1, of the form

(3.14)
\.a = \epsilon F (a, b, \epsilon ) + bH(a, b, \epsilon ),

\.b = bG(a, b, \epsilon ),

where \cdot denotes d
dt , and F , G, and H are smooth functions. Note that the expression

(3.14) is identical to (1.10), but the variable a is a vector in (3.14) and is a scalar in
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3736 TING-HAO HSU AND SHIGUI RUAN

(1.10). In this section we will only use system (3.14) with H = 0 but will consider
general H for convenience in next section.

The limiting fast system, obtained by setting \epsilon \rightarrow 0 in (3.14) is

(3.15)
\.a = bH(a, b, 0),

\.b = bG(a, b, 0),

which has a line of equilibria \{ b = 0\} . The limiting slow system on \{ b = 0\} is

(3.16) a\prime = F (a, 0, 0).

The following is a variation of the exchange lemma in Jones and Tin [33] and
Schecter [52].

Lemma 3.3. Consider system (3.14) for (a, b) \in Rn \times R. Assume that for some
\=a \in Rn satisfies that G(\=a, 0, 0) < 0 and that the point (\=a, 0) is the omega limit point
of a trajectory \gamma of system (3.15). Then there exists \Delta > 0 such that the following
assertions hold:

Suppose that \{ A in
\epsilon \} \epsilon \in [0,\epsilon 0] is a smooth family of \ell -dimensional manifolds, 0 \leq 

\ell \leq N , that intersects \gamma at a point in B((\=a, 0),\Delta ) and satisfies that
(H1) A in

0 is nontangential to the flow of (3.15),
and the projection \Lambda \subset Rn of A in

0 along the flow of system (3.15) satisfies that
(H2) \=a \in \Lambda and \Lambda is compact and is nontangential to the flow of (3.16).

Let \Phi the solution operator for the system (3.16). Let \iota \epsilon : K \rightarrow A in
\epsilon be a smooth

parameterization of A in
\epsilon for \epsilon \in [0, \epsilon 0], where K is an \ell -dimensional manifold. Let

\=x \in A in
0 \cap \gamma be the preimage of \=a along (3.15) and \=k \in K be the preimage of \=x by \iota 0.

If \tau 1 > 0 satisfies that
(H3) the trajectory \sigma = \Phi (\=a, [0, \tau 1]) lies in B(\=a,\Delta ) and is rectifiable and not self-

intersecting,
and A out is an n-dimensional manifold that intersects transversally at an interior
point of \sigma \times \{ 0\} in Rn \times R, then there is an open neighborhood V of \=k in K such that

the transition map \Pi A out

\epsilon A in
\epsilon 

from \iota \epsilon (V ) \subset A in
\epsilon to A out following the flow of (3.14) is

well defined for all sufficiently small \epsilon > 0. Moreover,

(3.17)
\bigm\| \bigm\| \bigm\| \Pi A out

\epsilon A in
\epsilon 

\circ \iota \epsilon  - \Pi A out

0\Lambda \circ \Pi \Lambda 
0A in

0
\circ \iota 0
\bigm\| \bigm\| \bigm\| 
C1(V )

= O(\epsilon )

as \epsilon \rightarrow 0, where \Pi \Lambda 
0A0

is the transition map from A0 to \Lambda along the flow of (3.15),

and \Pi A out

0\Lambda is the transition map from \Lambda to A out \cap \{ b = 0\} along the flow of (3.16).

Proof of Lemma 3.3. Using a Fenichel type coordinate (see Jones [32]), in the
open ball B(0, 2\Delta ) in the (a, b)-space, for sufficiently small \Delta > 0 we can choose an
\epsilon -dependent change of variables (a, b) \mapsto \rightarrow (\~a,\~b) with

(\~a,\~b)
\bigm| \bigm| 
b=0

= (a, 0)

such that system (3.14) is converted to

(3.18)
\.\~a = \epsilon \~F (\~a, \epsilon ),

\.\~b = \~b \~G(\~a,\~b, \epsilon ).

We will drop the tildes in the rest of the proof. We write

A in
\epsilon = \{ (a, b) : a \in \Lambda , b = \beta \epsilon (a)\} .
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3737

Since A out intersects \sigma transversally, for some neighborhood U of \=a in Rn, we can
write

\Pi A out

0\Lambda (a) = \Phi (a, T0(a)) \forall a \in \Lambda \cap U,

where T0 is a smooth function with \tau  - < T0 < \tau + for some \tau  - , \tau + \in (0, \tau 1). To prove
(3.17), it suffices to show that

(3.19)
\bigm\| \bigm\| \bigm\| \Pi A out

\epsilon A in
\epsilon 

(a, \beta \epsilon (a)) - 
\bigl( 
\Phi (a, T0(a)), 0

\bigr) \bigm\| \bigm\| \bigm\| 
C1(\Lambda \cap U)

= O(\epsilon )

as \epsilon \rightarrow 0. Let (a\epsilon , b\epsilon )(t; a0) be the solution of (3.18) at time t with initial data
(a0, \beta \epsilon (a0)). Define

(3.20) (a\epsilon 1, b\epsilon 1)(a0, \tau ) = (a\epsilon , b\epsilon )(\tau /\epsilon ; a0) for a0 \in \Lambda 1, \tau \in [\tau  - , \tau +].

By the general exchange lemma (see Schecter [52]),

(3.21)
\bigm\| \bigm\| (a\epsilon 1, b\epsilon 1)(a0, \tau ) - \bigl( \Phi (a0, \tau ), 0\bigr) \bigm\| \bigm\| C1(\Lambda 1\times [\tau  - ,\tau +])

= O(\epsilon )

as \epsilon \rightarrow 0. Since the graph of
\bigl( 
\Phi (a0, \tau ), 0

\bigr) 
is transversal to A out, it follows from the

implicit function theorem that there exists a function T\epsilon (a0) defined for all small \epsilon > 0
such that

(3.22) \| T\epsilon  - T0\| C1(\Lambda \cap U) = O(\epsilon )

and

(a\epsilon 1, b\epsilon 1)(a0, T\epsilon (a0)) \in A out \forall a0 \in \Lambda \cap U.

Note that the last relation means that

(3.23) \Pi A out

\epsilon A in (a0, \delta ) = (a\epsilon 1, b\epsilon 1)(a0, T\epsilon (a0)).

From (3.21), (3.22), and (3.23) we then obtain (3.19).

Proof of Proposition 3.2. Setting s = z  - zi in system (3.10) yields

\.p = \epsilon f(p, zi + s, 0) +O(| (\epsilon , s)| 2),

\.s = s
\partial g

\partial z
(p, zi, 0) +O(| (\epsilon , s)| 2),

\.\zeta = \epsilon 
\partial g

\partial z
(p, zi, 0) +O(| (\epsilon , s)| 2)

as (\epsilon , s) \rightarrow 0. Note that system (3.14) with H = 0 can be written as

\.a = \epsilon F (a, b, 0) +O(| (\epsilon , b)| 2),
\.b = bG(a, b, 0) +O(| (\epsilon , b)| 2).

Since \partial g
\partial z (Ai, zi, 0) < 0 by Assumption 5, applying Lemma 3.3 with b = s, a = (p, \zeta ),

F = (f, \partial g/\partial z), and G = \partial g/\partial z, we obtain (3.13).

We denote \Pi Ai

0\Gamma i
the transition map from \Gamma i to Ai \times \{ zi\} along the flow of (1.3)

and \Pi 
\widehat \Sigma i

0 \widehat Ai
the transition map from \widehat Ai to \widehat \Sigma i along the flow of (3.5).
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3738 TING-HAO HSU AND SHIGUI RUAN

Proposition 3.4. There exist \delta j > 0, 0 \leq j \leq 4, such that if \Gamma i, Ai, \Sigma i are de-

fined in the preceding paragraphs, then the transition map \Pi \Sigma i

\epsilon \Gamma i
from \Gamma i to \Sigma i following

the flow of (1.1) is well-defined for all small \epsilon > 0, and

(3.24)
\bigm\| \bigm\| \bigm\| \kappa (31)

\epsilon i \circ \Pi \Sigma i

\epsilon \Gamma i
 - \Pi 

\widehat \Sigma i

0 \widehat Ai
\circ \kappa (31)

0i \circ \Pi Ai

0\Gamma i

\bigm\| \bigm\| \bigm\| 
C1(\Gamma i)

= O(\epsilon )

as \epsilon \rightarrow 0.

Proof of Proposition 3.4. First we fix constants \delta 1, \delta 2, and \delta 3 in (0,\Delta ), where \Delta 
is the number given in in Propositions 3.2. Then we choose positive constants \delta 0 and
\delta 4, such that (3.3) and the results in Proposition 3.1 hold. Then

\Pi \Sigma i

\epsilon \Gamma i
= \Pi \Sigma i

\epsilon A out
i

\circ \Pi A out
i

\epsilon A in
i

\circ \Pi A in
i

\epsilon \Gamma i

=
\bigl( 
\kappa 
(13)
\epsilon i \circ \Pi \widehat \Sigma i

\epsilon \widehat A out
i

\circ \kappa (31)
\epsilon i

\bigr) 
\circ 
\bigl( 
\kappa 
(12)
\epsilon i \circ \Pi 

\widetilde A out
\epsilon i

\epsilon \widetilde A in
\epsilon i

\circ \kappa (21)
\epsilon i

\bigr) 
\circ \Pi A in

i

\epsilon \Gamma i
.

From (3.3) and Propositions 3.1 and 3.2, it follows that

\Pi \Sigma i

\epsilon \Gamma i
=
\Bigl( 
\kappa 
(13)
0i \circ \Pi \widehat \Sigma i

0 \widehat A out
i

\circ \kappa (31)
0i

\Bigr) 
\circ 
\Bigl( 
\kappa 
(12)
0i \circ \Pi 

\widetilde A out
i

0 \widetilde Ai
\circ \Pi \widetilde A0i

0 \widetilde A in
0i

\circ \kappa (21)
0i

\Bigr) 
+O(\epsilon )

= \kappa 
(13)
0i \circ 

\Bigl( 
\Pi 

\widehat \Sigma i

0 \widehat A out
i

\circ \kappa (32)
0i \circ \Pi 

\widetilde A out
i

0 \widetilde Ai

\Bigr) 
\circ 
\Bigl( 
\Pi 

\widetilde A0i

0 \widetilde A in
0i

\circ \kappa (21)
0i \circ \Pi A in

i

0\Gamma i

\Bigr) 
+O(\epsilon ).

Since

\Pi 
\widehat \Sigma i

0 \widehat A out
i

\circ \kappa (32)
0i \circ \Pi 

\widetilde A out
i

0 \widetilde Ai
= \Pi 

\widehat \Sigma i

0 \widehat Ai
\circ \kappa (23)

0i

and

\Pi 
\widetilde A0i

0 \widetilde A in
0i

\circ \kappa (21)
0i \circ \Pi A in

i

0\Gamma i
= \kappa 

(21)
0i \circ \Pi Ai

0\Gamma i
,

it follows that

\Pi \Sigma i

\epsilon \Gamma i
= \kappa 

(13)
0i \circ 

\Bigl( 
\Pi 

\widehat \Sigma i

0 \widehat Ai
\circ \kappa (32)

0i

\Bigr) 
\circ 
\Bigl( 
\kappa 
(21)
0i \circ \Pi Ai

0\Gamma i

\Bigr) 
+O(\epsilon )

= \kappa 
(13)
0i \circ \Pi \widehat \Sigma i

0 \widehat Ai
\circ \kappa (31)

0i \circ \Pi Ai

0\Gamma i
+O(\epsilon ).

Applying both sides of equation by \kappa 
(31)
0i yields (3.24).

Proof of Theorem 2.5. By a reversal of the time variable and applying Proposition
3.4, we obtain \bigm\| \bigm\| \bigm\| \kappa (31)

\epsilon i \circ \Pi \Sigma i

\epsilon \Gamma i+1
 - \Pi 

\widehat \Sigma i

0 \widehat Bi
\circ \kappa (31)

0i \circ \Pi Bi

0\Gamma i+1

\bigm\| \bigm\| \bigm\| 
C1(\Gamma i+1)

= O(\epsilon ).

Taking the inverse of the mappings in the last equation, we obtain

(3.25)
\bigm\| \bigm\| \bigm\| \Pi \Sigma i

\epsilon \Gamma i
\circ \kappa (13)

\epsilon i  - \Pi 
\Gamma i+1

0Bi
\circ \kappa (13)

0i \circ \Pi \widehat Bi

0\widehat \Sigma i

\bigm\| \bigm\| \bigm\| 
C1(\widehat \Sigma i)

= O(\epsilon ).

By (3.24) and (3.25), it follows that

(3.26)

\Pi 
\Gamma i+1

\epsilon \Gamma i
=
\Bigl( 
\Pi \Sigma i

\epsilon \Gamma i
\circ \kappa (13)

i\epsilon 

\Bigr) 
\circ 
\Bigl( 
\kappa 
(31)
i\epsilon \circ \Pi \Sigma i

\epsilon \Gamma i

\Bigr) 
=
\Bigl( 
\Pi 

\Gamma i+1

0Bi
\circ \kappa (13)

0i \circ \Pi \widehat Bi

0\widehat \Sigma i

\Bigr) 
\circ 
\Bigl( 
\Pi 

\widehat \Sigma i

0 \widehat Ai
\circ \kappa (31)

0i \circ \Pi Ai

0\Gamma i

\Bigr) 
+O(\epsilon )

= \Pi 
\Gamma i+1

0Bi
\circ \kappa (13)

0i \circ \Pi \widehat Bi

0 \widehat Ai
\circ \kappa (31)

0i \circ \Pi Ai

0\Gamma i
+O(\epsilon ).
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Define \varrho (p, z) = p. Since we assumed h = 0 in (1.3), it follows that

\varrho \circ \Pi Ai+1

\epsilon Bi
(p, z) = p \forall (p, z) \in Bi.

Hence (3.26) implies that

(3.27) \varrho \circ \Pi \Gamma i+1

\epsilon \Gamma i
= Qi +O(\epsilon ),

where Qi is defined in (2.9). (Here and in the rest of the proof we identify \Gamma i with
Rn since the z-coordinate is constant on each \Gamma i.) Let

P\epsilon = \Pi \Gamma 1

\epsilon \Gamma N
\circ \cdot \cdot \cdot \circ \Pi \Gamma 3

\epsilon \Gamma 2
\circ \Pi \Gamma 2

\epsilon \Gamma 1
.

Then
\varrho \circ P\epsilon = QN \circ \cdot \cdot \cdot \circ Q2 \circ Q1 +O(\epsilon ) = P +O(\epsilon ),

where P is defined by (2.15). Since the z-component on \Gamma 1 is a constant, we conclude
that

det (P\epsilon  - id) = det (DP  - id) +O(\epsilon ).

Since we assumed det(DP (A) - In) \not = 0, it follows that det(P\epsilon  - id) \not = 0 for all small
\epsilon > 0. Consequently, for all small \epsilon > 0 there exists a locally unique fixed point
p\epsilon \in \Gamma 1 of P\epsilon . Then the trajectory passing through (p\epsilon , z01) is a periodic orbit of
system (1.1), where z01 is given in (3.1) with i = 1, and p\epsilon \rightarrow A1 as \epsilon \rightarrow 0. If
r(DP (A1)) < 1 (resp., r(DP (A1)) > 1), then P\epsilon is a contraction (resp., expansion),
and hence the periodic orbit is orbitally asymptotically stable (resp., unstable). This
proves the theorem.

3.2. Proof of Theorem 2.7. The approach in this section is to generalize the
proof of Theorem 2.5. First we give a heuristic explanation of our approach. To show
the idea, we assume that z = (z(1), z(2)) (i.e., m = 2) and that, for some index i,

Ji = 1 and Ji+1 = 2 (see Figure 10(a)). Since Ji \not = 2, we have z
(2)
i - 1 = z

(2)
i , so the

value | z(2)  - z
(2)
i | is expected to remain small during the transition from Mi - 1 to

Mi, which suggests that the blow-up variable \zeta (2) = \epsilon ln(1/| z(2)  - z
(2)
i | ) remains valid

throughout this transition. Hence, we transform A in
i from the (p, z(1), z(2))-space

into the (p, z(1), \zeta (1), \zeta (2))-space, which has \epsilon -dependent coordinates. The image of

A in
i in this blow-up space is denoted by \widetilde A in

i . Since z(1) is away from the value z
(1)
i

on A in
i , in the limit \epsilon = 0 the \zeta (1)-coordinate equals 0 on \widetilde A in

i (see Figure 10(b)).
The fact that \zeta (2) is defined in the vicinity of the union of Mi - 1 and Mi implies that

the limiting value of \zeta (2) on \widetilde A in
i as \epsilon \rightarrow 0 is \zeta 

(2)
i = \zeta 

(2)
i - 1  - 

\int 
\sigma i - 1

\partial g(2)

\partial z(2) dt, as defined

in (2.10). We denote \widetilde Ai the projection of \widetilde A in
i along the extended fast system into

Mi. Then the manifold evolved from \widetilde Ai with \epsilon = 0 has constant z
(1)
i -coordination.

Hence, we drop the z
(1)
i -coordination and adapt the (p, \zeta (1), \zeta (2))-coordinates in the

vicinity of Mi to ensure that the evolved manifold has the full dimension. Therefore,
the treatment of Mi consists of the following three steps:

1. Use the (p, z(1), \zeta (2))-coordinates to track the transition from \Gamma i to another
manifold A in

i that is closer to Mi. (This corresponds to Proposition 3.5.)
2. Use the (p, z(1), \zeta (1), \zeta (2))-coordinates to track the manifold evolved from A in

i .
(This corresponds to Proposition 3.7.)

3. Use the (p, \zeta (1), \zeta (2))-coordinates to track trajectories in the vicinity of Mi.
(This corresponds to Proposition 3.6.)
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3740 TING-HAO HSU AND SHIGUI RUAN

(a) (b)

Fig. 10. (a) In the (p, z)-space, with \epsilon = 0 the image of \widehat A in
i (dark segment with z(1) > 0) and

the image of the manifold evolved (light segment in the p-axis) from \widehat Ai both have dimension n. (b)

In the (p, \zeta )-space with \epsilon = 0, the image of \widehat A in
i has dimension n + m  - 1 and the image of the

evolved manifold has dimension n+m.

Table 2
Notation in section 3.2.

Variables Charts Objects

(p, z) \in \Omega \subset Rn \times Rm \kappa 
(01)
\epsilon i (p, q, \widehat \zeta ) = (p, z) \Omega , \Gamma i

with z(j) \in (z
(j)
min, z

(j)
max)

p \in Rm Ai, Bi

(p, q, \widehat \zeta ) \kappa 
(10)
\epsilon i (p, z) = (p, q, \widehat \zeta ) \Gamma i,

\in Rn \times 
\bigl( 
z
(Ji)
min , z

(Ji)
max

\bigr) 
\times Rm - 1 \kappa 

(13)
\epsilon i (p, \zeta ) = (p, z, \widehat \zeta ) A in

i , A out
i

(p, q, \zeta ) \kappa 
(21)
\epsilon i (p, q, \widehat \zeta ) = (p, q, \zeta ) \widetilde Ai, \widetilde A in

i , \widetilde A out
i

\in Rn \times 
\bigl( 
z
(Ji)
min , z

(Ji)
max

\bigr) 
\times Rm \kappa 

(23)
\epsilon i (p, \zeta ) = (p, q, \zeta )

(p, \zeta ) \in Rn \times Rm \kappa 
(30)
\epsilon i (p, z) = (p, \zeta ) \widehat A out

i , \widehat \Sigma i

\kappa 
(31)
\epsilon i (p, q, \widehat \zeta ) = (p, \zeta )

As illustrated by Figure 7, we will set a cross section \Sigma i of \sigma i and analyze the
dynamics between \Gamma i and \Sigma i. By symmetry, the dynamics between \Sigma i and \Gamma i+1 can

also be obtained. Near \Gamma i we will use the original coordinates (p, q, \widehat \zeta ), where q = z(Ji),

and \widehat \zeta , to be defined later, is a blow-up variable of all but the Jith components of z.
Near \Sigma i we will use the coordinates (p, \zeta ), where \zeta is a blow-up variable for z to be
defined later; near Ai we will use the coordinates (p, q, \zeta ) to connect the other two
coordinates. Some notation to be used is listed in Table 2. Let

\Omega = Rn \times 
\Bigl( 
z
(1)
min, z

(1)
max

\Bigr) 
\times \cdot \cdot \cdot \times 

\Bigl( 
z
(N)
min , z

(N)
max

\Bigr) 
\subset Rn \times Rm,

where z
(j)
min and z

(j)
max are the numbers given in Assumption 1. Motivated by the

classical blow-up method, we define the \epsilon -dependent chart on \Omega by

\kappa 
(10)
\epsilon i (p, z) = (p, z(Ji), \widehat \zeta ) with \widehat \zeta (j) =

\left\{   \zeta 
(Ji)
i if j = Ji,

\epsilon ln
\omega 

(j)
i

z(j) - z
(j)
i

if j \not = Ji,

where Ji is the index in Assumption 2. On the curve (pi(t), qi(t)) \subset Rm \times R in
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Assumption 2, since qi(t) is nonconstant, we can choose a point (p0i, q0i) at which
q\prime i(t) \not = 0. Let

(3.28) \Gamma i =
\Bigl\{ 
(p, q, \widehat \zeta ) \in Rn \times R\times \Lambda i : | p - p0i| < \delta 0, q = q0i, | \widehat \zeta  - \zeta i| < \delta 0

\Bigr\} 
,

where \delta 0 > 0 is to be determined. Let \Gamma i = \kappa 
(10)
\epsilon 1 (\Gamma i). Our strategy is to track

the transition map from \Gamma i to \Gamma i+1 in the (p, q, \widehat \zeta )-space to find a fixed point of a

composition map from \Gamma 1 to \Gamma 1 and then convert it back via \kappa 
(01)
\epsilon 1 to obtain a periodic

orbit passing through \Gamma 1 in the (p, z)-space.
Let

(3.29) A in
i = \{ (p, q, \widehat \zeta ) : p \in B(p in

i , \delta 2), q = z
(Ji)
i + \omega i\delta 1, | \widehat \zeta  - \widehat \zeta i| < \delta 2\} ,

where \delta 1 and \delta 2 are positive constants to be determined.

Proposition 3.5. Let \Gamma i and A in
i be defined by (3.28) and (3.29), respectively.

For any fixed \delta 1 > 0 and \delta 2 > 0, if \delta 0 > 0 is sufficiently small, then the transition

map \Pi 
A in

i

\epsilon \Gamma i
from \Gamma i to A in

i following the flow of (1.1) is well-defined for all small

\epsilon \geq 0 and is O(\epsilon )-close to \Pi 
A in

i

0\Gamma i
in the C1(\Gamma i)-norm as \epsilon \rightarrow 0.

Proof. Chart \kappa 
(10)
\epsilon i converts system (1.1) to

(3.30)

\.p = \epsilon f(p, z, \epsilon ) + h(p, z, \epsilon ),

\.q = g(Ji)(p, z, \epsilon ),

\.\widehat \zeta (j) =  - \epsilon 
g(j)(p, z, \epsilon )

z(j)  - z
(j)
i

, j \in \{ 1, 2, . . . ,m\} \setminus \{ Ji\} ,

with z(Ji) = q and z(j) = z
(j)
i + \omega 

(j)
i exp( - \widehat \zeta (j)/\epsilon ) for j \not = Ji.

By Assumption 5, all components of \widehat \zeta i \in \Lambda i are bounded away from zero. Therefore,
for each j \in \{ 1, 2, . . . ,m\} \setminus \{ Ji\} ,

z
(j)
i + \omega 

(j)
i exp( - \widehat \zeta (j)/\epsilon ) \rightarrow z

(j)
i as \epsilon \rightarrow 0,

which implies that

g(j)(p, z, 0)

z(j)  - z
(j)
i

\rightarrow \partial g(j)

\partial z(j)
(p, zi - 1 + q \sanse Ji , 0) as \epsilon \rightarrow 0.

Hence the expression of
\.\widehat \zeta (j) in (3.30) tends to zero as \epsilon \rightarrow 0. Consequently, (3.30) is

a regular perturbation of the system

(3.31)

\.p = h(p, zi - 1 + q \sanse Ji - 1
, 0),

\.q = g(Ji)(p, zi - 1 + q \sanse Ji - 1
, 0),

\.\widehat \zeta (j) = 0, j \in \{ 1, 2, . . . ,m\} \setminus \{ Ji\} .

Hence \Pi 
A in

i

\epsilon \Gamma i
is well-defined and is O(\epsilon ) C1-close to \Pi 

A in
i

0\Gamma i
as \epsilon \rightarrow 0.
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We define charts \kappa 
(30)
\epsilon i for (p, z) \in \Omega by

\kappa 
(30)
\epsilon i (p, z) =

\bigl( 
p, \zeta )

with \zeta (j) = \epsilon ln
\omega 
(j)
i

z(j)  - z
(j)
i

for j = 1, 2 . . . ,m.

In this chart system (1.1) is converted to

(3.32)

d

d\tau 
p = f(p, z, \epsilon ) + h(p, z, \epsilon )/\epsilon ,

d

d\tau 
\zeta (j) =

 - g(j)(p, z, \epsilon )

z(j)  - z
(j)
i

, j = 1, 2, . . . ,m,

with z(j) = z
(j)
i + \omega 

(j)
i exp( - \zeta (j)/\epsilon ) for j = 1, 2, . . . ,m.

Let \widehat \Phi i be the solution operator of

(3.33)

d

d\tau 
p = f(p, zi, 0),

d

d\tau 
\zeta (j) =

 - \partial g(j)

\partial z(j)
(p, zi, 0) for j = 1, 2, . . . ,m.

Let Ai and A in
i be defined by (3.6) and (3.2), respectively. We define

(3.34) \widehat Ai = Ai \times \Lambda i and \widehat A out
i = \widehat \Phi i( \widehat Ai, \delta 3),

where \delta 3 > 0 is a constant to be determined. Let \widehat \sigma i(\tau ) = \widehat \Phi i((Ai, \zeta i), \tau ), 0 \leq \tau \leq Ti.

Let \widehat \Sigma i be a cross section of the curve \widehat \sigma i at \widehat \sigma i(\tau i/2). We denote \Pi 
\widehat \Sigma 
0 \widehat A out

i

the transition

map from \widehat A out
i to \widehat \Sigma i following the flow of (3.5).

Proposition 3.6. Let Ai and \widehat A out
i be defined by (3.6) and (3.34), respectively.

For any fixed \delta 3 > 0, if \delta 4 > 0 is sufficiently small, then the transition map \Pi 
\widehat \Sigma 
\epsilon \widehat A out

i

from \widehat A out
i to \widehat \Sigma i for system (3.32) is well-defined for all small \epsilon > 0. Moreover,

\Pi 
\widehat \Sigma 
\epsilon \widehat A out

i

is O(\epsilon )-close to \Pi 
\widehat \Sigma 
0 \widehat A out

i

in the C1( \widehat A out
i )-norm as \epsilon \rightarrow 0.

Proof. By Assumption 5, we have

inf
\Bigl\{ 
\zeta (j) : (p, \zeta ) = \widehat \sigma i(\tau ), \tau \in [\delta 3, \tau i  - \delta 3], j = 1, 2, . . . ,m

\Bigr\} 
> C

for some C > 0. Therefore, similar to the proof of Proposition 3.5, system (3.32) is a
regular perturbation of (3.33), and the desired result follows.

Define chart \kappa 
(20)
\epsilon i for (p, z) \in \Omega by

\kappa 
(20)
\epsilon i

\bigl( 
p, z) = (p, q, \zeta )

with q = z(Ji) and z(j) = z
(j)
i + \omega 

(j)
i exp( - \widehat \zeta (j)/\epsilon ) for j = 1, 2 . . . ,m.
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This chart converts system (1.1) to

(3.35)

\.p = \epsilon f(p, z, \epsilon ) + h(p, z, \epsilon ),

\.q = g(Ji)(p, z, \epsilon ),

\zeta (j) = \epsilon 
 - g(j)(p, z, \epsilon )

z(j)  - z
(j)
i

, j = 1, 2, . . . ,m,

with z(j) = z
(j)
i + \omega 

(j)
i exp( - \widehat \zeta (j)/\epsilon ).

Here we temporarily ignore the relation z(Ji - 1) = z
(Ji - 1)
i - 1 + q. Formally, the limiting

slow system of (3.35) at z = zi is

(3.36)

d

d\tau 
p = f(p, zi0),

d

d\tau 
q = 0,

d

d\tau 
\zeta (j) =

 - \partial g(j)

\partial z(j)
(p, zi, 0), j = 1, 2, . . . ,m.

Denote \widetilde \Phi i the solution operator for (3.36). Let A in
i and \widehat A out

i be the sets defined

by (3.2) and (3.34). We define chart \kappa 
(21)
\epsilon i : Rn \times (z

(Ji)
min , z

(Ji)
max) \times Rm - 1 \rightarrow Rn \times 

(z
(Ji)
min , z

(Ji)
max)\times Rm by

\kappa 
(21)
\epsilon i (p, q, \widehat \zeta ) = (p, q, \zeta ) with \zeta (j) =

\left\{   \epsilon ln
\omega 

(Ji)

i

q - z
(Ji)

i

if j = Ji,\widehat \zeta (Ji) if j \not = Ji,

and chart \kappa 
(23)
\epsilon i : Rn \times Rm \rightarrow Rn \times R\times Rm by

\kappa 
(23)
\epsilon i (p, \zeta ) = (p, q, \zeta ) with q = \omega 

(Ji)
i exp( - \zeta (Ji)/\epsilon ),

and we define sets

(3.37) \widetilde A in
\epsilon i = \kappa 

(21)
\epsilon i

\bigl( 
A in

i

\bigr) 
, \widetilde A out

\epsilon i = \kappa 
(23)
\epsilon i

\bigl( \widehat A out
i

\bigr) 
for \epsilon \geq 0.

Note that

\Pi 
\widetilde A out
0i

0 \widetilde A0i
= \widetilde \Phi i(\cdot , \delta 3).

Proposition 3.7. There exists \Delta > 0 such that the following assertions hold.
Let \widetilde A in

i and \widetilde A out
i be defined by (3.37), (3.29), and (3.34) with \delta j < \Delta , j = 1, 2, 3.

Then for all sufficiently small \delta 4 > 0, the transition map \Pi 
\widetilde A out
\epsilon i

\epsilon \widetilde A in
\epsilon i

from \widetilde A in
\epsilon i to \widetilde A out

\epsilon i

following the flow of (3.35) is well-defined for all small \epsilon > 0. Moreover,

(3.38)
\bigm\| \bigm\| \bigm\| \Pi \widetilde A out

\epsilon i

\epsilon \widetilde A in
\epsilon i

\circ \kappa (21)
\epsilon i  - \Pi 

\widetilde A out
0i

0 \widetilde A0i
\circ \Pi \widetilde A0i

0 \widetilde A in
0i

\circ \kappa (21)
0i

\bigm\| \bigm\| \bigm\| 
C1(A in

i )
= O(\epsilon ).
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3744 TING-HAO HSU AND SHIGUI RUAN

Proof. Note that we have z(Ji - 1) = z
(Ji - 1)
i - 1 + q when converting (1.1) to (3.35).

Let s = q  - z
(J - 1)
i + z

(Ji - 1)
i - 1 . By Assumption 1, (3.35) can be written as

\.p = \epsilon f(p, zi, 0) + h(p, zi + s \sanse Ji - 1
, 0) +O(| (\epsilon , s)| 2),

\.s = g(p, zi + s \sanse Ji - 1 , 0) +O(| (\epsilon , s)| 2),

\.\zeta (j) =  - \epsilon 
\partial g(j)

\partial z(j)
(p, zi, 0) +O(| (\epsilon , s)| 2)

as (\epsilon , s) \rightarrow 0. Since \partial g(Ji)

\partial z(Ji)
(Ai, zi, 0) < 0 by Assumption 5, applying Lemma 3.3 with

b = s and a = (p, \zeta ) we obtain (3.38).

We denote \Pi Ai

0\Gamma i
the transition map from \Gamma i to Ai \times \{ z(Ji)

i \} \times \{ \widehat \zeta i\} along the flow

of (3.31) and \Pi 
\widehat \Sigma i

0 \widehat Ai
the transition map from 0 \widehat Ai to \widehat \Sigma i along the flow of (3.33). We

define chart \kappa 
(31)
\epsilon i : Rn \times (z

(Ji)
min , z

(Ji)
max)\times Rm - 1 \rightarrow Rn \times Rm by

\kappa 
(31)
\epsilon i (p, q, \widehat \zeta ) = (p, \zeta ) with \zeta (j) =

\left\{   \epsilon ln
\omega 

(Ji)

i

q - z
(Ji)

i

if j = Ji,\widehat \zeta (Ji) if j \not = Ji.

Proposition 3.8. There exist \delta j > 0, 0 \leq j \leq 4, such that if \Gamma i, Ai, \Sigma i are de-

fined in the preceding paragraphs, then the transition map \Pi \Sigma i

\epsilon \Gamma i
from \Gamma i to \Sigma i following

the flow of (1.1) is well-defined for all small \epsilon > 0, and

(3.39)
\bigm\| \bigm\| \bigm\| \kappa (31)

\epsilon i \circ \Pi \Sigma i

\epsilon \Gamma i
 - \Pi 

\widehat \Sigma i

0 \widehat Ai
\circ \kappa (31)

0i \circ \Pi Ai

0\Gamma i

\bigm\| \bigm\| \bigm\| 
C1(\Gamma i)

= O(\epsilon )

as \epsilon \rightarrow 0.

Proof. Analogous to the proof of Proposition 3.4, the assertions can be derived
from Propositions 3.5, 3.6, and 3.7. We skip it here.

Proof of Theorem 2.7. By a reversal of the time variable and applying Proposi-
tion 3.8, we have\bigm\| \bigm\| \bigm\| \kappa (31)

\epsilon i \circ \Pi \Sigma i

\epsilon \Gamma i+1
 - \Pi 

\widehat \Sigma i

0 \widehat Bi
\circ \kappa (31)

0i \circ \Pi Bi

0\Gamma i+1

\bigm\| \bigm\| \bigm\| 
C1(\Gamma i+1)

= O(\epsilon ).

Taking the inverse of the mappings in the last equation, we obtain

(3.40)
\bigm\| \bigm\| \bigm\| \Pi \Gamma i+1

\epsilon \Sigma i
\circ \kappa (13)

\epsilon i  - \Pi 
\Gamma i+1

0Bi
\circ \kappa (13)

0i \circ \Pi \widehat Bi

0\widehat \Sigma i

\bigm\| \bigm\| \bigm\| 
C1(\widehat \Sigma i)

= O(\epsilon ),

where \kappa 
(13)
\epsilon i : Rn \times Rm \rightarrow Rn \times R\times Rm - 1 is the chart defined by

\kappa 
(31)
\epsilon i (p, \zeta ) = (p, q, \widehat \zeta ) with q = zi + \omega 

(Ji)
i exp( - \zeta (Ji)/\epsilon ),

and \widehat \zeta (j) = \zeta (Ji) for j = 1, 2, . . . , Ji  - 1, Ji + 1, . . . ,m.

By (3.39) and (3.40),

\Pi 
\Gamma i+1

\epsilon \Gamma i
=
\Bigl( 
\Pi 

\Gamma i+1

\epsilon \Sigma i
\circ \kappa (13)

i\epsilon 

\Bigr) 
\circ 
\Bigl( 
\kappa 
(31)
i\epsilon \circ \Pi \Sigma i

\epsilon \Gamma i

\Bigr) 
=
\Bigl( 
\Pi 

\Gamma i+1

0Bi
\circ \kappa (13)

0i \circ \Pi \widehat Bi

0\widehat \Sigma i

\Bigr) 
\circ 
\Bigl( 
\Pi 

\widehat \Sigma i

0 \widehat Ai
\circ \kappa (31)

0i \circ \Pi Ai

0\Gamma i

\Bigr) 
+O(\epsilon )

= \Pi 
\Gamma i+1

0Bi
\circ \kappa (13)

0i \circ \Pi \widehat Bi

0 \widehat Ai
\circ \kappa (31)

0i \circ \Pi Ai

0\Gamma i
+O(\epsilon )

= \Pi 
\Gamma i+1

0Bi
\circ \widehat Qi \circ \Pi Ai

0\Gamma i
+O(\epsilon ),

D
ow

nl
oa

de
d 

07
/0

1/
21

 to
 5

2.
14

9.
18

5.
78

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3745

where \widehat Qi is defined in (2.14). Therefore,

(3.41)
\Pi 

\Gamma i+2

\epsilon \Gamma i+1
\circ \Pi \Gamma i+1

\epsilon \Gamma i

=
\Bigl( 
\Pi 

\Gamma i+2

0Bi+1
\circ \widehat Qi+1 \circ \Pi Ai+1

0\Gamma i+1

\Bigr) 
\circ 
\Bigl( 
\Pi 

\Gamma i+1

0Bi
\circ \widehat Qi \circ \Pi Ai

0\Gamma i

\Bigr) 
+O(\epsilon ).

We denote

P\epsilon = \Pi \Gamma 1

\epsilon \Gamma N
\circ \cdot \cdot \cdot \circ \Pi \Gamma 3

\epsilon \Gamma 2
\circ \Pi \Gamma 2

\epsilon \Gamma 1
.

By (3.41) and the relation that \Pi Ai

0Bi - 1
= \pi i \times id, we have

P\epsilon = \Pi \Gamma 1

0BN
\circ \widehat QN \circ (\pi N \times id) \circ \cdot \cdot \cdot \circ \widehat Q2 \circ (\pi 2 \times id) \circ \widehat Q1 \circ \Pi A1

0\Gamma 1
+O(\epsilon ).

Writing \Pi A1

0\Gamma 1
= \Pi A1

0BN
\circ \Pi BN

0\Gamma 1
= (\pi 1 \times id) \circ 

\bigl( 
\Pi \Gamma 1

BN

\bigr)  - 1
, it follows that

P\epsilon = \Pi \Gamma 1

0BN
\circ \widetilde P \circ 

\Bigl( 
\Pi \Gamma 1

0BN

\Bigr)  - 1

+O(\epsilon ),

where \widetilde P is defined by (2.21). This implies that

det (DP\epsilon  - id)

= det

\biggl( 
D\Pi \Gamma 1

0BN
\circ D \widetilde P \circ 

\Bigl( 
D\Pi \Gamma 1

0BN

\Bigr)  - 1

 - id

\biggr) 
+O(\epsilon )

= det
\Bigl( 
D \widetilde P  - id

\Bigr) 
+O(\epsilon ).

Hence, the linearization of the limiting return map P0 at (p01, q01, \widehat \zeta 1) \in \Gamma 1 does

not have a singular value equal to 1 if det(D \widetilde P (A1, \widehat \zeta 1)  - id) \not = 0. Consequently,
by the implicit function theorem for all small \epsilon > 0 there exists a locally unique

fixed point (p\epsilon 1, q\epsilon 1, \widehat \zeta \epsilon 1) \in \Gamma i of P\epsilon . Let (p\epsilon 1, z\epsilon 1) = \kappa 
(01)
\epsilon 1 (p\epsilon 1, q\epsilon 1, \widehat \zeta \epsilon 1), where \kappa 

(01)
\epsilon 1 :

Rn \times (z
(Ji)
min , z

(Ji)
max)\times Rm - 1 \rightarrow Rn \times Rm is defined by

\kappa 
(01)
\epsilon 1 (p, q, \widehat \zeta ) = (p, z) with z(j) =

\Biggl\{ 
q if j = Ji,

zi + \omega 
(j)
i exp( - \widehat \zeta (j)/\epsilon ) if j \not = Ji.

Then the trajectory passing through (p\epsilon 1, z\epsilon 1) is a periodic orbit of system (1.1).

If r(D \widetilde P (A1, \zeta 1)) < 1 (resp., r(D \widetilde P (A1, \zeta 1)) > 1), then P\epsilon is a contraction (resp.,
expansion), and hence the periodic orbit is orbitally asymptotically stable (resp.,
unstable).

4. Examples. In this section we apply the main results to study the examples
(1.6), (1.7), (1.9) and the planar system (1.10) mentioned in section 1.

4.1. Trade-off between encounter and growth rates. Consider system (1.7)
from Example 2, which takes the form

x\prime = F (x, \alpha ) - G(x, y, \alpha ),

y\prime = H(x, y, \alpha ) - D(y),

\epsilon \alpha \prime = \alpha (1 - \alpha )E(x, y, \alpha )
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3746 TING-HAO HSU AND SHIGUI RUAN

with

F (x, \alpha ) = x(\alpha + r  - kx),

G(x, y, \alpha ) = H(x, y, \alpha ) =
xy(a\alpha 2 + b\alpha + c)

1 + x
,

D(y, \beta ) = dy

and

E(x, y, \alpha ) =
\partial 

\partial \alpha 

\biggl( 
x\prime 

x

\biggr) 
= 1 - y(2a\alpha + b)

1 + x
.

The limiting fast system is

\.x = 0, \.y = 0, \.\alpha = \alpha (1 - \alpha )E(x, y, \alpha ).

The critical manifolds are

M1 = \{ (x, y, \alpha ) : \alpha = 0\} and M2 = \{ (x, y, \alpha ) : \alpha = 1\} .

On the critical manifolds Mi, the limiting slow system is

(4.1)
x\prime = F (x, \=\alpha ) - G(x, y, \=\alpha ),

y\prime = H(x, y, \=\alpha ) - D(y),

where \=\alpha = 0, 1. Let \Phi 1 and \Phi 2 be the solution operators for (4.1) with \alpha = 0 and
\alpha = 1, respectively. The transition maps Q1 and Q2 in Theorem 2.5 are determined
by

Q1(A1) = \Phi 1(A1, \tau 1) with

\int \tau 1

0

\biggl( 
1 - by

1 + x

\biggr) \bigm| \bigm| \bigm| \bigm| 
(x,y)=\Phi 1(A1,t)

dt = 0

and

Q2(A2) = \Phi 2(A2, \tau 2) with

\int \tau 2

0

\biggl( 
1 - y(2a+ b)

1 + x

\biggr) \bigm| \bigm| \bigm| \bigm| 
(x,y)=\Phi 2(A2,t)

dt = 0.

Following [10], we set a =  - 0.1, b = 3, c = 1, d = 2.8, k = 1, and r = 10.
By implementing Newton's iteration, we find points A1 = B2 \approx (5.57, 11.03) and
B1 = A2 \approx (9.96, 0.36) satisfying

A2 = B1 = Q1(A1) and A1 = B2 = Q2(A2).

This means that Ai and Bi satisfy the following conditions (see Figure 3(b)):
(i) A1 and B1 are connected by a trajectory \sigma 1 of (4.1) with \=\alpha = 0;
(ii) A2 and B2 are connected by a trajectory \sigma 2 of (4.1) with \=\alpha = 1;
(iii)

\int 
\sigma 1

E(x, y, 0) dt = 0 and
\int 
\sigma 2

E(x, y, 1) dt = 0.
Using the formulas in Proposition A.1 and Remark A.2, we obtain

DQ1(A1) \approx 
\biggl( 
 - 0.0001  - 0.0029
0.0009 0.0258

\biggr) 
and DQ2(A2) \approx 

\biggl( 
0.02 18.91
 - 0.02  - 16.95

\biggr) 
.

Hence, the eigenvalues ofDP (A1) = DQ2(A2)DQ1(A1) are \lambda 1 \approx 2.86\cdot 10 - 14 and \lambda 2 =
 - 0.42. Note that although \lambda 1 is close to zero, it is nonzero since P is induced by the
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3747

flow of systems of differential equations and is thus a composition of diffeomorphisms.
The reason that \lambda 1 is close to zero is that the endpoint B1 of the slow trajectory \sigma 1

of system (4.1) with \=\alpha = 0 is close to the asymptotically stable equilibrium (10, 0),
which causes contraction of surface areas (see, e.g., Li and Muldowney [41]).

Since \lambda 1 and \lambda 2 are both of magnitude less than one, by Theorem 2.5 or its special
case, Theorem 2.1, the configuration

\gamma 1 \cup \sigma 1 \cup \gamma 2 \cup \sigma 2

corresponds to a relaxation oscillation formed by locally orbitally asymptotically sta-
ble periodic orbits.

For system (1.7) with \epsilon = 0.1, taking initial data (x, y, \alpha ) = (10, 0.5, 0.5) we find
that the trajectory converges to a periodic orbit (see Figure 3(a)) near the singular
configuration.

4.2. Prey switching. Consider system (1.9) from Example 3. Following Piltz
et al. [49], we assume that the response functions fi(pi) in (1.9) are linear. After
rescaling, the system is converted to

(4.2)

p\prime 1 = (1 - qz)p1,

p\prime 2 = (r  - (1 - q)z)p2,

z\prime =
\bigl( 
qp1 + (1 - q)p2  - 1

\bigr) 
z,

\epsilon q\prime = q(1 - q)(p1  - p2).

The critical manifolds for (4.2) are

M1 = \{ (p1, p2, z, q) : q = 0\} and M2 = \{ (p1, p2, z, q) : q = 1\} .

On M1, the restriction of (1.9) is

(4.3)

p\prime 1 = p1,

p\prime 2 = (r  - z)p2,

z\prime = (p2  - 1)z,

which means that the predators hunt exclusively only the first prey population. On
M2, the restriction of (1.9) is

(4.4)

p\prime 1 = (1 - z)p1,

p\prime 2 = rzp2,

z\prime = (p1  - 1)z,

which means that the predators hunt exclusively only the second prey population.
Let \Phi 1 and \Phi 2 be the transition maps for (4.3) and (4.4), respectively. The

transition maps Q1 and Q2 in Theorem 2.5 are determined by

Q1(A1) = \Phi 1(A1, \tau 1) with

\int \tau 1

0

\bigl( 
p1  - p2

\bigr) \bigm| \bigm| \bigm| 
(p1,p2,z)=\Phi 1(A1,t)

dt = 0

and

Q2(A2) = \Phi 2(A2, \tau 2) with

\int \tau 2

0

\bigl( 
p1  - p2

\bigr) \bigm| \bigm| \bigm| 
(p1,p2,z)=\Phi 2(A2,t)

dt = 0.
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With the parameters given in Piltz et al. [49], r = 0.5 and m = 0.4, we find
A1 = B2 \approx (0.92, 1.08, 1.50) and A2 = B1 \approx (1.08, 0.92, 1.50) such that the transition
maps Qi in Theorem 2.5 satisfy Q1(A1) = B1 and Q2(A2) = B2 (see Figure 4(b)).
Using the formulas in Proposition A.1 and Remark A.2, we obtain

DQ1(A1) \approx 

\left(   - 6.78 5.74  - 1.00
6.77  - 4.03 0.70
0.34  - 0.16 1.04

\right)  , DQ2(A2) \approx 

\left(   - 1.56 3.38 0.55
2.80  - 2.80  - 0.99
 - 0.07 0.34 1.06

\right)  .

Hence, the eigenvalues of DP (A1) = DQ2(A2)DQ1(A1) are \lambda 1 \approx 60.55 and \lambda 2,3 \approx 
0.97\pm 0.26

\surd 
 - 1. Since \lambda 1 is greater than 1, by Theorems 2.5 or 2.1, the configuration

connecting Ai and Bi corresponds to a relaxation oscillation formed by orbitally
unstable periodic orbits (see Figure 4(b)).

4.3. Coevolution. Consider system (1.6) from Example 1. The system has
critical manifolds Mi, 1 \leq i \leq 4, corresponding to (\alpha , \beta ) = (\alpha i, \beta i) with (\alpha i, \beta i),
i = 1, 2, 3, 4, being equal to (0, 0), (0, 1), (1, 1), and (1, 0), respectively (see Figure 6).
The limiting slow system on each Mi is

(4.5)
x\prime = F (x, \alpha i) - G(x, y, \alpha i, \beta i),

y\prime = H(x, y, \alpha i, \beta i) - D(y, \beta i).

The numbers \omega i = (\omega 
(1)
i , \omega 

(2)
i ) defined by (2.17) are \omega 1 = (1, 1), \omega 2 = (1, - 1), \omega 3 =

( - 1, - 1), and \omega 4 = ( - 1, 1). Equations for \zeta = (\zeta (1), \zeta (2)) in (2.11) on Mi are

(4.6)
d

d\tau 
\zeta (1) = \omega 

(1)
i E1(x, y, \alpha i, \beta i) and

d

d\tau 
\zeta (2) = \omega 

(2)
i E2(x, y, \alpha i, \beta i),

where

E1(x, y, \alpha , \beta ) =
\partial 

\partial \alpha 

\biggl( 
F (x, \alpha ) - G(x, y, \alpha , \beta )

x

\biggr) 
and

E2(x, y, \alpha , \beta ) =
\partial 

\partial \beta 

\biggl( 
H(x, \alpha ) - D(x, y, \alpha , \beta )

y

\biggr) 
.

Let \widehat \Phi i, 1 \leq i \leq 4, be the solution operators for system (4.5)--(4.6). Then the transition

maps \widehat Qi in Theorem 2.6 are determined by

\widehat Q1(A1, \zeta ) = \widehat \Phi 1((A1, \zeta ), \tau 1) with \zeta (2) +

\int \tau 1

0

E2(x, y, 0, 0)
\bigm| \bigm| \bigm| 
(x,y)=\Phi 1(A1,t)

dt = 0,

\widehat Q2(A2, \zeta ) = \widehat \Phi 2((A2, \zeta ), \tau 2) with \zeta (1) +

\int \tau 2

0

E1(x, y, 0, 1)
\bigm| \bigm| \bigm| 
(x,y)=\Phi 2(A2,t)

dt = 0,

\widehat Q3(A3, \zeta ) = \widehat \Phi 3((A3, \zeta ), \tau 3) with \zeta (2)  - 
\int \tau 1

0

E2(x, y, 1, 1)
\bigm| \bigm| \bigm| 
(x,y)=\Phi 1(A1,t)

dt = 0,

\widehat Q4(A4, \zeta ) = \widehat \Phi 4((A4, \zeta ), \tau 4) with \zeta (1)  - 
\int \tau 4

0

E1(x, y, 1, 0)
\bigm| \bigm| \bigm| 
(x,y)=\Phi 4(A4,t)

dt = 0.
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Following Cortez and Weitz [12, Supporting Information D], we consider (1.6) with

F (x, \alpha ) = x(s0 + s1\alpha )

\biggl( 
1 - x

k0 + k1\alpha 

\biggr) 
,

G(x, y, \alpha , \beta ) =
(r0 + r1\alpha + r2\beta + r3\alpha \beta + r4\beta 

2)xy

1 + hx
,

H(x, y, \alpha , \beta ) = c0G(x, y, \alpha , \beta ),

D(y, \beta ) = y1.5(\delta 0 + \delta 1\beta ),

and parameters s0 = 2.5, s1 = 3.5, k0 = 1, k1 = 0.1, r0 = 0.65, r1 = 3, r2 = 2.3, r3 =
 - 0.2, r4 = 0.01, c0 = 1.7, \delta 0 = 0.76, \delta 1 = 1.77, and h = 1. Implementing Newton's
iteration for \widehat Qi(Ai, \zeta i) = (Ai+1, \zeta i+1), 1 \leq i \leq 4, we find B4 = A1 \approx (0.33, 1.99),
B1 = A2 \approx (0.92, 0.56), B2 = A3 \approx (0.60, 0.55), and B3 = A4 \approx (0.30, 0.93) (see
Figure 2(b)), and \zeta 1 \approx (0, 0.98), \zeta 2 \approx (3.84, 0), \zeta 3 \approx (0, 1.12), and \zeta 4 \approx (0.55, 0).

Let \{ \sanse x, \sanse y, \sanse \alpha , \sanse \beta \} be the standard ordered basis of the (x, y, \alpha , \beta )-space. Note
that the tangent space of A1 \times \Lambda 1 at (A1, \zeta 1) is spanned by \{ \sanse x, \sanse y, \sanse \beta \} , and the
tangent space of B1 \times \Lambda 2 at (B1, \zeta 2) is spanned by \{ \sanse x, \sanse y, \sanse \alpha \} . Using formulas in
Proposition A.3, we obtain

D \widehat Q1(A1, \zeta 1) \approx 

\sanse x \sanse x \sanse \beta \Biggl( \Biggr) 0.013 0.004  - 0.007 \sanse x
0.080  - 0.254 0.038 \sanse y
 - 3.29  - 2.42 0.67 \sanse \alpha 

.

Similarly,

D \widehat Q2(A2, \zeta 2) \approx 

\sanse x \sanse x \sanse \alpha \Biggl( \Biggr)  - 0.00040  - 0.0058 0.00024 \sanse x
 - 0.00003 0.00024 0.00030 \sanse y

0.37  - 1.44  - 0.26 \sanse \beta 

,

and the approximations of D \widehat Q3(A3, \zeta 3) and D \widehat Q4(A4, \zeta 4) are, respectively,

\sanse x \sanse x \sanse \beta \Biggl( \Biggr) 
0.29  - 0.04  - 0.22 \sanse x
0.26  - 0.67 0.49 \sanse y
2.49 0.13  - 0.86 \sanse \alpha 

and

\sanse x \sanse x \sanse \alpha \Biggl( \Biggr)  - 0.10  - 0.09 0.03 \sanse x
0.42 0.38  - 0.13 \sanse y
 - 0.36  - 0.33 0.11 \sanse \beta 

.

Hence, the eigenvalues of

D \widehat P (A1, \zeta 1) = D \widehat Q4(A4, \zeta 4) D \widehat Q3(A3, \zeta 3) D \widehat Q2(A2, \zeta 2) D \widehat Q1(A1, \zeta 1)

are \lambda 1 \approx 0.39, \lambda 2 \approx  - 6.14 \cdot 10 - 5, and \lambda 3 \approx  - 5.11 \cdot 10 - 11, which are all of magnitude
less than one. Therefore, by Theorem 2.6 or its special case, Theorem 2.2, this sin-
gular configuration corresponds to a relaxation oscillation formed by locally orbitally
asymptotically stable periodic orbits.

4.4. A planar system. Consider system (1.10) from Example 4. The limiting
fast system is

(4.7) \.a = bH(a, b, 0), \.b = bG(a, b, 0).
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3750 TING-HAO HSU AND SHIGUI RUAN

Fig. 11. For system (4.7) with \epsilon = 0, the a-axis is a line of equilibria and \gamma is a heteroclinic
orbit connecting (a0, 0) and (a1, 0).

On the critical manifold M = \{ (a, b) : b = 0\} , the limiting slow system is

a\prime = F (a, 0, 0).

We assume the following (see Figure 11):
(i) There is a trajectory \gamma of (4.7) satisfying

lim
t\rightarrow  - \infty 

\gamma (t) = (a0, 0), lim
t\rightarrow \infty 

\gamma (t) = (a1, 0).

(ii) F (a, 0, 0) > 0 for all a \in [a0, a1].

(iii) G(a0, 0, 0) < 0 and G(a1, 0, 0) > 0.

(iv)

\int a1

a0

G(a, 0, 0)

F (a, 0, 0)
da = 0 and

\int s

a0

G(a, 0, 0)

F (a, 0, 0)
da < 0 \forall s \in (a0, a1).

We provide an alternative proof of the following theorem from Hsu andWolkowicz [28].

Theorem 4.1. Consider system (1.10). Assume (i)--(iv) and let

\lambda = ln

\bigm| \bigm| \bigm| \bigm| F (a1, 0, 0)

F (a0, 0, 0)

\bigm| \bigm| \bigm| \bigm| + \int 
\gamma 

\partial aH

H
da+

\int 
\gamma 

\partial bG

G
db.

If \lambda \not = 0, then \gamma admits a relaxation oscillation which is formed by locally unique
periodic orbits for small \epsilon > 0. Moreover, the periodic orbit is orbitally asymptotically
stable if \lambda < 0 and unstable if \lambda > 0.

Remark 4.2. Assumptions (i) and (iv) are weaker than the conditions assumed in
[28]. In that paper, the assumption corresponding to (i) is that there exists a smooth
family of heteroclinic orbits; the assumptions corresponding to the inequalities in (iii)
and (iv) are G(a, 0, 0) < 0 for a < \=a and G(a, 0, 0) > 0 for a > \=a. However, the
analysis in that paper is also valid under these weaker assumptions.

Proof. Define a function Q implicitly by Q(a0) = a1 and

(4.8)

\int Q(a)

a0

G(r, 0, 0)

F (r, 0, 0)
dr = 0.

By (A.6) in Proposition A.1,

(4.9)
dQ(a0)

da
=

F (a1, 0, 0)

G(a1, 0, 0)

G(a0, 0, 0)

F (a0, 0, 0)
.

(Alternatively, (4.9) can be derived directly by differentiating (4.8).)
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3751

Let \pi be the transition map of (4.7) from a neighborhood of (a1, 0) to a neigh-
borhood (a0, 0) in the a-axis. By (A.18) in Proposition A.4,

(4.10)
d

da
\pi (a1) =

G(a1, 0, 0)

G(a0, 0, 0)
exp

\biggl( \int 
\gamma 

\partial aH + \partial bG dt

\biggr) 
.

By (4.10) and (4.9), we obtain

d

da
(\pi \circ Q) =

d\pi (a1)

da

dQ(a0)

da

=

\biggl( 
F (a1, 0, 0)

G(a1, 0, 0)

G(a0, 0, 0)

F (a0, 0, 0)

\biggr) 
G(a1, 0, 0)

G(a0, 0, 0)
exp

\Biggl( \int T

0

\partial aH + \partial bG dt

\Biggr) 
.

Using the relations da/dt = H and da/dt = G in (4.7), it follows that

d

da
(\pi \circ Q)(a0) =

F (a1, 0, 0)

F (a0, 0, 0)
exp

\biggl( \int 
\gamma 

\partial aH

H
da+

\int 
\gamma 

\partial bG

H
db.

\biggr) 
.

Hence

ln

\bigm| \bigm| \bigm| \bigm| dda (\pi \circ Q)(a0)

\bigm| \bigm| \bigm| \bigm| = ln

\bigm| \bigm| \bigm| \bigm| F (a1, 0, 0)

F (a0, 0, 0)

\bigm| \bigm| \bigm| \bigm| + \int 
\gamma 

\partial aH

H
da+

\int 
\gamma 

\partial bG

H
db.

Hence \lambda < 0 if and only if
\bigm| \bigm| d
da (\pi \circ Q)(a0)

\bigm| \bigm| < 1. By Theorem 2.7, the desired result
follows.

Appendix A. Some computable formulas. Under Assumptions 1--5, we
define fi(p) = f(p, zi, 0) and pi(\tau ) = \Phi i(\tau ,Ai) for each i = 1, 2, . . . , N . Let Li(\tau ) be
the fundamental matrix for the variational equations of (1.4) along \sigma i. This means
that for any v \in Rn, w(\tau ) = Li(\tau )v is the solution of

(A.1)
d

d\tau 
w =

\bigl[ 
Dfi(pi(\tau ))

\bigr] 
w, w(0) = v0, for 0 \leq \tau \leq \tau i.

It can be shown that, for v \in Rn and 0 \leq \tau \leq \tau i,

(A.2) Li(\tau )v = D\Phi (Ai, \tau )v,

which implies

(A.3) Li(\tau )v = v +

\int \tau 

0

\bigl[ 
Dfi(pi(s))

\bigr] 
Li(s)v ds.

We define a linear functional \mu i on Rn by

(A.4) \mu i(v) =

\int \tau i

0

\biggl\langle 
Li(\tau )v,D

\partial g(Ji)

\partial z(Ji)
(pi(\tau ), zi, 0)

\biggr\rangle 
d\tau for v \in Rn,

where D denotes the derivative with respect to p.

Proposition A.1. Let Qi be defined by (2.9). Then

(A.5) DQi(Ai, \zeta i)v = Li(\tau i)v  - 
\mu i(v)

\partial g(Ji)

\partial z(Ji)
(Bi, zi, 0)

f(Bi, zi, 0) \forall v \in Rn,
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3752 TING-HAO HSU AND SHIGUI RUAN

where Li and \mu i are defined by (A.2) and (A.4), and Ji is the index in Assumption 2.
In particular,

(A.6) DQi(Ai, \zeta i)f(Ai, zi, 0) =

\partial g(Ji)

\partial z(Ji)
(Ai, zi, 0)

\partial g(Ji)

\partial z(Ji)
(Bi, zi, 0)

f(Bi, zi, 0).

Proof. By differentiating (2.8) with respect to p we obtain

\langle DTi(p), v\rangle 
\partial g(Ji)

\partial z(Ji)

\bigl( 
\Phi i(A, \tau i), zi, 0

\bigr) 
+

\int Ti(A)

0

\biggl\langle 
D
\partial g(Ji)

\partial z(Ji)

\bigl( 
\Phi i(A, \tau ), zi, 0

\bigr) 
, D\Phi i(A, \tau )v

\biggr\rangle 
d\tau = 0 \forall v \in Rn.

Evaluating this equation at A = Ai yields

\langle DTi(p), v\rangle 
\partial g(Ji)

\partial z(Ji)
(Bi, zi, 0) =  - 

\int \tau i

0

\biggl\langle 
D
\partial g(Ji)

\partial z(Ji)

\bigl( 
pi(\tau ), zi, 0

\bigr) 
, Li(\tau )v

\biggr\rangle 
d\tau .

By (A.4) it follows that

(A.7) \langle DTi(p), v\rangle =
 - \mu i(v)

\partial g(Ji)

\partial z(Ji)
(Bi, zi, 0)

.

On the other hand, since \Phi i is the solution operator for (1.4), the definition of Qi

in (2.9) means that

Qi(p) = p+

\int Ti(p)

0

fi(\Phi i(p, \tau )) d\tau .

Differentiating both sides of the equation with respect to p gives

DQi(p)v = v + \langle DTi(p), v\rangle fi(\Phi i(p, Ti(p)))

+

\int Ti(p)

0

Dfi(\Phi i(p, \tau ))D\Phi i(p, \tau )v d\tau \forall v \in Rn.

Evaluating the equation at p = Ai and using (A.2) we have

DQi(Ai)v = v + \langle DTi(Ai), v\rangle fi(Bi) +

\int \tau i

0

Dfi(pi(\tau ))Li(\tau )v d\tau .

By (A.3) it follows that

(A.8) DQi(Ai)v = Li(\tau i)v + \langle DTi(Ai), v\rangle fi(Bi).

Substituting (A.7) into (A.8), we then obtain (A.5).
Since fi(pi(\tau )) is a solution of (A.1) with v0 = fi(Ai),

(A.9) Li(\tau )fi(Ai) = fi(pi(\tau )) for 0 \leq \tau \leq \tau i.

Using d
d\tau pi(\tau ) = fi(pi(\tau )) and (A.9), evaluating (A.4) at v = fi(p) gives

(A.10) \mu (fi(Ai)) =
\partial g(Ji)

\partial z(Ji)
(pi(\tau ), zi, 0)

\bigm| \bigm| \bigm| \bigm| \tau i
\tau =0

=
\partial g(Ji)

\partial z(Ji)
(Bi, zi, 0) - 

\partial g(Ji)

\partial z(Ji)
(Ai, zi, 0).

Substituting (A.10) into (A.5) we obtain (A.6).
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RELAXATION OSCILLATION AND THE ENTRY-EXIT FUNCTION 3753

Remark A.2. Numerical approximations of Li and \mu i can be computed by ex-
tending system (1.3) of p to a system of (p, w, \mu ) by appending equations (A.4) and

d

d\tau 
\mu i =

\biggl\langle 
Li(\tau )v,D

\partial g(Ji)

\partial z(Ji)
(pi(\tau ), zi, 0)

\biggr\rangle 
.

Proposition A.3. Let \widehat Qi be defined by (2.14). Then

(A.11)

D \widehat Qi(Ai, \zeta i)(v, 0)

=

\left(  DQi(Ai)v,
 - \nu i(v)

\partial g(Ji)

\partial z(Ji)
(Bi, zi, 0)

\sum 
j \not =Ji

\partial g(j)

\partial z(j)
\bigl( 
Bi, zi, 0) \sanse j

\right)  \forall v \in Rn,

where \nu i(v) is defined by (A.4), and

(A.12)

D \widehat Qi(Ai, \zeta i)(0, \sanse j)

=

\left\{     
(0, \sanse j) if j \not = Ji

1
\partial g(Ji)

\partial z(Ji)
(Bi,zi,0)

\Bigl( 
f(Bi, zi, 0),

\sum 
k \not =Ji

\partial g(k)

\partial z(k)

\bigl( 
Bi, zi, 0) \sanse k

\Bigr) 
if j = Ji.

Proof. We identify vectors v \in Rn with their images (v, 0m) \in Rn \times Rm and
identify the vector \sanse j , j \in \{ 1, 2, . . . ,m\} , in the standard basis of Rm, with the vector

(0n, \sanse j) in Rn \times Rm. The function \widehat Qi(p, \zeta ) defined by (2.14) can be written as

(A.13)

\widehat Qi(p, \zeta )

=

\left(  \Phi 
\bigl( 
p, \widehat Ti(p, \zeta )

\bigr) 
,
\sum 
k \not =Ji

\Biggl[ 
\zeta (k) +

\int \widehat T (p,\zeta (Ji))

0

\partial g(k)

\partial z(k)
\bigl( 
\Phi (p, \tau ), zi, 0) d\tau 

\Biggr] 
\sanse k

\right)  .

Since \widehat Ti(p, \zeta 
(Ji)) = Ti(p) and \Phi 

\bigl( 
p, Ti(p)

\bigr) 
= Qi(p) for all p \in Ai,

\widehat Qi(p, \zeta i) =

\left(  Qi(p),
\sum 
k \not =Ji

\Biggl[ 
\zeta (k) +

\int T (p)

0

\partial g(k)

\partial z(k)
\bigl( 
\Phi (p, \tau ), zi, 0) d\tau 

\Biggr] 
\sanse k

\right)  .

Hence,

D \widehat Qi(p, \zeta i)(v, 0)

=

\left(  DQi(p)v, \langle DT (p), v\rangle 
\sum 
j \not =Ji

\partial g(j)

\partial z(j)
\bigl( 
\Phi (p, \tau ), zi, 0) \sanse j

\right)  \forall v \in Rn.

Evaluating this equation at p = Ai, by (A.7) we then obtain (A.11).
For each j \in \{ 1, 2, . . . ,m\} \setminus \{ Ji\} , differentiating (A.13) with respect to \zeta (j) gives

\partial 
\partial \zeta (j)

\widehat Qi(p, \zeta ) = \sanse j for all (p, \zeta ). On the other hand, by differentiating (A.13) with

respect to \zeta (Ji), from the relation \partial 
\partial \tau \Phi (p, \tau ) = f(\Phi (p, \tau )) we obtain

(A.14)

\partial 

\partial \zeta (Ji)
\widehat Qi(p, \zeta )

=
\partial \widehat T (p, \zeta (Ji))

\partial \zeta (Ji)

\left(  f
\bigl( 
\Phi (p, \widehat Ti(p, \zeta 

(Ji))), zi, 0
\bigr) 
,
\sum 
k \not =Ji

\partial g(k)

\partial z(k)
\bigl( 
Bi, zi, 0) \sanse k

\right)  .
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Note that differentiating (2.13) with respect to \zeta (Ji) gives

(A.15)
\partial \widehat Ti(Ai, \zeta 

(Ji))

\partial \zeta (Ji)
=

 - 1
\partial g(Ji)

\partial z(Ji)

\bigl( 
Bi, zi, 0)

.

By (A.14) and (A.15) it follows that

\partial 

\partial \zeta (Ji)
\widehat Qi(Ai, \zeta ) =

 - 1
\partial g(Ji)

\partial z(Ji)

\bigl( 
Bi, zi, 0)

\left(  f(Bi, zi, 0),
\sum 
k \not =Ji

\partial g(k)

\partial z(k)
\bigl( 
Bi, zi, 0) \sanse k

\right)  .

This means that (A.12) holds.

Let \Psi i be the solution operator for (2.19). Let ti be the positive number such
that

\Psi i

\bigl( 
ti, (Bi - 1, z

(Ji)
i - 1 )

\bigr) 
= (Ai - 1, z

(Ji)
i ).

Let

\=\gamma i(t) = \Psi i

\bigl( 
t, (Bi - 1, z

(Ji)
i - 1 )

\bigr) 
, 0 \leq t \leq ti.

Thus \=\gamma has the same trajectory as the curve \gamma given in Assumption 2.
We define Ri(t) : Rn \rightarrow Rn and \nu i(t) : Rn \rightarrow R, 0 \leq t \leq ti, to be the linear oper-

ators so that for any v0 \in Rn, Ri(t)[v0] and \nu i((t)[v0] are the v- and w-components,
respectively, of the variational equations of (2.19) along \=\gamma i(t) with initial data (v0, 0).
This means that for any (v0, w0) \in Rn \times R, (v, w) =

\bigl( 
Ri(t)[v0], \nu i((t)[v0]

\bigr) 
is the

solution of

(A.16)
d

dt

\biggl( 
v
w

\biggr) 
=

\biggl( 
Dphi Dqhi

Dpgi Dqgi

\biggr) 
\=\gamma i(t)

\biggl( 
v
w

\biggr) 
,

\biggl( 
v
w

\biggr) 
(0) =

\biggl( 
v0
0

\biggr) 
,

where gi and hi are defined by (2.18).

Proposition A.4. Let \pi i be defined by (2.20). Then

(A.17) D\pi i(Bi - 1)[v] = Ri(ti)[v] - \nu i(ti)[v]
hi(Ai, zi)

gi(Ai, zi)
\forall v \in Rn.

Moreover, if n = 1, then

(A.18) D\pi i(Bi - 1) =
gi(Bi - 1, zi - 1)

gi(Ai, zi)
exp

\biggl( \int ti

0

(Dphi +Dqgi)(\widetilde \gamma i(t)) dt\biggr) .

Proof. The first part of the proof is similar to that of Proposition A.1, so we only
sketch it briefly. Define Si : Bi - 1 \rightarrow (0,\infty ) implicitly by Si(p) = ti and

(A.19) z
(Ji)
i - 1 +

\int Si(p)

0

gi
\bigl( 
\Psi i

\bigl( 
t, (p, z

(Ji)
i - 1

\bigr) \bigr) 
dt = z

(Ji)
i .

Then

(A.20) (\pi i(p), z
(Ji)
i ) = \Psi i

\bigl( 
Si(p), (p, z

(Ji)
i - 1 )

\bigr) 
.
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Differentiating (A.19) gives (similar to the derivation of (A.7))

(A.21) \langle DSi(p), v\rangle gi(Ai, z
(Ji)
i ) = \nu i(ti)[v].

Differentiating (A.20) gives (similar to the derivation of (A.8))

(A.22) D\pi i(p)[v] = Ri(ti)[v] - \langle DSi(p), v\rangle hi(Ai, z
(Ji)
i ).

By (A.21) and (A.22) we obtain (A.17).
Now we assume n = 1. Then (A.22) gives

D\pi i(Bi - 1) =
Ri(ti)gi(Ai, zi) - \nu i(ti)hi(Ai, zi)

gi(Ai, zi)

=
1

gi(Ai, zi)
det

\biggl( 
Ri(t) hi(\widetilde \gamma i(t))
\nu i(t) gi(\widetilde \gamma i(t))

\biggr) 
t=ti

.(A.23)

On the other hand, when n = 1, (Ri, \nu i)(t) is the solution of (A.16) with v0 = 1. Note
that (hi, gi)(\widetilde \gamma i(t)) also satisfies the differential equations in (A.16). Hence,

d

dt

\biggl( 
Ri(t) hi(\widetilde \gamma i(t))
\nu i(t) gi(\widetilde \gamma i(t))

\biggr) 
=

\Biggl( 
Dpg Dqg

Dph Dqh

\Biggr) 
(p,q)=\widetilde \gamma i(t)

\biggl( 
Ri(t) hi(\widetilde \gamma i(t))
\nu i(t) gi(\widetilde \gamma i(t))

\biggr) 
and \biggl( 

Ri(t) hi(\widetilde \gamma i(t))
\nu i(t) gi(\widetilde \gamma i(t))

\biggr) 
t=0

=

\biggl( 
1 hi(Bi - 1, zi - 1)

0 gi(Bi - 1, zi - 1)

\biggr) 
.

By Abel's formula for the Wronskian, it follows that

det

\biggl( 
Ri(t) hi(\widetilde \gamma i(t))
\nu i(t) gi(\widetilde \gamma i(t))

\biggr) 
t=ti

= det

\biggl( 
Ri(t) hi(\widetilde \gamma i(t))
\nu i(t) gi(\widetilde \gamma i(t))

\biggr) 
t=0

exp

\left(  \int ti

0

tr

\Biggl( 
Dpgi Dqgi

Dphi Dqhi

\Biggr) 
(p,q)=\widetilde \gamma i(t)

dt

\right)  
= det

\biggl( 
1 hi(Bi - 1, zi - 1)

0 gi(Bi - 1, zi - 1)

\biggr) 
exp

\biggl( \int ti

0

(Dpgi +Dqhi)(\widetilde \gamma i(t)) dt\biggr) ,

= gi(Bi - 1, zi - 1) exp

\biggl( \int ti

0

(Dpgi +Dqhi)(\widetilde \gamma i(t)) dt\biggr) .(A.24)

By (A.23) and (A.24), we then obtain (A.18).
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