e Demonstr. Math. 2019; 1

Research Article Open Access
Michael J. Catanzaro, Lee Przybylski, and Eric S. Weber*
Persistence Landscapes of Affine Fractals

DOI: DOI, Received ..; revised ..; accepted ..

Abstract: We develop a method for calculating the persistence landscapes of affine fractals using the pa-
rameters of the corresponding transformations. Given an iterated function system of affine transformations
that satisfies a certain compatibility condition, we prove that there exists an affine transformation acting
on the space of persistence landscapes which intertwines the action of the iterated function system. This
latter affine transformation is a strict contraction and its unique fixed point is the persistence landscape of
the affine fractal. We present several examples of the theory as well as confirm the main results through
simulations.

Keywords: persistent homology, persistence landscapes, affine fractal, Cantor set

MSC: Primary: 55N31, 28A80; Secondary 37M22, 47H09

1 Introduction

Affine fractals are the invariant set of an iterated function system (IFS) consisting of affine transformations
acting on Euclidean space. Well-known examples of such fractals are Cantor sets and Mandelbrojt sets.
Affine fractals, as subsets of Euclidean space, possess topological properties that can be extracted through
the methods of algebraic topology. In particular, these subsets of Euclidean space can be associated to a
persistence landscape [1] which is a sequence of functions that encode geometric properties of the set based
on Euclidean distances. These distances give rise to a family of homology groups derived from a filtration
of complexes. The homology groups in turn produce a persistence module from which the persistence
landscapes are defined.

Interest in studying fractals using the tools of algebraic topology has occurred recently. In [2], it was
shown that persistence homology can be used to distinguish fractals of the same Hausdorff dimension. In
[3], the authors describe a relationship between the Hausdorff dimension of fractals and the persistence
intervals of Betti numbers.

Our main result (Theorem 4) concerns the calculation of the persistence diagrams and landscapes of
affine fractals. We prove that, under a certain compatibility condition, there exists an affine transformation
L which is defined by the parameters of the IFS. This transformation £ acts on the space of persistence
landscapes. Moreover, it is a strict contraction and its unique fixed point is the persistence landscape of
the affine fractal. Consequently, the persistence landscape of the fractal can be computed via the limiting
process of repeated applications of £ to any initial input. We also prove, under an additional assumption
on the IFS, that £ intertwines the action of the iterated function system (Theorem 5).

1.1 Persistence Landscapes

Persistent homology is a relatively new approach to studying topological spaces. In the context of data
science, persistent homology can be applied to a data set to complement traditional statistical approaches
by studying the geometry of the data. We employ the tools of persistent homology, including persistence
landscapes, to analyze affine fractals.

Michael J. Catanzaro, Lee Przybylski, Eric S. Weber: Department of Mathematics, lowa State University, 396 Carver
Hall, Ames, IA 50011; Email: esweber@iastate.edu



2 = Michael J. Catanzaro, Lee Przybylski, and Eric S. Weber, Persistence Landscapes of Affine Fractals e

Persistent homology typically begins with a set of points, equipped with a pairwise notion of distance.
We place a metric ball of radius r around each point, and increase r. We are interested in the topological
properties of the union of these balls as a function of r. Typical properties of interest include connectedness,
loops or holes, and voids of the union, and importantly the radii at which these appear or disappear. While
this type of information may seem crude, a surprising amount of insight about the underlying set of points
can be extracted in this way.

The data of changing topological properties is conveniently summarized in what is known as a persis-
tence diagram, a multiset of points in the plane. If we focus on loops of the union, then each point (b,d) in
the persistence diagram represents a loop, whose two coordinates correspond to the radius when the hole is
formed (r = b) and when it gets filled in (r = d). The persistence diagram provides a multiscale summary,
encoding geometric and topological features of the set [4].

Unfortunately however, barcodes do not posses a vector space structure, so quantitative analysis and
precise comparison can be difficult [5]. To remedy this, we map the barcodes to some feature space (a
Banach space in our case) using a well-studied feature map known as a persistence landscape. The mapping
from barcodes to landscapes is reversible, so this vectorization scheme loses no information [1]. Persis-
tence landscapes have been used to study protein binding [6], phase transitions [7], audio signals [8], and
microstructures in materials science [9].

See Section 2 for a full discussion of persistent homology and persistence landscapes of metric spaces.

1.2 Affine Fractals

A fractal, for our purposes, is a set which has a self-similarity property. The middle-third Cantor set is the
canonical example of a self-similar set. Fractals are commonly studied objects in many contexts. Cantor
sets, in particular, appear in the context of analysis [10, 11], number theory [12, 13], probability [14-16],
geometry [17, 18], physics [19-21] and harmonic analysis [22-24].

In this paper, we consider specifically the class of affine fractals, which are generated by iterated
function systems consisting of affine transformations. By this we mean that the fractal is the invariant set
for the iterated function system.

Definition 1. Suppose ¥ = {¢1,...,9n} is a set of maps acting on a metric space (X,d). We say that
A C X is invariant for ¥ if A = UN ¢;(A).

For the maps ¥, we denote the compositions (i.e. iterations) of the maps by:
N
U(A) = (J i(4), TP(4) = T(TP1(4)).
i=1

In [25], Hutchinson laid out the main relationship between fractals and iterated function systems (IFS);
this relationship is the foundation of our results. Recall that ¢ : X — X is Lipschitz if for all z,y € X,
there exists C' > 0 such that

d((x), ¥ (y)) < Cd(z,y).

The Lipschitz constant of ¢ is the infimum of all such C'. We say that v is a contraction if it has Lipschitz
constant less than 1. Hutchinson’s theorem is as follows.

Theorem A. Let X = (X,d) be a complete metric space and V = {u1, ...,/ N} a finite set of contraction
maps on X. Then there exists a unique closed bounded set A such that

N
A= U Yi(A).
=1

Furthermore, A is compact and is the closure of the set of fized points of finite compositions of members
of W. Moreover, for a closed bounded K, WP(K) — A in the Hausdorff metric.
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Recall that the Hausdorff distance between two sets A, B C X is given by

di (A, B) = max {sup inf d(x,y), sup inf d(a:,y)} .
rcAYEB yEB z€A

For us, the maps ¥ consist of affine transformations acting on R?. Moreover, we assume that the linear
part of the maps are scalars which are common to all of the maps. Therefore, our maps have the form
(%) = e(Z + l_;j), where ¢ € (0,1). The following are examples of affine fractals in our class:
1. the classical middle-third Cantor set in R;
2. the Sierpinski gasket in R2;
3. the Sierpinksi carpet in R?;
4. the Menger sponge (or Sierpinski cube) in R3.

Specifically, the Cantor set is the invariant set for the IFS with generators
T T +2
g% Y1(z) = .

Yo(x) = 3

Likewise, the Sierpinski carpet is the invariant set for the IF'S with generators

it = (5.5): = (T20) 0 = (5.57)0 v - (S 252)).

For an IFS ¥ acting on R? and a nonempty Sy C R%, we define the sequence S, 11 = ¥(S,,). We will

typically consider Sy which consists of finitely many points in R, and therefore by Hutchinson’s theorem,
{Sn} converges in the Hausdorff metric to the fractal generated by W. Indeed, we will show that choosing
So to be the extreme points of the convex hull of the fractal is ideal in establishing our algorithm for
calculating the persistence landscapes of the fractal.

One of our main results is to prove that for a fixed affine IF'S ¥ that satisfies a certain compatibility
condition and appropriate initialization Sp, there exists an affine transformation £ acting on the space of
persistence landscapes such that for every n € N the following diagram commutes:

v
Sp —— Sn+41

E— 0
L
f, —— 1
Here f,, is the persistence landscape of S;, and ~ associates to S,, its persistence landscape. We will show
that £ is a strict contraction on the set of persistence landscapes, and so it possesses a unique fixed

point. That fixed point will be the persistence landscape for the fractal generated by ¥. Consequently, the
persistence landscape f of the fractal is obtained by
f= lim L"f (2)
n—oo

for any initialization fy.

2 Persistent Homology

In this section, we briefly review some standard facts from algebraic topology and persistent homology
as well as establish our notation. Excellent resources for (simplicial) homology can be found in [26, 27],
and [4, 28, 29] provide a good introduction to persistent homology.

2.1 Simplicial Complexes

For a simplicial complex K, the p-skeleton of K, denoted by K(”), is the subcomplex consisting of all
simplices of dimension less than or equal to p. The set of all p-simplices is denoted K. Thus, the set of
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vertices can be written as Ko. Recall that if o = [ug, u1,...,up] is a p-simplex, then every point = € o can
be expressed as a convex combination x = Zl a;u;, where 0 < a; <1 and Zl a; = 1.

Given two simplicial complexes K and L, we say that ¢ : Ko — Lg is a vertex map if for any p-simplex
[z0, ..., zp] in K, [p(x0), ..., p(zp)] is a simplex in L. Thus vertex maps send the vertices of simplices in K
to simplices in L. We do not require ¢ to be injective, so dim[¢(zg), ..., ¢(2p)] < p with a strict inequality
if p(z;) = () for some j, k € {0,1,...,p}. Given a vertex map ¢ : Ko — Lo, we can extend it to a map
f:K —= Lby

P
@)= ajela;).
=0
where © = Z?:o ajx;. In this way, we say that f is the simplicial map induced by ¢.

The first step in our goal of computing topological properties of affine fractals will be to construct their
Céch complexes. If X C R, for any € > 0 we can define the Céch complex to be

Céch(X,e) = {0’ cX

ﬂB(w,s/%é@}, ®

reEo

where B(x,r) is the ball of radius r centered at x. A consequence of the Nerve Theorem [28, 30] is that for
a finite set X € R?, {x : d(x, X) < £/2} is homotopy equivalent to Céch(X,e¢).

There is another popular variant in persistent homology for associating a topological space to a set,
known as the Vietoris-Rips complex. The Vietoris-Rips complex for X ¢ R? and ¢ > 0 is defined by

VR(X,&)—{JQX{ max |x—y§£} . (4)
T,yEo

In comparing Eqs. (3) and (4), we see that the 1-simplices in Céch(X ¢) are the same as those in VR(X, ¢),
but it is not necessary that Céch(X,e) = VR(X, ¢). Furthermore, verifying the existence of a point in the
intersection of Eq. (3) often requires much more work than verifying the pairwise condition of Eq. (4).
For this reason, together with recent advances in computational efficiency in software [31], applications of
persistent homology tend to rely on Vietoris-Rips complexes. The two complexes are related by a well-
known result [32, Thm. 2.5].

Our focus will be on the Céch complex of affine fractals and their approximations.

2.2 A Review of Homology
Given a simplicial complex K, an abelian group GG, and a non-negative integer p > 0, we define the group

of p-chains with coefficients in G to be formal G-linear combinations of p-simplices of K and denote it
Cp(K;G). A typical element of Cp(K;G) is a finite formal sum of the form )", g;0;, where ¢; € K, and

gi € G. The differential (or boundary) of a p-simplex o = [ug, u1,...,up)] is
p .
0p(0) =D (1) [ug,un, ... iy, ... up] € Cp1 (K;G), (5)
§=0
where [ug, ..., 0 ,...up] is the (p— 1)-simplex obtained by omitting @; from o. Extending 0, to a G-linear

homomorphism to all of Cp(K;G) gives 9, : Cp(K;G) — Cp—1(K;G). This gives rise to the simplicial
chain complex of K with coefficients in G

0, Opi1 Op Op—1 1
SR O (K) 25 O (K) <8 Cp g (K) 253 25 o (K) 20, (6)
with the essential property that any two successive compositions equal the trivial map: 9;0;41 = 0 for
all j > 0. Hence, im(0;41) C ker(9;). We denote the p-cycles by Z,(K) = ker(d,) C Cp(K), and the
p-boundaries by Bp(K) = im(0p+1) C Cp(K).
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Definition 2. The p-th simplicial homology group of a simplicial complex K is
Hy(K) = Hp(K; G) := ker(9p) /im(0p+1) = Zp(K)/By(K).

We let H.(K) = @, H,(K) denote the collection of homology groups for all dimensions p.

p

Moving forward, we assume G = Zy. This choice of coefficients is common in persistent homology and
simplifies many of the computations, e.g., the factors of (—1)7 appearing in Eq. (5) vanish.

For simplicial complexes K and L, f : K — L is a simplicial map if f is continuous and f maps each
simplex of K linearly onto a simplex of L. Define a homomorphism fy : Cp(K) — C,(L) by first defining

[f(x0), ..., f(zp)] if f(zo),..., f(xp) are distinct
0 otherwise,

Ju([zo, s xp]) = { (7)

and extend the homomorphism to the rest of Cp,(K) linearly. A standard fact in algebraic topology is that

fw further induces a map on homology f. : Hy(K) — H,(L) for every p. Furthermore, if f is a simplicial
homeomorphism, then f, : Hi(K) — H,(L) is an isomorphism [27].

Lemma 1. Let X C R? be a finite point cloud. Let p: R? — R? be a similitude with scaling constant ¢ > 0.
Lete >0, L = Céch(X, ), and let L = Céch(o(X), ce). Then ¢|r, : Lo — Lo is a vertex map and induces
a simplicial homeomorphism f between L and L. Thus, f induces an isomorphism f, : Ho.(L) — H,(L).

A particularly nice feature of homology groups is that the homology group of a space is isomorphic to
the direct sum of the homology groups of the path components [26, Prop. 2.6]. This directly leads to the
following lemma.

Lemma 2. Let X C R be a finite subset and {p; 71 be a collection of similitudes on R?. Let c;j equal
the scaling constant of the similitude @;. Define

= i X, X))
§ lggg@d(@( i), (X))

Then for all dimensions p > 0, and all e < §

H, Céch(Ujip;(X),e) = @D H, Céch(X, ¢; 'e).
j=1

Lemma 2 implies that given a finite point cloud and a collection of similitudes, so long as the images of
the point cloud under those similitudes are sufficiently far apart, the homology group resulting from the
union of those images is easily related to the homology groups resulting from the original point cloud.

Another tool we will use for the computation of homology groups is known as the Mayer-Vietoris
sequence. Suppose K is a simplicial complex with subcomplexes K7 and K5 such that K = K1 U K5. The
Mayer-Vietoris sequence is the long exact sequence

oo —)Hp(Kl ﬂKQ) — Hp(Kl) @Hp(KQ) — Hp(K) — Hp_l(Kl N KQ) —
~~~—>H0(K1 ﬂKQ) —)Ho(Kl)GBHo(KQ)—)Ho(K)—)O. (8)

For a detailed explanation of the maps in the sequence and a proof of its exactness, see [27, Chapter 3].

2.3 Persistent Homology

A simplicial filtration K*® of a simplicial complex K is a collection of subcomplexes { K}, for an indexing
set I C R such that whenever s < ¢,
K*CK'CK. (9)
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The inclusion map K® — K?! induces a homomorphism H,(K®) — H.(K?!). The collection of groups
{H,(K*)}se1, together with the collection of homomorphisms {H,(K?®) — H,(K')}s<; form the p*t-
persistent homology of K*®.

Understanding the structure of persistent homology is difficult as presented. Instead, we turn to a
generalization of this structure known as a persistence module. A persistence module is a collection of
Za-vector spaces V = {V; }sc1, and a collection of linear transformations between these spaces M = { M5 :
Vs = Vi}s<: that satisfy

M5t o M™ = M™ for r < s <t (10)

We will often refer to the persistence module (V,M) as simply M. By setting Vs = H,(K®) and M** :
H,(K?®) — Hp(K") as the homomorphism induced by inclusion, we see that every simplicial filtration K®
gives rise to a persistence module.

If X C R?, then the collection of simplicial complexes

Céch(X) = {Céch(X, s)}, g

form a simplicial filtration of Céch(X, o0), the full simplicial complex on X. For 0 < s < ¢, the inclusion
mapping Céch(X,s) — Céch(X,t) induces a homomorphism H, Céch(X,s) — H, Céch(X,t). We let
H,, Céch(X) denote the persistence module resulting from the filtration of the Céch complex of X. We
adopt the convention that

Céch(X,s) = VR(X,s) =0

for s < 0.

A persistence diagram is a multiset of birth and death times derived from a decomposition of a per-
sistence module. Interval modules form the basic building blocks of persistence modules. Interval modules
are indecomposable. In [33], it was shown that the persistence module (V,M) can be decomposed into
interval modules as long as each V; is finite dimensional. Moreover, an application of [34, Thm. 1], implies
this decomposition is unique, up to reordering. Thus if we have a persistence module M with the interval
module decomposition

M = P I, dy),
A
we define the persistence diagram of M to be the multiset
dgmM = {(b)w d)\)})\ U A7

where A is the set of diagonal points {(x,z)|z € R} each counted with infinite multiplicity.

We will denote a persistence diagram as D = (D, ), where D = {(bx,dx)}x is the collection of distinct
birth and death times and p : D — Ny is defined u(by,dy) as the multiplicity of the birth death time
(bx,dy).

In order to ensure that the persistence modules we consider have a decomposition into interval modules,
we require that M is g-tame [35].

Definition 3. The persistence module (V, M) indexed over I C R is said to be g-tame if

rank M** < 0o whenever s < t.

Assuming a persistence module is g-tame not only guarantees us a well-defined persistence diagram, but
also stability with respect to the bottleneck distance [36]. A prior stability result presented by Cohen-Steiner
et al. in [37] which required a more restrictive tameness condition.

Persistence modules resulting from a Céch filtration built on a finite point cloud X are ¢g-tame. More-
over, when X C R? is compact, H, Céch(X) is g-tame [38] for all p. As a result, we obtain the following:

Proposition 1. For any affine iterated function system, the invariant set A, and any finite approximation
of A, possess a well-defined persistence diagram.
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While persistence diagrams are an effective representation of a persistence module, they are not conducive
to statistical analysis. Persistence landscapes address this issue by embedding persistence diagrams into
a Banach space. Given a persistence module M that is ¢-tame, its persistence landscape is a function
f:NxR—=Rby

f(n,t) = fO(t) = sup{m > 0| rank M*~"™1*™ > p}
where R denotes the extended real numbers, [—00, 00]. We have that all persistence landscapes are elements
of

L®(NxR) = {g = g h © L) sup g o~ e < oo} |
ne

We compute the distance between two persistence landscapes using the standard norm on L (N x R)
which is defined as

||g||L°°(N><R) = sup Hg(n)HL‘X’(R)-
neN

There is an alternative definition given in [39] that allows us to relate the persistence landscape of
M to its persistence diagram. If the persistence module M is represented as a persistence diagram D =
{(ai,b;)}ier, then we can define the functions

T(a,p)(t) = max(0, min(a +¢,b — t)), (11)

and for all k € N, t € R,
SO (t) = kmax{7(q, p,)(t) bier- (12)

We use kmax to denote the kth largest element of a set. Note that since D is a multiset, certain birth death
pairs (a;, b;) can appear more than once.

It is common for many stability results to write the distance between two persistence landscapes in
terms of their corresponding persistence modules. If £ = {f (k)}zozl is the persistence landscape obtained
from M and g = {g(k)}z‘;l is the persistence landscape obtained from M’, we define the persistence
landscape distance between M and M’ to be

Ao (M, M) := |If — gl (vxR)- (13)
By combining the stability results from [1, 36, 38], we obtain the following:

Theorem B. Suppose X is a metric space, and Y, Z C X have well-defined persistence diagrams. Then
for allp >0,
Ao (Hp Céch(Y), Hp Céch(Z)) < du (Y, Z).

Corollary 1. Let (X,d) be a metric space and suppose S,T C X such that their Céch complexes have
well-defined persistence diagrams. Then

If — glloemxr) < du(S,T),

where f and g are the persistence landscapes of S and T, respectively.

3 The Persistence Landscapes of Affine Fractals

3.1 The Persistence Landscape of the Cantor Set

We begin with calculating the persistence landscape of the middle-third Cantor set C. This calculation
illustrates the main ideas of our construction, while also highlighting some of the technical requirements on
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the IFS. Recall that C is generated by the IFS given by the collection of contraction maps ¥ = {19, 2},
where

T z 2
Yo(z) = 3 Ya(z) = 3t3
For convenience, we suppose that ¥ acts on the metric space X = [0,1] with the standard metric. We
define the sequence of approximations to C as follows:
So = {0, 1}7 Sy = \I/(Sn_l) = ¢0(Sn_1) U ¢2(Sn_1) for n € N. (14)

We also define

Co=10,1], Cp, = V(Cp—1).
The length of each closed interval in C,, is 1/3™. Note that since the points in S, are equal to the end
points in the disjoint closed intervals that make up C,, and we have S,, C C C C,, for all n € N, we find

1

As a consequence of this and Lemma 2.3, we obtain the following convergence result.

Theorem 1. Let {f,}72 be the sequence of persistence landscapes generated from the sequence of point
clouds {S,}52 1 as in Equation (14), and let £ be the persistence landscape of C. Then, we have that

lim ||fn - f||L°°(N><]R) =0.
n—00

Knowing that the limit exists, we would still like to have a formula for the persistence landscape of C.
To help us determine this formula, we will use a two step approach. First, we will find an affine operator
L: L*°(NxR) = L°(N x R) such that for all n sufficiently large, £ maps the persistence landscape of Sy,
to the persistence landscape of S,4+1. We will then show that the persistence landscape of C is the fixed
point of £ and use £ to compute the fixed point.

To describe persistence landscapes, we will use the hat functions defined in Equation (11). Recall that
persistence landscapes h € L>°(N x R) are defined by letting h = {hU )}?‘;1, where h(9) equals the jth
largest hat function supported on an interval whose end points equal one of the birth-death pairs from the
persistence diagram. We also note that the hat functions scale nicely so that for t € R

T(ap)(t) = (b= a)7(0,1) (0 — a) "} (t — a)).
We define L for each g € L°(N xR) by Lg=h = {h(j)}‘]?‘;l where
hW(x) = 7(0,1)(2), (15)
W) () = 19 (30),
BCEFD) () = RRH2) () — % 9®(3z), keN.

We adopt the convention that the maximum death time will be equal to the diameter of the invariant
set, which in the case of C is 1. Thus when computing persistence landscape of C, the first function in the
sequence will be 7 1). We can see that £ is an affine contraction. Indeed, if we define 7 : L>°(N x R) —
L>*(N x R) by Tg = h, where

D (z) = 0,
W) () = 29 (30)
WD () = W) ) = 269 (32,

then we see that 7 is linear with ||7| = % Further, for all f € L°(N x R), £f = v + TT, where
v = {7(0,1):0,0,0,...}.



e Michael J. Catanzaro, Lee Przybylski, and Eric S. Weber, Persistence Landscapes of Affine Fractals == 9

Theorem 2. Let {f,}°2, be the sequence of persistence landscape generated from the sequence of point
clouds {Sp}°2 as in Equation (14), and let £ be the persistence landscape of C. Let L be given by Equation
(15). Then, for alln € N, Lf, = f,41.

In other words, the commutative diagram in Equation (1) holds.

Proof. For n € N, we denote f, = {fy(Lj) 521- It easy to check for n =1 using direct computation. Since
S1=1{0,1} and S = {0,1/3,2/3,1} we see that f2(1) = T(0,1) fQ(j) = T(0,3-1) for 2 < j <4, and f2(j) =0
for all 7 > 4. We can also see that

f1 = {700,1),0,0,0,0,...}.

By the definition of £, we see that L£f; = f5. In general, for n € N| let

L, = ¢O(Sn)a Ry, = ¢2(Sn)

For all n € N, we see that
Sn+1=LnUR,.

Since S,, C [0, 1], we know that L, N R,, = (). Moreover,

1
d(Lyn,R,) = i -yl == 16
(Ln, Bn) meLITrLl,lyneRn o=l 3 (16)
Let D,, = (Dy, ptn) denote the persistence diagram of Hy Céch(S,). Note that since S, has 2" distinct
points, if D,, = {(O,dj)}?zl, then ZI;:1 tn(0,d;) = 2. We assume without loss of generality that d; <
djq1 for j € {1,...,k}. This means d =1, and for j <k, d; < 1.

We claim that for j < k, (0,d;) € D, implies that (0, %J) € Dpy1 with pn41(0,d;/3) = 2u,(0,d;). To
help us do this, we first prove that for 0 < € < 1, the diagram

Ho Céch(Sn,0) M5 Hy Céch(S,, ¢)
l¢8* Lﬁé* (17)
Hy Céch(Ly,0) 25 Hy Céch(L,, 5)

commutes, where M%¢ and P%¢ are homomorphisms induced by the inclusions Céch(S,,,0) — Céch(S,,¢)
and Céch(Ly,0) — Céch(Ly, §) respectively, and #9, and ¢f, are isomporphisms induced by ¢p as in
Corollary 1. Indeed, for v € Hy Céch(Sy,0), we may use coset notation to write v = [z]Bo(Céch(Sy,0))
for some z € S,,. Thus

PO g0,y = PY¥[2]By Céch(Ly,0) = [£]By Céch(Ly, §).

On the other hand,
05 M=y = ¢o.[z] By Céch(Sy, e) = [£]By Céch(Ly, §).

Therefore ¢, M%¢ = P%¢¢0 | which implies Diagram (17) commutes.

To prove the first claim, suppose (0,d;) € D, with j < k, then there are p1,,(0,d;) distinct classes
v € Ho Céch(Sy,0) that die at d;. By assumption, there exists v € Ho Céch(Sp,0) such that v € ker MO
but v ¢ ker MO, for t < dj. Let v~ = ¢J,7. Since the diagram in (17) commutes, v~ € ker P%¢ if and
only if v € ker M%¢. Thus 7~ € ker P%% | but v~ ¢ ker P%! for t < d;.

‘ e @ o @ e @ o 9 S n e o o e o o 0
T T T T T T

‘ eeee asoee Ln LLL L 1 1] LA L L 111 ] Rn LAl L 11 1]
T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. S,, divided into the components L,, and R,, for n = 3.
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For s <t, let Q%! : Hy Céch(R,, 5) — Ho Céch(R,, %) be the homomorphism induced by the natural
inclusion. By replacing L,, with R, and % with %"2 in the argument above, we can see that there also
exists v* € Hp Céch(R,,,0) such that v+ € ker Q*% | but 4 ¢ ker Q% for ¢t < d;. Since Céch(Ly,,¢) is

not path-connected to Céch(Ry,, ) in Céch(Sp+1,¢) for e < %, it follows that
Hy Céch(Sp41,¢) = Ho Céch(Ly, ) ® Hy Céch(Ry,¢).

For 0 < s <t< %7 the homomorphism F*' : Hy Céch(Sn41,%) — Ho Céch(Sn41, %) induced by the
obvious inclusion satisfies
ker %t = ker P%! & ker Q%'°.

Thus for every class v € HgCéch(S,,0) with death time d; < 1, there exist 2 distinct classes in
Hp Céch(Sy,+1) with death time %, which implies (0, %J) € Dyt1 with ppn41(0, %J) = 24, (0,d;). This is
equivalent to what we claimed.

It follows from our claim that

and
k—1 k—1
S hn1(0,%5) =23 i (0,d5) = 22" — 1) = 27+ 2,
Jj=1 j=1

By (16) we also see that (0,1/3) € Dy1. Since we are working with the zero-dimensional homology of a
Céch complex, we also have (0,1) € D, 41, since the space is non-empty. This accounts for all 27+ elements
of D,,11. For convenience, we reindex D,, and D,, 41 repeating elements according to their multiplicity and
ordering them by decreasing death times so that

Dy, ={(0,1),(0,d(2)), (0,d(3)), -, (0,d(2n)) },
and
Dpy1={(0,1),(0,1/3),(0,d(2)/3),(0,d(2)/3), ..., (0,d(2n)/3), (0, d(2n)/3) }.
Applying the definition in (12), we see that f, = {f,(lj) 324, is defined by

1) = T 08 5 € {122}, and f) = 0for j > 2"
Since d(1y = 1 and d(9) = 1/3, we easily check that f, 1 = {fr(izl}}";l satisfies
fr(:gl = T7(0,1)>
FEL®) = 701/ (1) = % W st)

IR0 = D0 = 0,00, () = 5477 (30) for j € N,

Therefore Lf,, = f,41. O

Since L is Lipschitz with constant ||T|| = % < 1, we see that £ has a unique fixed point, and that unique
fixed point is f = lim,,_, f,,, which is the persistence landscape function of C. The explicit formula for f
can be found using £ by repeatedly applying £ to any vector in L (N x R). We find that the persistence
landscape of C is f = {f(j)}?im where

9 = {T(O’” o=l (18)
Toa-r) if 271 <j<2% keN.
We illustrate this landscape in Figure 2 (produced by pyscapes [40]).

We see from the illustration that the persistence landscape exhibits its own version of self-similarity.
This is a reflection of the fact that the fractal contains several scaled copies of itself. Indeed, since scaling
a subset of Euclidean space results in a proportional scaling of its persistence landscape, we should expect
the persistence landscape of a fractal to contain a subsequence which is a scaled copy of itself. The number
of scaled copies, which corresponds to the number of generators of the IF'S, is also reflected as a multiplicity
in the persistence landscape.
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Figure 2. Graph of the functions fa, ..., f33 from the persistence landscape of the middle third Cantor set C.

3.2 Affine Fractals with Well-Separated Images and Extreme Points

The proof of Theorem 2 suggests that a more general result exists for an IFS satisfying certain properties.
The two main ingredients that enable our calculations in the proof include 1) a judicious choice for the
initial approximation Sy and 2) a compatibility condition of the images of the maps in W. We refer to this
condition as well-separated images, and formalize this condition in Definition 4. We first consider the choice
of Sp. Before proceeding, we will need to introduce some notation and definitions. Unless stated otherwise,
we assume ¥ = {1; };V: 1 is an IFS consisting only of similitudes on R? with the form

i (T) = e(T + bj), b; eRY ce(0,1). (19)

We let A denote the invariant set of . For a set B C R%, we let Conv(B) denote the convex hull of B.
We let Ep denote the set of extreme points of Conv(B). As we shall see, for the affine fractal A, choosing
So = E 4 is a good choice of initialization of our algorithm. This corresponds to the choice we made for the
middle third Cantor set C; see also the example in Section 4.4 for further evidence of this assertion.

Since the maps in ¥ are contractions, each map has a unique fixed element. Indeed, it is easy to
calculate that for v;, the fixed point is &; = (%_C) Ej‘ We let F4 denote the set of these fixed points.
Theorem A guarantees that Fy C A. The following result tells us that we can easily find E4.

Lemma 3. Suppose A C R? is the invariant set for some IFS U = {v; };V:I consisting of similitudes of
the form in Equation (19). Then E4 C Fa4.

Proof. Let K = Conv(A). Clearly, F4 C K. Assume Fy = {a‘:'j}év:lwith Z; = v;(Z;). We first observe that
for j € {1, ..., N}, since &; = ¢(Z; + 5j), we know that ¢b; = (1 — ¢)&;. This implies that for j # k,

Ui (Z5) = c&j + Cgk =cZj+ (1 — )@ € Conv(Fa).
If § € Conv(F4), then for some t1,...,tn > 0, E;V:;L t; = 1 we have
N

y= thfj,

Jj=1
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and for any ¥ € U,

N

N N N
c thfj + l_;k = th]‘fj + Cgk = th]‘fj + thcl;k
Jj=1 j=1 Jj=1 Jj=1

Vi (¥)

N N
= thc(fj + bk) = th'l/)k(fj)-
j=1 j=1

Since 9 (Z;) € Conv(F4) for all j € {1,..., N}, this implies that 15 (Conv(F4)) C Conv(F4). Since k was
arbitrary, this implies that the union of these images, ¥(Conv(F4)) C Conv(Fy4). From Theorem A, we

have
A= lim ¥P(Conv(Fy4)) (20)

p—00
in the Hausdorfl metric. We claim that A C Conv(F4). Indeed, choose ¥ € A. For all n € N, it follows
from Equation (20) that there exists p(n) such that for some ¢, € ¥P(")(Conv(F,)),
1
n
Since WP(")(Conv(F4)) C Conv(F4) for all n € N, we have {#,}52, C Conv(Fa). Since Conv(F4) is a
closed set and limy, o0 ¥, = &, this implies & € Conv(Fy), which proves the claim. Thus we have the

|G — Z| <

sequence of containment:
Fq CACConv(A) C Conv(Fy).

By definition, this implies Conv(F4) = Conv(A). By the Krein-Milman Theorem, it follows that
Conv(Fy) = Conv(A) = Conv(E,).

For any ¢ € E4, § € Conv(Fa), it follows that ¢ = Z;\le t;%;, where Z;V:1 t; = 1. Since ¢ is an extreme
point, for some k € {1,...,N}, ¥ = & € Fa. Therefore E4 C Fj4. O

One key property of C that was used in the proof of Theorem 2 was that at each scale, the set could be
partitioned into a left and right set. The two halves were a significant distance away from each other, and
each half was a scaled down version of the previous scale. This property can be described in terms of the
IFS, and because of its usefulness, we will define it formally.

Definition 4. Let ¥ = {q,bj};y:l be an IFS with invariant set A. We say that ¥ has well-separated
images (or satisfies the well-separated condition) if
i (A A)) > i i(A). 21
L min | d((A), n(A)) 2 max diam i), (4) (21)
This definition may apply to any IFS, not only those of the form given in Equation (19). Note that on the
left hand side of the inequality, we have the usual Euclidean distance, not the Hausdorff distance.

3.3 Main Results

Using the well-separated condition and the ideas in Subsection 3.1, we are now ready to elucidate the
relationship between an IF'S and the persistence landscape of its invariant set in more generality. Our main
focus is on IFS with well-separated images having the form in Equation (19), but many of the results below
do not require these assumptions. We will use the same two step approach that we used with C. We first
identify a contraction on L (N x R) that has a fixed point equal to the persistence landscape of interest,
then use the operator to find a formula for the persistence landscape.

Theorem A implies that if ¥ is any IFS consisting of contractions then iteratively applying ¥ to any
compact set K C R? creates a sequence of compact sets, {Sn}52 1, that converges to the invariant set A
in the Hausdorff metric. Therefore, as a consequence of Theorem B:
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Theorem 3. Let ¥ be an IFS on R consisting of contractions with invariant set A. Let K C R? be a
compact set, and define the sequence of compact sets {Sp}>2; by

S1=K, Sp=Y(S,—1) for n>1.

Then for any p > 0

lim A (Hp, Céch(Sy), H, Céch(A)) = 0.

n—oo
We remark that the statement of Theorem 3 only mentions the Céch filtration, which applies to any
dimension of homology. Also note that the hypothesis makes no assumptions on ¥ except that it consists
of contractions.

Having established that there is a sequence of persistence landscapes that converge to the persistence
landscape of the invariant set, we now seek a contraction on L% (N x R) whose fixed point is the landscape
of interest. Just like we did above with C above, we will approximate A by a finite set F' and compare the
persistence landscapes of F' and W(F) to determine the operator.

Proposition 2. Let ¥ = {¢; }5\/:1 be an IFS consisting of similitudes all with scaling constants c¢; € (0, 1).
Let A C R? be the invariant set of W. For any € > 0 and any p > 0, there exists a finite set F C A such
that the following hold

(a) du(A,F)<e

(b) du(A,W(F)) < =

(c) As(Hp Céch(A),H, Céch(F)) <e
(d) Ao(H, Céch(A), H, Céch(¥(F)) < ¢.

Proof. Choose ¢ > 0. Since A is compact, there exists I := {z;}7_; C A such that A C U?:1 B(xzj,¢).
Since A C F, and F C A., (a) is satisfied. Since F C A, we have U(F) C A C A.. To show the other
containment, choose z € A. Since W(A) = A, there exists k € {1, ..., N}, w € A such that ¢y (w) = z. Thus
for some z; € F, |z; —w| < ¢, which implies

[ (z5) — 2| = |(x;) — dr(w)] = clzj —w| <ce <e.
Thus A C (U(F)).. Thus (b) is satisfied. Applying Theorem B, we know for any compact set K C R%,
Ao (H, Céch(A), H, Céch(K)) < dg (A, K) (22)
In light of Equation (22), (¢) follows from (a). Similarly, (d) follows from (b). O

Definition 5. For a disconnected set X C R?, we say that X is e-connected if it cannot be expressed as
a union of two non-empty sets Y, Z C X such that d(Y,Z) > . We say that Y C X is an e-component of
X if Y is e-connected and

diY,X\Y) > e.

We let C(X,¢) denote the number of distinct e-components of X.

Note that C'(X, ) equals the number of connected components of U,c x B(X, ¢), which is precisely the rank
of Hy Céch(X,¢). Clearly this number is non-increasing with respect to e.

If we assume W is an IF'S of similitudes with well-separated images and the scaling constant for each
1; € U equals c € (0,1), then we can define a sequence of distances

01202 >+ >06N-12>0N
by letting 1 = diam(A), and for k € {2,..., N},

0 :=inf{e > 0|C'(4,¢e) < k —1}. (23)
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We will make use of the fact that when ¥ has well-separated images,

Iy = _mind(v;(4). vi(4))

This also means that
On > cop =diamp;(A), je{l,...,N}. (24)

Proposition 3. Suppose A C R% is compact, and F' C A is finite with dg (F, A) < o. Then for all € > 2a,
we have

C(A,e) < C(F,e) < C(A,e —2a).

Proof. Suppose first that S C A is an e-component of A. This means ?5/2 is connected and d(S, A\S) > e.
Let Sop = FNS. Since a < ¢, we know that So # 0. We have Sy C S and F'\Sy C A\S. Indeed, if z € F\ Sy,
then z € F and z ¢ F'N .S, which implies © ¢ S. Therefore 2z € A\S. With this claim, we have established
that

d(So, F\Sp) > d(S, A\S) > e.

Since Sy is nonempty and compact, it contains at least one distinct e-component of F. Since S was an
arbitrary e-component of A, this implies

C(F,e) > C(A,¢).

For the other inequality, suppose now that Sp C F is an e-component of F. Let S = AN (Sp)q. Choose
x € S and y € A\S. By assumption, there exists w € Sy with |z — w| < a. Since y ¢ S, we have for all
v € Sp, |y —v| > a. Since A C Fy, there exists z € F, with |y — z| < a, which implies z ¢ Sy. Therefore
|z —w| > . Hence

e<|w—z < |w—z[+|z -yl + [y —wl|
Therefore

e—2a<e—|lw—z|—|y—wl <|z—y
This implies that d(S, A\S) > ¢ — 2a. From this bound, we see that if we partition F' into its n distinct
e-components Sy, S1, ..., Sn, then by letting S; = AN (Sj)a, we see that A = U?:o Sg-. We also have that
each S contains at least one distinct (¢ — 2a)-component of A. Thus

C(F,e) < C(A e —2a). O
Using the distances as defined in Equation (23), we define £ : L (N x R) — L (N x R) by £g = h, where

h = T(0,61)+ h? = T(0,62) 7 -+ 1 RN=D = T(o,aN,l)’h(N) = T(0,6n)>
h(kN+1) — h(kN+2) .= h(kN-‘rN—l) — h(kN+N) — cg(k+1) (C_l.'L‘), for k c N. (25)

Theorem 4. Let U be a IFS on R? consisting of N similitudes each with scaling constant ¢ € (0,1).
Let A be the invariant set of ¥ and let £ € L>°(N x R) denote the persistence landscape of resulting from
Ho Céch(A). If U has well-separated images, then L : L°(NxR) — L (NxR) as defined in Equation (25),
satisfies Lf = £.

Proof. Let f € L*°(N x R) denote the persistence landscape resulting from Hy Céch(A). By Proposition 2,
for all n € N, there exists a finite subset F,, C A such that dy (A4, ¥(F,)) <  with

A (Hy Céch(A), Hy Céch(F,)) < % and Ao, (H Céch(A), Hy Céch(V(F,)) <

S|

Choose ¢ > 0. Let g, € L°(N x R) denote the persistence landscape from Hy Céch(F,,) and h,, €
L>°(N x R) denote the persistence landscape from Hy Céch(¥(F,)). Using the triangle inequality, for all
n € N, we have

ILf — £l Lo vxr) < [I£f — Lgn Lo vxr) + [1£8n — hnllLoo vxr) + [hn — £l Loo (vxr) - (26)
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Looking at the definition of £ in Equation (25), we see that £ is a contraction with Lipschitz constant c.
Thus
I£f — LgnllLomxr) < cllf = 8nll Lo qixr) < cAoo(Ho Céch(A), Hy Céch(F,)) <

Slo

Similarly,
[, — £l oo (vxr) = Aoo(Ho Céch(A), Hy Céch(¥(Fy)) <

S|k

Now our goal is to bound [|[£gy — hy || oo (nxr)- For s <t let M5 denote the homomorphism induced by
the inclusion mapping Céch(F,, s) — Céch(F,,t). For s < t, let P;" denote the homomorphism induced
. o0
by the inclusion mapping Céch(¥(F,),s) — Céch(¥(F,),t). We have g, = {g,(i)} , which implies
=1

j=
&, = Lg,, where

~(1) _ ~(2) _ A(N=1) _ A(N) _
In’ = T(0,61)) Gn = = T(0,62)s - 9n =T0,6n-1):9n = = T(0,6n)
ngN—H) = 97(sz+2) =..= anN+N_1) = Qq(szJrN) = cgfzkﬂ)(c*lx), for ke N (27)

Note that we use the convention Céch(X,r) = @) for any X C R? and r < 0, which implies that rank vt =0
for r < 0, where i, : Hp Céch(X,r) — Hp Céch(X,t) is the homomorphism induced by inclusion. This is
why all landscape functions from Céch filtrations have non-negative support.

Let m = diam(F') and define 72, ...,nn by

N := inf{e > 0|C(V(Fy),e) <k —1}
Since dgr (A4, V(F,)) < %, if we assume n > %, then we have
% < (%N <ON.
We know that for all € < d, we have C(A4,e) > k — 1. It follows from Proposition 3 that
N, = inf{e > 0|C(VU(F,),e) < k—1} > inf{e > 0|C(A,e) < k — 1} = d. (28)
On the other hand, we have
Nk = inf{e > 0|C(¥(F,),e) < k—1} <inf{e > 0|C(4,¢ — %) <k-1}
=inf{e + 2 > 0|C(A,e) <k -1} = % + inf{e > 0|C(A,e) < k —1}
2
=0 + — (29)

Thus we have |n; — 0| < % We also know that cdiam ¥(F,,) < ny since ¥ has well separated images. By
Lemma 2, we have for t < enn,

N
Hy Céch(¥(F,),t) = @D Ho Céch(F,, ¢ 't).
j=1

From this isomorphism, we can see that for s < ¢ < 7y, the homomorphism PS5 : Hy Céch(V(Fy),s) —
Hy Céch(¥(F},),t) has the same rank as

N N
MJC; st : @HO Céch(Fn,C_ls) - @HO CéCh(anC_lt)v
=1 =1

where Mj_’t = @;\/21 M#*t. Thus for s <t <y,

1, -1
rank P*! = N rank M¢ ¢ !,
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By definition, we have for all j € N, ¢t > 0,
hg)(t) = sup{m > 0| rank P!~ > j1.

If t +m > ny, then Céch(¥(F,),t + m) has at most, N — 1 connected components, which implies
rank P~ < N sofor j = kN + 1 for k e N, I € {1,2,..., N}, we have

hglj)(t) = sup{m > 0| rank P,~"™!*t™ > 4}
= sup{m > 0| rank Mﬁil(t_m)’cil(t—km) >j/N}
= sup{m > 0| rank Mﬁ_l(tfm)’c_l(prm) >k+ 4}
— sup{m > 0 rank Mg ¢7meT EFM) 5 g4 gy (30)
On the other hand, for any k& € N,
cg,(lk)(cflt) = csup{m > 0| rank Mﬁiltfm’fl”m >k}
= sup{cm > 0| rank Mﬁilt_m’cilwm >k}

— sup{m > O rank Mg (7T (M) S gy (31)

Combining Equation (30) and Equation (31), we see that for j = kN +1, k € N, l € {1,2,..., N}, we have
h9 (1) = e (1),

If j € {2,..., N}, we know by choice of 11, ..., nn that rank P!="tF™ > j — 1 if and only if t — m > 0 and
t+m < n;. This is true if and only if m < ¢ and m < n; —¢. Thus, by definition of the landscape functions,
for j €{2,..,N}, ‘

Wi () = max{t,n; =t} = 70 ,)-

By convention, hsll) = T(0,m1)-
Putting everything together, we have established that

1 2 N—-1 N
h%) = T(0,m1)> h%) = T(0,m2)s hsL ) = T(0,nn-1)" hsL ) = T(0,nn)
h%kN-’_l) = hgﬂN-ﬂ) =..= hch+N_1) = h%kN—FN) = cgﬁtk"_l)(cflac)7 for k € N. (32)

This means we can compute

2
| Lgn — hnHLOO(Nx]R) = 1I§r;aéXN ||T(o,5,-) - T(o,nj)Hoo = énj&SXNWJ - 77j| < n

Putting our three bounds together with Equation (26), we have

c 2 1
£ —fllpeouxmr) < — + = + —.
n n o on
Taking the limit as n — oo, we conclude that Lf = f.
O

Now that we have identified a contraction on L*°(N x R) whose fixed point is f, the landscape of A, we
can compute f itself by finding lim,,—~, L™0, were 0 denotes the zero sequence in L (N x R). When we
do this, we find the formula for f = {f(7)}°°  is given by

f@ = ]Tes  HElsnsN . (33)
To,eke) i (I —1)N¥ <j <IN kl1eN,2<I<N

Looking back at Equation (18), since we had §; = 1, and dy = 1 e see that this is consistent with what

3 o
we found for C. For good measure, we can check our work. Choose j € N. Let fU) denote the jth term in
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Lf. Looking at Equation (25) and Equation (33), it is clear that for j < N, f) = f())_ Assuming that
j > N, define
k :=min{ko € N|j < N*0} > 2.

Using division, we find j = N*~1g+r, for 0 < r < N¥~1. By assumption, we have 1 < ¢ < N. Indeed, if
g > N, then j > N¥, a contradiction. If ¢ = 0, then j = r < N*~1 another contradiction.
We consider 2 cases. First, if # = 0, then ¢ > 2, because otherwise if ¢ = 1, then j = N*=1 but
k —1 < k. Hence,
c ark—1 _ k—2
J=qgN"" " =N(@N""*—-1)+ N.

According to Equation (33), this means fU) = T(0,ck-15,)- On the other hand, for all ¢ € R, according to
Equation (25),

Al k—2y, _ _

FOE) = ef N M) = emg en-26,)(€7H) = T(0,ck-15,) (D)-

Thus f) = f(0),
In the case of > 0, we apply division to 7, so that r = Na+ b, a,b € N, with 0 < a < N*¥=2, and
0 < b < N. This means that

j=qN* '+ Na+b=N(@N*2+a—-1)+ N +b.

Since > 0, if ¢ = N, then j = N* 4+ > N¥, a contradiction. Thus 1 < ¢ < N — 1. Since ¢N*~! < j <
(¢ + 1)N*¥=1 by Equation (33), we have

FI =70, e015,,)-

To make things easier, we consider 2 subcases. If b = 0, then a > 0, and j = N(qu_2 +a—1)+ N. By
Equation (25) we have for all t € R

N k—2 _ _
FO) = ef NTHO () = g er2p,,1) (€)= To,h15,1) (B):

Hence f() = fU) Ifb > 0, then we have j = N(gN*~24a)+b. Since gN*~2 < gN*~24a+1 < (¢+1)N* 2,
we have for all t € R

s k—2 _ _
FOt) = cf N7t (7N = o7 rm2g,, ) (€71E) = T ek-15,, 1) (8)-

Thus @) = £ in this final case.

Knowing that Equation (33) is the correct formula for the persistence landscape for Hy Céch(A), when
U has well-separated images gives us a head start for finding the persistence landscape related to many
IFS. In practice, it can be difficult to compute the resolutions 41, ...,y using only the functions in ¥. As
we saw with C, this can be straightforward in one-dimension. We will apply Equation (33) to more precisely
describe the persistence landscape of Hp Céch(A) when VU is an IFS on R before looking at some more
interesting examples.

Theorem 4 applies to all IFS which satisfy the well-separated condition, but it is not as strong of a
result as Theorem 2. For that, we need an additional assumption on the IFS.

Theorem 5. Let U be a IFS on R? consisting of N similitudes each with scaling constant ¢ € (0,1).
Let A be the invariant set of U and let £, € L (N x R) denote the persistence landscape resulting from
Hy Céch(S,,), where Sy = Ea. Suppose that ¥ has well-separated images and also satisfies the property
that for all j,k=1,...,N and for all n € N,

d("/’j(SnJrl):d)k(SnJrl)) = d(d’](sn):d)k(sn)) (34)

Let L: L*°(N x R) = L®°(N x R) as defined in Equation (25). Then for alln € N, Lf, = f,11.

In other words, the commutative diagram in Equation (1) holds.
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o

Proof. Let Lf,, = { f,(f )} . We must show that for all j € N
j=1

=1 (35)
For the case j = 1, this is true because diam(Sy,+1) = diam(A) implies
fr(z1421 = 7(0,61)"
For the other j € {2, ..., N}, Equation (35) is equivalent to showing that for e >
C(Sn+1,€) = C(4,¢). (36)

Indeed, if € > v, then by the well-separated assumption, each image ;(A) is contained in an e-component
of A. To prove Equation (36), define an equivalence relation, ~ 4, on the images {%(A)}f;l by saying
Pj(A) ~a P (A) if and only if 1;(A) and 15 (A) belong to the same e-component. The number of distinct
classes in {1;(A)}/ ~4 is equal to C(A,¢) since A = U;V:ﬁ/)j (A). Similarly, we can define an equivalence
relation, ~j,41, on {1/Jj(Sn)}§y:1 based on the e-components of S,11 so that the number of distinct classes
of ~py1 equals C(Spy1,¢€). We claim that for j, k € {1,..., N},

’(ﬁj (A) ~ A Q/Jk (A) if and only if wj(Sn) ~n+41 1/Jk (Sn)
Equation (34) implies that for all n € N

d(5(Sn), Yr(Sn)) = d(¢j(A), Yr(A)). (37)

In addition, ¢;(A) ~ 4 ¢ (A) implies that there is a finite sequence of images 1; (A) = ¢, (A4), ¥, (A), ..., ¥, (A) =
Ve (A) with
d(lpjl (A)v 1/’j1+1 (A)) <e.

It now follows that ¢;(A) ~4 ¥x(A) implies ©;(Sy) ~n+1 ¥Yx(Sn). The reverse implication follows similarly.
We have established that Equation (35) holds for j < N.

Now let 5 > N. We write j = kN + 1 for k € Nand I € {1,..,N}. For 0 < s < t, let M*?
and P*! denote the homomorphisms induced by the inclusion mappings Céch(S,,s) — Céch(Sy,t) and
Céch(Sp+1,5) — Céch(Sp+1,t) respectively. By Lemma 2 along with the fact that both induced homo-
morphisms are surjective, for ¢t < dy,

rank P5! = Nrank M¢ ¢ ',
By the same reasoning as in the proof of Theorem 4
fé{gl(x) = sup{m > 0| rank P*~"™*T" > kN + [}
= sup{m > 0| rank pMemmmeT ekm s gy IN7}
= csup{m > 0| rank M lemmeT i atm s oy 1} (38)
and by the definition of £, we have

f,gj)(m) =c ,(Lk+1)(c_1x) = csup{m > 0| rank MeEmmeeT ekm s g 1} = fr(igl(:c) O

3.4 Special Case: Dimension One

Here we assume ¥ = {¢; §V=1 is an IF'S where each ¢; : R — R is defined by ¢;j(x) = c(z — b;), for some
c € (0,1), by,...,by € R. We assume without loss of generality that b; < bj4q1. For j € {1,..., N — 1}, we
also define a; := bj 1 — b;. We know that for each j, the fixed point of 9; is

ij
1—c

:L'jI
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From Lemma 3 we know that the extreme points of the Conv A will be 1 and x . This means,

51 = diam A = %(bN — by).

Also, for j # k, we know that 1;(A) is just a translation of 1 (A) by c(b; — by). Hence,

2

1—c¢

d(¥j(A), i (A)) = c(bj — bx) — cd1 = c(bj — bx) — (by — b1).

For each j, the closest other image to 1;(A) is either 1;41(A) or 1;j_1(A). Thus we know that ¥ has well
separated images if

2
c
_ —d; . < : . .
T oy b) = dian(0,(4) £ | _min | d((4), vy (4))
. ?
= min  caj— 1_c(bN—bl). (39)
This is equivalent to
2c
= —by) < i .
2071 . C(bN b1) < 1Sjrr%1]1\1r_1a] (40)

It is also straightforward to compute do, ..., d in the one-dimensional case.

Proposition 4. Let ¥ = {1; }é\le be an IFS consisting of similitudes on R with well-separated images and
invariant set A. Then da,...,0n as defined in Equation (23), are also given by

Ok41 = kmax{c(a; — )| 1 < j < N -1}

Proof. For convenience, let pp = kmax{c(a; —01)|1 < j < N —1} for k € {2,..., N}. First we claim that
fore>0and N—1>k>1,e > pg if and only if C(A4,¢) < k. Indeed, first if we assume € > py, then

Hela; —61) >e]1<j<N-1} <k.
Our assumption also implies that € > ¢d, since otherwise, because W has well-separated images,

- ' (A) < i ,
€ < ¢y 1I§njaéXN diam);(A) < 1§;§1£1’£1SNCZ(¢J (A), r(A))

= Nmax{c(a; —01)| 1 < j < N =1} < py,

a contradiction. Since € > diam;(A) for all j € {1,..., N}, each image 1;(A) is contained in exactly 1 e-
component of A. We can count the e-components in the following way. Start the count at ¢ = 1. For each j €
{1,..., N — 1}, we check the distance between 1;(A) and 9;1(A). If d(vj(A),¥;+1(A)) < €, then ;41 (A4)
belongs to the same e-component, so the count ¢ remains at the current value. If d(;(A4),¢;j41(4)) > ¢,
then ¢;41(A) belongs to a different e-component from that containing ¢;(A) for 1 <1 < 5. In this case we
update ¢ to equal ¢ + 1. Since d(¢;(A), ¢¥;j1+1(A)) = ¢(a; — 61), we will update ¢ at most k — 1 times. Thus
C(A,e) <k.
Conversely, if ¢ < pg, then

{e(aj —01) > €|l <j< N -1} > k. (41)
We consider two cases, first if € < ¢d1, then again since ¥ has well-separated images we have

e<  min d(Y;(A), vr(4)).

1<j#k<N

This implies that each image 1;(A) contains at least 1 e-component of A. Hence C(A4,e) > N > k as
desired. In the second case, we may have € € [¢d1, pg), then since

&> max diamvy,;(A
il 1<j<N ¢]( )7
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we may repeat the counting of connected components as described in the previous paragraph. We start
with the count at ¢ = 1. Equation (41) implies that we must update g at least k times. Therefore C(A,¢) >
k + 1 > k as desired. This proves the claim.
It follows from the claim that px € {¢ > 0|C(A,e) < k}. Thus 0341 < pg. Conversely, since py is a
lower bound, we have that
pr < inf{e > 0|C(A4,e) <k} = dk11- O

Now we are ready to state the main consequence of Theorem 4 for IFS on R.

Corollary 2. Let ¥ = {¢; };VZI be an IFS of similitudes on R of the form v;(z) = c(x +b;), for c € (0,1)
and b; € R. Assume b; < bjy1 and let aj = bj1 —bj. U has well-separated images if and only if

2c
— < i -
oy —b1) < min a (42)

Moreover, if Equation (42) holds and A is the invariant set of U, then f = {f(j)};?il € L>®(N x R), the
persistence landscape of Hy Céch(A), is given by

FO) = 7(0,5;) if1<j<N (43)
Toersy) if I—1)NF<j<IN* kleN 2<I<N’

where 61 = 1< (by — b1), and for k€ {1,..,N — 1},
Op+1 = kmax{c(a; — 1)1 <1< N —1}.

Proof. As reasoned above, ¥ having well-separated images is equivalent to Equation (42). It is also ex-
plained above that §; = diam(A) = % (by — b1), and the formula for the other d;’s is a consequence of
Proposition 4. The formula in Equation (43) follows from Theorem 4. O

4 Examples

We are now ready to present a series of examples of iterated function systems and the corresponding
persistence landscapes resulting from the invariant set. Our goal is to illustrate the relationship between
the persistence landscape and the IFS. Some of our examples will have well-separated images, meaning that
we can readily apply the results above to compute the persistence landscape of Hy Céch(A). Other examples
will require some additional work, but the reasoning should be similar to that used to prove Theorem 4.
We are also able to check our work by approximating A and computing the persistence landscape using
the Scikit-TDA library in Python.

4.1 Right 1/3 Cantor Set

Consider the IFS U = {41,192} where

1

Y1(z) = %35, Pa(w) = %$+ 3

In this case, we have ¢ = %, b1 =0, and by = 1. This means ¥ has well-separated images since

Clearly, 61 = %, and
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By Corollary 2, this means the persistence landscape of Hy Céch(A) is £ = { £} where

i=1
T(O %) if j=1

O = o) if j=2
Toa-rly H28<i<2 keN,

4.2 1/5 Cantor Set

Consider the IFS ¥ = {41, 12,13} where

2 1 4
x + 5 Pa(x) = 5I+ =,

Y1(z) = é% Pa(r) = 1 5

5

In this case, we have ¢ = %, by = 0, by = 2, and bs = 4. Again, we know that ¥ has well-separated images
5

since
2c

Clearly, 61 = 1 and

By Corollary 2, this means that the persistence landscape of Hy Céch(A) is f = {f(j)}j-‘;17 where

7'(071) if j =1
O = To.b) if j=2,3

To5-k-1y if 3F <j<3"1 keN

4.3 1/6 Cantor Set
Consider the IFS ¥ = {41, 19,13} where

1 12 1 5
i (x) = 6" ¥a(z) = ¥ T Y3(z) = PR

In this case, we have ¢ = %, b1 =0, by =2, and b3 = 5. We know that ¥ has well-separated images since

2¢c .
1_C(b37b1)f2f1§jrr%111\1[_1a].
We compute d; = 1,
1 1 1 1
0o ==(3-01) == ddég==(2-6)=—-.
2 6(3 1) 30 and 03 6( 1) G

By Corollary 2, this means that the persistence landscape of Hy Céch(A) is f = {f(j)};l’ozl, where

T(O,l) lszl
T(07%) if j=2

if 38 <j<2.3% keN,

To,6-+-1) 1f 2-3F <j <31 keN
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4.4 Modified 1/5 Cantor Set

Let

W = (Y1, s}, D1(0) = 50, (o) = 201, ds@) = o+ ),

In this case, by = 0, by = 1, and b3 = 4. This means 6; = 1. ¥ does not have well separated images since
d(¢1(A),12(A)) = 0 because % € ¥1(A) N2 (A). Although Theorem 4 does not apply, we still claim that
the map £ : L(N x R) — L*°(N x R) defined by L£g = h, where

hY =701y, B =10.9/5

KGR (z) = REHD (z) = pB3E+2) (3) = %g(kJrl)(Sm) for k € N.

satisfies Lf = f where f is the persistence landscape resulting from Hy Céch(A). To see why, we construct
an increasing sequence of sets as follows

1214
Sl = {0, g, 57 5,1} ,Sn+1 = \IJ(Sn) for n € N.

It follows from Lemma 3 that S, C Sp4+1 C A for all n € N. The first containment follows from the fact
that S1 = U(E,). Let £, € L (N x R) be the persistence landscape of Hy Céch(Sy,).
We claim that for all n € N, £f,, = f,,; ;. Indeed, fix n € N. First observe that

diam(S,,) = diam(A) = 1.

Thus ffigl = To,1)- As before for s < t, let M*' : HyCéch(Sy,,s) — HoCéch(S,,t) and P! :
Hy Céch(Sy+1,s) — HpCéch(Sy11,t) denote the homomorphisms induced by the obvious inclusion
mappings. Since Céch(Sy+1,¢) is path connected for £ > %, this implies that rank Hy Céch(Sy11,¢) = 1.
On the other hand, for € < %, we know that rank Hy Céch(Sy,4+1,e) > 2 since Céch(Sy+1,¢) is not path
connected. In the final case, we know that rank Hy Céch(Sp+1,¢) = 0 for € < 0. Thus it follows by definition
and the same reasoning used in the proof of Theorem 4 that

2 _
£, (#) = sup{m > 0] rank P15 > 9} = max{t, 2 — £} = 72, (44)
To compute fff_&l for j > 3, the key observation is that for 0 < s <t < %,
rank P*! = 3rank M55t — 1. (45)

Also, it is clear that for s < 0 or t > %7 rank P! < 1. To justify Equation (45), we look at Céch(Sy,11,¢€)
for £ € (0, %) For m € {1,2,3} let K,, denote Céch(¢y,(Sp),e) C Céch(Sp+1,¢€). A simple illustration of
this is given in Figure 3. Since € < %7 K3 is not path connected to K7 U K. By Lemma 2 and Corollary 1,
we see that

Hy Céch(Sp41,6) = Ho(K1 UKo) ® Ho(K3) = Hy(K1 U Ko) @ Hy Céch(Sy, 5¢). (46)
From the Mayer-Vietoris sequence, we have the following exact sequence
Hy (K1 UKj3) — Ho(K1 N K2) — Ho(K1) ® Ho(K2) — Ho(Ky1 U K2) — 0.
Since Sp4+1 C R, and K1 N Ky = {%}, this sequence is equivalent to
0 — Zo 2% Ho(K1) @ Ho(K2) 22 Ho(K, U Ky) — 0. (47)
Exactness implies that @9 is surjective and ker po = Zs. Thus

dimHO(K1 U KQ) = dim Ho(Kl) + dim Ho(KQ) — 1.
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Figure 3. The three sub-complexes in the modified 1/5 Cantor set for n = 3.

Since Ho(K,) = Ho Céch(Sy, 5e) for m € {1,2,3}, Equation (46) implies that
dim[Hg Céch(Sy+1,¢)] = 3dim[Hy Céch(S,, 5¢)] — 1.

Since Mt and P*! are always surjective when s > 0, Equation (45) follows.
Now we may argue as we did for Theorem 4. For j = 3k + m with k € N, m € {0, 1,2}, by definition
fr(lj_£1(t) = sup{m > 0| rank P*~™!*™ > j}
= sup{m > 0|3 rank MO¢=m)50+m) _ 1 > 51
= sup{m > 0| rank M>(t—m):5(t4m) >} 4 1) (48)
On the other hand, for k¥ € N, we have

1 1
5f7(lk+1)(5t) =% sup{m > 0| rank MO/ =m5m > 4 1}

= sup{Z > 0| rank M5+ > | 4 1}
= sup{m > 0| rank MO¢=m)50+m) > p 4 1}
= 7(1]+)1(7f)-

This proves the claim that £f, = f, 1.

From Theorem A, we know that limy, oo i (S, A) = 0. Thus lim,,_, o £, = f. Since £ is Lipschitz on
L*>°(N x R), it is continuous. Thus

Lf= lim Lf, = lim f,;; =f.
n— o0

n—oo

as claimed.
To obtain the formula for f = {f(j)};?';l, we compute limy,_,o £70 in L (N x R). We find that

7(071) lf_]zl
G)—J7 2 if j=2
f 0.2)
T2 ) if24+33F-1)<j<2+ 331 -1), wherek+1€N
s BR+2

We illustrate this landscape in Figure 4 (produced by pyscapes [40]).

4.5 Cantor Triangle

Let us consider a 2-dimensional example. Consider the IFS on [0,1]%, ¥ = {11, )2, 3}, where

V() = 5B(0)Ts va(e,y) = i) + 0,217, ds(ey) = 5Bl + @07,

with 7o denoting the 2 x 2 identity matrix. The set of extreme points is So = {(0,0), (0, 1), (1,0)}. However
W does not have well-separated images since

V2 .
< 5 = 1Ignjang diam 1, (A).

W

min__ d(¢;(A), ¥ (4)) =

1<j#k<N
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Figure 4. Graph of the functions fa,..., fi¢ from the persistence landscape of the modified 1/5 Cantor set C.

Despite this, the formula in Equation (33) still applies. To see why, define £ : L°(N x R) — L*°(N x R)
by Lg = h, where

2
R — Tl0.v3)> B2 = 3 —

BB () = RO () = RBIH2) () % g* ) (32) for k € N..

(0,1/3)>

Note that as in Equation (33), we have §; = v/2 and dy = 63 = %

Define a sequence of sets {S,}>2; by S1 = ¥(Sp), and Sp41 = ¥(S,) for n € N. Note that S,, C
Sp+1 C A for all n € N and limy,—y00 dpr(Sn, A) = 0. Let £, € L°(N x R) be the persistence landscape
of Hy Céch(Sy). As before, lim,,_, o f,, = f where f is the persistence landscape of Hy Céch(A). Thus, we
claim Lf, = f,41.

Indeed, choose n € N. Since diam(A) = v/2, it is clear that fi—i-l = T(0,v3)" For s < t, let M5! .
Hy Céch(Sy, s) — HoCéch(Sp,t) and P*t : HyCéch(S,41,5) — Ho Céch(Sy+1,t) denote the homomor-
phisms induced by the obvious inclusion mappings. Since Céch(Sy+1,€) is path connected for ¢ > %, this im-
plies that rank Hy Céch(Sp+1,¢) = 1. On the other hand, for e < %, we know that rank Hy Céch(Sy41,¢) >

3 since Céch(Sy+1,¢) is not path connected, with 1 (S ), ¥2(Sn), ¥3(Sn) C Sn+1 each containing at least
one distinct e-component of S,,4+1. Therefore, fort € R, j=2o0r j=3

fvsj;zl(t) = sup{m > 0| rank P*~"™*"™ >3} — max{t, §} = (0 1)
’3

To compute f,(fll for 7 > 4, the key observation is that for 0 < s <t < %,
rank P*! = 3rank M3%3t, (49)

and for s <Qort> %, we get rank P* < 1. The second part is clear. To justify Equation (49), note that

for e < %, since

1
i d5 (., Ue(S0) = 3.

it follows from Lemma 2 that

3
Hy Céch(Sy11,) = @D Ho Céch(S,, 3¢).
j=1
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Figure 5. An illustration of S3 for the Cantor triangle.



26 =—— Michael J. Catanzaro, Lee Przybylski, and Eric S. Weber, Persistence Landscapes of Affine Fractals e

Since every nontrivial transformation in Hy Céch(S,) and Hy Céch(S,+1) is a surjection, the previous
isomorphism implies Equation (49). If we assume j = 3k +1{ for k € N, and [ € {1, 2,3}, then by definition,
£9),(8) = sup{m > 0] rank P=m5m > jy
= sup{m > 0|3 rank M3E=m)3(t+m) i}
= sup{m > 0| rank M3(¢=m)30+m) > 4 1} (50)

On the other hand, for k € N, we have

(k+1) (3t) = sup{m > 0| rank M3t—m3EM > g 1)
= sup{% > 0] rank M3 —m30Em > oy 1)
= sup{m > 0| rank M3(—m):3(t+m) > 4 1}
= 12h ().
This proves the claim that £f, = f,, 41, meaning Lf = f.

When we compute the fixed point of £ by taking the limit lim,,_ -, £™0, we find that f = {f(j)}z?i17
where

. T(O,\/E)’ lf j =1
9 =S r0ay,  if1<j<3
T(o,3-k-1y, if 3F <j <31 for ke N

4.6 Distorted Sierpinksi Carpet

Consider another IFS on R2, W = {41,123, 14}, where

P1(x,y) = $12(z, )7, Yoz, y) = 3
P3(x,y) = 3h((z,y) + (0,17, Ya(z,y) = 3L(z,y) + (2, 1)]7.

A, the invariant set of ¥, turns out to be C x %C. Clearly, ¥ does not have well-separated images since

min_ d(¥;(4), ¢ (A)) =

1<j#k<4

< = diam ¢j (A) .

=
o

Even though we cannot apply Theorem 4 directly, we can derive the formula for f, the persistence landscape
of HyCéch(A), using a similar argument to what we had in the previous section. We claim that £ :
L>(N x R) — L*°(N x R), defined by £g = h, where

1 — —
h ( T(O%)

<$—M®—T

0.3)
1
h(4k+1)(t) _ h(4k+2) (t) _ h(4k+3) (t) _ h(4k+4) (t) _ gg(kJrl)(?)t) for k € N.,

satisfies Lf = f.
In order to prove this, we take So = {(0,0), (1,0), (0, 3), (1, %)} and define a sequence of sets {5y, }72 ;,
where

S1=9(Sy), Snt1=¥(Sp) for n e N.

Let f,, denote the persistence landscape function for S, then we claim that £ satisfies £f,, = f,4; for
all n € N. Because limy,,_yoc di(Sp, 4) = 0, it follows that lim,_,~ f, = f, and as we have reasoned in
previous examples, this implies that £f = f.
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2
s <t,let M*t: HyCéch(S,,s) — HoCéch(Sy,t) and Pt : HyCéch(Sp11,s) — HoCéch(S,+1,t) denote
the homomorphisms induced by the obvious inclusion mappings. Since Céch(S,11,¢) is path connected
for e > %, this implies that rank Hy Céch(Sy+1,€) = 1. On the other hand, for ¢ € [%, %)7 we know
that rank Hy Céch(Sp41,¢) = 2 since Céch(Sp41,¢) is not path connected, with ¢1(Sy) Ut3(Sy), 12(Sn) U
¥4(Sp) C Sp+1 each forming an e-component of S,,11. For € < %, we know that rank Ho Céch(Sy,11,¢) > 4

To prove that Lf, = f,11, fix n € N. Since diam(4) = V5 it is clear that [ = T(O \/g) For
vy

since

i d(5(S), S\t (50) = &

1<5<4
Therefore, for ¢t € R,
fﬁ)l(t) = sup{m > Orank P*~"™"*"™ > 2} — max{t, § —t} = (o0 l)(t)'
'3

and for j = 3,4

fff_gl(t) = sup{m > Orank P!~ > 41 — max{t, % —t} = T(O%)(t).

To compute fff_ﬁl for j > 5, the key observation is that for 0 < s <t < %,
rank P*! = 4rank M3%3, (51)

and for s < 0 or t > 16, we get rank P < 2. We have already established the second part. To justify
Equation (51), since ¢ < & implies that

1§I]I31221§4 d(¢j (Sn), r(Sn)) > ¢,

it follows from Lemma 2 that
4
Hy Céch(Sn11,€) = @) Ho Céch(Sy,, 3¢).
j=1

As in the previous example, this isomorphism implies (51). Using identical reasoning as in the previous
section, this implies that for j =4k +1 for k € Nand [ € {1,2,3,4},

oL = %fn(k +1)(3¢).

Thus Lf, = f,,41 for all n € N. Therefore Lf = f.
We compute the formula for f = {f(j)}‘;‘;l by taking the limit of £™0 as n — oo. We find that

T(0.58)" if j=1
7(07371), if j =2
) = . .
T(0,6-1)> if2<j<4
To,-k-1), if 4F <j<2-4% for k€N
T(o,3-k6-1y, if 2-4F <j <4kl keN

_ 5

In terms of Equation (33), we have N = 4, ¢ = %, 0 = %52, 62 = 1

3>
persistence landscape of Hy Céch(A) is consistent with the formula from Theorem 4 even though ¥ does

and 03 = 04 = %. This means the

not have well-separated images.
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4.7 Remarks

The 1/5 Cantor set in 4.4 demonstrates how a reasonable formula for the persistence landscape of
Hp Céch(A) can be found in the one-dimensional case, even when images are not well-separated. As long
as the Céch complex of the intersection of these images is reasonable, we can use the Mayer-Vietoris
sequence to make precise the difference between rank Hy Céch(¥(S),),e) and what the rank would be if ¥
had well-separated images. The example also shows the intuition that each time two images are touching,
we have to “skip" one of the first IV terms in the sequence that makes up f.

The final two examples demonstrate that at least for zero-dimensional homology, the well-separated
assumption can be too restrictive. We might be better off replacing the well-separated hypothesis with the
assumption that

inf{e > 0| C(A4,e) < N} > 1glja<xN inf{e > 0| C(¢j(A),e) =1},

since the proof of Theorem 4 seems to work as long each image becomes path connected by the time any
two different images become path connected. However, the well-separated assumption might be necessary
for finding the persistence landscape for H,, Céch(A) for p > 1. For p = 1, it would guarantee that there are
no loops persisting in individual images by the time loops could be “born" consisting of 1-chains consisting
from a combination of different images.
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