arXiv:2202.08087v1 [cs.LG] 16 Feb 2022

Extended Unconstrained Features Model for Exploring Deep Neural Collapse

Tom Tirer ! Joan Bruna

Abstract

The modern strategy for training deep neural net-
works for classification tasks includes optimizing
the network’s weights even after the training error
vanishes to further push the training loss toward
zero. Recently, a phenomenon termed “neural
collapse” (NC) has been empirically observed
in this training procedure. Specifically, it has
been shown that the learned features (the output
of the penultimate layer) of within-class samples
converge to their mean, and the means of differ-
ent classes exhibit a certain tight frame structure,
which is also aligned with the last layer’s weights.
Recent papers have shown that minimizers with
this structure emerge when optimizing a simpli-
fied “unconstrained features model” (UFM) with
a regularized cross-entropy loss. In this paper, we
further analyze and extend the UFM. First, we
study the UFM for the regularized MSE loss, and
show that the minimizers’ features can be more
structured than in the cross-entropy case. This
affects also the structure of the weights. Then,
we extend the UFM by adding another layer of
weights as well as ReLU nonlinearity to the model
and generalize our previous results. Finally, we
empirically demonstrate the usefulness of our non-
linear extended UFM in modeling the NC phe-
nomenon that occurs with practical networks.

1. Introduction

Deep neural networks (DNNs) have led to a major improve-
ment in classification tasks (Krizhevsky et al., 2012; Si-
monyan & Zisserman, 2014; He et al., 2016; Huang et al.,
2017). The modern strategy for training these networks
includes optimizing the network’s weights even after the
training error vanishes to further push the training loss to-
ward zero (Hoffer et al., 2017; Ma et al., 2018; Belkin et al.,
2019).
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Recently, a phenomenon termed “neural collapse” (NC)
has been empirically observed by Papyan et al. (2020) for
such training with cross-entropy loss. Specifically, via ex-
periments on popular network architectures and datasets,
Papyan et al. (2020) showed four components of the NC:
(NC1) The learned features (the output of the penultimate
layer) of within-class samples converge to their mean (i.e.,
the intraclass variance vanishes); (NC2) After centering by
their global mean, the limiting means of different classes ex-
hibit a simplex equiangular tight frame (ETF) structure (see
Definition 2.2); (NC3) The last layer’s (classifier) weights
are aligned with this simplex ETF; (NC4) As a result, after
such a collapse, the classification is based on the nearest
class center in feature space.

The empirical work in (Papyan et al., 2020) has been fol-
lowed by papers that theoretically examined the emergence
of collapse to simplex ETFs in simplified mathematical
frameworks. Starting from (Mixon et al., 2020), most of
these papers (e.g., (Lu & Steinerberger, 2022; Wojtowytsch
etal., 2021; Fang et al., 2021; Zhu et al., 2021)) consider the
“unconstrained features model” (UFM), where the features
of the training data after the penultimate layer are treated as
free optimization variables (disconnected from the samples).
The rationale behind this model is that modern deep net-
works are extremely overparameterized and expressive such
that their feature mapping can be adapted to any training
data (e.g., even to noise (Zhang et al., 2021)).

While most existing papers consider cross-entropy loss, in
this paper we focus on the mean squared error (MSE) loss,
which has been recently shown to be powerful also for clas-
sification tasks (Hui & Belkin, 2020). (We note that the
occurrence of neural collapse when training practical DNNs
with MSE loss, and its positive effects on their performance,
have been shown empirically in a very recent paper (Han
et al., 2021)). We start with analyzing the (plain) UFM,
showing that for the regularized MSE loss the collapsed fea-
tures can be more structured than in the cross-entropy case
(e.g., they may possess also orthogonality), which affects
also the structure of the weights. Then, we extend the UFM
by adding another layer of weights as well as ReLU non-
linearity to the model and generalize our previous results.
Finally, we empirically demonstrate the usefulness of our
nonlinear extended UFM in modeling the NC phenomenon
that occurs in the training of practical networks.
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2. Background and Related Work

In this section, we provide more details on the empirical NC
phenomenon and its analysis via the unconstrained features
model.

Consider a classification task with K classes and n training
samples per class, i.e., overall N := Kn samples. Let us
denote by y; € R the one-hot vector with 1 in its k-th
entry and by x, ; € R the i-th training sample of the k-th
class. Most DNN-based classifiers can be modeled as

Pe(x) = Why(x) + b,

where hg(-) : RP? — R? is the feature mapping (d > K),
and W = [wy,...,wg]' € REX4 (w][ denotes the k-
th row of W) and b € R¥ are the last layer’s classifier
matrix and bias, respectively. ® = {W,b, 8} is the set
of the trainable network parameters, which includes the
parameters 0 of a nonlinear compositional feature mapping
(e.g., hg(x) =c(Wr(...0(Wa0o(W;x))...) where o(-)
is an element-wise nonlinear function).

The network parameters are obtained by minimizing an
empirical risk of the form

K n

1
L h _
mén n ’; Zl L(W g(X;m) +b,yi)+R (9) , (D
where L(-, ) is a loss function (e.g., cross-entropy or MSE)
and R(-) is a regularization term (e.g., squared Lo-norm).
Let us denote the feature vector of the i-th training sample
of the k-th class by hy, ; (i.e., hy; = ho(x1,:)),

‘We now define the notions of (within-class/intraclass) fea-
ture collapse and the simplex ETF. We use Ik to denote the
K x K identity matrix, 1 to denote the all-ones vector of
size K x 1, and [K] to denote the set {1,2, ..., K}.

Definition 2.1 (Collapse). We say that the training phase
exhibits a (within-class) collapse if all the feature vectors of
each class are mapped to a single point, i.e.,

hy:, =hy,,

for all k € [K] and i1, i3 training samples of the k-th class.

Definition 2.2 (Simplex ETF). The standard simplex
equiangular tight frame (ETF) is a collection of points in
RX specified by the columns of

K—1 (IK - K1K1K> :

Consequently, the standard simplex ETF obeys

M =

K 1
M'M=MM' = 1 <IK - K1K1}> .

In this paper, we consider a (general) simplex ETF as
a collection of points in R? (d > K) specified by the

columns of M o %P (IK - %IKIIT(), where P €

R?*X is an orthonormal matrix. Consequently, MM

7o (I — % 1xlg).

Papyan et al. (2020) empirically showed that training net-
works after reaching zero training error leads to collapse of
the features: they converge to K inter-class means that form
a simplex ETF. Moreover, the last layer’s weights {wy } are
also aligned (i.e., equal up to a scalar factor) to the same sim-
plex ETF, and as a result, the classification turns to be based
on the nearest class center in feature space. This “neural
collapse” (NC) behavior has led to many follow-up papers
(Mixon et al., 2020; Lu & Steinerberger, 2022; Wojtowytsch
etal., 2021; Fang et al., 2021; Zhu et al., 2021; Graf et al.,
2021; Ergen & Pilanci, 2021; Zarka et al., 2021). Some of
them include practical implications of the NC phenomenon,
such as designing layers (multiplication by tight frames fol-
lowed by soft-thresholding) that concentrate within-class
features (Zarka et al., 2021) or fixing the last layer’s weights
to be a simplex ETF (Zhu et al., 2021).

To mathematically show the emergence of a collapse to
simplex ETF, most follow-up papers have considered a sim-
plified framework — the “unconstrained features model”
(UFM), where the features {hy ;} are treated as free opti-
mization variables

K n
1
min  — L(Why; + b, )
W,b,{hy ;} Kn ;; ( k, Yk) ( )

+R(W,b,{hy,}).

The rationale for considering this model is that modern over-
parameterizd deep networks can adapt their feature map-
ping to almost any training data. Specifically, (Mixon et al.,
2020) considered the unregularized case (no regularization
R) where L is the MSE loss. It is shown there that a sim-
plex EFT is (only) a global minimizer. However, without
penalizing the optimization variables it is easy to see that
there are infinitely many global minimizers of different
structures (which are not necessarily collapses). In fact,
experiments with unregularized MSE loss and randomly
initialized gradient descent typically convergence to non-
collapse global minimizers. (See the dependency on the
initialization in the experiments in (Mixon et al., 2020)).
Other works considered (2) under Lo-norm regularized (or
constrained) cross-entropy loss with or without the bias
term (Lu & Steinerberger, 2022; Fang et al., 2021; Zhu
et al., 2021). They showed that, in this case, any global
minimizer has the simplex EFT structure.

In the following section, we first close the gap for the UFM
with regularized MSE loss (this loss has been shown to be
powerful for classification tasks (Hui & Belkin, 2020)). We
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show that in this case the collapsed features can be more
structured than in the cross-entropy case. Then, we turn to
mitigate a limitation of the plain UFM, namely, its inability
to capture any behaviour that happens across depth as it
considers only one level of features. To tackle this, we
extend the UFM by adding another layer of weights as well
as nonlinearity to the model and generalize our previous
results.

3. NC for Unconstrained Features Model with
Regularized MSE Loss

In this section, we study the optimization of the
UFM with regularized MSE loss. Let H =
hi1,...,hi,,heq,. .. hg,] € RE™ be the (orga-
nized) unconstrained features matrix, associated with the
one-hot vectors matrix Y = Ix ® 1; € REXE™ where ®
denotes the Kronecker product. We consider the optimiza-
tion problem

i e e 2;\|tht+b yel3 3)
)\H K n )\b )
Z w3 + o ZZ by |13 + 3llbllz

k=1 1=1
= H+bly - Y|? 4
WHb 2K arnIWH+ ”F “)

W )\H )\b
+ 7||WH%“ + THHH% + 5%”37

where Ay, Agr, and A, are positive regularization hyper-
parameters and || - || 7 denotes the Frobenius norm.

We provide complete characterizations of the minimizers
for two settings: (i) the bias-free case, where b = 0 is fixed
(equivalently, A\, — ©0), and (ii) the unregularized-bias
case, where A\, = 0 and b can be optimized. From these
results, several conclusions are deduced also for the case
where A\, > 0 and b is optimizable.

In the following subsections, we show that while in the
unregularized-bias case the features and weights of any
global minimizer are aligned in a simplex ETF structure
(similarly to the results obtained for the cross-entropy loss
both with and without bias), in the bias-free case the fea-
tures and weights of any global minimizer are aligned in
an orthogonal frame (OF) structure. Since any orthogonal
frame can trivially be turned into a simplex ETF by reducing
its global mean, in a sense, this collapse is more structured
than a simplex ETF collapse. Giving a precise characteriza-
tion for the minimizers of the bias-free model is important,
as later, based on these results, we will study an extension
of the bias-free UFM, which has another layer of weights
and nonlinearity.

Remark on the optimization procedure. Despite the fact

that (3) is a non-convex problem (due to the multiplication
of W and H), its global minimizers are easily obtained
by simple optimization algorithms, such as plain gradient
descent. This phenomenon follows from the fact that the
optimization landscape of matrix factorization with two
factors includes only global minima (no local minima) and
strict saddle points (roughly speaking, such saddle points
can be easily escaped from by gradient-based algorithms)
(Kawaguchi, 2016; Freeman & Bruna, 2017).

3.1. The Bias-Free Case

We first consider the optimization problem

. >\W 2 )\H 2
5an11}1 3 THW”F + 7”H”Fﬂ
(5)

which is a special case of (3) with a fixed b = 0 (or equiva-
lently, Ay — ©0).

The following theorem characterizes the global solutions of
(5), showing that they necessarily have an orthogonal frame
(OF) structure.

Theorem 3.1. Let d > K and define c := K~/nAgAw. If
¢ < 1, then any global minimizer (W*, H*) of (5) satisfies

k1=---=hp, =hp Vkel[K] (6)
* * >\W
il =...=|hkl3=p=(1-c) oy D

=+/nig/Awh;, VEke€[K]. )
If ¢ > 1, then (5) is minimized by (W*,H*) = (0, 0).
Proof. See Appendix A. The proof is based on lower bound-

ing the objective by a sequence of inequalities that hold with
equality if and only if the stated conditions are satisfied. [

Let us dwell on the implication of this theorem. Denote
H := [hi,...,h}] € R>K_ 1In the theorem, (6) implies
that the columns of H* collapse to the columns of H and
(9) implies that the rows of W™ are aligned with the the
columns of H. That is,

H -Hol! (10)
W* = /ng/AwH .
The consequence of (7), (8) and (9) is that

nA
pIK—(l—c) )\HIK, (11)
w

)\
WH* = /”AJ,)IK 21 =(1-cIxg®l]. (12)
w
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Note that the collapse of W* and H* here, in the case of
bias-free regularized MSE loss, is to an orthogonal frame
(asH H = plx). Yet, by defining the global feature
mean h; = % S/, Y0 hi, = £ 37 hy, trivially,

we have that H — h;1]. = [hf —h{,..., h}, —hj]isa
simplex ETF. This follows from
(A-hs1%) (H-hi1g) (13)

-
1 T 1

_ <1K - K1K1}> H H <IK - K1K1})
1. .\ 1. .+

=p IK—?lKlK IK—E].K]_K

1
::p<IK-—}(1K1}),

where we used hf, = %ﬁl k. In that sense, H* here
is more structured than in the results reported by previous
works that considered the UFM with regularized/constrained
cross-entropy loss (Lu & Steinerberger, 2022; Fang et al.,
2021; Zhu et al., 2021), where the collapse of W* and H*
is to a simplex ETF.

3.2. The Unregularized-Bias Case

We next turn to consider the optimization problem

2
V‘Ifnlllnb K ||WH+b1N Y (14)

Aw Au
THWH% + THHH%,

which is a special case of (3) when A\, = 0.

The following theorem characterizes the global solutions
of (14), showing that they necessarily have a simplex ETF
structure.

Theorem 3.2. Let d > K and define ¢ :== K~v/nAgAw.
If ¢ < 1, then any global minimizer (W*, H* b*) of (14)
satisfies

1
b*=—1 15
K K ( )
h:,l = = h,*c’n =:hy;, Vke [K], (16)
1 K n 1 K
=y 2o 2 = 5 2 =0, (17)
k=11:1=1 k=1
* * (1 B C)(K B 1) )‘W
33 = = el = p = = =,
(18)
K

h*,... hi]  [hi,... hi]=p——
[17 ’ K] [17 ) K] pK—

19)

]: = \/TL)\H/)\W}IZ, Vk € [K] (20)

1
I — —1x1)
1(K KKK)a

If ¢ > 1, then (14) is minimized by (W*, H* b*) =
(0,0, %1x).

Proof. See Appendix B. Similarly to the previous theorem,
the proof is based on lower bounding the objective by a
sequence of inequalities that hold with equality if and only
if the stated conditions are satisfied. O

The consequence of (18), (19) and (20) is that

n K 1

W*W*T = T;pm (1K K1K1T> . @)
A K 1

(22)

Note that the results in Theorem 3.2 (contrary to those in
Theorem 3.1) resemble the results that have been obtained
for the cross-entropy loss (both with and without bias). How-
ever, as far as we know, no such theorem has been reported
for the case of MSE loss.

Remark on the regularized-bias case. From Theorems 3.1
and 3.2, we get the following facts about the global minimiz-
ers. In the bias-free case (\, — o0), H* has an OF structure,
and trivially, if we subtract from it the global feature mean
h¢,, we get that H* —h{, 1k has a simplex ETF structure. In
the unregularized-bias case (A, = 0), H* has a simplex ETF
structure. Trivially, this is also the structure of H* —h7, 15,
as the global feature mean hy, equals zero in this case. In
both cases, W* is aligned with H*, i.e., it is an OF in the
bias-free case and a simplex ETF in the unregularized-bias
case. The consequence of these results'is that for the fully
regularized MSE loss, where 0 < A, < oo, the global min-
imizers may have H* and W* that are neither a simplex
EFT nor an OF. Yet, we empirically observed that still W*
is aligned with H* and that H* — h{, 1 is a simplex ETF
(as may be expected, because these two properties hold in
both extreme settings of Ap).

4. Extended Unconstrained Features Model

The UFM, which considers only one level of features, cannot
capture any behaviour that happens across depth. Therefore,
in this section, we extend this model, first with another layer
of weights, and then with the nonlinear ReLU activation
between the two layers of weights.

'In the UFM, note that the (within-class) collapse of the global
minimizers (i.e., hj; = hj forall ¢ € [n]) is a consequence of the
symmetry of the loss and the regularization terms w.r.t. the sample
index, which, in our proofs, is exploited by attaining Jensen’s
inequality when averaging over ¢ € [n]. Thus, it does not depend
on whether we regularize the bias term.
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4.1. Unconstrained Features Model With an Additional
Layer

Consider the following optimization problem that corre-
sponds to an extended UFM with two layers of weights,

. 1 9
W, 2in W2 WiH = Y 3)
Aw:. Aw, AH,
2 w2 2 2 M,

where Aw,, Aw,, and Ap, are regularization hyper-
parameters, and W, € RE*4 W, € R¥*4 H; € RN,
Observe the similarity between (23) and (5), where (W, H)
in (5) are replaced by (Wo, W1H;) or by (W W1, Hy).
Yet, the similarity is only partial because, e.g., if we plug
(W,H) = (W2, W H,) in (5) we get a regularization
term ||[W1H ||% rather than separated |[W||% and ||H1 ||%.
To the best of our knowledge, characterization of the mini-
mizers of a multilayer extension of the unconstrained fea-
tures model has not been done so far.

Remark on the optimization procedure. While both (23)
and (5) are non-convex problems, obtaining the global mini-
mizers of (23) is more challenging in practice (e.g., requires
careful initializations). This follows from the fact that the
optimization landscapes of matrix factorization with three
of more factors (or equivalently, non-shallow linear neu-
ral networks) include also non-strict saddle points, which
entangle gradient-based methods (Kawaguchi, 2016).

The following theorem characterizes the global solutions
of (23). It shows that the orthogonal frame structure of
the solutions is maintained despite the intermediate weight
matrix that has been added. Here “o”” denotes proportional,

i.e., equal up to a positive scalar factor.

Theorem 4.1. Let d > K and (W5, W7, HY}) be a global
minimizer of (23). Then, both H] and WTH] collapse to
orthogonal d x K frames. Also, both W3 W7 and W73 are
orthogonal K x d matrices, where W5W7 is aligned with
H:;" and W3 is aligned with (WiH3)". Formally, we
have that H = Hy ® 1.} for some H; € R X and

* *\TT = | ¥ * * * *
(WiWHH, « H, H; x (W3 W) (WiWH) T « Ix.

Similarly, we have that H; := WiH] = H, ® 1, for
some Hy € R¥™*K and

WiH, o H) Hy x WiW3T o I

Proof. See Appendix C. The proof is based on connecting
the minimization of the three-factors objective with two
sub-problems that include two-factors objectives. More
specifically, the sum of the Frobenius norm regularization
of two matrices is lower bounded (with attainable equality)
by a suitably scaled nuclear norm of their multiplication,

and the minimizers of the latter formulation, which can be
expressed by the minimizers of the original problem, are
analyzed. O

Remark on the choice of loss function. The proof of Theo-
rem 4.1 mostly depends on handling the regularization terms
when transforming the problem into two sub-problems, and
can be potentially modified to the case where the cross-
entropy loss is used instead of MSE. Thus, a similar theorem
can be stated for cross-entropy loss, for which it is known
that the minimizers of the plain UFM collapse as well (Zhu
et al., 2021). Naturally, in such a statement the collapse
will be to a simplex ETF rather than to an OF. Indeed, we
empirically observed that also when using the cross-entropy
loss in (23), the global minimizers W1 H] and H7 collapse
to a simplex ETF structure.

Discussion. In practical “well-trained” DNNs (e.g., see Fig-
ure 5 in the experiments section): (1) structured collapse
appears only in the deepest features; (2) decrease in within-
class variability is obtained monotonically along the depth
of the network. However, Theorem 4.1 shows the emer-
gence of structured (orthogonal) collapse simultaneously at
the two levels of unconstrained features of the model in (23)
— both at the deeper H, := W H; and at the shallower H;
— which does not fit (1). Moreover, the linear link between
H, and H; implies that they have the same within-class
variability measured by the metric NC (defined in (26) be-
low) as long as the columns of H; are not in the null space
of W . This hints that H; and Hy may have similar val-
ues/slopes for their N C; metric after random initialization
and along gradient-based optimization (see Appendix D for
more details). Yet, this does not fit (2). Therefore, extend-
ing the model to two levels of features without the addition
of a non-linearity still cannot capture the behavior of prac-
tical DNNs across layers. This encourages us to further
extend the model by adding a nonexpansive nonlinear acti-
vation function (ReLU) between W5 and W 1, that naturally
breaks the similarity between the two levels of features.

4.2. Non-Linear Unconstrained Features Model

In this section, we turn to consider a nonlinear version of the
unconstrained features model that has been stated in (23).
Specifically, using the same notation as (23), we consider
the optimization problem

w, 0 g [ Weo (WiHy) = Y[k (24)

Aw Aw A
s Wl + 20 W 4+ 22y 3,

+

where o(-) = max(0, -) is the element-wise ReLU function.

The following theorem characterizes the global solutions of
(24) by exploiting the similarity of this problem to the one
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in (23). It shows that the orthogonal frame structure created
by the optimal solution (W* , H*) = (W3,0(W7iHY)) is
maintained despite the nonlinearity that has been added.
Theorem 4.2. Let d > K and (W5, W73, HY) be a global
minimizer of (24). Then, c(WHY) collapses to an orthog-
onal d x K frame and W3 is an orthogonal K x d matrix
that is aligned with o (W*H) T, i.e, HS := o(WiHY) =
H, ® 1, for some non-negative Hy € R™*K | and

WiH, o H) Hy x WiW3T o I

Proof. See Appendix E. The proof is similar to the one of
Theorem 4.1 and is a direct consequence of the fact that there
exist a non-negative solution to the related sub-problem. [

Note that the structure of (W*, H*) = (W3,0(W7iHY))
is the same as for the model in (23), where the non-linearity
is absent (yet, here H* is obviously also non-negative).
This analysis benefits from the fact that the features are
unconstrained, and is in contrast with the usual case, where
the results obtained for linear models do not carry “as is” to
their non-linear counterparts. In Section 6 we show that the
nonlinearity is necessary for capturing the different behavior
of features in different depths during the collapse of practical
networks.

5. Toward Generalizing the UFMs Results to
Models with Data Distribution

Similar to the existing theoretical works that demonstrate
the emergence of collapsed minimizers, in this paper we
considered models where the features matrix H (or Hy) is
a free optimization variable. It is of high interest to make
a step forward and instead of freely optimize the features
connect them to some data distribution.

While we defer a comprehensive study that links the models
to data for future research, in this short section we demon-
strate the feasibility of this goal, even for the plain UFM,
through the following theorem.

Theorem 5.1. Consider (5) with \g = =Z. Denote by
(W*,H*) a global minimizer of (5) for some n. Following
Theorem 3.1, observe that H* = H ® 1,—[ for some H e
R*K_ Let H, == H® 1] + E, where E,, € R¥*Kn
whose entries are i.i.d. random variables with zero mean,
variance o2, and ﬁmte fourth moment. Let

>
3

W,, = argmi
ar(g;zim 2Kn

IWEL = Y[+ 22 W @s)

a.s. 1 *
n—roo 1+U§K\/XH/)\W

We have that Wn

Proof. See Appendix F. The proof exploits the fact that
‘W, has a closed-form expression (a function of the features
matrix) that allows linking it to W*. O

Theorem 5.1 shows that as the number of samples tend
to infinity we have that properties of the optimal weights

such as the orthogonal structure and the alignment with H
(stated for W* in Theorem 3.1) are restored even with a
fixed non-collapsed features matrix.

As discussed in Appendix F.1, the intuition that the asymp-
totic consequence of the deviation from “perfectly” col-
lapsed features will only be some attenuation of W* can
also be seen from expending the quadratic term in (25) and
eliminating the terms that are linear in the zero-mean E,,.
This intuition applies also for the extended UFMs with fixed
features (where no closed-form minimizers exist).

6. Numerical Results

In this section, we corroborate our theoretical results with
experiments. For each setting that is considered in the theo-
rems of Sections 3 and 4 we tune a gradient descent scheme
to reach a global minimizer. We plot the optimization’s ob-
jective value curve at different iterations, as well as several
metrics that measure the properties of the NC, which are
computed every 5e3 iterations. The theorems are verified by
demonstrating the convergence of the NC metrics to zero.
We use the following metrics for measuring NC, which are
similar to those in (Papyan et al., 2020; Zhu et al., 2021) but
include also a metric for collapse to orthogonal frames.

First, for a given set of n features for each of K classes,
{hy,;}, we define the per-class and global means as

by = 550 hei and he = 20 3T N he,
respectively, as well as the mean features matrix H :=
[hi,...,hg]. Next, we define the within-class and
between-class d x d covariance matrices

r)(hy; —hy) T,

K
1 S NG R e
Yp = 174 Z:l(hk —hg)(hx — hg)
Now, we turn to define three metrics of NC.
N for measuring within-class variability:
1
NCy = —Tr (zwzg) , (26)

where 2}; denotes the pseudoinverse of 3.

N5 for measuring the similarity of the mean features to
the structured frames:

T —
H H 1 1
NCFTF = || ——— - (Ig — —1g1))
iz H||F K-1 K F
1
NCOF .= H —1Ix (27)
HH|, VE |,
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Figure 1. Verification of Theorem 3.1 (MSE loss with no bias). From left to right: the objective value, NC1 (within-class variability), NC2
(similarity of the features to OF), and NC3 (alignment between the weights and the features).
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Figure 2. Verification of Theorem 3.2 (MSE loss with unregularized bias). From left to right: the objective value, NC1 (within-class
variability), NC2 (similarity of the features to simplex ETF), and NC3 (alignment between the weights and the features).

where the simplex ETFs and the OFs are normalized to unit
Frobenius norm.

N (5 for measuring the alignment of the last weights and
the mean features:

NCy = |W/IWile —H/[H]s| . @8)

Figure 1 corroborates Theorem 3.1 for K = 4,d = 20,n =
50 and A\yy = Ay = 0.005 (no bias is used, equivalently
Ap — 00). Both W and H are initialized with standard
normal distribution and are optimized with plain gradient
descent with step-size 0.1.

Figure 2 corroborates Theorem 3.2 for K = 4,d = 20,n =
50, Aw = Ay = 0.005and \, = 0. Al W, Hand b
are initialized with standard normal distribution and are
optimized with plain gradient descent with step-size 0.1.

Figure 3 corroborates Theorem 4.1 for K = 4,d = 20,n =
50 and Ay, = Aw, = Ag, = 0.005 (no bias is used). All
‘W,, W, and H; are initialized with standard normal distri-
bution scaled by 0.1 and are optimized with plain gradient
descent with step-size 0.1. The metrics are computed for
W = W, and H = W H;. We also compute NC; and
NCQF for the first layer’s features H = H;. The collapse
of both W H; and H; to OF (demonstrated by NC1 and
NC2 converging to zero) is in agreement with Theorem 4.1.

Figure 4 corroborates Theorem 4.2 that considers the non-
linear model in (24). We use K = 4,d = 20,n = 50 and
Aw, = Aw, = Ag, = 0.005 (no bias is used). All Wy,
‘W and H; are initialized with standard normal distribution
scaled by 0.1 and are optimized with plain gradient descent
with step-size 0.1. The metrics are computed for W = W,

and H = o(WH,). We also compute NC; and NCPF
for the first layer’s features H = H; (as well as for the
pre-ReLU features H = W H,;).

Comparing Figures 3 and 4 (experiments with different
hyper-parameter setting yield similar results, as shown in
Appendix G), we observe that adding the ReLU nonlinearity
to the model better distinguishes between the behavior of
the features in the two levels, both in the rate of the collapse
and in its structure.

Finally, we show the similarity of the NC metrics that are ob-
tained for the nonlinear extended UFM in Figure 4 (rather
than those in Figure 3) and metrics obtained by a practi-
cal well-trained DNN, namely ResNet18 (He et al., 2016)
(composed of 4 ResBlocks), trained on MNIST with SGD
with learning rate 0.05 (divided by 10 every 40 epochs) and
weight decay (L5 regularization) of S5e-4. Figure 5 shows
the results for two cases: 1) MSE loss without bias in the FC
layer; and 2) the widely-used setting, with cross-entropy loss
and bias. (Additional experiments with CIFAR10 dataset
appear in Appendix G). The behaviors of the metrics in both
cases correlate the one of the extended UFM in Figure 4.

7. Conclusion

In this work, we first characterized the (global) minimizers
of the unconstrained features model (UFM) for regular-
ized MSE loss, showing some distinctions from the neural
collapse (NC) results that have been obtain for the cross-
entropy loss in recent works. Then, we mitigated the in-
ability of the plain UFM to capture any NC behaviour that
happens across depth by adding another layer of weights
as well as ReL U nonlinearity to the model and generalized
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Figure 3. Verification of Theorem 4.1 (two levels of features). From left to right: the objective value, NC1 (within-class variability), NC2
(similarity of the features to OF), and NC3 (alignment between the weights and the features).

Figure 4. Verification of Theorem 4.2 (two levels of features with ReLU activation). From left to right: the objective value, NC1
(within-class variability), NC2 (similarity of the features to OF), and NC3 (alignment between the weights and the features).
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Figure 5. NC metrics for ResNet18 trained on MNIST. Top: MSE loss, weight decay, and no bias; Bottom: Cross-entropy loss and weight
decay. From left to right: training’s objective value and accuracy, NC1 (within-class variability), NC2 (similarity of the centered features
to simplex ETF), and NC3 (alignment between the weights and the features).

our previous results. Finally, we empirically verified the
theorems and demonstrated the usefulness of our nonlinear
extended UFM in modeling the NC phenomenon that occurs
in the training of practical networks.

The aforementioned experiments further demonstrated the
necessity of the nonlinearity in the model. We note, how-
ever, that adding a ReLU nonlinearity in the plain UFM,
after the single level of features (with no additional layer
of weights), is problematic. Optimizing such a model with
simple gradient-based method after random initialization
(which is the common way to train practical DNNs), is
doomed to fail because the negative entries in the first layer
cannot be modified. The extended model that is considered
in this paper does not have this limitation.

As directions for future research, we believe that analyzing

the gradient descent dynamics of the proposed extended
UFM may lead to insights on gradient-based training of
practical networks that cannot be obtained from the dy-
namics of the plain UFM. Generalizing the results that are
obtained for the plain and extended UFMs to models where
the features cannot be freely optimized, but are rather linked
to some data distribution is also of high interest. In this
front, the result in Theorem 5.1 is encouraging, though, it is
only asymptotic. When the training data is limited and the
question of generalization arises (as in real-world settings),
it may not be possible to show positive effects of NC on
the generalization without departing from the plain UFM,
which has limited expressiveness when the features are fixed.
On the other hand, the proposed nonlinear extended UFM
seems to be more suitable for such analysis, as, in fact, it
has a shallow MLP on top of the first level of features.
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A. Proof of Theorem 3.1

Proof. The proof is based on lower bounding f(W,H) := 5L |[WH — Y||Z + 2% |W|2% + 22 |H]||2 by a sequence of
inequalities that hold with equality if and only if (6)-(9) are satisfied. First, observe that

1 Aw AH

7HWHfYII%+7IIWII%+fHHH% (29)
W

K Z IWhy; — yil3 + = ZH k||2+f22||hh||2
k=11=1 k=1 1=1
Y K
w
—2ann szhk,i—1)2+72\| k||2+*z ZHhmHz
i=1 k=1 =

(b) 1 - ’ w X 2 )\H
—anZ” Wl S TZHW’“”2+7Z”
i=1 k=1 k=1

1 — ’
LY
i=1 2

The inequality (a) follows from ignoring all the entries except k in the K x 1 vector Why, ; — y,, and holds with equality
iff w/, by ; = 0 forall k' # k and i € [n]. In (b) we used Jensen’s inequality, which (due to the strict convexity of (- — 1)?
and || - ||?) holds with equality iff hy ; = ... = hy, for all k € [K]. Indeed, note that the equality condition for (b) is
satisfied by (6), and the equality condition for () is a consequence of (6), (8) and (9) (which yield (12)).

Next, to simplify the notation, let us denote hy, := % Z?:l hy, ;. Thus, continuing from the last RHS in (29), we have

K
1 T nAg
?kgwkhk—l +fKKZ||w;cH2+TKKZ||th2 (30)
2 2
(C)l a n/\H 1 K
> S| = —1 AW g iy A= WY
_Q(K; by ) R (Kzum) e tH
(@) 1 K K 1 XK
=5 KZ ch =1 +K¢nAHAW g;uwn? gkz_luhknz

In (¢) we used Jensen’s inequality, which holds with equality iff

W;rhl =...= W}l;hK,
Iwillz = ... = w2,
Ml = =[xl

which are satisfied when conditions (7) and (9) are satisfied. In (d) we used the AM-GM inequality, i.e., £ + g > Vab,

2 2
with a = Ay (% Zszl ||wk\|2> and b = nAy (% Zkl,(zl ||hk|\2) . It holds with equality iff @ = b, which is satisfied by
(9) that implies Ay [|w||3 = nAg ||he 3.

Note that so far all the iff conditions are satisfied by both (W*, H*) that satisfy (6)-(9) and the trivial (W*, H*) = (0, 0).
Now, it is left to show that if Kv/nAgAy < 1 then wy, and hy, must have the same direction, as implied by (9), which will
also yield the orthogonality of {h}} and {wj} }. While for Kv/nAgAw > 1, we get the zero minimizer.

As all the inequalities (a)-(d) are attainable with iff conditions, we can consider now (W, H) that satisfy these conditions to
further lower the bound. Specifically, using the symmetry w.r.t. k, the last RHS in (30) turns into the expression

( by, — 1) + K /md [ w2y 31)

=3 (IIWkHzIIthzCOSOé =1 + Kv/nAgdw w2 |2,

N | =
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where « is the angle between wy, and hy. Invoking Lemma A.1 with 8 = ||wg||2||hg||2 and ¢ = Kv/nAgAw, we get that
if Kv/nAgAw > 1 then the minimizer is (W*, H*) = (0,0) (since |w]|2|/hx|2 = 0), and otherwise, the minimizer
must obey o = 0. Therefore, we get the desired result that w;; and h;j, must have the same direction. Together with
Aw [[wWi |3 = nAw||hy||3 (which is required to attain equality for AM-GM), we get the necessity of wi = \/nAg/Awh}
in (9). Finally, the orthogonality of {h}} (and similarly of w}) follows from

1

\/n)\H//\W

where we used the previous condition w7}, h} = 0 for all ¥’ # k, which is necessary to attain equality in (29).

h}'h} = wi hi =0 VK £k

Lemma A.1. Let
flaw ) = 3 (Beosa —1)* 48, (32)

where 5 > 0 and ¢ > 0. Then, (i) if ¢ > 1 then f is minimized by 8* = 0 and the minimal value is %; (ii) if ¢ < 1 then f is

minimized by (o*, f*) = (0,1 — ¢) and the minimal value is ¢ — %02.

Proof. The proof is based on separately analyzing the cases § = 0,0 < 8 < land g > 1.

For 5 = 0, we get objective value of % for any . Assuming that 0 < 8 < 1, clearly, the minimizer of (32) w.r.t. « is only
o = 0 (or other integer multiplications of 27). Thus, we have

~ 1 1 1

fO.8) =561 +cf=55"-(1-0f+3,
which is a “smiling” parabola in 3, with feasible minimum at * = max{1 — ¢, 0}. This means that if ¢ > 1 we get the
(feasible) minimum at (o*, 5*) = (0,0), for which f(a*, *) = % If ¢ < 1, we get minimum at (o*, *) = (0,1 — ¢)
with objective value of f(a*, ) = 3¢ +¢(1 —¢) = c — 1%

Assuming that 3 > 1, the first term in (32) is minimized (eliminated) by a* = arccos(1/3). Thus, we get fla*, B) = B,
which is minimized by $* = 1, and the objective value is f(a*, %) = c. Since ¢ > 0, note that this value is always larger
than the minimal value obtained for 8 < 1.

To summarize, (i) if ¢ > 1 we get the minimizers f(a*, g*=0)= %; (ii) If ¢ < 1 we get the minimizer f(a* =0,8* =

l1—c)=c— 3%

O
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A.1. Alternative proof for Theorem 3.1

We present here an alternative proof for Theorem 3.1. While this proof requires tools that are less elementary than the
preceding proof, in some sense its strategy is more similar to the one we take to handle the three layer case in Appendix C.

We start by computing the gradients of the objective f(W,H) := & [|[WH — Y||2 + ATWHVVH% + ’\TH||H||2F

of 11
o _ i(WH - Y)H' + \yW (34)
OW N W

From these expressions we have that any stationary point (W, H) of f (i.e., any point for which all the gradients equal zero)
obeys

A WTW = \yHH' (35)

which follows from W' 2L — SLHT = 0. Thus, while W € R *? is trivially of rank at most &, we also have that any

stationary H is of rank at most K (since AW TW = \gHH is of rank at most K).

Denote the following compact SVDs: W = UWEWVJV and H= Uy EHVE (note that Sy, X € REXX gince the
SVDs are compact).

At this point we can define the compact SVD of Y € RE*¥ a5 Y = Uy Xy Vy,, and express the objective function for
stationary points as

1 A A
F(W.H) = —||[UnSw Vi UnSe Vi — Uy Sy VG + T Un Sw Vil + SH0aSa Vil (G6)
1 A A
= 55 Uy UwSw Vi UnSu Vi Vy = Sy|f + T-Swlli + 5 SalE

where we used the fact that unitary operators do not change the Frobenius norm.

As By € REXK 5 a diagonal matrix, clearly a global minimizer obeys that U;UWEWV%U Xy V], Vy is a diagonal
matrix as well.

Now, we first use the specific structure of Y in our problem. Namely, Y = Ix ® 1; , and therefore Uy = I,

Yy = /nlg and Vy = ﬁIK ® 1,. This implies that UWEWV‘TVUHEHVII ® ﬁln is K x K diagonal. So,

necessarily Vg = Vg ® %171 for some K x K orthogonal matrix V ;.

The fact that a global minimizer H can be decomposed to H = Uy X HV; ® ﬁlz implies its collapse —H =H ® 1,
for some H € Rd:K . In other words, we proved that (6) is indeed a necessary property of global minimizers. Denoting the
compact SVD of H by UﬁEﬁV%, observe that Xy = /n¥7 (also, Uy V], = UﬁEﬁV% ®@1n.

By now we have that the objective function (with a slight abuse of notation in the arguments) of the (collapsed) global

minimizers is given by (recall N = Kn)

’fl)\H

Aw
1= 1+ "2 g 3 @

— 1 =T
f(W,H) = ﬁ”UWsz{TVUﬁEﬁVﬁ —Igly + N

It follows that the global minimizers are necessarily aligned, i.e., WH = Bk with some constant 3, where we used the
spectral symmetry of the regularizations and I that needs to be fitted in the first term. Hence

WH = Uy Sy V), Uz SV = Bl
which implies that

W=3ypRT™ e REXd (38)
H=RX;cR™E (39)
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for any orthogonal matrix R € R*X (RTR = I). Therefore, we have

= 1 )\W n)\H
f(W,H) = ﬁszzﬁ —Ixl% + 7||2W||2F + 7”2?”%- (40)

The symmetry and separability of (40) with respect to the spectral values implies that Xy = ow I and X7 = o1,. The
values of oy and o7 are determined by minimizing the simplified objective (again with a slight abuse of notation)

= 1 )\W TL/\H
f(W,H) = i(awaﬁ —1)% + KTU@ + KTU% 41)
The derivatives are given by
0
—f=ogloworg — 1)+ KAwow =0, (42)
adw
0
f=ow(owog — 1)+ Kn\gogz =0, (43)
adﬁ

implying that )\WJ%,V = nAyo2., which can also be obtained by attaining the AM-GM inequality

>\W 2 n)\H

K7UW + KTU% > Kv/nAgAwowog.

Therefore, setting 3 = ow o4, to find the eigenvalues of the minimizers we just need to find 3 > 0 that minimizes

1

f(B) =5 (B=1)"+ch, (44)

for c = Kv/nAgAw > 0. It can be shown that: (i) if ¢ > 1 then f is minimized by $* = 0 and the minimal value is %; (ii)

if ¢ < 1 then f is minimized by 8* = 1 — ¢ and the minimal value is ¢ — %02.

Summarizing our finding, we have that if ¢ = K+v/nAgAw > 1 then the minimizer is (W, H) = (0,0) (because the
singular values of the matrices are zero). On the other hand, if c = Kv/nAgAw < 1 then the minimizers obey H = H® 1;';,

W = %ﬁiand
Wﬁ = UWUFIK = (1 - C)IK

=T == 2 / )\W
T 2 nAn
WW :UWIK:(lfc) 711{
Aw

as stated in the theorem.
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B. Proof of Theorem 3.2

Proof. First, note that the objective
1 T 2 /\W 2 /\H 2
JOW,H,b) i= - [WH b1, = Y3+ 22 [ W2 + 22 )3

is convex w.r.t. b, for which there is the following closed-form minimizer (which depends on WH)

n

K
L1 1
b* = N (Y-WH)1y = N;ZZ(}% — Why ;).

-1
Since {y} } are one-hot vectors, note that for k' € [K]

n

K
s_n 1 ZZ T _ 1 T
k= N — N 2L Wk/hk,l' = E — Wk/hG,

where hg = 4 2521 >oi, hy; is the global feature mean.

(45)

(46)

(47)

The proof is based on lower bounding f(W, H, b*) by a sequence of inequalities that hold with equality if and only if

(15)-(20) are satisfied. Observe that

K n A K n
1nZZHWhmb* —yk||2+—2||wk||2 S 3

k=1 11=1 k=1 1:1=1

1 K K 1 n . /\W K ) )\H K 1 n )

=55 2 25 2 (Wi (hei — b )+?—1k1 P S IwklE SR T n > bl
" 1 kj(lkj(l =1 , )\k:lK )\k:lK z:ll § ,
e S S S e o YL T DO P o

k'=1k=1 k=1 k=1 =1 2

In (b) we used Jensen’s inequality, which (due to the strict convexity of || - [|%) holds with equality iff hy 1 = ...

all k € [K]. Indeed, note that the equality condition for (b) is satisfied by (16).

(48)

= hy, ,, for

Next, to simplify the notation, let us denote hy, := £ 3" | hy, ; (note thathg = & Ele hy,). Thus, continuing from the

last RHS in (48), we have

| K K 1 2 Zw K n
w H
e 2 2 (Wl o)+ e~ tes )+ 50w k||2+—2||hk\|2
k=1
K K

Kk’
1 & K-1\?> K-1 1
ZQZ(W;(hk—hG)_ 7 ) Ry ZK—l > <W;I/(hk—hc)+

k=1 k=1,k#k’

1
K

)2
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2
@11 & K-1 K-1& 1 us 1
k=1 k=1 k=1,k#k'
K 2 K 2
/\W 1 n)\H 1
+—5 Kl > |Wl~c||2> +— K (K > |hk||2>
k=1 k=1
@11 - K-1) K-1& 1 L Y
Zglm Wit —ho) =T | + 50 (g 2 weho) g
k=1 k=1 k=1,k#k’
| X | X
K — — h
+ Kv/nAuiw <K ; Wk||2> (K ; | k”z)
In (¢) we used Jensen’s inequality, which holds with equality iff
wi (b —he) =... = wi(hx —hg), (50)
WkT”(hkl - hG) = W;'r’(hkz - hG)a Vklka € [K} \k/a (51)
[willa = ... = lwkll2, (52)
[hifl2 = ... = [[hkll2, (53)

which are satisfied when conditions (18) and (20) are satisfied. In (d) we used the AM-GM inequality, i.e., £ + g > Vab,
with a = Ay (% Zle [lwi H2>2 and b = nAy (% Zszl ||hk|\2)2. It holds with equality iff @ = b, which is satisfied by
(20) that implies Aw [|w[3 = nAg || b 3.

Now, observe that the first two terms in the last RHS of (49) are invariant to the global mean of H (since it is subtracted there

from {hy}). Therefore, the expression can be further reduced by requiring that h¢; minimizes the term Zle [Ihy 2. To
this end, using the triangle inequality || hg||2 > |[|hx — hgll2 — ||hg||2, we have

1 & 1 &
a > Ilhgllz > a > |Ihg = hellz = a2,
k=1 k=1

which becomes equality when hg = 0, as required by condition (17). From (47), this also implies that b* = %1 K, as
required by condition (15).

Next, consider W;, hy = ||wi||2|/hg||2coséu i, Where Gy, i/ denotes the angle between wys and hy. From (51)-(53) it
follows that dy 1, is exactly the same for any chosen k' € [K] and k € [K] \ k’. This equiangular property implies that the
minimal (most negative) possible value of cosdy i, is given by cosa i, = as we have in the standard simplex ETF
(Definition 2.2).

T K-1°

Note that so far all the iff conditions are satisfied by both (W* , H* b* = %1 k) that satisfy (16)-(20) and the naive
(W*,H* b*) = (0,0, %1;(). Now, it is left to show that if Kv/nAgAyw < 1 then wy and h; must have the same
direction, as implied by (20), and the simplex equiangular property of {h} } and {w} }. While for Kv/nAgAw > 1, we get
the naive minimizer.

As all the inequalities used so far are attainable with iff conditions, we can consider now (W, H) that satisfy these conditions
to further lower the bound. Specifically, using the symmetry w.r.t. k, and choosing any k' # k, the last RHS in (49) (with
the required h = 0) turns into the expression

1 K-1\*> (K-1 1)?
Q(W,Ihk - ) L )<w;hk+K> T Kv/mar sl (54)

1 K—-1\> (K-1) 1)
= 5 (Iwllzlbyllzcosa = —— |+ — IWillzlbrllacosa + = |+ KvnduAw [willz[bkllz,
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where we used « (resp. &) to denote the angle between wy, and hy, (resp. w), and hy), and the necessary condition that
[will2 = (w2

Invoking Lemma B.1 with 8 = ||wy]|2|/hg||2 and ¢ = K+/nAgAw, we get that if Kv/nAgAw > 1 then the minimizer is

(W*,H*) = (0,0) (since [|wy]|2|/hy||2 = 0), and otherwise, the minimizer must obey v = 0 and & = arccos(— 7).
Therefore, we get the desired results that wj, and hj; must have the same direction and w,, hy, = —|[wy||2|/hy||2 2 for
any k' € [K] and k € [K ] \ k’. Together with Ay ||wy||3 = nAg||hg||3 (which is required to attain equality for AM-GM),

we get the necessity of wj = \/nAg/Awhj in (20). Finally, the simplex equiangular property of {h}} (and similarly of
w;) follows from

A )\ 1
B = |/ S wi g = | 2w o b acosdiy i = b [Beosan e = — 13—y VK £k
where we used the simplex equiangular condition between wy, and hy, (k' # k).
O

Lemma B.1. Let

. 1 K-1 K—1 1\?

fla,a,8) = 3 (ﬂcosa - K> + % <ﬁcos& + K) + ¢B, (55)
where ﬂ >0, —=—= < cosa < landc > 0. Then, (i) if c > 1 then f is minimized by 8* = 0 and the minimal value

Ly, %) and the minimal value is

is W’ (ii) if ¢ § 1 then f is minimized by (a*,a*, B*) = (0,arccos(— 7

1
7 (e=3e).

Proof. The proof is based on separately analyzing the cases 8 = 0,0 < § < % and 3 > %

For 3 = 0, we get objective value of K 5 KQ) + 12([;21 = % for any o and &. Assuming that 0 < 8 < % clearly, the
minimizer of (55) w.r.t. «is only a® = 0 (or other integer multiplications of 27), and the minimizer of (55) w.r.t. & is
&* = arccos(— ) (recall the assumption — 15 < cos@ < 1). Thus, we have
f(0 (.8 =2 (s- 21 D LA 2+B (56)
arccos = - — — — c
’ K-1” 2 K 2 K-1 K ’
1 K 1K -1
sk-10 Ut TR

which is a “smiling” parabola in 3, with feasible minimum at 5* = max{w, 0}. This means that if ¢ > 1 we get
the (feasible) minimum at (a*, &%, 3*) = (0, arccos(+—=7), 0), for which flar,a*, p*) = E=L If ¢ < 1, we get mini-
mum at (o, @, 8*) = (0, arccos( 7y ), T=2E=1) with objective value of f(a*,a*, %) = 1521 (1 — (1 —¢)?) =

52 (o= )

Assuming that 5 > > K—1 the first term in (55) is minimized (eliminated) by a* = arccos( Ig{ ﬁl) and the second term in
(55) is minimized (ehmmated) by &* = arccos( 3 ) Thus, we get f(a*, @*, 3) = ¢f3, which is minimized by 5* = ’1,
and the objective value is f (a*,a*, %) = c@ Slnce c > 0, note that this value is always larger than the minimal value

obtained for § < =1

To summarize, (i) if ¢ > 1 we get the minimizers ~(04"‘,51*, g =0) = %; (i) If ¢ < 1 we get the minimizer
fla* =0,a* = arccos(— =) 8% = 7(1 (K 1)) = 71(};1 (c—3c2).

O
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C. Proof of Theorem 4.1

We are going to connect the minimization of the three-factors objective of (23)

Aw, A,

1 A
f(W2, W, Hy) := ﬁ||W2W1H1 - Y[+ ;Vz W7 + W% + [ Hy |7

with two sub-problems that include two-factors objectives. We will use the following lemma from (Zhu et al., 2021) (which
denotes the nuclear norm of the matrix Z, i.e., the

sum of its singular values.
Lemma C.1 (Lemma A.3 in (Zhu et al., 2021)). For any fixed Z € RE*N and o > 0, we have

1 1
1z ! (\/aWH% . ¢a|H||%) | 57

£ = min
W,H s.t. WH=Z 2

Note that the minimizers W, H obey W = AMUSY?PRT and H = o VAREY?2VT, where USV is the SVD of Z
and R is any orthogonal matrix of suitable dimensions.

The first sub-problem is derived as follows:

AH,

A A
. 2 Wo 2 Wy 2 2
i [Wa W, = Y S0 [Walh+ S [Wi + 22 (58)
- min 1 [WoH — Y||2 + Awy W% + Ay W12 + Ay | H, |2 (59)
W,, W, ,Hy H s.t. H=W H; 2Kn F 2 B 2 F 2 B
= min 1 |[WoH - Y||% + A W ||2 (60)
W,, W, ,H, H s.t. H=W H; 2Kn B 2 F
1
A, AH, = W v Am [ Aws || H
W1 H12 (\/m 1||F+ Hl/ W1|| 1||F>
> min oo [WoH = Y5 + W2 W[ 61)
1
A A min — W + A A H
1%%% H1W1,H1 st Wi H,=H 2 <\/m” 1||F Hl/ W1|| 1F>
) 1 Aw.
— min, (W, H) i= 5o [WaH = Y[[F o+ 202 [Wal /X, [H- (©2)

where the last equality follows from Lemma C.1.

With very similar steps, the second sub-problem is stated as:

Aw. Aw )\H
W g IWoW L = Y+ 0w A w2 6
. Am
> min f2(W,Hy) = %HWPL — Y5+ 21 IHL [+ Aw, A, [ W (64)

Therefore, we can analyze the minimizers of (62) and (64) and translate the results to the minimizers of (23), using the
characteristics of the minimizers in Lemma C.1.

Let us start with (62) and denote Ay = /Aw, Ag,, i.€.,

1 Aw.
f1(W2,H) := %\\WzH -Y|%+ 5 2| Wall7 + Am | HIl.

The subdifferential and gradient are given by

9 1
aTJ; = W - (WoH — Y) + A H]. (65)
of 1

oW, N(

WoH - Y)H' + \yy, Wo, (66)
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where 0|H||, = {UyV} +2Z, Z € RN |ULZ = 0,ZVy = 0,||Z|| < 1} when UyXy V), is the SVD of
H € RN (see, e.g., (Watson, 1992; Recht et al., 2010)). From these expressions we have that any stationary point
(W2q, H) of f1 (i.e., any point for which all the gradients equal zero) obeys

M, Wy Wy = A\g U U, (67)

which follows from WJ £L- — SLHT = 0,and (U V}; + Z)H' = U X5 U};. Thus, while Wy € R¥*? is trivially

of rank at most K, we also have that any stationary H is of rank at most K (since Uy X HUL is of rank at most K).

Thus, let us consider the compact SVDs: Wy = Uy, EWVJV and H=UpXy V], (note that By, By € RE*K since
the SVDs are compact). Denote also the compact SVD of Y € RE*N as Y = Uy Xy V{. The objective function for
stationary points can be expressed as

A
52 Wl + A HI (68)

1
Ai(Wo, H) = 5510w Zw Vi UnZa Vi = Uy Sy Vi |7 +

A
SIS wllE + Aul| Sl

1
o3 UV UwSw Vi UnSy Vi Vy — Sy +

where we used the fact that unitary operators do not change the Frobenius norm, as well as the fact that the Frobenius and
nuclear norms depend only on the singular values.

As By € REXEK jg a diagonal matrix, clearly a global minimizer obeys that Uy, Uw X1V, Uy X5V, Vy is a diagonal
matrix as well.

Now, we first use the specific structure of Y in our problem. Namely, Y = Ix ® 1,—[ , and therefore Uy = I,

Sy = /nlg and Vy = ﬁIK ® 1,. This implies that Uy XV, UgEg V] ® ﬁln is K x K diagonal. So,

necessarily Vg = Vy® ﬁln for some K x K orthogonal matrix V.

The fact that a global minimizer H can be decomposed to H = UyX HV; ® ﬁlz implies its collapse — H =H ® 1,/
for some H € R4*X_ Denoting the compact SVD of H by UﬁZﬁV%, observe that Xy = \/nX7 (also, Uy XV}, =
UpS;V®1,).

By now we have that the objective function (with a slight abuse of notation in the arguments) of the (collapsed) global

minimizers is given by (recall N = Kn)

A
;VZ IZwlE + vVarul[ Szl (69)

— 1 —T
[1(W2, H) = ﬁHUWEWVvTVUFEﬁVﬁ —Igllp +

It follows that the global minimizers are necessarily aligned, i.e., W,yH = B1 with some constant 3, where we used the
spectral symmetry of the regularizations and Ix that needs to be fitted in the first term. Hence

WoH = Uy Sw Vi, U S5 Vi = Bk,
which implies that
W, =Sy RT e RFX (70)
H=RXz5cR¥E 1)
for any orthogonal matrix R € R¥*X (RTR = I). Therefore, we have

Aw,
2

— 1
H(Wo, H) = —[1BwSg = Ik + =2 [ ZwllE + vVodu [l (72)

The symmetry and separability of (72) with respect to the spectral values implies that Xy = ow 1}, and X5 = o7Ix. The
values of oy and o are determined by minimizing the simplified objective (again with a slight abuse of notation and

recalling Ay = /Aw, Am,)

_ 1 A
fi(W2, H) = 2 (owo —1)* + K ;V oty + K~/nAw, A, 057 (73)
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The derivatives are given by

0
f1 = UH(UWUF — 1) + K)\WQUW =0, (74)
8ch
0
8a—f1 = Uw(O'Wo'ﬁ — ].) + K\/n)\W1>\H1 =0, (75)
H

. . . Aw, 03 .
implying that Aw, 0%, = \/nAw, A, o7 Plugging o7 = \/#ﬁ in (75) we get
)‘Wzgél/ — 1/ n/\Wl)\HIUW + [(’I’L)\V[/l)\H1 =0

The value of oy can be computed numerically as the positive root of the above 4th degree polynomial (the analytical result
is extremely cumbersome) and the same goes for the value of o77. Yet, even without stating these exact constants we can
summarize our findings for (62) as follows. We have shown that the minimizers obey H = H® 1./, where H = ocgR

n?

and W5 = oy R T for some non-negative constants o, ow (which depend on K, n, Aw,, Aw,, Am,) and any orthogonal
. =T
matrix R € R X Therefore, Wy x H , and

WoH o H H x WoW, o Ig.
Now, since H = o7R ® 1; , from Lemma C.1 we know that the minimal objective value of (62) is attained by the
o . . . — 1 —
minimizers Wy, Hi of (23) for which we have W1 = /Ag, /Aw; + /oaRRT and H; = m, /ogR® 1; for any
orthogonal matrix R € R¥X_ (Note that the last two expressions require the singular value of H, which is o = Vnog).

We conclude that for d > K and (W3, W7, HY) being a (nonzero) global minimizer of (23), we have that W3 H collapses
to an orthogonal d x K frame, and W3 is an orthogonal K x d matrix that is aligned with WiHJ.

Analyzing the minimizers of (64) by steps which are very similar to those used for (62) yields the following.
The minimizers of (64) obey H; = H; ® 1,7, where H; = O’ﬁlﬁ and W = o R for some non-negative constants

oz, 0w (which depend on K, n, AW, Aw, ; Am, ) and any orthogonal matrix R € R¥*K Therefore, W ﬁlT, and
WH; x ﬁjﬁl x WW ' Ig.

Now, since W = JWRT, from Lemma C.1 we know that the minimal objective value of (64) is attained by the minimizers
Wy, W of (23) for which we have Wy = ¢/Aw, /Aw,/owR ' and W, = ﬁw /owRRT for any orthogonal
Wy /AW,

matrix R € R K,

We conclude that for d > K and (W3, W7, H7) being a (nonzero) global minimizer of (23), we have that H} collapses to
an orthogonal d x K frame, and W3 W7 is an orthogonal K x d matrix that is aligned with H7.



Extended Unconstrained Features Model for Exploring Deep Neural Collapse

D. On the Within-Class Variability Metric NC1

In this section, we discuss some properties of the within-class variability of the features H; and Hy := W1 H; for the model
in (23). First, let us define the metric NC1 that is used to measure the within-class variability. Note that this metric is related
to the classical Fisher’s ratio. For a given (organized) features matrix H = [hy 1,...,h1,,ho1,..., hg,] € R>En,

denote the per-class and global means as hy :== £ 3"  hy; and hg = - Sk STy, respectively. Define the
within-class and between-class d X d covariance matrices

n
EwH) = Zzhkz k) (i —hy) T,
14i=1

K
T5(H) : Z (hy, —hg)(h, —he)T.
k:
We define the corresponding within-class variability metric as
1
NCi(H) = —Tr (Sw (H)T}(H)), (76)

where E}LB denotes the pseudoinverse of 3 .

From the definitions above, observe that Xy (Hy) = W Xy (H )W/ and £5(H,) = WX 5(H; )W/ . Therefore,

NCy (Hy) = ?Tr( 1 Zw (H) W] (W, Z5(H) W/ )T) a7
1
?Tr( S (H)WT W] st (Hl)WT)
Lo
— = Tr <W WS ( Hl)(Wiwl) EL(H1)>'

Now, by their definitions, the columns of Xy, (H;) and X 5(H;) are in the range of H;. Thus, since WIWl is an
orthogonal projection matrix (onto the subspace spanned by the rows of W), we have that

Ncl(HQ):iTr WiwW, Sy (Hy) (WIiw, Tzjg(Hl) L Sw(H)ELH,)) = NCy(H))
K K

is guaranteed when there are no columns of H; in the null space of W7. One such case is at initialization, when W
is initialized by continuous random distribution and thus its rows span R? with probability 1. Moreover, after random
initialization, we empirically observed that H; and Hy also have similar NC; along gradient-based optimization (see
Figure 3), which is due to having similar K dimensional subspaces dominantly spanned by the columns of H; and the rows
of W (as well as those of W). At convergence to the a global minimizer, again it is guaranteed that there are no columns
of H; in the null space of W. Specifically, as demonstrated in the proof of Theorem 4.1, the global minimizers necessarily
have that W3, W3 and H} have exactly the same K dimensional range (column space). Briefly, denoting the objective of
(23) by £, this follows from W3W3 T oc I, as well as Ay, W3 TW3 = Ay, WiW35 T and Ay, Wi TW3 =\ HiHT,

where the last two equalities follow from W 0%1 — af HT =0and W, 3%2 6%1 W/ = 0, respectively.
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E. Proof of Theorem 4.2

The proof is similar to the one of Theorem 4.1 and is a direct consequence of the fact that there exist a non-negative solution
to a suitable sub-problem.

First note that if the problem in (23) has a global minimizer (W3, W7, H}) with non-negative multiplication WiH7} > 0
(i.e., all the entries in the matrix W HJ are non-negative), then
Aw.

AH
5 IIWalF + =+ [ 7 (78)

Aw:
> 2| Wa|l% +

1
i — [|[WyW;H; — Y|?
w. Wi, 2|V 2 Wik =X

i 1 Aw. Aw Am
= ——|[Wao(WiH1) = Y||7 + 2| Wa|[F + = |[Wi|[5 + == | Hy |7
B o [Wao (Wi HL) = Y+ 202 [ Wl + S5 Wi + S5 [HL
where the RHS is the problem in (24). Note that without the existence of a non-negative solution to (23), we have that the
RHS is an upper bound on the LHS, since the ReLU can be translated to a non-negativity constraint that reduces the feasible
set of the minimization problem.

Now we can use the result from the proof of Theorem 4.1 that given a minimizer of (23), (W3, W3, H7), then (W3, H*) =
(W3, WiH?) minimizes

1 Aw.
[1(W2, H) := %||W2H*Y||%+ 5 [Wallk + v/ Aw, Aw, [H],

and has the structure H* = H® 1,] and

Wi =35 R ¢ R (79)
H=RX} e R™K (80)

where X7y,, 57 € R are non-negative diagonal matrices and R € R*** can be any orthogonal matrix (R R = I).
(The freedom in R is due to the fact that the problem can be expressed only in terms of singular values).

Now, we can get the existence of the desired non-negative matrices by considering

o P E
O KyxK

W3 =33y [Ixk  Oxx(a—r)]

for which

*TT* IK * T
WiH! = 2 91]
! [Ow—mm} "

are clearly non-negative. Consequently, the orthogonal collapse and alignment properties of W5 and W] H7 constructed
from global minimizers of (23) carry on to W3 and o(W71H7) constructed from global minimizers of (24).
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F. Proof of Theorem 5.1

/\

As stated in the theorem, we consider (5) with Ay =

. 1 Aw Ai

WH - Y|% + = |W|% + = |H|3 1
win 5| I+ 22wl + 2 e, @1
and denote by (W*, H*) a global minimizer. From Theorem 3.1 we have that H* = H® 1, and W* = \/S\H//\WﬁT
for some H € R¥X that obeys H ' H = plx = (1 — K/ AgAw), 3T = (/3% — KAw)Ik.

H H

Note that for any value of n, we have that (W, H) = (W* H? := H® 1,)) is a global minimizer of (81).
We turn to examine (81) for fixed H and minimization only w.r.t. W. Namely,

W,, = argmin
w

1 Aw
o IWH = Y7 + - W[ (82)

This strongly convex problem has the following closed-form solution

. 1 -1
W, (H) = ﬁYHT (KnHHT + AWId> . (83)

Recalling that Y = Ix ® 1), for H=H} = H® 1, we have that

. 1 -1
wn<H*>——K (O 0171,) (G (B @171, + ) 54
1ot (1o -t

This expression can be simplified as follows

A " 1 —7
W, (H!) = KAWH (KAW HH +Id> (85)
1 P
K (K/\W KT K)
_ 1 —T
Kl +op ’

where the second equality follows from the “push-through identity” and the fact that H H-= pIk. Note that, as expected,
if we fixed H to be H?, a global minimizer of the joint optimization w.r.t. (W, H), then we get W,, = W*. Indeed,
< =T =T
H)= ~+—H =—F—L1_H =W
Wn( 77,) KXw +p \/m W
Let us turn to examine VV" forH = I:In where I:In =H® 1,TL +E, with E,, € R¥*E™ whose entries are i.i.d. random
variables with zero mean, variance o2, and finite fourth moment. Hence, E [E,,] = 0 and E [EHEI] = Kno?1,.

Substituting H = H,, in (83), we get

o 1 - 1 - - -t
W,H,) = —YH, ( —H,H +\yI . 86
Based on the law of large numbers, as well as the convergence of sample covariance matrices of random variables with finite
fourth moment (Vershynin, 2012), we have the following limits

1
- T - - T T
- N — 1 —T
—HnHT “laaT s LmeinEr —E,(H 91, E.ES 2 R s y: ),
KTL n K +Kn( ® n) "+Kn ( ® )+K n—oco K +0 d-
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Therefore,
W, (H,) % 1| LA 4 021 4 AT - (88)
n n n—oo K K [ 7/ wid .
Repeating the simplifications of (85) (with o2 + Ay in lieu of A\y) we get
z 1 a.s. 1 =1 1 =
W,.(H,) 5 H = H . (89)
n—roo K(Ue-f—)\w)“rp KO’E—&- /)\W/)\H
Comparing (89) with W* = éﬁi we get the result that is stated in the theorem:

T Vaw /A

o \/ Aw /A
W, (H,,) - WA e L w*.

nTree KU?+\/Aw/5\H 1—‘1-0'3]( ;\H/)\W

F.1. Intuitive explanation of the result

The intuition that the asymptotic consequence of E,,, i.e., the deviation from “perfectly” collapsed features, will only be
some attenuation of W* can also be seen from expending the quadratic term in (82) for H = H® 1, + E,, and eliminating
the terms that are linear in the zero-mean E,,. Specifically, observe that

1 _ Aw _ A
m\|W(H®II+En)7Y|\2F+7HW||%: (WH®1;*Y)+WEnH%+7HWH% (90

1
2Kn
_ 1 T oo g T 2 1 T T (W o 1T 1 2, Aw 2
72Kn”WH®1” Y||F+KnTr(EnW (WH®1n Y))+2Kn||WEn||F+ 5 HWHF

Now, suppose we take the limit n — oo only in the terms that include E,,, we would get

1 g a.s.
—KnTr(EIWT(WH®1I -Y)) —5 0, 91)
1 2 _ Ty T as. 1 o T
2Kn||WEn||F = 2KnTr(EnEnW W) — zoeTr(W W),

under which (90) can be interpreted as
1 _ 0’2 )\W
——|[WH®1, —Y|%+ %|W|%+ =5 | W% 92
S [ WH 9 1] Y2+ 2 W3 + 22w ©2)

This hints that, asymptotically, the minimizer W would be similar to the minimizer that is obtained for the case of o, = 0
(as shown above, this is in fact W*) up to some scaling.

The above intuition is aligned with the results of Theorem 5.1. Yet, contrary to the proof of the theorem, it does not require
having a closed-form expression for the minimizer W. Interestingly, this allows us to generalize it to the extended UFMs.
Specifically, consider the model in (23) with fixed H; = H; ® 1, + E,,, where (W3, Wi H; = H; ® 1,)) is a global
minimizer (as stated in Theorem 4.1). Namely,

1 — A A
W Wi (H, ® 1, +E,) = Y[} + 222 [Wa3 + 220 [Wf3 93)
2Kn 2 2
Repeating the above heuristic, asymptotically, we may interpret this objective as
Aw, 9 AW
W
W3+ 28
which maintains many of the properties of the model analyzed in Theorem 4.1, such as invariance to various orthogonal
transformations and the ability to restate the problem as optimization on the singular values of Wy, Wy and H; (as done in
the proof in Appendix C). Again, this hints that, asymptotically, the minimizer (W2, W) would be similar to the minimizer

that is obtained for the case without E,,, up to some scaling. While we defer a rigorous study of the effect of fixed features
matrix H; on the extended UFMs for future research, the discussion here demonstrates the feasibility of this goal.

LW, (94)

1 — o2
s7c [WaWiHL © 1] = Y5 + S [ Wa W +
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G. More Numerical Results for the Unconstrained Features Model

In this section, we present more numerical results, for experiments that are similar to those in Section 6 but with different
configurations. The definitions of the NC metrics appear in Section 6.

Figure 6 corroborates Theorem 3.1 for K = 5,d = 20, n = 100, Ay = 0.005 and Ay = 0.001 (no bias is used, equivalently
Ap — 00). Both W and H are initialized with standard normal distribution and are optimized with plain gradient descent
with step-size 0.1.

Figure 7 corroborates Theorem 3.2 for K = 5,d = 20,n = 100, Ay = 0.005 and Ay = 0.001 and A\, = 0. All W, H and
b are initialized with standard normal distribution and are optimized with plain gradient descent with step-size 0.1.

Figure 8 corroborates Theorem 4.1 for K = 5,d = 20,n = 100, Aw, = 0.005, Ay, = 0.0025 and Ag;, = 0.001 (no bias
is used). All W5, W and H; are initialized with standard normal distribution scaled by 0.1 and are optimized with plain
gradient descent with step-size 0.1. The metrics are computed for W = W3 and H = W H;. We also compute NC'
and N CQO F for the first layer’s features H = H;. The collapse of W1 H; and H; to OF (demonstrated by NC1 and NC2
converging to zero) is in agreement with Theorems 4.1.

Figure 9 corroborates Theorem 4.2 that considers the nonlinear model in (24). We use K = 5,d = 20,n = 100,
Aw, = 0.005, Ay, = 0.0025, and Ay, = 0.001 (no bias is used). All Wy, W and H; are initialized with standard
normal distribution scaled by 0.1, 0.1 and 0.2, respectively, and are optimized with plain gradient descent with step-size
0.1. The metrics are computed for W = Wy and H = (W1 H;). We also compute NC; and N CQO F for the first layer’s
features H = H; (as well as for the pre-ReLU H = W H,).

Finally, in Figure 10 we show the similarity of the NC metrics that are obtained for the (nonlinear) extended UFM and
metrics obtained by a practical well-trained DNN, namely ResNet18 (He et al., 2016) (composed of 4 ResBlocks), trained
on CIFAR10 dataset via SGD with learning rate 0.05 (divided by 10 every 40 epochs) and weight decay (L5 regularization)
of 5e-4, MSE loss and no bias in the FC layer.
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Figure 6. Verification of Theorem 3.1 (MSE loss with no bias). From left to right: the objective value, NC1 (within-class variability), NC2
(similarity of the features to OF), and NC3 (alignment between the weights and the features).
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Figure 7. Verification of Theorem 3.2 (MSE loss with unregularized bias). From left to right: the objective value, NC1 (within-class
variability), NC2 (similarity of the features to simplex ETF), and NC3 (alignment between the weights and the features).
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Figure 8. Verification of Theorem 4.1 (two levels of features). From left to right: the objective value, NC1 (within-class variability), NC2
(similarity of the features to OF), and NC3 (alignment between the weights and the features).
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Figure 9. Verification of Theorem 4.2 (two levels of features with ReLU activation). From left to right: the objective value, NC1
(within-class variability), NC2 (similarity of the features to OF), and NC3 (alignment between the weights and the features).
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Figure 10. NC metrics for ResNet18 trained on CIFAR10 with MSE loss, weight decay, and no bias. From left to right: training’s objective
value and accuracy, NC1 (within-class variability), NC2 (similarity of the centered features to simplex ETF), and NC3 (alignment between

the weights and the features).



