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Abstract: We develop a method for calculating the persistence landscapes of affine fractals using the pa-
rameters of the corresponding transformations. Given an iterated function system of affine transformations
that satisfies a certain compatibility condition, we prove that there exists an affine transformation acting
on the space of persistence landscapes which intertwines the action of the iterated function system. This
latter affine transformation is a strict contraction and its unique fixed point is the persistence landscape of
the affine fractal. We present several examples of the theory as well as confirm the main results through
simulations.

Keywords: persistent homology, persistence landscapes, affine fractal, Cantor set

MSC: Primary: 55N31, 28A80; Secondary 37M22, 47H09

1 Introduction
Affine fractals are the invariant set of an iterated function system (IFS) consisting of affine transformations
acting on Euclidean space. Well-known examples of such fractals are Cantor sets and Mandelbrojt sets.
Affine fractals, as subsets of Euclidean space, possess topological properties that can be extracted through
the methods of algebraic topology. In particular, these subsets of Euclidean space can be associated to a
persistence landscape [1] which is a sequence of functions that encode geometric properties of the set based
on Euclidean distances. These distances give rise to a family of homology groups derived from a filtration
of complexes. The homology groups in turn produce a persistence module from which the persistence
landscapes are defined.

Interest in studying fractals using the tools of algebraic topology has occurred recently. In [2], it was
shown that persistence homology can be used to distinguish fractals of the same Hausdorff dimension. In
[3], the authors describe a relationship between the Hausdorff dimension of fractals and the persistence
intervals of Betti numbers.

Our main result (Theorem 4) concerns the calculation of the persistence diagrams and landscapes of
affine fractals. We prove that, under a certain compatibility condition, there exists an affine transformation
L which is defined by the parameters of the IFS. This transformation L acts on the space of persistence
landscapes. Moreover, it is a strict contraction and its unique fixed point is the persistence landscape of
the affine fractal. Consequently, the persistence landscape of the fractal can be computed via the limiting
process of repeated applications of L to any initial input. We also prove, under an additional assumption
on the IFS, that L intertwines the action of the iterated function system (Theorem 5).

1.1 Persistence Landscapes

Persistent homology is a relatively new approach to studying topological spaces. In the context of data
science, persistent homology can be applied to a data set to complement traditional statistical approaches
by studying the geometry of the data. We employ the tools of persistent homology, including persistence
landscapes, to analyze affine fractals.
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Persistent homology typically begins with a set of points, equipped with a pairwise notion of distance.
We place a metric ball of radius r around each point, and increase r. We are interested in the topological
properties of the union of these balls as a function of r. Typical properties of interest include connectedness,
loops or holes, and voids of the union, and importantly the radii at which these appear or disappear. While
this type of information may seem crude, a surprising amount of insight about the underlying set of points
can be extracted in this way.

The data of changing topological properties is conveniently summarized in what is known as a persis-
tence diagram, a multiset of points in the plane. If we focus on loops of the union, then each point (b, d) in
the persistence diagram represents a loop, whose two coordinates correspond to the radius when the hole is
formed (r = b) and when it gets filled in (r = d). The persistence diagram provides a multiscale summary,
encoding geometric and topological features of the set [4].

Unfortunately however, barcodes do not posses a vector space structure, so quantitative analysis and
precise comparison can be difficult [5]. To remedy this, we map the barcodes to some feature space (a
Banach space in our case) using a well-studied feature map known as a persistence landscape. The mapping
from barcodes to landscapes is reversible, so this vectorization scheme loses no information [1]. Persis-
tence landscapes have been used to study protein binding [6], phase transitions [7], audio signals [8], and
microstructures in materials science [9].

See Section 2 for a full discussion of persistent homology and persistence landscapes of metric spaces.

1.2 Affine Fractals

A fractal, for our purposes, is a set which has a self-similarity property. The middle-third Cantor set is the
canonical example of a self-similar set. Fractals are commonly studied objects in many contexts. Cantor
sets, in particular, appear in the context of analysis [10, 11], number theory [12, 13], probability [14–16],
geometry [17, 18], physics [19–21] and harmonic analysis [22–24].

In this paper, we consider specifically the class of affine fractals, which are generated by iterated
function systems consisting of affine transformations. By this we mean that the fractal is the invariant set
for the iterated function system.

Definition 1. Suppose Ψ = {ψ1, ..., ψN} is a set of maps acting on a metric space (X, d). We say that
A ⊂ X is invariant for Ψ if A = ∪Ni=1ψi(A).

For the maps Ψ, we denote the compositions (i.e. iterations) of the maps by:

Ψ(A) =
N⋃
i=1

ψi(A), Ψp(A) = Ψ(Ψp−1(A)).

In [25], Hutchinson laid out the main relationship between fractals and iterated function systems (IFS);
this relationship is the foundation of our results. Recall that ψ : X → X is Lipschitz if for all x, y ∈ X,
there exists C > 0 such that

d(ψ(x), ψ(y)) ≤ Cd(x, y).

The Lipschitz constant of ψ is the infimum of all such C. We say that ψ is a contraction if it has Lipschitz
constant less than 1. Hutchinson’s theorem is as follows.

Theorem A. Let X = (X, d) be a complete metric space and Ψ = {ψ1, ..., ψN} a finite set of contraction
maps on X. Then there exists a unique closed bounded set A such that

A =
N⋃
i=1

ψi(A).

Furthermore, A is compact and is the closure of the set of fixed points of finite compositions of members
of Ψ. Moreover, for a closed bounded K, Ψp(K)→ A in the Hausdorff metric.
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Recall that the Hausdorff distance between two sets A,B ⊂ X is given by

dH(A,B) = max
{

sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)
}
.

For us, the maps Ψ consist of affine transformations acting on Rd. Moreover, we assume that the linear
part of the maps are scalars which are common to all of the maps. Therefore, our maps have the form
ψj(~x) = c(~x+~bj), where c ∈ (0, 1). The following are examples of affine fractals in our class:
1. the classical middle-third Cantor set in R;
2. the Sierpinski gasket in R2;
3. the Sierpinksi carpet in R2;
4. the Menger sponge (or Sierpinski cube) in R3.
Specifically, the Cantor set is the invariant set for the IFS with generators

ψ0(x) = x

3 ; ψ1(x) = x+ 2
3 .

Likewise, the Sierpinski carpet is the invariant set for the IFS with generators

ψ0(x, y) =
(x

3 ,
y

3

)
; ψ1(x) =

(
x+ 2

3 ,
y

3

)
; ψ2(x) =

(
x

3 ,
y + 2

3

)
; ψ3(x) =

(
x+ 2

3 ,
y + 2

3

)
.

For an IFS Ψ acting on Rd and a nonempty S0 ⊂ Rd, we define the sequence Sn+1 = Ψ(Sn). We will
typically consider S0 which consists of finitely many points in Rd, and therefore by Hutchinson’s theorem,
{Sn} converges in the Hausdorff metric to the fractal generated by Ψ. Indeed, we will show that choosing
S0 to be the extreme points of the convex hull of the fractal is ideal in establishing our algorithm for
calculating the persistence landscapes of the fractal.

One of our main results is to prove that for a fixed affine IFS Ψ that satisfies a certain compatibility
condition and appropriate initialization S0, there exists an affine transformation L acting on the space of
persistence landscapes such that for every n ∈ N the following diagram commutes:

Sn Sn+1

fn fn+1

Ψ

γ γ

L

(1)

Here fn is the persistence landscape of Sn and γ associates to Sn its persistence landscape. We will show
that L is a strict contraction on the set of persistence landscapes, and so it possesses a unique fixed
point. That fixed point will be the persistence landscape for the fractal generated by Ψ. Consequently, the
persistence landscape f of the fractal is obtained by

f = lim
n→∞

Lnf0 (2)

for any initialization f0.

2 Persistent Homology
In this section, we briefly review some standard facts from algebraic topology and persistent homology
as well as establish our notation. Excellent resources for (simplicial) homology can be found in [26, 27],
and [4, 28, 29] provide a good introduction to persistent homology.

2.1 Simplicial Complexes

For a simplicial complex K, the p-skeleton of K, denoted by K(p), is the subcomplex consisting of all
simplices of dimension less than or equal to p. The set of all p-simplices is denoted Kp. Thus, the set of
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vertices can be written as K0. Recall that if σ = [u0, u1, . . . , up] is a p-simplex, then every point x ∈ σ can
be expressed as a convex combination x =

∑
i αiui, where 0 ≤ αi ≤ 1 and

∑
i αi = 1.

Given two simplicial complexes K and L, we say that ϕ : K0 → L0 is a vertex map if for any p-simplex
[x0, ..., xp] in K, [ϕ(x0), ..., ϕ(xp)] is a simplex in L. Thus vertex maps send the vertices of simplices in K
to simplices in L. We do not require ϕ to be injective, so dim[ϕ(x0), ..., ϕ(xp)] ≤ p with a strict inequality
if ϕ(xj) = ϕ(xk) for some j, k ∈ {0, 1, ..., p}. Given a vertex map ϕ : K0 → L0, we can extend it to a map
f : K → L by

f(x) =
p∑
j=0

αjϕ(xj) .

where x =
∑p
j=0 αjxj . In this way, we say that f is the simplicial map induced by ϕ.

The first step in our goal of computing topological properties of affine fractals will be to construct their
Cěch complexes. If X ⊂ Rd, for any ε > 0 we can define the Cěch complex to be

Cěch(X, ε) =

{
σ ⊆ X

∣∣∣∣ ⋂
x∈σ

B(x, ε/2) 6= ∅

}
, (3)

where B(x, r) is the ball of radius r centered at x. A consequence of the Nerve Theorem [28, 30] is that for
a finite set X ⊂ Rd, {x : d(x,X) ≤ ε/2} is homotopy equivalent to Cěch(X, ε).

There is another popular variant in persistent homology for associating a topological space to a set,
known as the Vietoris-Rips complex. The Vietoris-Rips complex for X ⊂ Rd and ε > 0 is defined by

VR(X, ε) =
{
σ ⊆ X

∣∣ max
x,y∈σ

|x− y| ≤ ε
}
. (4)

In comparing Eqs. (3) and (4), we see that the 1-simplices in Cěch(X, ε) are the same as those in VR(X, ε),
but it is not necessary that Cěch(X, ε) = VR(X, ε). Furthermore, verifying the existence of a point in the
intersection of Eq. (3) often requires much more work than verifying the pairwise condition of Eq. (4).
For this reason, together with recent advances in computational efficiency in software [31], applications of
persistent homology tend to rely on Vietoris-Rips complexes. The two complexes are related by a well-
known result [32, Thm. 2.5].

Our focus will be on the Cěch complex of affine fractals and their approximations.

2.2 A Review of Homology

Given a simplicial complex K, an abelian group G, and a non-negative integer p ≥ 0, we define the group
of p-chains with coefficients in G to be formal G-linear combinations of p-simplices of K and denote it
Cp(K;G). A typical element of Cp(K;G) is a finite formal sum of the form

∑
i giσi, where σi ∈ Kp and

gi ∈ G. The differential (or boundary) of a p-simplex σ = [u0, u1, . . . , up] is

∂p(σ) =
p∑
j=0

(−1)j [u0, u1, . . . , ûj , . . . , up] ∈ Cp−1(K;G) , (5)

where [u0, . . . , ûj , . . . up] is the (p− 1)-simplex obtained by omitting ûj from σ. Extending ∂p to a G-linear
homomorphism to all of Cp(K;G) gives ∂p : Cp(K;G) → Cp−1(K;G). This gives rise to the simplicial
chain complex of K with coefficients in G

· · ·
∂p+2−→ Cp+1(K)

∂p+1−→ Cp(K)
∂p−→ Cp−1(K)

∂p−1−→ · · · ∂1−→ C0(K) ∂0−→ 0 , (6)

with the essential property that any two successive compositions equal the trivial map: ∂j∂j+1 = 0 for
all j ≥ 0. Hence, im(∂j+1) ⊂ ker(∂j). We denote the p-cycles by Zp(K) = ker(∂p) ⊂ Cp(K), and the
p-boundaries by Bp(K) = im(∂p+1) ⊂ Cp(K).
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Definition 2. The p-th simplicial homology group of a simplicial complex K is

Hp(K) = Hp(K;G) := ker(∂p)/im(∂p+1) = Zp(K)/Bp(K) .

We let H∗(K) =
⊕

pHp(K) denote the collection of homology groups for all dimensions p.

Moving forward, we assume G = Z2. This choice of coefficients is common in persistent homology and
simplifies many of the computations, e.g., the factors of (−1)j appearing in Eq. (5) vanish.

For simplicial complexes K and L, f : K → L is a simplicial map if f is continuous and f maps each
simplex of K linearly onto a simplex of L. Define a homomorphism f# : Cp(K)→ Cp(L) by first defining

f#([x0, ..., xp]) =

{
[f(x0), ..., f(xp)] if f(x0), ..., f(xp) are distinct
0 otherwise,

(7)

and extend the homomorphism to the rest of Cp(K) linearly. A standard fact in algebraic topology is that
f# further induces a map on homology f∗ : Hp(K)→ Hp(L) for every p. Furthermore, if f is a simplicial
homeomorphism, then f∗ : H∗(K)→ H∗(L) is an isomorphism [27].

Lemma 1. Let X ⊂ Rd be a finite point cloud. Let ϕ : Rd → Rd be a similitude with scaling constant c > 0.
Let ε > 0, L = Cěch(X, ε), and let L̃ = Cěch(ϕ(X), cε). Then ϕ|L0 : L0 → L̃0 is a vertex map and induces
a simplicial homeomorphism f between L and L̃. Thus, f induces an isomorphism f∗ : H∗(L)→ H∗(L̃).

A particularly nice feature of homology groups is that the homology group of a space is isomorphic to
the direct sum of the homology groups of the path components [26, Prop. 2.6]. This directly leads to the
following lemma.

Lemma 2. Let X ⊂ Rd be a finite subset and {ϕj}nj=1 be a collection of similitudes on Rd. Let cj equal
the scaling constant of the similitude ϕj . Define

δ := min
1≤j 6=k≤n

d(ϕ(Xj), ϕ(Xk)).

Then for all dimensions p ≥ 0, and all ε < δ

Hp Cěch(∪jϕj(X), ε) ∼=
n⊕
j=1

Hp Cěch(X, c−1
j ε).

Lemma 2 implies that given a finite point cloud and a collection of similitudes, so long as the images of
the point cloud under those similitudes are sufficiently far apart, the homology group resulting from the
union of those images is easily related to the homology groups resulting from the original point cloud.

Another tool we will use for the computation of homology groups is known as the Mayer-Vietoris
sequence. Suppose K is a simplicial complex with subcomplexes K1 and K2 such that K = K1 ∪K2. The
Mayer-Vietoris sequence is the long exact sequence

· · · −→Hp(K1 ∩K2) −→ Hp(K1)⊕Hp(K2) −→ Hp(K) −→ Hp−1(K1 ∩K2) −→ · · ·
· · · −→ H0(K1 ∩K2) −→ H0(K1)⊕H0(K2) −→ H0(K) −→ 0. (8)

For a detailed explanation of the maps in the sequence and a proof of its exactness, see [27, Chapter 3].

2.3 Persistent Homology

A simplicial filtration K• of a simplicial complex K is a collection of subcomplexes {Ki}i∈I , for an indexing
set I ⊂ R such that whenever s ≤ t,

Ks ⊆ Kt ⊆ K. (9)
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The inclusion map Ks → Kt induces a homomorphism H∗(Ks) → H∗(Kt). The collection of groups
{Hp(Ks)}s∈I , together with the collection of homomorphisms {Hp(Ks) → Hp(Kt)}s≤t form the pth-
persistent homology of K•.

Understanding the structure of persistent homology is difficult as presented. Instead, we turn to a
generalization of this structure known as a persistence module. A persistence module is a collection of
Z2-vector spaces V = {Vt}t∈I , and a collection of linear transformations between these spaces M = {Ms,t :
Vs → Vt}s≤t that satisfy

Ms,t ◦Mr,s = Mr,t for r ≤ s ≤ t. (10)

We will often refer to the persistence module (V,M) as simply M. By setting Vs = Hp(Ks) and Ms,t :
Hp(Ks)→ Hp(Kt) as the homomorphism induced by inclusion, we see that every simplicial filtration K•

gives rise to a persistence module.
If X ⊂ Rd, then the collection of simplicial complexes

Cěch(X) = {Cěch(X, s)}
s∈R

form a simplicial filtration of Cěch(X,∞), the full simplicial complex on X. For 0 ≤ s ≤ t, the inclusion
mapping Cěch(X, s) → Cěch(X, t) induces a homomorphism Hp Cěch(X, s) → Hp Cěch(X, t). We let
HpCěch(X) denote the persistence module resulting from the filtration of the Cěch complex of X. We
adopt the convention that

Cěch(X, s) = VR(X, s) = ∅

for s < 0.
A persistence diagram is a multiset of birth and death times derived from a decomposition of a per-

sistence module. Interval modules form the basic building blocks of persistence modules. Interval modules
are indecomposable. In [33], it was shown that the persistence module (V,M) can be decomposed into
interval modules as long as each Vt is finite dimensional. Moreover, an application of [34, Thm. 1], implies
this decomposition is unique, up to reordering. Thus if we have a persistence module M with the interval
module decomposition

M =
⊕
λ

J[bλ, dλ),

we define the persistence diagram of M to be the multiset

dgmM = {(bλ, dλ)}λ ∪∆,

where ∆ is the set of diagonal points {(x, x)|x ∈ R} each counted with infinite multiplicity.
We will denote a persistence diagram as D = (D,µ), where D = {(bλ, dλ)}λ is the collection of distinct

birth and death times and µ : D → N0 is defined µ(bλ, dλ) as the multiplicity of the birth death time
(bλ, dλ).

In order to ensure that the persistence modules we consider have a decomposition into interval modules,
we require that M is q-tame [35].

Definition 3. The persistence module (V,M) indexed over I ⊂ R is said to be q-tame if

rankMs,t <∞ whenever s < t.

Assuming a persistence module is q-tame not only guarantees us a well-defined persistence diagram, but
also stability with respect to the bottleneck distance [36]. A prior stability result presented by Cohen-Steiner
et al. in [37] which required a more restrictive tameness condition.

Persistence modules resulting from a Cěch filtration built on a finite point cloud X are q-tame. More-
over, when X ⊂ Rd is compact, HpCěch(X) is q-tame [38] for all p. As a result, we obtain the following:

Proposition 1. For any affine iterated function system, the invariant set A, and any finite approximation
of A, possess a well-defined persistence diagram.
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While persistence diagrams are an effective representation of a persistence module, they are not conducive
to statistical analysis. Persistence landscapes address this issue by embedding persistence diagrams into
a Banach space. Given a persistence module M that is q-tame, its persistence landscape is a function
f : N× R→ R by

f(n, t) := f (n)(t) = sup{m ≥ 0| rankM t−m,t+m ≥ n} ,

where R denotes the extended real numbers, [−∞,∞]. We have that all persistence landscapes are elements
of

L∞(N× R) :=
{

g = {g(n)}∞n=1 ⊂ L∞(R)
∣∣∣∣ sup
n∈N
‖g(n)‖L∞(R) <∞

}
.

We compute the distance between two persistence landscapes using the standard norm on L∞(N × R)
which is defined as

‖g‖L∞(N×R) = sup
n∈N
‖g(n)‖L∞(R).

There is an alternative definition given in [39] that allows us to relate the persistence landscape of
M to its persistence diagram. If the persistence module M is represented as a persistence diagram D =
{(ai, bi)}i∈I , then we can define the functions

τ(a,b)(t) = max(0,min(a+ t, b− t)), (11)

and for all k ∈ N, t ∈ R,
f (k)(t) = kmax{τ(ai,bi)(t)}i∈I . (12)

We use kmax to denote the kth largest element of a set. Note that since D is a multiset, certain birth death
pairs (ai, bi) can appear more than once.

It is common for many stability results to write the distance between two persistence landscapes in
terms of their corresponding persistence modules. If f = {f (k)}∞k=1 is the persistence landscape obtained
from M and g = {g(k)}∞k=1 is the persistence landscape obtained from M′, we define the persistence
landscape distance between M and M′ to be

Λ∞(M,M′) := ‖f − g‖L∞(N×R). (13)

By combining the stability results from [1, 36, 38], we obtain the following:

Theorem B. Suppose X is a metric space, and Y, Z ⊂ X have well-defined persistence diagrams. Then
for all p ≥ 0,

Λ∞(Hp Cěch(Y ), Hp Cěch(Z)) ≤ dH(Y,Z) .

Corollary 1. Let (X, d) be a metric space and suppose S, T ⊂ X such that their Cěch complexes have
well-defined persistence diagrams. Then

‖f − g‖L∞(N×R) ≤ dH(S, T ),

where f and g are the persistence landscapes of S and T , respectively.

3 The Persistence Landscapes of Affine Fractals

3.1 The Persistence Landscape of the Cantor Set

We begin with calculating the persistence landscape of the middle-third Cantor set C. This calculation
illustrates the main ideas of our construction, while also highlighting some of the technical requirements on
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the IFS. Recall that C is generated by the IFS given by the collection of contraction maps Ψ = {ψ0, ψ2},
where

ψ0(x) = x

3 , ψ2(x) = x

3 + 2
3 .

For convenience, we suppose that Ψ acts on the metric space X = [0, 1] with the standard metric. We
define the sequence of approximations to C as follows:

S0 = {0, 1}, Sn = Ψ(Sn−1) = ψ0(Sn−1) ∪ ψ2(Sn−1) for n ∈ N. (14)

We also define
C0 = [0, 1], Cn = Ψ(Cn−1).

The length of each closed interval in Cn is 1/3n. Note that since the points in Sn are equal to the end
points in the disjoint closed intervals that make up Cn, and we have Sn ⊂ C ⊂ Cn for all n ∈ N, we find

dH(Sn, C) ≤ dH(Sn, Cn) ≤ 1
2 · 3n .

As a consequence of this and Lemma 2.3, we obtain the following convergence result.

Theorem 1. Let {fn}∞n=1 be the sequence of persistence landscapes generated from the sequence of point
clouds {Sn}∞n=1 as in Equation (14), and let f be the persistence landscape of C. Then, we have that

lim
n→∞

‖fn − f‖L∞(N×R) = 0.

Knowing that the limit exists, we would still like to have a formula for the persistence landscape of C.
To help us determine this formula, we will use a two step approach. First, we will find an affine operator
L : L∞(N×R)→ L∞(N×R) such that for all n sufficiently large, L maps the persistence landscape of Sn
to the persistence landscape of Sn+1. We will then show that the persistence landscape of C is the fixed
point of L and use L to compute the fixed point.

To describe persistence landscapes, we will use the hat functions defined in Equation (11). Recall that
persistence landscapes h ∈ L∞(N × R) are defined by letting h = {h(j)}∞j=1, where h(j) equals the jth
largest hat function supported on an interval whose end points equal one of the birth-death pairs from the
persistence diagram. We also note that the hat functions scale nicely so that for t ∈ R

τ(a,b)(t) = (b− a)τ(0,1)((b− a)−1(t− a)).

We define L for each g ∈ L∞(N× R) by Lg = h = {h(j)}∞j=1 where

h(1)(x) = τ(0,1)(x), (15)

h(2)(x) = 1
3g

(1)(3x),

h(2k+1)(x) = h(2k+2)(x) = 1
3g

(k)(3x), k ∈ N .

We adopt the convention that the maximum death time will be equal to the diameter of the invariant
set, which in the case of C is 1. Thus when computing persistence landscape of C, the first function in the
sequence will be τ(0,1). We can see that L is an affine contraction. Indeed, if we define T : L∞(N× R) →
L∞(N× R) by T g = h, where

h(1)(x) = 0,

h(2)(x) = 1
3g

(1)(3x)

h(2k+1)(x) = h(2k+2)(x) = 1
3g

(k)(3x) ,

then we see that T is linear with ‖T ‖ = 1
3 . Further, for all f ∈ L∞(N × R), Lf = v + T f , where

v = {τ(0,1), 0, 0, 0, ...}.



Michael J. Catanzaro, Lee Przybylski, and Eric S. Weber, Persistence Landscapes of Affine Fractals 9

Theorem 2. Let {fn}∞n=1 be the sequence of persistence landscape generated from the sequence of point
clouds {Sn}∞n=1 as in Equation (14), and let f be the persistence landscape of C. Let L be given by Equation
(15). Then, for all n ∈ N, Lfn = fn+1.

In other words, the commutative diagram in Equation (1) holds.

Proof. For n ∈ N, we denote fn = {f (j)
n }∞j=1. It easy to check for n = 1 using direct computation. Since

S1 = {0, 1} and S2 = {0, 1/3, 2/3, 1} we see that f (1)
2 = τ(0,1), f

(j)
2 = τ(0,3−1) for 2 ≤ j ≤ 4, and f (j)

2 = 0
for all j > 4. We can also see that

f1 = {τ(0,1), 0, 0, 0, 0, ...}.

By the definition of L, we see that Lf1 = f2. In general, for n ∈ N, let

Ln = φ0(Sn), Rn = φ2(Sn).

For all n ∈ N, we see that
Sn+1 = Ln ∪Rn.

Since Sn ⊂ [0, 1], we know that Ln ∩Rn = ∅. Moreover,

d(Ln, Rn) = min
x∈Ln,y∈Rn

|x− y| = 1
3 . (16)

Let Dn = (Dn, µn) denote the persistence diagram of H0 Cěch(Sn). Note that since Sn has 2n distinct
points, if Dn = {(0, dj)}kj=1, then

∑k
j=1 µn(0, dj) = 2n. We assume without loss of generality that dj <

dj+1 for j ∈ {1, ..., k}. This means dk = 1, and for j < k, dj < 1.
We claim that for j < k, (0, dj) ∈ Dn implies that (0, dj

3 ) ∈ Dn+1 with µn+1(0, dj/3) = 2µn(0, dj). To
help us do this, we first prove that for 0 < ε < 1, the diagram

H0 Cěch(Sn, 0) H0 Cěch(Sn, ε)

H0 Cěch(Ln, 0) H0 Cěch(Ln, ε3 )

M0,ε

φ0
0∗ φε

0∗

P 0,ε

(17)

commutes, where M0,ε and P 0,ε are homomorphisms induced by the inclusions Cěch(Sn, 0)→ Cěch(Sn, ε)
and Cěch(Ln, 0) → Cěch(Ln, ε3 ) respectively, and φ0

0∗ and φε0∗ are isomporphisms induced by φ0 as in
Corollary 1. Indeed, for γ ∈ H0 Cěch(Sn, 0), we may use coset notation to write γ = [x]B0(Cěch(Sn, 0))
for some x ∈ Sn. Thus

P 0,εφ0
0∗γ = P 0,ε[x3 ]B0 Cěch(Ln, 0) = [x3 ]B0 Cěch(Ln, ε3 ).

On the other hand,
φε0∗M

0,εγ = φ0∗[x]B0 Cěch(Sn, ε) = [x3 ]B0 Cěch(Ln, ε3 ).

Therefore φε0∗M0,ε = P 0,εφ0
0∗, which implies Diagram (17) commutes.

To prove the first claim, suppose (0, dj) ∈ Dn with j < k, then there are µn(0, dj) distinct classes
γ ∈ H0 Cěch(Sn, 0) that die at dj . By assumption, there exists γ ∈ H0 Cěch(Sn, 0) such that γ ∈ kerM0,dj ,
but γ /∈ kerM0,t, for t < dj . Let γ− = φ0

0∗γ. Since the diagram in (17) commutes, γ− ∈ kerP 0,ε if and
only if γ ∈ kerM0,ε. Thus γ− ∈ kerP 0,dj , but γ− /∈ kerP 0,t for t < dj .

Figure 1. Sn divided into the components Ln and Rn for n = 3.
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For s ≤ t, let Qs,t : H0 Cěch(Rn, s3 )→ H0 Cěch(Rn, t3 ) be the homomorphism induced by the natural
inclusion. By replacing Ln with Rn, and x

3 with x+2
3 in the argument above, we can see that there also

exists γ+ ∈ H0 Cěch(Rn, 0) such that γ+ ∈ kerQ0,dj , but γ+ /∈ kerQ0,t for t < dj . Since Cěch(Ln, ε) is
not path-connected to Cěch(Rn, ε) in Cěch(Sn+1, ε) for ε < 1

3 , it follows that

H0 Cěch(Sn+1, ε) ∼= H0 Cěch(Ln, ε)⊕H0 Cěch(Rn, ε).

For 0 ≤ s ≤ t < 1
3 , the homomorphism F s,t : H0 Cěch(Sn+1,

s
3 ) → H0 Cěch(Sn+1,

t
3 ) induced by the

obvious inclusion satisfies
kerF s,t ∼= kerP s,t ⊕ kerQs,t.

Thus for every class γ ∈ H0 Cěch(Sn, 0) with death time dj < 1, there exist 2 distinct classes in
H0 Cěch(Sn+1) with death time dj

3 , which implies (0, dj

3 ) ∈ Dn+1 with µn+1(0, dj

3 ) = 2µn(0, dj). This is
equivalent to what we claimed.

It follows from our claim that
{(0, dj

3 )}k−1
j=1 ⊂ Dn+1

and
k−1∑
j=1

µn+1(0, dj

3 ) = 2
k−1∑
j=1

µn(0, dj) = 2(2n − 1) = 2n+1 − 2.

By (16) we also see that (0, 1/3) ∈ Dn+1. Since we are working with the zero-dimensional homology of a
Cěch complex, we also have (0, 1) ∈ Dn+1, since the space is non-empty. This accounts for all 2n+1 elements
of Dn+1. For convenience, we reindex Dn and Dn+1 repeating elements according to their multiplicity and
ordering them by decreasing death times so that

Dn = {(0, 1), (0, d(2)), (0, d(3)), ..., (0, d(2n))},

and
Dn+1 = {(0, 1), (0, 1/3), (0, d(2)/3), (0, d(2)/3), ..., (0, d(2n)/3), (0, d(2n)/3)}.

Applying the definition in (12), we see that fn = {f (j)
n }∞j=1, is defined by

f
(j)
n = τ(0,d(j)), for j ∈ {1, 2, ..., 2n}, and f

(j)
n = 0 for j > 2n.

Since d(1) = 1 and d(2) = 1/3, we easily check that fn+1 = {f (j)
n+1}∞j=1 satisfies

f
(1)
n+1 = τ(0,1),

f
(2)
n+1(t) = τ(0,1/3)(t) = 1

3f
(1)
n (3t)

f
(2j+1)
n+1 (t) = f

(2j+2)
n+1 (t) = τ(0,d(j)/3)(t) = 1

3f
(n)
j (3t) for j ∈ N.

Therefore Lfn = fn+1.

Since L is Lipschitz with constant ‖T ‖ = 1
3 < 1, we see that L has a unique fixed point, and that unique

fixed point is f = limn→∞ fn, which is the persistence landscape function of C. The explicit formula for f
can be found using L by repeatedly applying L to any vector in L∞(N× R). We find that the persistence
landscape of C is f = {f (j)}∞j=0, where

f (j) =

{
τ(0,1) if j = 1
τ(0,3−k) if 2k−1 < j ≤ 2k, k ∈ N .

(18)

We illustrate this landscape in Figure 2 (produced by pyscapes [40]).
We see from the illustration that the persistence landscape exhibits its own version of self-similarity.

This is a reflection of the fact that the fractal contains several scaled copies of itself. Indeed, since scaling
a subset of Euclidean space results in a proportional scaling of its persistence landscape, we should expect
the persistence landscape of a fractal to contain a subsequence which is a scaled copy of itself. The number
of scaled copies, which corresponds to the number of generators of the IFS, is also reflected as a multiplicity
in the persistence landscape.
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Figure 2. Graph of the functions f2, . . . , f33 from the persistence landscape of the middle third Cantor set C.

3.2 Affine Fractals with Well-Separated Images and Extreme Points

The proof of Theorem 2 suggests that a more general result exists for an IFS satisfying certain properties.
The two main ingredients that enable our calculations in the proof include 1) a judicious choice for the
initial approximation S0 and 2) a compatibility condition of the images of the maps in Ψ. We refer to this
condition as well-separated images, and formalize this condition in Definition 4. We first consider the choice
of S0. Before proceeding, we will need to introduce some notation and definitions. Unless stated otherwise,
we assume Ψ = {ψj}Nj=1 is an IFS consisting only of similitudes on Rd with the form

ψj(~x) = c(~x+~bj), ~bj ∈ Rd, c ∈ (0, 1). (19)

We let A denote the invariant set of Ψ. For a set B ⊂ Rd, we let Conv(B) denote the convex hull of B.
We let EB denote the set of extreme points of Conv(B). As we shall see, for the affine fractal A, choosing
S0 = EA is a good choice of initialization of our algorithm. This corresponds to the choice we made for the
middle third Cantor set C; see also the example in Section 4.4 for further evidence of this assertion.

Since the maps in Ψ are contractions, each map has a unique fixed element. Indeed, it is easy to
calculate that for ψj , the fixed point is ~xj =

(
c

1−c
)
~bj . We let FA denote the set of these fixed points.

Theorem A guarantees that FA ⊂ A. The following result tells us that we can easily find EA.

Lemma 3. Suppose A ⊂ Rd is the invariant set for some IFS Ψ = {ψj}Nj=1 consisting of similitudes of
the form in Equation (19). Then EA ⊆ FA.

Proof. Let K = Conv(A). Clearly, FA ⊂ K. Assume FA = {~xj}Nj=1with ~xj = ψj(~xj). We first observe that
for j ∈ {1, ..., N}, since ~xj = c(~xj +~bj), we know that c~bj = (1− c)~xj . This implies that for j 6= k,

ψk(~xj) = c~xj + c~bk = c~xj + (1− c)~xk ∈ Conv(FA).

If ~y ∈ Conv(FA), then for some t1, ..., tN ≥ 0,
∑N
j=1 tj = 1 we have

y =
N∑
j=1

tj~xj ,
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and for any ψk ∈ Ψ,

ψk(~y) = c

 N∑
j=1

tj~xj +~bk

 =
N∑
j=1

ctj~xj + c~bk =
N∑
j=1

ctj~xj +
N∑
j=1

tjc~bk

=
N∑
j=1

tjc(~xj +~bk) =
N∑
j=1

tjψk(~xj).

Since ψk(~xj) ∈ Conv(FA) for all j ∈ {1, ..., N}, this implies that ψk(Conv(FA)) ⊆ Conv(FA). Since k was
arbitrary, this implies that the union of these images, Ψ(Conv(FA)) ⊆ Conv(FA). From Theorem A, we
have

A = lim
p→∞

Ψp(Conv(FA)) (20)

in the Hausdorff metric. We claim that A ⊆ Conv(FA). Indeed, choose ~x ∈ A. For all n ∈ N, it follows
from Equation (20) that there exists p(n) such that for some ~yn ∈ Ψp(n)(Conv(FA)),

|~yn − ~x| ≤
1
n

Since Ψp(n)(Conv(FA)) ⊂ Conv(FA) for all n ∈ N, we have {~yn}∞n=1 ⊂ Conv(FA). Since Conv(FA) is a
closed set and limn→∞ ~yn = ~x, this implies ~x ∈ Conv(FA), which proves the claim. Thus we have the
sequence of containment:

FA ⊆ A ⊆ Conv(A) ⊆ Conv(FA).

By definition, this implies Conv(FA) = Conv(A). By the Krein-Milman Theorem, it follows that

Conv(FA) = Conv(A) = Conv(EA).

For any ~y ∈ EA, ~y ∈ Conv(FA), it follows that ~y =
∑N
j=1 tj~xj , where

∑N
j=1 tj = 1. Since ~y is an extreme

point, for some k ∈ {1, ..., N}, ~y = ~xk ∈ FA. Therefore EA ⊆ FA.

One key property of C that was used in the proof of Theorem 2 was that at each scale, the set could be
partitioned into a left and right set. The two halves were a significant distance away from each other, and
each half was a scaled down version of the previous scale. This property can be described in terms of the
IFS, and because of its usefulness, we will define it formally.

Definition 4. Let Ψ = {ψj}Nj=1 be an IFS with invariant set A. We say that Ψ has well-separated
images (or satisfies the well-separated condition) if

min
1≤j 6=k≤N

d(ψj(A), ψk(A)) ≥ max
1≤j≤N

diamψj(A). (21)

This definition may apply to any IFS, not only those of the form given in Equation (19). Note that on the
left hand side of the inequality, we have the usual Euclidean distance, not the Hausdorff distance.

3.3 Main Results

Using the well-separated condition and the ideas in Subsection 3.1, we are now ready to elucidate the
relationship between an IFS and the persistence landscape of its invariant set in more generality. Our main
focus is on IFS with well-separated images having the form in Equation (19), but many of the results below
do not require these assumptions. We will use the same two step approach that we used with C. We first
identify a contraction on L∞(N× R) that has a fixed point equal to the persistence landscape of interest,
then use the operator to find a formula for the persistence landscape.

Theorem A implies that if Ψ is any IFS consisting of contractions then iteratively applying Ψ to any
compact set K ⊂ Rd creates a sequence of compact sets, {Sn}∞n=1, that converges to the invariant set A
in the Hausdorff metric. Therefore, as a consequence of Theorem B:



Michael J. Catanzaro, Lee Przybylski, and Eric S. Weber, Persistence Landscapes of Affine Fractals 13

Theorem 3. Let Ψ be an IFS on Rd consisting of contractions with invariant set A. Let K ⊂ Rd be a
compact set, and define the sequence of compact sets {Sn}∞n=1 by

S1 = K, Sn = Ψ(Sn−1) for n > 1.

Then for any p ≥ 0
lim
n→∞

Λ∞(Hp Cěch(Sn), Hp Cěch(A)) = 0.

We remark that the statement of Theorem 3 only mentions the Cěch filtration, which applies to any
dimension of homology. Also note that the hypothesis makes no assumptions on Ψ except that it consists
of contractions.

Having established that there is a sequence of persistence landscapes that converge to the persistence
landscape of the invariant set, we now seek a contraction on L∞(N×R) whose fixed point is the landscape
of interest. Just like we did above with C above, we will approximate A by a finite set F and compare the
persistence landscapes of F and Ψ(F ) to determine the operator.

Proposition 2. Let Ψ = {ψj}Nj=1 be an IFS consisting of similitudes all with scaling constants cj ∈ (0, 1).
Let A ⊂ Rd be the invariant set of Ψ. For any ε > 0 and any p ≥ 0, there exists a finite set F ⊆ A such
that the following hold
(a) dH(A,F ) ≤ ε
(b) dH(A,Ψ(F )) ≤ ε
(c) Λ∞(Hp Cěch(A), Hp Cěch(F )) ≤ ε
(d) Λ∞(Hp Cěch(A), Hp Cěch(Ψ(F )) ≤ ε.

Proof. Choose ε > 0. Since A is compact, there exists F := {xj}nj=1 ⊆ A such that A ⊆
⋃n
j=1B(xj , ε).

Since A ⊆ Fε and F ⊂ Aε, (a) is satisfied. Since F ⊆ A, we have Ψ(F ) ⊆ A ⊂ Aε. To show the other
containment, choose z ∈ A. Since Ψ(A) = A, there exists k ∈ {1, ..., N}, w ∈ A such that ψk(w) = z. Thus
for some xj ∈ F , |xj − w| < ε, which implies

|ψk(xj)− z| = |ψk(xj)− ψk(w)| = c|xj − w| < cε < ε.

Thus A ⊆ (Ψ(F ))ε. Thus (b) is satisfied. Applying Theorem B, we know for any compact set K ⊂ Rd,

Λ∞(HpCěch(A), HpCěch(K)) ≤ dH(A,K) (22)

In light of Equation (22), (c) follows from (a). Similarly, (d) follows from (b).

Definition 5. For a disconnected set X ⊂ Rd, we say that X is ε-connected if it cannot be expressed as
a union of two non-empty sets Y, Z ⊂ X such that d(Y,Z) > ε. We say that Y ⊆ X is an ε-component of
X if Y is ε-connected and

d(Y,X\Y ) > ε.

We let C(X, ε) denote the number of distinct ε-components of X.

Note that C(X, ε) equals the number of connected components of ∪x∈XB(X, ε), which is precisely the rank
of H0 Cěch(X, ε). Clearly this number is non-increasing with respect to ε.

If we assume Ψ is an IFS of similitudes with well-separated images and the scaling constant for each
ψj ∈ Ψ equals c ∈ (0, 1), then we can define a sequence of distances

δ1 ≥ δ2 ≥ · · · ≥ δN−1 ≥ δN

by letting δ1 = diam(A), and for k ∈ {2, ..., N},

δk := inf{ε > 0|C(A, ε) ≤ k − 1}. (23)
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We will make use of the fact that when Ψ has well-separated images,

δN = min
1≤j 6=k≤N

d(ψj(A), ψk(A)).

This also means that
δN ≥ cδ1 = diamψj(A), j ∈ {1, ..., N}. (24)

Proposition 3. Suppose A ⊂ Rd is compact, and F ⊆ A is finite with dH(F,A) ≤ α. Then for all ε > 2α,
we have

C(A, ε) ≤ C(F, ε) ≤ C(A, ε− 2α).

Proof. Suppose first that S ⊆ A is an ε-component of A. This means Sε/2 is connected and d(S,A\S) > ε.
Let S0 = F ∩S. Since α < ε, we know that S0 6= ∅. We have S0 ⊆ S and F\S0 ⊆ A\S. Indeed, if x ∈ F\S0,
then x ∈ F and x /∈ F ∩ S, which implies x /∈ S. Therefore x ∈ A\S. With this claim, we have established
that

d(S0, F\S0) ≥ d(S,A\S) > ε.

Since S0 is nonempty and compact, it contains at least one distinct ε-component of F . Since S was an
arbitrary ε-component of A, this implies

C(F, ε) ≥ C(A, ε).

For the other inequality, suppose now that S0 ⊆ F is an ε-component of F . Let S = A ∩ (S0)α. Choose
x ∈ S and y ∈ A\S. By assumption, there exists w ∈ S0 with |x − w| < α. Since y /∈ S, we have for all
v ∈ S0, |y − v| ≥ α. Since A ⊂ Fα, there exists z ∈ F , with |y − z| < α, which implies z /∈ S0. Therefore
|z − w| ≥ ε. Hence

ε ≤ |w − z| ≤ |w − x|+ |x− y|+ |y − w|.

Therefore
ε− 2α < ε− |w − x| − |y − w| ≤ |x− y|.

This implies that d(S,A\S) > ε − 2α. From this bound, we see that if we partition F into its n distinct
ε-components S0, S1, ..., Sn, then by letting S′j = A ∩ (Sj)α, we see that A =

⋃n
j=0 S

′
j . We also have that

each S′j contains at least one distinct (ε− 2α)-component of A. Thus

C(F, ε) ≤ C(A, ε− 2α).

Using the distances as defined in Equation (23), we define L : L∞(N×R)→ L∞(N×R) by Lg = h, where

h(1) = τ(0,δ1), h
(2) = τ(0,δ2) , . . . , h

(N−1) = τ(0,δN−1), h
(N) = τ(0,δN ),

h(kN+1) = h(kN+2) = · · · = h(kN+N−1) = h(kN+N) = cg(k+1)(c−1x), for k ∈ N . (25)

Theorem 4. Let Ψ be a IFS on Rd consisting of N similitudes each with scaling constant c ∈ (0, 1).
Let A be the invariant set of Ψ and let f ∈ L∞(N × R) denote the persistence landscape of resulting from
H0 Cěch(A). If Ψ has well-separated images, then L : L∞(N×R)→ L∞(N×R) as defined in Equation (25),
satisfies Lf = f .

Proof. Let f ∈ L∞(N×R) denote the persistence landscape resulting from H0 Cěch(A). By Proposition 2,
for all n ∈ N, there exists a finite subset Fn ⊆ A such that dH(A,Ψ(Fn)) ≤ 1

n with

Λ∞(H0 Cěch(A), H0 Cěch(Fn)) ≤ 1
n

and Λ∞(HCěch(A), H0 Cěch(Ψ(Fn)) ≤ 1
n
.

Choose ε > 0. Let gn ∈ L∞(N × R) denote the persistence landscape from H0 Cěch(Fn) and hn ∈
L∞(N× R) denote the persistence landscape from H0 Cěch(Ψ(Fn)). Using the triangle inequality, for all
n ∈ N, we have

‖Lf − f‖L∞(N×R) ≤ ‖Lf − Lgn‖L∞(N×R) + ‖Lgn − hn‖L∞(N×R) + ‖hn − f‖L∞(N×R). (26)
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Looking at the definition of L in Equation (25), we see that L is a contraction with Lipschitz constant c.
Thus

‖Lf − Lgn‖L∞(N×R) ≤ c‖f − gn‖L∞(N×R) ≤ cΛ∞(H0 Cěch(A), H0 Cěch(Fn)) ≤ c

n
.

Similarly,
‖hn − f‖L∞(N×R) = Λ∞(H0 Cěch(A), H0 Cěch(Ψ(Fn)) ≤ 1

n
.

Now our goal is to bound ‖Lgn − hn‖L∞(N×R). For s ≤ t, let M
s,t
n denote the homomorphism induced by

the inclusion mapping Cěch(Fn, s) → Cěch(Fn, t). For s ≤ t, let P s,tn denote the homomorphism induced
by the inclusion mapping Cěch(Ψ(Fn), s) → Cěch(Ψ(Fn), t). We have gn =

{
g

(j)
n

}∞
j=1

, which implies
ĝn = Lgn, where

ĝ
(1)
n = τ(0,δ1), ĝ

(2)
n = τ(0,δ2), ..., ĝ

(N−1)
n = τ(0,δN−1), ĝ

(N)
n = τ(0,δN )

ĝ
(kN+1)
n = ĝ

(kN+2)
n = ... = ĝ

(kN+N−1)
n = ĝ

(kN+N)
n = cg

(k+1)
n (c−1x), for k ∈ N (27)

Note that we use the convention Cěch(X, r) = ∅ for any X ⊆ Rd and r < 0, which implies that rank ir,t∗ = 0
for r < 0, where i∗ : H0 Cěch(X, r) → H0 Cěch(X, t) is the homomorphism induced by inclusion. This is
why all landscape functions from Cěch filtrations have non-negative support.

Let η1 = diam(F ) and define η2, ..., ηN by

ηk := inf{ε > 0|C(Ψ(Fn), ε) ≤ k − 1}

Since dH(A,Ψ(Fn)) < 1
n , if we assume n ≥ 4

δN
, then we have

2
n
≤ δN

2 < δN .

We know that for all ε < δN , we have C(A, ε) > k − 1. It follows from Proposition 3 that

ηk = inf{ε > 0|C(Ψ(Fn), ε) ≤ k − 1} ≥ inf{ε > 0|C(A, ε) ≤ k − 1} = δk. (28)

On the other hand, we have

ηk = inf{ε > 0|C(Ψ(Fn), ε) ≤ k − 1} ≤ inf{ε > 0|C(A, ε− 2
n ) ≤ k − 1}

= inf{ε+ 2
n > 0|C(A, ε) ≤ k − 1} = 2

n
+ inf{ε > 0|C(A, ε) ≤ k − 1}

= δk + 2
n
. (29)

Thus we have |ηk − δk| ≤ 2
n . We also know that c diam Ψ(Fn) ≤ ηN since Ψ has well separated images. By

Lemma 2, we have for t < cηN ,

H0 Cěch(Ψ(Fn), t) ∼=
N⊕
j=1

H0 Cěch(Fn, c−1t).

From this isomorphism, we can see that for s ≤ t ≤ ηN , the homomorphism P s,tn : H0 Cěch(Ψ(Fn), s) →
H0 Cěch(Ψ(Fn), t) has the same rank as

Mc−1s,c−1t
+ :

N⊕
j=1

H0 Cěch(Fn, c−1s)→
N⊕
j=1

H0 Cěch(Fn, c−1t),

where Ms,t
+ =

⊕N
j=1M

s,t. Thus for s ≤ t ≤ η1,

rankP s,t = N rankMc−1s,c−1t.
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By definition, we have for all j ∈ N, t ≥ 0,

h
(j)
n (t) = sup{m ≥ 0| rankP t−m,t+mn ≥ j}.

If t + m ≥ ηN , then Cěch(Ψ(Fn), t + m) has at most, N − 1 connected components, which implies
rankP t−m,t+mn < N , so for j = kN + l for k ∈ N, l ∈ {1, 2, ..., N}, we have

h
(j)
n (t) = sup{m ≥ 0| rankP t−m,t+mn ≥ j}

= sup{m ≥ 0| rankMc−1(t−m),c−1(t+m)
n ≥ j/N}

= sup{m ≥ 0| rankMc−1(t−m),c−1(t+m)
n ≥ k + l

N }

= sup{m ≥ 0| rankMc−1(t−m),c−1(t+m)
n ≥ k + 1} (30)

On the other hand, for any k ∈ N,

cg
(k)
n (c−1t) = c sup{m ≥ 0| rankMc−1t−m,c−1t+m

n ≥ k}

= sup{cm ≥ 0| rankMc−1t−m,c−1t+m
n ≥ k}

= sup{m ≥ 0| rankMc−1(t−m),c−1(t+m)
n ≥ k} (31)

Combining Equation (30) and Equation (31), we see that for j = kN + l, k ∈ N, l ∈ {1, 2, ..., N}, we have

h
(j)
n (t) = cg

(k+1)
n (c−1t).

If j ∈ {2, ..., N}, we know by choice of η1, ..., ηN that rankP t−m,t+m ≥ j − 1 if and only if t−m ≥ 0 and
t+m < ηj . This is true if and only if m ≤ t and m < ηj − t. Thus, by definition of the landscape functions,
for j ∈ {2, ..., N},

h
(j)
n (t) = max{t, ηj − t} = τ(0,ηj).

By convention, h(1)
n = τ(0,η1).

Putting everything together, we have established that

h
(1)
n = τ(0,η1), h

(2)
n = τ(0,η2), ..., h

(N−1)
n = τ(0,ηN−1), h

(N)
n = τ(0,ηN )

h
(kN+1)
n = h

(kN+2)
n = ... = h

(kN+N−1)
n = h

(kN+N)
n = cg

(k+1)
n (c−1x), for k ∈ N. (32)

This means we can compute

‖Lgn − hn‖L∞(N×R) = max
1≤j≤N

‖τ(0,δj) − τ(0,ηj)‖∞ = max
1≤j≤N

|δj − ηj | ≤
2
n
.

Putting our three bounds together with Equation (26), we have

‖Lf − f‖L∞(N×R) ≤
c

n
+ 2
n

+ 1
n
.

Taking the limit as n→∞, we conclude that Lf = f .

Now that we have identified a contraction on L∞(N × R) whose fixed point is f , the landscape of A, we
can compute f itself by finding limn→∞ Ln0, were 0 denotes the zero sequence in L∞(N × R). When we
do this, we find the formula for f = {f (j)}∞n=1 is given by

f (j) =

{
τ(0,δj) if 1 ≤ n ≤ N
τ(0,ckδl) if (l − 1)Nk < j ≤ lNk, k, l ∈ N, 2 ≤ l ≤ N

. (33)

Looking back at Equation (18), since we had δ1 = 1, and δ2 = 1
3 , we see that this is consistent with what

we found for C. For good measure, we can check our work. Choose j ∈ N. Let f̂ (j) denote the jth term in
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Lf . Looking at Equation (25) and Equation (33), it is clear that for j ≤ N , f̂ (j) = f (j). Assuming that
j > N , define

k := min{k0 ∈ N|j ≤ Nk0} ≥ 2.

Using division, we find j = Nk−1q + r, for 0 ≤ r < Nk−1. By assumption, we have 1 ≤ q ≤ N . Indeed, if
q > N , then j > Nk, a contradiction. If q = 0, then j = r < Nk−1, another contradiction.

We consider 2 cases. First, if r = 0, then q ≥ 2, because otherwise if q = 1, then j = Nk−1, but
k − 1 < k. Hence,

j = qNk−1 = N(qNk−2 − 1) +N.

According to Equation (33), this means f (j) = τ(0,ck−1δq). On the other hand, for all t ∈ R, according to
Equation (25),

f̂ (j)(t) = cf (qNk−2)(c−1t) = cτ(0,ck−2δq)(c−1t) = τ(0,ck−1δq)(t).

Thus f (j) = f̂ (j).
In the case of r > 0, we apply division to r, so that r = Na + b, a, b ∈ N, with 0 ≤ a < Nk−2, and

0 ≤ b < N . This means that

j = qNk−1 +Na+ b = N(qNk−2 + a− 1) +N + b.

Since r > 0, if q = N , then j = Nk + r > Nk, a contradiction. Thus 1 ≤ q ≤ N − 1. Since qNk−1 < j <

(q + 1)Nk−1, by Equation (33), we have

f (j) = τ(0,ck−1δq+1).

To make things easier, we consider 2 subcases. If b = 0, then a > 0, and j = N(qNk−2 + a − 1) + N . By
Equation (25) we have for all t ∈ R

f̂ (j)(t) = cf (qNk−2+a)(c−1t) = cτ(0,ck−2δq+1)(c−1t) = τ(0,ck−1δq+1)(t).

Hence f (j) = f̂ (j). If b > 0, then we have j = N(qNk−2+a)+b. Since qNk−2 < qNk−2+a+1 ≤ (q+1)Nk−2,
we have for all t ∈ R

f̂ (j)(t) = cf (qNk−2+a+1)(c−1t) = cτ(0,ck−2δq+1)(c−1t) = τ(0,ck−1δq+1)(t).

Thus f̂ (j) = f (j) in this final case.
Knowing that Equation (33) is the correct formula for the persistence landscape for H0 Cěch(A), when

Ψ has well-separated images gives us a head start for finding the persistence landscape related to many
IFS. In practice, it can be difficult to compute the resolutions δ1, ..., δN using only the functions in Ψ. As
we saw with C, this can be straightforward in one-dimension. We will apply Equation (33) to more precisely
describe the persistence landscape of H0 Cěch(A) when Ψ is an IFS on R before looking at some more
interesting examples.

Theorem 4 applies to all IFS which satisfy the well-separated condition, but it is not as strong of a
result as Theorem 2. For that, we need an additional assumption on the IFS.

Theorem 5. Let Ψ be a IFS on Rd consisting of N similitudes each with scaling constant c ∈ (0, 1).
Let A be the invariant set of Ψ and let fn ∈ L∞(N × R) denote the persistence landscape resulting from
H0 Cěch(Sn), where S0 = EA. Suppose that Ψ has well-separated images and also satisfies the property
that for all j, k = 1, . . . , N and for all n ∈ N,

d(ψj(Sn+1), ψk(Sn+1)) = d(ψj(Sn), ψk(Sn)). (34)

Let L : L∞(N× R)→ L∞(N× R) as defined in Equation (25). Then for all n ∈ N, Lfn = fn+1.

In other words, the commutative diagram in Equation (1) holds.
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Proof. Let Lfn =
{
f̂

(j)
n

}∞
j=1

. We must show that for all j ∈ N

f̂
(j)
n = f

(j)
n+1. (35)

For the case j = 1, this is true because diam(Sn+1) = diam(A) implies

f
(1)
n+1 = τ(0,δ1).

For the other j ∈ {2, ..., N}, Equation (35) is equivalent to showing that for ε ≥ δN

C(Sn+1, ε) = C(A, ε). (36)

Indeed, if ε ≥ δN , then by the well-separated assumption, each image ψj(A) is contained in an ε-component
of A. To prove Equation (36), define an equivalence relation, ∼A, on the images {ψj(A)}Nj=1 by saying
ψj(A) ∼A ψk(A) if and only if ψj(A) and ψk(A) belong to the same ε-component. The number of distinct
classes in {ψj(A)}/ ∼A is equal to C(A, ε) since A = ∪Nj=1ψj(A). Similarly, we can define an equivalence
relation, ∼n+1, on {ψj(Sn)}Nj=1 based on the ε-components of Sn+1 so that the number of distinct classes
of ∼n+1 equals C(Sn+1, ε). We claim that for j, k ∈ {1, ..., N},

ψj(A) ∼A ψk(A) if and only if ψj(Sn) ∼n+1 ψk(Sn).

Equation (34) implies that for all n ∈ N

d(ψj(Sn), ψk(Sn)) = d(ψj(A), ψk(A)). (37)

In addition, ψj(A) ∼A ψk(A) implies that there is a finite sequence of images ψj(A) = ψj0(A), ψj1(A), . . . , ψjm(A) =
ψk(A) with

d(ψjl(A), ψjl+1(A)) ≤ ε.

It now follows that ψj(A) ∼A ψk(A) implies ψj(Sn) ∼n+1 ψk(Sn). The reverse implication follows similarly.
We have established that Equation (35) holds for j ≤ N .

Now let j > N . We write j = kN + l for k ∈ N and l ∈ {1, ..., N}. For 0 ≤ s ≤ t, let Ms,t

and P s,t denote the homomorphisms induced by the inclusion mappings Cěch(Sn, s) → Cěch(Sn, t) and
Cěch(Sn+1, s) → Cěch(Sn+1, t) respectively. By Lemma 2 along with the fact that both induced homo-
morphisms are surjective, for t ≤ δN ,

rankP s,t = N rankMc−1s,c−1t.

By the same reasoning as in the proof of Theorem 4

f
(j)
n+1(x) = sup{m ≥ 0| rankPx−m,x+m ≥ kN + l}

= sup{m ≥ 0| rankMc−1x−m,c−1x+m ≥ k + lN−1}

= c sup{m ≥ 0| rankMc−1x−m,c−1x+m ≥ k + 1} (38)

and by the definition of L, we have

f̂
(j)
n (x) = cf

(k+1)
n (c−1x) = c sup{m ≥ 0| rankMc−1x−m,c−1x+m ≥ k + 1} = f

(j)
n+1(x).

3.4 Special Case: Dimension One

Here we assume Ψ = {ψj}Nj=1 is an IFS where each ψj : R → R is defined by ψj(x) = c(x− bj), for some
c ∈ (0, 1), b1, ..., bN ∈ R. We assume without loss of generality that bj ≤ bj+1. For j ∈ {1, ..., N − 1}, we
also define aj := bj+1 − bj . We know that for each j, the fixed point of ψj is

xj =
cbj

1− c .
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From Lemma 3 we know that the extreme points of the ConvA will be x1 and xN . This means,

δ1 = diamA = c

1− c (bN − b1).

Also, for j 6= k, we know that ψj(A) is just a translation of ψk(A) by c(bj − bk). Hence,

d(ψj(A), ψk(A)) = c(bj − bk)− cδ1 = c(bj − bk)− c2

1− c (bN − b1).

For each j, the closest other image to ψj(A) is either ψj+1(A) or ψj−1(A). Thus we know that Ψ has well
separated images if

c2

1− c (bN − b1) = diam(ψj(A)) ≤ min
1≤j≤N−1

d(ψj(A), ψj+1(A))

= min
1≤j≤N−1

caj −
c2

1− c (bN − b1). (39)

This is equivalent to
2δ1 = 2c

1− c (bN − b1) ≤ min
1≤j≤N−1

aj . (40)

It is also straightforward to compute δ2, ..., δN in the one-dimensional case.

Proposition 4. Let Ψ = {ψj}Nj=1 be an IFS consisting of similitudes on R with well-separated images and
invariant set A. Then δ2, ..., δN as defined in Equation (23), are also given by

δk+1 = kmax{c(aj − δ1)| 1 ≤ j ≤ N − 1}.

Proof. For convenience, let ρk = kmax{c(aj − δ1)| 1 ≤ j ≤ N − 1} for k ∈ {2, ..., N}. First we claim that
for ε > 0 and N − 1 ≥ k ≥ 1, ε ≥ ρk if and only if C(A, ε) ≤ k. Indeed, first if we assume ε ≥ ρk, then

|{c(aj − δ1) > ε| 1 ≤ j ≤ N − 1}| < k.

Our assumption also implies that ε ≥ cδ1, since otherwise, because Ψ has well-separated images,

ε < cδ1 = max
1≤j≤N

diamψj(A) ≤ min
1≤j 6=k≤N

d(ψj(A), ψk(A))

= Nmax{c(aj − δ1)| 1 ≤ j ≤ N − 1} ≤ ρk,

a contradiction. Since ε ≥ diamψj(A) for all j ∈ {1, ..., N}, each image ψj(A) is contained in exactly 1 ε-
component of A. We can count the ε-components in the following way. Start the count at q = 1. For each j ∈
{1, ..., N − 1}, we check the distance between ψj(A) and ψj+1(A). If d(ψj(A), ψj+1(A)) ≤ ε, then ψj+1(A)
belongs to the same ε-component, so the count q remains at the current value. If d(ψj(A), ψj+1(A)) > ε,
then ψj+1(A) belongs to a different ε-component from that containing ψl(A) for 1 ≤ l ≤ j. In this case we
update q to equal q+ 1. Since d(ψj(A), ψj+1(A)) = c(aj − δ1), we will update q at most k− 1 times. Thus
C(A, ε) ≤ k.

Conversely, if ε < ρk, then

|{c(aj − δ1) > ε|1 ≤ j ≤ N − 1}| ≥ k. (41)

We consider two cases, first if ε < cδ1, then again since Ψ has well-separated images we have

ε < min
1≤j 6=k≤N

d(ψj(A), ψk(A)).

This implies that each image ψj(A) contains at least 1 ε-component of A. Hence C(A, ε) ≥ N > k as
desired. In the second case, we may have ε ∈ [cδ1, ρk), then since

ε ≥ max
1≤j≤N

diamψj(A),
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we may repeat the counting of connected components as described in the previous paragraph. We start
with the count at q = 1. Equation (41) implies that we must update q at least k times. Therefore C(A, ε) ≥
k + 1 > k as desired. This proves the claim.

It follows from the claim that ρk ∈ {ε > 0|C(A, ε) ≤ k}. Thus δk+1 ≤ ρk. Conversely, since ρk is a
lower bound, we have that

ρk ≤ inf{ε > 0|C(A, ε) ≤ k} = δk+1.

Now we are ready to state the main consequence of Theorem 4 for IFS on R.

Corollary 2. Let Ψ = {ψj}Nj=1 be an IFS of similitudes on R of the form ψj(x) = c(x+ bj), for c ∈ (0, 1)
and bj ∈ R. Assume bj ≤ bj+1 and let aj = bj+1 − bj . Ψ has well-separated images if and only if

2c
1− c (bN − b1) ≤ min

1≤j≤N−1
aj . (42)

Moreover, if Equation (42) holds and A is the invariant set of Ψ, then f = {f (j)}∞j=1 ∈ L∞(N × R), the
persistence landscape of H0 Cěch(A), is given by

f (j) =

{
τ(0,δj) if 1 ≤ j ≤ N
τ(0,ckδl) if (l − 1)Nk < j ≤ lNk, k, l ∈ N, 2 ≤ l ≤ N

, (43)

where δ1 = c
1−c (bN − b1), and for k ∈ {1, ..., N − 1},

δk+1 = kmax{c(al − δ1)| 1 ≤ l ≤ N − 1}.

Proof. As reasoned above, Ψ having well-separated images is equivalent to Equation (42). It is also ex-
plained above that δ1 = diam(A) = c

1−c (bN − b1), and the formula for the other δk’s is a consequence of
Proposition 4. The formula in Equation (43) follows from Theorem 4.

4 Examples
We are now ready to present a series of examples of iterated function systems and the corresponding
persistence landscapes resulting from the invariant set. Our goal is to illustrate the relationship between
the persistence landscape and the IFS. Some of our examples will have well-separated images, meaning that
we can readily apply the results above to compute the persistence landscape of H0 Cěch(A). Other examples
will require some additional work, but the reasoning should be similar to that used to prove Theorem 4.
We are also able to check our work by approximating A and computing the persistence landscape using
the Scikit-TDA library in Python.

4.1 Right 1/3 Cantor Set

Consider the IFS Ψ = {ψ1, ψ2} where

ψ1(x) = 1
3x, ψ2(x) = 1

3x+ 1
3 .

In this case, we have c = 1
3 , b1 = 0, and b2 = 1. This means Ψ has well-separated images since

2c
1− c (b2 − b1) = 1 = min

1≤j≤N−1
aj .

Clearly, δ1 = 1
2 , and

δ2 = 1
3(1− δ1) = 1

6
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By Corollary 2, this means the persistence landscape of H0 Cěch(A) is f = {f (j)}∞j=1, where

f (j) =


τ
(0, 12 )

if j = 1

τ
(0, 16 )

if j = 2

τ
(0,3−k 1

6 )
if 2k < j ≤ 2k+1, k ∈ N,

4.2 1/5 Cantor Set

Consider the IFS Ψ = {ψ1, ψ2, ψ3} where

ψ1(x) = 1
5x, ψ2(x) = 1

5x+ 2
5 , ψ3(x) = 1

5x+ 4
5 .

In this case, we have c = 1
5 , b1 = 0, b2 = 2, and b3 = 4. Again, we know that Ψ has well-separated images

since
2c

1− c (b3 − b1) = 2 = min
1≤j≤N−1

aj .

Clearly, δ1 = 1 and
δ2 = δ3 = 1

5(2− δ1) = 1
5 .

By Corollary 2, this means that the persistence landscape of H0 Cěch(A) is f = {f (j)}∞j=1, where

f (j) =


τ(0,1) if j = 1
τ
(0, 15 )

if j = 2, 3

τ(0,5−k−1) if 3k < j ≤ 3k+1, k ∈ N

4.3 1/6 Cantor Set

Consider the IFS Ψ = {ψ1, ψ2, ψ3} where

ψ1(x) = 1
6x, ψ2(x) = 1

6x+ 2
6 , ψ3(x) = 1

6x+ 5
6 .

In this case, we have c = 1
6 , b1 = 0, b2 = 2, and b3 = 5. We know that Ψ has well-separated images since

2c
1− c (b3 − b1) = 2 = min

1≤j≤N−1
aj .

We compute δ1 = 1,
δ2 = 1

6(3− δ1) = 1
3 , and δ3 = 1

6(2− δ1) = 1
6 .

By Corollary 2, this means that the persistence landscape of H0 Cěch(A) is f = {f (j)}∞n=1, where

f (j) =



τ(0,1) if j = 1
τ
(0, 13 )

if j = 2

τ
(0, 16 )

if j = 3

τ
(0,6−k 1

3 )
if 3k < j ≤ 2 · 3k, k ∈ N,

τ(0,6−k−1) if 2 · 3k < j ≤ 3k+1, k ∈ N
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4.4 Modified 1/5 Cantor Set

Let
Ψ = {ψ1, ψ2, ψ3}, ψ1(x) = 1

5x, ψ2(x) = 1
5(x+ 1), ψ3(x) = 1

5(x+ 4).

In this case, b1 = 0, b2 = 1, and b3 = 4. This means δ1 = 1. Ψ does not have well separated images since
d(ψ1(A), ψ2(A)) = 0 because 1

5 ∈ ψ1(A) ∩ ψ2(A). Although Theorem 4 does not apply, we still claim that
the map L : L∞(N× R)→ L∞(N× R) defined by Lg = h, where

h(1) = τ(0,1), h
(2) = τ(0,2/5)

h(3k)(x) = h(3k+1)(x) = h(3k+2)(x) = 1
5g

(k+1)(5x) for k ∈ N.

satisfies Lf = f where f is the persistence landscape resulting from H0 Cěch(A). To see why, we construct
an increasing sequence of sets as follows

S1 =
{

0, 1
5 ,

2
5 ,

4
5 , 1
}
, Sn+1 = Ψ(Sn) for n ∈ N.

It follows from Lemma 3 that Sn ⊂ Sn+1 ⊂ A for all n ∈ N. The first containment follows from the fact
that S1 = Ψ(EA). Let fn ∈ L∞(N× R) be the persistence landscape of H0 Cěch(Sn).

We claim that for all n ∈ N, Lfn = fn+1. Indeed, fix n ∈ N. First observe that

diam(Sn) = diam(A) = 1.

Thus f
(1)
n+1 = τ(0,1). As before for s ≤ t, let Ms,t : H0 Cěch(Sn, s) → H0 Cěch(Sn, t) and P s,t :

H0 Cěch(Sn+1, s) → H0 Cěch(Sn+1, t) denote the homomorphisms induced by the obvious inclusion
mappings. Since Cěch(Sn+1, ε) is path connected for ε ≥ 2

5 , this implies that rankH0 Cěch(Sn+1, ε) = 1.
On the other hand, for ε < 2

5 , we know that rankH0 Cěch(Sn+1, ε) ≥ 2 since Cěch(Sn+1, ε) is not path
connected. In the final case, we know that rankH0 Cěch(Sn+1, ε) = 0 for ε < 0. Thus it follows by definition
and the same reasoning used in the proof of Theorem 4 that

f
(2)
n+1(t) = sup{m ≥ 0| rankP t−m,t+m ≥ 2} = max{t, 2

5 − t} = τ(0, 2
5 ). (44)

To compute f (j)
n+1 for j ≥ 3, the key observation is that for 0 ≤ s ≤ t < 2

5 ,

rankP s,t = 3 rankM5s,5t − 1. (45)

Also, it is clear that for s < 0 or t ≥ 2
5 , rankP s,t ≤ 1. To justify Equation (45), we look at Cěch(Sn+1, ε)

for ε ∈ (0, 2
5 ). For m ∈ {1, 2, 3} let Km denote Cěch(ψm(Sn), ε) ⊂ Cěch(Sn+1, ε). A simple illustration of

this is given in Figure 3. Since ε < 2
5 , K3 is not path connected to K1 ∪K2. By Lemma 2 and Corollary 1,

we see that

H0 Cěch(Sn+1, ε) ∼= H0(K1 ∪K2)⊕H0(K3) ∼= H0(K1 ∪K2)⊕H0 Cěch(Sn, 5ε). (46)

From the Mayer-Vietoris sequence, we have the following exact sequence

H1(K1 ∪K2) −→ H0(K1 ∩K2) −→ H0(K1)⊕H0(K2) −→ H0(K1 ∪K2) −→ 0.

Since Sn+1 ⊂ R, and K1 ∩K2 = { 1
5}, this sequence is equivalent to

0 −→ Z2
ϕ1−→ H0(K1)⊕H0(K2) ϕ2−→ H0(K1 ∪K2) −→ 0. (47)

Exactness implies that ϕ2 is surjective and kerϕ2 ∼= Z2. Thus

dimH0(K1 ∪K2) = dimH0(K1) + dimH0(K2)− 1.
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Figure 3. The three sub-complexes in the modified 1/5 Cantor set for n = 3.

Since H0(Km) ∼= H0 Cěch(Sn, 5ε) for m ∈ {1, 2, 3}, Equation (46) implies that

dim[H0 Cěch(Sn+1, ε)] = 3 dim[H0 Cěch(Sn, 5ε)]− 1.

Since Ms,t and P s,t are always surjective when s > 0, Equation (45) follows.
Now we may argue as we did for Theorem 4. For j = 3k +m with k ∈ N, m ∈ {0, 1, 2}, by definition

f
(j)
n+1(t) = sup{m ≥ 0| rankP t−m,t+m ≥ j}

= sup{m ≥ 0|3 rankM5(t−m),5(t+m) − 1 ≥ j}

= sup{m ≥ 0| rankM5(t−m),5(t+m) ≥ k + 1} (48)

On the other hand, for k ∈ N, we have

1
5f

(k+1)
n (5t) = 1

5 sup{m ≥ 0| rankM5t−m,5t+m ≥ k + 1}

= sup{m5 ≥ 0| rankM5t−m,5t+m ≥ k + 1}

= sup{m ≥ 0| rankM5(t−m),5(t+m) ≥ k + 1}

= f
(j)
n+1(t).

This proves the claim that Lfn = fn+1.
From Theorem A, we know that limn→∞ dH(Sn, A) = 0. Thus limn→∞ fn = f . Since L is Lipschitz on

L∞(N× R), it is continuous. Thus

Lf = lim
n→∞

Lfn = lim
n→∞

fn+1 = f .

as claimed.
To obtain the formula for f = {f (j)}∞j=1, we compute limn→∞ Ln0 in L∞(N× R). We find that

f (j) =


τ(0,1) if j = 1
τ
(0, 25 )

if j = 2

τ
(0, 2

5k+2 )
if 2 + 3

2 (3k − 1) < j ≤ 2 + 3
2 (3k+1 − 1), where k + 1 ∈ N

.

We illustrate this landscape in Figure 4 (produced by pyscapes [40]).

4.5 Cantor Triangle

Let us consider a 2-dimensional example. Consider the IFS on [0, 1]2, Ψ = {ψ1, ψ2, ψ3}, where

ψ1(x, y) = 1
3I2(x, y)T , ψ2(x, y) = 1

3I2[(x, y) + (0, 2)]T , ψ3(x, y) = 1
3I2[(x, y) + (2, 0)]T ,

with I2 denoting the 2×2 identity matrix. The set of extreme points is S0 = {(0, 0), (0, 1), (1, 0)}. However
Ψ does not have well-separated images since

min
1≤j 6=k≤N

d(ψj(A), ψk(A)) = 1
3 <

√
2

3 = max
1≤j≤N

diamψj(A).
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Figure 4. Graph of the functions f2, . . . , f16 from the persistence landscape of the modified 1/5 Cantor set C.

Despite this, the formula in Equation (33) still applies. To see why, define L : L∞(N × R) → L∞(N × R)
by Lg = h, where

h(1) = τ(0,
√

2), h
(2) = h(3) = τ(0,1/3),

h(3k)(x) = h(3k+1)(x) = h(3k+2)(x) = 1
3g

(k+1)(3x) for k ∈ N..

Note that as in Equation (33), we have δ1 =
√

2 and δ2 = δ3 = 1
3 .

Define a sequence of sets {Sn}∞n=1 by S1 = Ψ(S0), and Sn+1 = Ψ(Sn) for n ∈ N. Note that Sn ⊂
Sn+1 ⊂ A for all n ∈ N and limn→∞ dH(Sn, A) = 0. Let fn ∈ L∞(N × R) be the persistence landscape
of H0 Cěch(Sn). As before, limn→∞ fn = f where f is the persistence landscape of H0 Cěch(A). Thus, we
claim Lfn = fn+1.

Indeed, choose n ∈ N. Since diam(A) =
√

2, it is clear that f1
n+1 = τ(0,

√
2). For s ≤ t, let Ms,t :

H0 Cěch(Sn, s) → H0 Cěch(Sn, t) and P s,t : H0 Cěch(Sn+1, s) → H0 Cěch(Sn+1, t) denote the homomor-
phisms induced by the obvious inclusion mappings. Since Cěch(Sn+1, ε) is path connected for ε ≥ 1

3 , this im-
plies that rankH0 Cěch(Sn+1, ε) = 1. On the other hand, for ε < 1

3 , we know that rankH0 Cěch(Sn+1, ε) ≥
3 since Cěch(Sn+1, ε) is not path connected, with ψ1(Sn), ψ2(Sn), ψ3(Sn) ⊂ Sn+1 each containing at least
one distinct ε-component of Sn+1. Therefore, for t ∈ R, j = 2 or j = 3

f
(j)
n+1(t) = sup{m ≥ 0 | rankP t−m,t+m ≥ 3} = max{t, 1

3} = τ
(0, 13 )

(t).

To compute f (j)
n+1 for j ≥ 4, the key observation is that for 0 ≤ s ≤ t < 1

3 ,

rankP s,t = 3 rankM3s,3t, (49)

and for s < 0 or t ≥ 1
3 , we get rankP s,t ≤ 1. The second part is clear. To justify Equation (49), note that

for ε < 1
3 , since

min
1≤j 6=k≤3

d(ψj(Sn), ψk(Sn)) = 1
3 ,

it follows from Lemma 2 that

H0 Cěch(Sn+1, ε) ∼=
3⊕
j=1

H0 Cěch(Sn, 3ε).



Michael J. Catanzaro, Lee Przybylski, and Eric S. Weber, Persistence Landscapes of Affine Fractals 25

Figure 5. An illustration of S3 for the Cantor triangle.
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Since every nontrivial transformation in H0 Cěch(Sn) and H0 Cěch(Sn+1) is a surjection, the previous
isomorphism implies Equation (49). If we assume j = 3k+ l for k ∈ N, and l ∈ {1, 2, 3}, then by definition,

f
(j)
n+1(t) = sup{m ≥ 0| rankP t−m,t+m ≥ j}

= sup{m ≥ 0|3 rankM3(t−m),3(t+m) ≥ j}

= sup{m ≥ 0| rankM3(t−m),3(t+m) ≥ k + 1} (50)

On the other hand, for k ∈ N, we have

1
3f

(k+1)
n (3t) = 1

3 sup{m ≥ 0| rankM3t−m,3t+m ≥ k + 1}

= sup{m3 ≥ 0| rankM3t−m,3t+m ≥ k + 1}

= sup{m ≥ 0| rankM3(t−m),3(t+m) ≥ k + 1}

= f
(j)
n+1(t).

This proves the claim that Lfn = fn+1, meaning Lf = f .
When we compute the fixed point of L by taking the limit limn→∞ Ln0, we find that f = {f (j)}∞j=1,

where

f (j) =


τ(0,
√

2), if j = 1
τ(0,3−1), if 1 < j ≤ 3
τ(0,3−k−1), if 3k < j ≤ 3k+1 for k ∈ N

.

4.6 Distorted Sierpinksi Carpet

Consider another IFS on R2, Ψ = {ψ1, ψ2, ψ3, ψ4}, where

ψ1(x, y) = 1
3I2(x, y)T , ψ2(x, y) = 1

3I2[(x, y) + (2, 0)]T ,
ψ3(x, y) = 1

3I2[(x, y) + (0, 1)]T , ψ4(x, y) = 1
3I2[(x, y) + (2, 1)]T .

A, the invariant set of Ψ, turns out to be C × 1
2C. Clearly, Ψ does not have well-separated images since

min
1≤j 6=k≤4

d(ψj(A), ψk(A)) = 1
6 <

√
10
6 = diamψj(A).

Even though we cannot apply Theorem 4 directly, we can derive the formula for f , the persistence landscape
of H0 Cěch(A), using a similar argument to what we had in the previous section. We claim that L :
L∞(N× R)→ L∞(N× R), defined by Lg = h, where

h(1) = τ(
0,
√

5
2
), h(2) = τ

(0, 13 )

h(3) = h(4) = τ
(0, 16 )

h(4k+1)(t) = h(4k+2)(t) = h(4k+3)(t) = h(4k+4)(t) = 1
3g

(k+1)(3t) for k ∈ N.,

satisfies Lf = f .
In order to prove this, we take S0 = {(0, 0), (1, 0), (0, 1

2 ), (1, 1
2 )}, and define a sequence of sets {Sn}∞n=1,

where
S1 = Ψ(S0), Sn+1 = Ψ(Sn) for n ∈ N.

Let fn denote the persistence landscape function for Sn, then we claim that L satisfies Lfn = fn+1 for
all n ∈ N. Because limn→∞ dH(Sn, A) = 0, it follows that limn→∞ fn = f , and as we have reasoned in
previous examples, this implies that Lf = f .
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To prove that Lfn = fn+1, fix n ∈ N. Since diam(A) =
√

5
2 , it is clear that f1

n+1 = τ(
0,
√

5
2

). For
s ≤ t, let Ms,t : H0 Cěch(Sn, s)→ H0 Cěch(Sn, t) and P s,t : H0 Cěch(Sn+1, s)→ H0 Cěch(Sn+1, t) denote
the homomorphisms induced by the obvious inclusion mappings. Since Cěch(Sn+1, ε) is path connected
for ε ≥ 1

3 , this implies that rankH0 Cěch(Sn+1, ε) = 1. On the other hand, for ε ∈ [ 1
6 ,

1
3 ), we know

that rankH0 Cěch(Sn+1, ε) = 2 since Cěch(Sn+1, ε) is not path connected, with ψ1(Sn)∪ψ3(Sn), ψ2(Sn)∪
ψ4(Sn) ⊂ Sn+1 each forming an ε-component of Sn+1. For ε < 1

6 , we know that rankH0 Cěch(Sn+1, ε) ≥ 4
since

min
1≤j≤4

d(ψj(Sn), Sn+1\ψj(Sn)) = 1
6 .

Therefore, for t ∈ R,

f
(2)
n+1(t) = sup{m ≥ 0 rankP t−m,t+m ≥ 2} = max{t, 1

3 − t} = τ
(0, 13 )

(t).

and for j = 3, 4

f
(j)
n+1(t) = sup{m ≥ 0 rankP t−m,t+m ≥ 4} = max{t, 1

6 − t} = τ
(0, 16 )

(t).

To compute f (j)
n+1 for j ≥ 5, the key observation is that for 0 ≤ s ≤ t < 1

6 ,

rankP s,t = 4 rankM3s,3t, (51)

and for s < 0 or t ≥ 16, we get rankP s,t ≤ 2. We have already established the second part. To justify
Equation (51), since ε < 1

6 implies that

min
1≤j 6=k≤4

d(ψj(Sn), ψk(Sn)) > ε,

it follows from Lemma 2 that

H0 Cěch(Sn+1, ε) ∼=
4⊕
j=1

H0 Cěch(Sn, 3ε).

As in the previous example, this isomorphism implies (51). Using identical reasoning as in the previous
section, this implies that for j = 4k + l for k ∈ N and l ∈ {1, 2, 3, 4},

f
(j)
n+1(t) = 1

3fn(k + 1)(3t).

Thus Lfn = fn+1 for all n ∈ N. Therefore Lf = f .
We compute the formula for f = {f (j)}∞j=1 by taking the limit of Ln0 as n→∞. We find that

f (j) =



τ(
0,
√

5
2

), if j = 1

τ(0,3−1), if j = 2
τ(0,6−1), if 2 < j ≤ 4
τ(0,3−k−1), if 4k < j ≤ 2 · 4k for k ∈ N
τ(0,3−k6−1), if 2 · 4k < j ≤ 4k+1 k ∈ N

.

In terms of Equation (33), we have N = 4, c = 1
3 , δ1 =

√
5

2 , δ2 = 1
3 , and δ3 = δ4 = 1

6 . This means the
persistence landscape of H0 Cěch(A) is consistent with the formula from Theorem 4 even though Ψ does
not have well-separated images.
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4.7 Remarks

The 1/5 Cantor set in 4.4 demonstrates how a reasonable formula for the persistence landscape of
H0 Cěch(A) can be found in the one-dimensional case, even when images are not well-separated. As long
as the Cěch complex of the intersection of these images is reasonable, we can use the Mayer-Vietoris
sequence to make precise the difference between rankH0 Cěch(Ψ(Sn), ε) and what the rank would be if Ψ
had well-separated images. The example also shows the intuition that each time two images are touching,
we have to “skip" one of the first N terms in the sequence that makes up f .

The final two examples demonstrate that at least for zero-dimensional homology, the well-separated
assumption can be too restrictive. We might be better off replacing the well-separated hypothesis with the
assumption that

inf{ε > 0| C(A, ε) < N} ≥ max
1≤j≤N

inf{ε > 0| C(ψj(A), ε) = 1},

since the proof of Theorem 4 seems to work as long each image becomes path connected by the time any
two different images become path connected. However, the well-separated assumption might be necessary
for finding the persistence landscape for Hp Cěch(A) for p ≥ 1. For p = 1, it would guarantee that there are
no loops persisting in individual images by the time loops could be “born" consisting of 1-chains consisting
from a combination of different images.
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