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Abstract

The modern strategy for training deep neural net-

works for classification tasks includes optimizing

the network’s weights even after the training error

vanishes to further push the training loss toward

zero. Recently, a phenomenon termed “neural

collapse” (NC) has been empirically observed

in this training procedure. Specifically, it has

been shown that the learned features (the output

of the penultimate layer) of within-class samples

converge to their mean, and the means of differ-

ent classes exhibit a certain tight frame structure,

which is also aligned with the last layer’s weights.

Recent papers have shown that minimizers with

this structure emerge when optimizing a simpli-

fied “unconstrained features model” (UFM) with

a regularized cross-entropy loss. In this paper, we

further analyze and extend the UFM. First, we

study the UFM for the regularized MSE loss, and

show that the minimizers’ features can be more

structured than in the cross-entropy case. This

affects also the structure of the weights. Then,

we extend the UFM by adding another layer of

weights as well as ReLU nonlinearity to the model

and generalize our previous results. Finally, we

empirically demonstrate the usefulness of our non-

linear extended UFM in modeling the NC phe-

nomenon that occurs with practical networks.

1. Introduction

Deep neural networks (DNNs) have led to a major improve-

ment in classification tasks (Krizhevsky et al., 2012; Si-

monyan & Zisserman, 2014; He et al., 2016; Huang et al.,

2017). The modern strategy for training these networks

includes optimizing the network’s weights even after the

training error vanishes to further push the training loss to-

ward zero (Hoffer et al., 2017; Ma et al., 2018; Belkin et al.,

2019).
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Preliminary work.

Recently, a phenomenon termed “neural collapse” (NC)

has been empirically observed by Papyan et al. (2020) for

such training with cross-entropy loss. Specifically, via ex-

periments on popular network architectures and datasets,

Papyan et al. (2020) showed four components of the NC:

(NC1) The learned features (the output of the penultimate

layer) of within-class samples converge to their mean (i.e.,

the intraclass variance vanishes); (NC2) After centering by

their global mean, the limiting means of different classes ex-

hibit a simplex equiangular tight frame (ETF) structure (see

Definition 2.2); (NC3) The last layer’s (classifier) weights

are aligned with this simplex ETF; (NC4) As a result, after

such a collapse, the classification is based on the nearest

class center in feature space.

The empirical work in (Papyan et al., 2020) has been fol-

lowed by papers that theoretically examined the emergence

of collapse to simplex ETFs in simplified mathematical

frameworks. Starting from (Mixon et al., 2020), most of

these papers (e.g., (Lu & Steinerberger, 2022; Wojtowytsch

et al., 2021; Fang et al., 2021; Zhu et al., 2021)) consider the

“unconstrained features model” (UFM), where the features

of the training data after the penultimate layer are treated as

free optimization variables (disconnected from the samples).

The rationale behind this model is that modern deep net-

works are extremely overparameterized and expressive such

that their feature mapping can be adapted to any training

data (e.g., even to noise (Zhang et al., 2021)).

While most existing papers consider cross-entropy loss, in

this paper we focus on the mean squared error (MSE) loss,

which has been recently shown to be powerful also for clas-

sification tasks (Hui & Belkin, 2020). (We note that the

occurrence of neural collapse when training practical DNNs

with MSE loss, and its positive effects on their performance,

have been shown empirically in a very recent paper (Han

et al., 2021)). We start with analyzing the (plain) UFM,

showing that for the regularized MSE loss the collapsed fea-

tures can be more structured than in the cross-entropy case

(e.g., they may possess also orthogonality), which affects

also the structure of the weights. Then, we extend the UFM

by adding another layer of weights as well as ReLU non-

linearity to the model and generalize our previous results.

Finally, we empirically demonstrate the usefulness of our

nonlinear extended UFM in modeling the NC phenomenon

that occurs in the training of practical networks.
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2. Background and Related Work

In this section, we provide more details on the empirical NC

phenomenon and its analysis via the unconstrained features

model.

Consider a classification task with K classes and n training

samples per class, i.e., overall N := Kn samples. Let us

denote by yk ∈ R
K the one-hot vector with 1 in its k-th

entry and by xk,i ∈ R
D the i-th training sample of the k-th

class. Most DNN-based classifiers can be modeled as

ψΘ(x) = Whθ(x) + b,

where hθ(·) : RD −→ R
d is the feature mapping (d ≥ K),

and W = [w1, . . . ,wK ]⊤ ∈ R
K×d (w⊤

k denotes the k-

th row of W) and b ∈ R
K are the last layer’s classifier

matrix and bias, respectively. Θ = {W,b,θ} is the set

of the trainable network parameters, which includes the

parameters θ of a nonlinear compositional feature mapping

(e.g., hθ(x) = σ(WL(. . . σ(W2σ(W1x)) . . .) where σ(·)
is an element-wise nonlinear function).

The network parameters are obtained by minimizing an

empirical risk of the form

min
Θ

1

Kn

K
∑

k=1

n
∑

i=1

L (Whθ(xk,i) + b,yk) +R (Θ) , (1)

where L(·, ·) is a loss function (e.g., cross-entropy or MSE)

and R(·) is a regularization term (e.g., squared L2-norm).

Let us denote the feature vector of the i-th training sample

of the k-th class by hk,i (i.e., hk,i = hθ(xk,i)),

We now define the notions of (within-class/intraclass) fea-

ture collapse and the simplex ETF. We use IK to denote the

K ×K identity matrix, 1K to denote the all-ones vector of

size K × 1, and [K] to denote the set {1, 2, ...,K}.

Definition 2.1 (Collapse). We say that the training phase

exhibits a (within-class) collapse if all the feature vectors of

each class are mapped to a single point, i.e.,

hk,i1 = hk,i2

for all k ∈ [K] and i1, i2 training samples of the k-th class.

Definition 2.2 (Simplex ETF). The standard simplex

equiangular tight frame (ETF) is a collection of points in

R
K specified by the columns of

M =

√

K

K − 1

(

IK − 1

K
1K1⊤

K

)

.

Consequently, the standard simplex ETF obeys

M⊤M = MM⊤ =
K

K − 1

(

IK − 1

K
1K1⊤

K

)

.

In this paper, we consider a (general) simplex ETF as

a collection of points in R
d (d ≥ K) specified by the

columns of M̃ ∝
√

K
K−1P

(

IK − 1
K1K1⊤

K

)

, where P ∈
R

d×K is an orthonormal matrix. Consequently, M̃⊤M̃ ∝
K

K−1

(

IK − 1
K1K1⊤

K

)

.

Papyan et al. (2020) empirically showed that training net-

works after reaching zero training error leads to collapse of

the features: they converge to K inter-class means that form

a simplex ETF. Moreover, the last layer’s weights {wk} are

also aligned (i.e., equal up to a scalar factor) to the same sim-

plex ETF, and as a result, the classification turns to be based

on the nearest class center in feature space. This “neural

collapse” (NC) behavior has led to many follow-up papers

(Mixon et al., 2020; Lu & Steinerberger, 2022; Wojtowytsch

et al., 2021; Fang et al., 2021; Zhu et al., 2021; Graf et al.,

2021; Ergen & Pilanci, 2021; Zarka et al., 2021). Some of

them include practical implications of the NC phenomenon,

such as designing layers (multiplication by tight frames fol-

lowed by soft-thresholding) that concentrate within-class

features (Zarka et al., 2021) or fixing the last layer’s weights

to be a simplex ETF (Zhu et al., 2021).

To mathematically show the emergence of a collapse to

simplex ETF, most follow-up papers have considered a sim-

plified framework — the “unconstrained features model”

(UFM), where the features {hk,i} are treated as free opti-

mization variables

min
W,b,{hk,i}

1

Kn

K
∑

k=1

n
∑

i=1

L (Whk,i + b,yk) (2)

+R (W,b, {hk,i}) .

The rationale for considering this model is that modern over-

parameterizd deep networks can adapt their feature map-

ping to almost any training data. Specifically, (Mixon et al.,

2020) considered the unregularized case (no regularization

R) where L is the MSE loss. It is shown there that a sim-

plex EFT is (only) a global minimizer. However, without

penalizing the optimization variables it is easy to see that

there are infinitely many global minimizers of different

structures (which are not necessarily collapses). In fact,

experiments with unregularized MSE loss and randomly

initialized gradient descent typically convergence to non-

collapse global minimizers. (See the dependency on the

initialization in the experiments in (Mixon et al., 2020)).

Other works considered (2) under L2-norm regularized (or

constrained) cross-entropy loss with or without the bias

term (Lu & Steinerberger, 2022; Fang et al., 2021; Zhu

et al., 2021). They showed that, in this case, any global

minimizer has the simplex EFT structure.

In the following section, we first close the gap for the UFM

with regularized MSE loss (this loss has been shown to be

powerful for classification tasks (Hui & Belkin, 2020)). We
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show that in this case the collapsed features can be more

structured than in the cross-entropy case. Then, we turn to

mitigate a limitation of the plain UFM, namely, its inability

to capture any behaviour that happens across depth as it

considers only one level of features. To tackle this, we

extend the UFM by adding another layer of weights as well

as nonlinearity to the model and generalize our previous

results.

3. NC for Unconstrained Features Model with

Regularized MSE Loss

In this section, we study the optimization of the

UFM with regularized MSE loss. Let H =
[h1,1, . . . ,h1,n,h2,1, . . . ,hK,n] ∈ R

d×Kn be the (orga-

nized) unconstrained features matrix, associated with the

one-hot vectors matrix Y = IK ⊗ 1⊤
n ∈ R

K×Kn, where ⊗
denotes the Kronecker product. We consider the optimiza-

tion problem

min
W,H,b

1

2Kn

K
∑

k=1

n
∑

i=1

‖Whk,i + b− yk‖22 (3)

+
λW

2

K
∑

k=1

‖wk‖22 +
λH

2

K
∑

k=1

n
∑

i=1

‖hk,i‖22 +
λb

2
‖b‖22

= min
W,H,b

1

2Kn
‖WH+ b1⊤

N −Y‖2F (4)

+
λW

2
‖W‖2F +

λH

2
‖H‖2F +

λb

2
‖b‖22,

where λW , λH , and λb are positive regularization hyper-

parameters and ‖ · ‖F denotes the Frobenius norm.

We provide complete characterizations of the minimizers

for two settings: (i) the bias-free case, where b = 0 is fixed

(equivalently, λb −→ ∞), and (ii) the unregularized-bias

case, where λb = 0 and b can be optimized. From these

results, several conclusions are deduced also for the case

where λb > 0 and b is optimizable.

In the following subsections, we show that while in the

unregularized-bias case the features and weights of any

global minimizer are aligned in a simplex ETF structure

(similarly to the results obtained for the cross-entropy loss

both with and without bias), in the bias-free case the fea-

tures and weights of any global minimizer are aligned in

an orthogonal frame (OF) structure. Since any orthogonal

frame can trivially be turned into a simplex ETF by reducing

its global mean, in a sense, this collapse is more structured

than a simplex ETF collapse. Giving a precise characteriza-

tion for the minimizers of the bias-free model is important,

as later, based on these results, we will study an extension

of the bias-free UFM, which has another layer of weights

and nonlinearity.

Remark on the optimization procedure. Despite the fact

that (3) is a non-convex problem (due to the multiplication

of W and H), its global minimizers are easily obtained

by simple optimization algorithms, such as plain gradient

descent. This phenomenon follows from the fact that the

optimization landscape of matrix factorization with two

factors includes only global minima (no local minima) and

strict saddle points (roughly speaking, such saddle points

can be easily escaped from by gradient-based algorithms)

(Kawaguchi, 2016; Freeman & Bruna, 2017).

3.1. The Bias-Free Case

We first consider the optimization problem

min
W,H

1

2Kn
‖WH−Y‖2F +

λW

2
‖W‖2F +

λH

2
‖H‖2F ,

(5)

which is a special case of (3) with a fixed b = 0 (or equiva-

lently, λb −→ ∞).

The following theorem characterizes the global solutions of

(5), showing that they necessarily have an orthogonal frame

(OF) structure.

Theorem 3.1. Let d ≥ K and define c := K
√
nλHλW . If

c ≤ 1, then any global minimizer (W∗,H∗) of (5) satisfies

h∗
k,1 = . . . = h∗

k,n =: h∗
k, ∀k ∈ [K], (6)

‖h∗
1‖22 = . . . = ‖h∗

K‖22 =: ρ = (1− c)

√

λW

nλH
, (7)

[h∗
1, . . . ,h

∗
K ]

⊤
[h∗

1, . . . ,h
∗
K ] = ρIK , (8)

w∗
k =

√

nλH/λWh∗
k, ∀k ∈ [K]. (9)

If c > 1, then (5) is minimized by (W∗,H∗) = (0,0).

Proof. See Appendix A. The proof is based on lower bound-

ing the objective by a sequence of inequalities that hold with

equality if and only if the stated conditions are satisfied.

Let us dwell on the implication of this theorem. Denote

H := [h∗
1, . . . ,h

∗
K ] ∈ R

d×K . In the theorem, (6) implies

that the columns of H∗ collapse to the columns of H and

(9) implies that the rows of W∗ are aligned with the the

columns of H. That is,

H∗ = H⊗ 1⊤
n (10)

W∗ =
√

nλH/λWH
⊤
.

The consequence of (7), (8) and (9) is that

W∗W∗⊤ =
nλH

λW
ρIK = (1− c)

√

nλH

λW
IK , (11)

W∗H∗ =

√

nλH

λW
ρIK ⊗ 1⊤

n = (1− c)IK ⊗ 1⊤
n . (12)
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Note that the collapse of W∗ and H∗ here, in the case of

bias-free regularized MSE loss, is to an orthogonal frame

(as H
⊤
H = ρIK). Yet, by defining the global feature

mean h∗
G := 1

N

∑K
k=1

∑n
i=1 h

∗
k,i =

1
K

∑K
k=1 h

∗
k, trivially,

we have that H− h∗
G1

⊤
K = [h∗

1 − h∗
G, . . . ,h

∗
K − h∗

G] is a

simplex ETF. This follows from

(

H− h∗
G1

⊤
K

)⊤ (
H− h∗

G1
⊤
K

)

(13)

=

(

IK − 1

K
1K1⊤

K

)⊤
H

⊤
H

(

IK − 1

K
1K1⊤

K

)

= ρ

(

IK − 1

K
1K1⊤

K

)⊤(

IK − 1

K
1K1⊤

K

)

= ρ

(

IK − 1

K
1K1⊤

K

)

,

where we used h∗
G = 1

KH1K . In that sense, H∗ here

is more structured than in the results reported by previous

works that considered the UFM with regularized/constrained

cross-entropy loss (Lu & Steinerberger, 2022; Fang et al.,

2021; Zhu et al., 2021), where the collapse of W∗ and H∗

is to a simplex ETF.

3.2. The Unregularized-Bias Case

We next turn to consider the optimization problem

min
W,H,b

1

2Kn
‖WH+ b1⊤

N −Y‖2F (14)

+
λW

2
‖W‖2F +

λH

2
‖H‖2F ,

which is a special case of (3) when λb = 0.

The following theorem characterizes the global solutions

of (14), showing that they necessarily have a simplex ETF

structure.

Theorem 3.2. Let d ≥ K and define c := K
√
nλHλW .

If c ≤ 1, then any global minimizer (W∗,H∗,b∗) of (14)

satisfies

b∗ =
1

K
1K , (15)

h∗
k,1 = . . . = h∗

k,n =: h∗
k, ∀k ∈ [K], (16)

h∗
G :=

1

N

K
∑

k=1

n
∑

i=1

h∗
k,i =

1

K

K
∑

k=1

h∗
k = 0, (17)

‖h∗
1‖22 = . . . = ‖h∗

K‖22 =: ρ =
(1− c)(K − 1)

K

√

λW

nλH
,

(18)

[h∗
1, . . . ,h

∗
K ]

⊤
[h∗

1, . . . ,h
∗
K ] = ρ

K

K − 1

(

IK − 1

K
1K1⊤

K

)

,

(19)

w∗
k =

√

nλH/λWh∗
k, ∀k ∈ [K]. (20)

If c > 1, then (14) is minimized by (W∗,H∗,b∗) =
(0,0, 1

K1K).

Proof. See Appendix B. Similarly to the previous theorem,

the proof is based on lower bounding the objective by a

sequence of inequalities that hold with equality if and only

if the stated conditions are satisfied.

The consequence of (18), (19) and (20) is that

W∗W∗⊤ =
nλH

λW
ρ

K

K − 1

(

IK − 1

K
1K1⊤

K

)

, (21)

W∗H∗ =

√

nλH

λW
ρ

K

K − 1

(

IK − 1

K
1K1⊤

K

)

⊗ 1⊤
n .

(22)

Note that the results in Theorem 3.2 (contrary to those in

Theorem 3.1) resemble the results that have been obtained

for the cross-entropy loss (both with and without bias). How-

ever, as far as we know, no such theorem has been reported

for the case of MSE loss.

Remark on the regularized-bias case. From Theorems 3.1

and 3.2, we get the following facts about the global minimiz-

ers. In the bias-free case (λb −→ ∞), H∗ has an OF structure,

and trivially, if we subtract from it the global feature mean

h∗
G, we get that H∗−h∗

G1K has a simplex ETF structure. In

the unregularized-bias case (λb = 0), H∗ has a simplex ETF

structure. Trivially, this is also the structure of H∗−h∗
G1K ,

as the global feature mean h∗
G equals zero in this case. In

both cases, W∗ is aligned with H∗, i.e., it is an OF in the

bias-free case and a simplex ETF in the unregularized-bias

case. The consequence of these results1is that for the fully

regularized MSE loss, where 0 < λb < ∞, the global min-

imizers may have H∗ and W∗ that are neither a simplex

EFT nor an OF. Yet, we empirically observed that still W∗

is aligned with H∗ and that H∗ − h∗
G1K is a simplex ETF

(as may be expected, because these two properties hold in

both extreme settings of λb).

4. Extended Unconstrained Features Model

The UFM, which considers only one level of features, cannot

capture any behaviour that happens across depth. Therefore,

in this section, we extend this model, first with another layer

of weights, and then with the nonlinear ReLU activation

between the two layers of weights.

1In the UFM, note that the (within-class) collapse of the global
minimizers (i.e., h∗

i,k = h
∗

k for all i ∈ [n]) is a consequence of the
symmetry of the loss and the regularization terms w.r.t. the sample
index, which, in our proofs, is exploited by attaining Jensen’s
inequality when averaging over i ∈ [n]. Thus, it does not depend
on whether we regularize the bias term.
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4.1. Unconstrained Features Model With an Additional

Layer

Consider the following optimization problem that corre-

sponds to an extended UFM with two layers of weights,

min
W2,W1,H1

1

2Kn
‖W2W1H1 −Y‖2F (23)

+
λW2

2
‖W2‖2F +

λW1

2
‖W1‖2F +

λH1

2
‖H1‖2F ,

where λW2
, λW1

, and λH1
are regularization hyper-

parameters, and W2 ∈ R
K×d, W1 ∈ R

d×d, H1 ∈ R
d×N .

Observe the similarity between (23) and (5), where (W,H)
in (5) are replaced by (W2,W1H1) or by (W2W1,H1).
Yet, the similarity is only partial because, e.g., if we plug

(W,H) = (W2,W1H1) in (5) we get a regularization

term ‖W1H1‖2F rather than separated ‖W1‖2F and ‖H1‖2F .

To the best of our knowledge, characterization of the mini-

mizers of a multilayer extension of the unconstrained fea-

tures model has not been done so far.

Remark on the optimization procedure. While both (23)

and (5) are non-convex problems, obtaining the global mini-

mizers of (23) is more challenging in practice (e.g., requires

careful initializations). This follows from the fact that the

optimization landscapes of matrix factorization with three

of more factors (or equivalently, non-shallow linear neu-

ral networks) include also non-strict saddle points, which

entangle gradient-based methods (Kawaguchi, 2016).

The following theorem characterizes the global solutions

of (23). It shows that the orthogonal frame structure of

the solutions is maintained despite the intermediate weight

matrix that has been added. Here “∝” denotes proportional,

i.e., equal up to a positive scalar factor.

Theorem 4.1. Let d > K and (W∗
2,W

∗
1,H

∗
1) be a global

minimizer of (23). Then, both H∗
1 and W∗

1H
∗
1 collapse to

orthogonal d×K frames. Also, both W∗
2W

∗
1 and W∗

2 are

orthogonal K × d matrices, where W∗
2W

∗
1 is aligned with

H∗⊤
1 and W∗

2 is aligned with (W∗
1H

∗
1)

⊤. Formally, we

have that H∗
1 = H1 ⊗ 1⊤

n for some H1 ∈ R
d×K , and

(W∗
2W

∗
1)H1 ∝ H

⊤
1 H1 ∝ (W∗

2W
∗
1)(W

∗
2W

∗
1)

⊤ ∝ IK .

Similarly, we have that H∗
2 := W∗

1H
∗
1 = H2 ⊗ 1⊤

n for

some H2 ∈ R
d×K , and

W∗
2H2 ∝ H

⊤
2 H2 ∝ W∗

2W
∗⊤
2 ∝ IK .

Proof. See Appendix C. The proof is based on connecting

the minimization of the three-factors objective with two

sub-problems that include two-factors objectives. More

specifically, the sum of the Frobenius norm regularization

of two matrices is lower bounded (with attainable equality)

by a suitably scaled nuclear norm of their multiplication,

and the minimizers of the latter formulation, which can be

expressed by the minimizers of the original problem, are

analyzed.

Remark on the choice of loss function. The proof of Theo-

rem 4.1 mostly depends on handling the regularization terms

when transforming the problem into two sub-problems, and

can be potentially modified to the case where the cross-

entropy loss is used instead of MSE. Thus, a similar theorem

can be stated for cross-entropy loss, for which it is known

that the minimizers of the plain UFM collapse as well (Zhu

et al., 2021). Naturally, in such a statement the collapse

will be to a simplex ETF rather than to an OF. Indeed, we

empirically observed that also when using the cross-entropy

loss in (23), the global minimizers W∗
1H

∗
1 and H∗

1 collapse

to a simplex ETF structure.

Discussion. In practical “well-trained” DNNs (e.g., see Fig-

ure 5 in the experiments section): (1) structured collapse

appears only in the deepest features; (2) decrease in within-

class variability is obtained monotonically along the depth

of the network. However, Theorem 4.1 shows the emer-

gence of structured (orthogonal) collapse simultaneously at

the two levels of unconstrained features of the model in (23)

— both at the deeper H2 := W1H1 and at the shallower H1

— which does not fit (1). Moreover, the linear link between

H2 and H1 implies that they have the same within-class

variability measured by the metric NC1 (defined in (26) be-

low) as long as the columns of H1 are not in the null space

of W1. This hints that H1 and H2 may have similar val-

ues/slopes for their NC1 metric after random initialization

and along gradient-based optimization (see Appendix D for

more details). Yet, this does not fit (2). Therefore, extend-

ing the model to two levels of features without the addition

of a non-linearity still cannot capture the behavior of prac-

tical DNNs across layers. This encourages us to further

extend the model by adding a nonexpansive nonlinear acti-

vation function (ReLU) between W2 and W1, that naturally

breaks the similarity between the two levels of features.

4.2. Non-Linear Unconstrained Features Model

In this section, we turn to consider a nonlinear version of the

unconstrained features model that has been stated in (23).

Specifically, using the same notation as (23), we consider

the optimization problem

min
W2,W1,H1

1

2Kn
‖W2σ(W1H1)−Y‖2F (24)

+
λW2

2
‖W2‖2F +

λW1

2
‖W1‖2F +

λH1

2
‖H1‖2F ,

where σ(·) = max(0, ·) is the element-wise ReLU function.

The following theorem characterizes the global solutions of

(24) by exploiting the similarity of this problem to the one
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in (23). It shows that the orthogonal frame structure created

by the optimal solution (W∗,H∗) = (W∗
2, σ(W

∗
1H

∗
1)) is

maintained despite the nonlinearity that has been added.

Theorem 4.2. Let d > K and (W∗
2,W

∗
1,H

∗
1) be a global

minimizer of (24). Then, σ(W∗
1H

∗
1) collapses to an orthog-

onal d×K frame and W∗
2 is an orthogonal K × d matrix

that is aligned with σ(W∗
1H

∗
1)

⊤, i.e., H∗
2 := σ(W∗

1H
∗
1) =

H2 ⊗ 1⊤
n for some non-negative H2 ∈ R

d×K , and

W∗
2H2 ∝ H

⊤
2 H2 ∝ W∗

2W
∗⊤
2 ∝ IK .

Proof. See Appendix E. The proof is similar to the one of

Theorem 4.1 and is a direct consequence of the fact that there

exist a non-negative solution to the related sub-problem.

Note that the structure of (W∗,H∗) = (W∗
2, σ(W

∗
1H

∗
1))

is the same as for the model in (23), where the non-linearity

is absent (yet, here H∗ is obviously also non-negative).

This analysis benefits from the fact that the features are

unconstrained, and is in contrast with the usual case, where

the results obtained for linear models do not carry “as is” to

their non-linear counterparts. In Section 6 we show that the

nonlinearity is necessary for capturing the different behavior

of features in different depths during the collapse of practical

networks.

5. Toward Generalizing the UFMs Results to

Models with Data Distribution

Similar to the existing theoretical works that demonstrate

the emergence of collapsed minimizers, in this paper we

considered models where the features matrix H (or H1) is

a free optimization variable. It is of high interest to make

a step forward and instead of freely optimize the features

connect them to some data distribution.

While we defer a comprehensive study that links the models

to data for future research, in this short section we demon-

strate the feasibility of this goal, even for the plain UFM,

through the following theorem.

Theorem 5.1. Consider (5) with λH = λ̃H

n . Denote by

(W∗,H∗) a global minimizer of (5) for some n. Following

Theorem 3.1, observe that H∗ = H ⊗ 1⊤
n for some H ∈

R
d×K . Let H̃n := H ⊗ 1⊤

n + En where En ∈ R
d×Kn

whose entries are i.i.d. random variables with zero mean,

variance σ2
e , and finite fourth moment. Let

Ŵn = argmin
W

1

2Kn
‖WH̃n −Y‖2F +

λW

2
‖W‖2F . (25)

We have that Ŵn
a.s.−−−−→

n−→∞
1

1+σ2
eK

√
λ̃H/λW

W∗.

Proof. See Appendix F. The proof exploits the fact that

Ŵn has a closed-form expression (a function of the features

matrix) that allows linking it to W∗.

Theorem 5.1 shows that as the number of samples tend

to infinity we have that properties of the optimal weights

such as the orthogonal structure and the alignment with H
⊤

(stated for W∗ in Theorem 3.1) are restored even with a

fixed non-collapsed features matrix.

As discussed in Appendix F.1, the intuition that the asymp-

totic consequence of the deviation from “perfectly” col-

lapsed features will only be some attenuation of W∗ can

also be seen from expending the quadratic term in (25) and

eliminating the terms that are linear in the zero-mean En.

This intuition applies also for the extended UFMs with fixed

features (where no closed-form minimizers exist).

6. Numerical Results

In this section, we corroborate our theoretical results with

experiments. For each setting that is considered in the theo-

rems of Sections 3 and 4 we tune a gradient descent scheme

to reach a global minimizer. We plot the optimization’s ob-

jective value curve at different iterations, as well as several

metrics that measure the properties of the NC, which are

computed every 5e3 iterations. The theorems are verified by

demonstrating the convergence of the NC metrics to zero.

We use the following metrics for measuring NC, which are

similar to those in (Papyan et al., 2020; Zhu et al., 2021) but

include also a metric for collapse to orthogonal frames.

First, for a given set of n features for each of K classes,

{hk,i}, we define the per-class and global means as

hk := 1
n

∑n
i=1 hk,i and hG := 1

Kn

∑k
k=1

∑n
i=1 hk,i,

respectively, as well as the mean features matrix H :=
[

h1, . . . ,hK

]

. Next, we define the within-class and

between-class d× d covariance matrices

ΣW :=
1

Kn

K
∑

k=1

n
∑

i=1

(hk,i − hk)(hk,i − hk)
⊤,

ΣB :=
1

K

K
∑

k=1

(hk − hG)(hk − hG)
⊤.

Now, we turn to define three metrics of NC.

NC1 for measuring within-class variability:

NC1 :=
1

K
Tr
(

ΣWΣ
†
B

)

, (26)

where Σ
†
B denotes the pseudoinverse of ΣB .

NC2 for measuring the similarity of the mean features to

the structured frames:

NCETF
2 :=

∥

∥

∥

∥

∥

H
⊤
H

‖H⊤
H‖F

− 1√
K − 1

(IK − 1

K
1K1⊤

K)

∥

∥

∥

∥

∥

F

NCOF
2 :=

∥

∥

∥

∥

∥

H
⊤
H

‖H⊤
H‖F

− 1√
K

IK

∥

∥

∥

∥

∥

F

(27)
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Figure 1. Verification of Theorem 3.1 (MSE loss with no bias). From left to right: the objective value, NC1 (within-class variability), NC2

(similarity of the features to OF), and NC3 (alignment between the weights and the features).

Figure 2. Verification of Theorem 3.2 (MSE loss with unregularized bias). From left to right: the objective value, NC1 (within-class

variability), NC2 (similarity of the features to simplex ETF), and NC3 (alignment between the weights and the features).

where the simplex ETFs and the OFs are normalized to unit

Frobenius norm.

NC3 for measuring the alignment of the last weights and

the mean features:

NC3 :=
∥

∥

∥W/‖W‖F −H
⊤
/‖H‖F

∥

∥

∥

F
. (28)

Figure 1 corroborates Theorem 3.1 for K = 4, d = 20, n =
50 and λW = λH = 0.005 (no bias is used, equivalently

λb −→ ∞). Both W and H are initialized with standard

normal distribution and are optimized with plain gradient

descent with step-size 0.1.

Figure 2 corroborates Theorem 3.2 for K = 4, d = 20, n =
50, λW = λH = 0.005 and λb = 0. All W, H and b

are initialized with standard normal distribution and are

optimized with plain gradient descent with step-size 0.1.

Figure 3 corroborates Theorem 4.1 for K = 4, d = 20, n =
50 and λW2

= λW1
= λH1

= 0.005 (no bias is used). All

W2, W1 and H1 are initialized with standard normal distri-

bution scaled by 0.1 and are optimized with plain gradient

descent with step-size 0.1. The metrics are computed for

W = W2 and H = W1H1. We also compute NC1 and

NCOF
2 for the first layer’s features H = H1. The collapse

of both W1H1 and H1 to OF (demonstrated by NC1 and

NC2 converging to zero) is in agreement with Theorem 4.1.

Figure 4 corroborates Theorem 4.2 that considers the non-

linear model in (24). We use K = 4, d = 20, n = 50 and

λW2
= λW1

= λH1
= 0.005 (no bias is used). All W2,

W1 and H1 are initialized with standard normal distribution

scaled by 0.1 and are optimized with plain gradient descent

with step-size 0.1. The metrics are computed for W = W2

and H = σ(W1H1). We also compute NC1 and NCOF
2

for the first layer’s features H = H1 (as well as for the

pre-ReLU features H = W1H1).

Comparing Figures 3 and 4 (experiments with different

hyper-parameter setting yield similar results, as shown in

Appendix G), we observe that adding the ReLU nonlinearity

to the model better distinguishes between the behavior of

the features in the two levels, both in the rate of the collapse

and in its structure.

Finally, we show the similarity of the NC metrics that are ob-

tained for the nonlinear extended UFM in Figure 4 (rather

than those in Figure 3) and metrics obtained by a practi-

cal well-trained DNN, namely ResNet18 (He et al., 2016)

(composed of 4 ResBlocks), trained on MNIST with SGD

with learning rate 0.05 (divided by 10 every 40 epochs) and

weight decay (L2 regularization) of 5e-4. Figure 5 shows

the results for two cases: 1) MSE loss without bias in the FC

layer; and 2) the widely-used setting, with cross-entropy loss

and bias. (Additional experiments with CIFAR10 dataset

appear in Appendix G). The behaviors of the metrics in both

cases correlate the one of the extended UFM in Figure 4.

7. Conclusion

In this work, we first characterized the (global) minimizers

of the unconstrained features model (UFM) for regular-

ized MSE loss, showing some distinctions from the neural

collapse (NC) results that have been obtain for the cross-

entropy loss in recent works. Then, we mitigated the in-

ability of the plain UFM to capture any NC behaviour that

happens across depth by adding another layer of weights

as well as ReLU nonlinearity to the model and generalized
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Figure 3. Verification of Theorem 4.1 (two levels of features). From left to right: the objective value, NC1 (within-class variability), NC2

(similarity of the features to OF), and NC3 (alignment between the weights and the features).

Figure 4. Verification of Theorem 4.2 (two levels of features with ReLU activation). From left to right: the objective value, NC1

(within-class variability), NC2 (similarity of the features to OF), and NC3 (alignment between the weights and the features).

Figure 5. NC metrics for ResNet18 trained on MNIST. Top: MSE loss, weight decay, and no bias; Bottom: Cross-entropy loss and weight

decay. From left to right: training’s objective value and accuracy, NC1 (within-class variability), NC2 (similarity of the centered features

to simplex ETF), and NC3 (alignment between the weights and the features).

our previous results. Finally, we empirically verified the

theorems and demonstrated the usefulness of our nonlinear

extended UFM in modeling the NC phenomenon that occurs

in the training of practical networks.

The aforementioned experiments further demonstrated the

necessity of the nonlinearity in the model. We note, how-

ever, that adding a ReLU nonlinearity in the plain UFM,

after the single level of features (with no additional layer

of weights), is problematic. Optimizing such a model with

simple gradient-based method after random initialization

(which is the common way to train practical DNNs), is

doomed to fail because the negative entries in the first layer

cannot be modified. The extended model that is considered

in this paper does not have this limitation.

As directions for future research, we believe that analyzing

the gradient descent dynamics of the proposed extended

UFM may lead to insights on gradient-based training of

practical networks that cannot be obtained from the dy-

namics of the plain UFM. Generalizing the results that are

obtained for the plain and extended UFMs to models where

the features cannot be freely optimized, but are rather linked

to some data distribution is also of high interest. In this

front, the result in Theorem 5.1 is encouraging, though, it is

only asymptotic. When the training data is limited and the

question of generalization arises (as in real-world settings),

it may not be possible to show positive effects of NC on

the generalization without departing from the plain UFM,

which has limited expressiveness when the features are fixed.

On the other hand, the proposed nonlinear extended UFM

seems to be more suitable for such analysis, as, in fact, it

has a shallow MLP on top of the first level of features.
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A. Proof of Theorem 3.1

Proof. The proof is based on lower bounding f(W,H) := 1
2N ‖WH−Y‖2F + λW

2 ‖W‖2F + λH

2 ‖H‖2F by a sequence of

inequalities that hold with equality if and only if (6)-(9) are satisfied. First, observe that

1

2N
‖WH−Y‖2F +

λW

2
‖W‖2F +

λH

2
‖H‖2F (29)

=
1

2Kn

K
∑

k=1

n
∑

i=1

‖Whk,i − yk‖22 +
λW

2

K
∑

k=1

‖wk‖22 +
λH

2

K
∑

k=1

n
∑

i=1

‖hk,i‖22

(a)

≥ 1

2Kn

K
∑

k=1

n
1

n

n
∑

i=1

(w⊤
k hk,i − 1)2 +

λW

2

K
∑

k=1

‖wk‖22 +
λH

2

K
∑

k=1

n
1

n

n
∑

i=1

‖hk,i‖22

(b)

≥ 1

2Kn

K
∑

k=1

n

(

w⊤
k

1

n

n
∑

i=1

hk,i − 1

)2

+
λW

2

K
∑

k=1

‖wk‖22 +
λH

2

K
∑

k=1

n

∥

∥

∥

∥

∥

1

n

n
∑

i=1

hk,i

∥

∥

∥

∥

∥

2

2

The inequality (a) follows from ignoring all the entries except k in the K × 1 vector Whk,i − yk, and holds with equality

iff w⊤
k′hk,i = 0 for all k′ 6= k and i ∈ [n]. In (b) we used Jensen’s inequality, which (due to the strict convexity of (· − 1)2

and ‖ · ‖2) holds with equality iff hk,1 = . . . = hk,n for all k ∈ [K]. Indeed, note that the equality condition for (b) is

satisfied by (6), and the equality condition for (a) is a consequence of (6), (8) and (9) (which yield (12)).

Next, to simplify the notation, let us denote hk := 1
n

∑n
i=1 hk,i. Thus, continuing from the last RHS in (29), we have

1

2K

K
∑

k=1

(

w⊤
k hk − 1

)2
+

λW

2
K

1

K

K
∑

k=1

‖wk‖22 +
nλH

2
K

1

K

K
∑

k=1

‖hk‖22 (30)

(c)

≥ 1

2

(

1

K

K
∑

k=1

w⊤
k hk − 1

)2

+
λW

2
K

(

1

K

K
∑

k=1

‖wk‖2
)2

+
nλH

2
K

(

1

K

K
∑

k=1

‖hk‖2

)2

(d)

≥ 1

2

(

1

K

K
∑

k=1

w⊤
k hk − 1

)2

+K
√

nλHλW

(

1

K

K
∑

k=1

‖wk‖2
)(

1

K

K
∑

k=1

‖hk‖2

)

In (c) we used Jensen’s inequality, which holds with equality iff

w⊤
1 h1 = . . . = w⊤

KhK ,

‖w1‖2 = . . . = ‖wK‖2,
‖h1‖2 = . . . = ‖hK‖2,

which are satisfied when conditions (7) and (9) are satisfied. In (d) we used the AM–GM inequality, i.e., a
2 + b

2 ≥
√
ab,

with a = λW

(

1
K

∑K
k=1 ‖wk‖2

)2

and b = nλH

(

1
K

∑K
k=1 ‖hk‖2

)2

. It holds with equality iff a = b, which is satisfied by

(9) that implies λW ‖wk‖22 = nλH‖hk‖22.

Note that so far all the iff conditions are satisfied by both (W∗,H∗) that satisfy (6)-(9) and the trivial (W∗,H∗) = (0,0).
Now, it is left to show that if K

√
nλHλW ≤ 1 then wk and hk must have the same direction, as implied by (9), which will

also yield the orthogonality of {h∗
k} and {w∗

k}. While for K
√
nλHλW > 1, we get the zero minimizer.

As all the inequalities (a)-(d) are attainable with iff conditions, we can consider now (W,H) that satisfy these conditions to

further lower the bound. Specifically, using the symmetry w.r.t. k, the last RHS in (30) turns into the expression

1

2

(

w⊤
k hk − 1

)2
+K

√

nλHλW ‖wk‖2‖hk‖2 (31)

=
1

2
(‖wk‖2‖hk‖2cosα− 1)

2
+K

√

nλHλW ‖wk‖2‖hk‖2,
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where α is the angle between wk and hk. Invoking Lemma A.1 with β = ‖wk‖2‖hk‖2 and c = K
√
nλHλW , we get that

if K
√
nλHλW > 1 then the minimizer is (W∗,H∗) = (0,0) (since ‖wk‖2‖hk‖2 = 0), and otherwise, the minimizer

must obey α = 0. Therefore, we get the desired result that w∗
k and h∗

k must have the same direction. Together with

λW ‖wk‖22 = nλH‖hk‖22 (which is required to attain equality for AM-GM), we get the necessity of w∗
k =

√

nλH/λWh∗
k

in (9). Finally, the orthogonality of {h∗
k} (and similarly of w∗

k) follows from

h∗⊤
k′ h

∗
k =

1
√

nλH/λW

w∗⊤
k′ h

∗
k = 0 ∀k′ 6= k

where we used the previous condition w∗⊤
k′ h∗

k = 0 for all k′ 6= k, which is necessary to attain equality in (29).

Lemma A.1. Let

f̃(α, β) =
1

2
(βcosα− 1)

2
+ cβ, (32)

where β ≥ 0 and c > 0. Then, (i) if c > 1 then f̃ is minimized by β∗ = 0 and the minimal value is 1
2 ; (ii) if c ≤ 1 then f̃ is

minimized by (α∗, β∗) = (0, 1− c) and the minimal value is c− 1
2c

2.

Proof. The proof is based on separately analyzing the cases β = 0, 0 < β < 1 and β ≥ 1.

For β = 0, we get objective value of 1
2 for any α. Assuming that 0 < β < 1, clearly, the minimizer of (32) w.r.t. α is only

α∗ = 0 (or other integer multiplications of 2π). Thus, we have

f̃(0, β) =
1

2
(β − 1)

2
+ cβ =

1

2
β2 − (1− c)β +

1

2
,

which is a “smiling” parabola in β, with feasible minimum at β∗ = max{1− c, 0}. This means that if c > 1 we get the

(feasible) minimum at (α∗, β∗) = (0, 0), for which f̃(α∗, β∗) = 1
2 . If c ≤ 1, we get minimum at (α∗, β∗) = (0, 1 − c)

with objective value of f̃(α∗, β∗) = 1
2c

2 + c(1− c) = c− 1
2c

2.

Assuming that β ≥ 1, the first term in (32) is minimized (eliminated) by α∗ = arccos(1/β). Thus, we get f̃(α∗, β) = cβ,
which is minimized by β∗ = 1, and the objective value is f̃(α∗, β∗) = c. Since c > 0, note that this value is always larger

than the minimal value obtained for β < 1.

To summarize, (i) if c > 1 we get the minimizers f̃(α∗, β∗ = 0) = 1
2 ; (ii) If c ≤ 1 we get the minimizer f̃(α∗ = 0, β∗ =

1− c) = c− 1
2c

2.
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A.1. Alternative proof for Theorem 3.1

We present here an alternative proof for Theorem 3.1. While this proof requires tools that are less elementary than the

preceding proof, in some sense its strategy is more similar to the one we take to handle the three layer case in Appendix C.

We start by computing the gradients of the objective f(W,H) := 1
2N ‖WH−Y‖2F + λW

2 ‖W‖2F + λH

2 ‖H‖2F
∂f

∂H
= W⊤ 1

N
(WH−Y) + λHH, (33)

∂f

∂W
=

1

N
(WH−Y)H⊤ + λWW. (34)

From these expressions we have that any stationary point (W,H) of f (i.e., any point for which all the gradients equal zero)

obeys

λWW⊤W = λHHH⊤ (35)

which follows from W⊤ ∂f
∂W − ∂f

∂HH⊤ = 0. Thus, while W ∈ R
K×d is trivially of rank at most K, we also have that any

stationary H is of rank at most K (since λWW⊤W = λHHH⊤ is of rank at most K).

Denote the following compact SVDs: W = UWΣWV⊤
W and H = UHΣHV⊤

H (note that ΣW ,ΣH ∈ R
K×K since the

SVDs are compact).

At this point we can define the compact SVD of Y ∈ R
K×N as Y = UY ΣY V

⊤
Y , and express the objective function for

stationary points as

f(W,H) =
1

2N
‖UWΣWV⊤

WUHΣHV⊤
H −UY ΣY V

⊤
Y ‖2F +

λW

2
‖UWΣWV⊤

W ‖2F +
λH

2
‖UHΣHV⊤

H‖2F (36)

=
1

2N
‖U⊤

Y UWΣWV⊤
WUHΣHV⊤

HVY −ΣY ‖2F +
λW

2
‖ΣW ‖2F +

λH

2
‖ΣH‖2F

where we used the fact that unitary operators do not change the Frobenius norm.

As ΣY ∈ R
K×K is a diagonal matrix, clearly a global minimizer obeys that U⊤

Y UWΣWV⊤
WUHΣHV⊤

HVY is a diagonal

matrix as well.

Now, we first use the specific structure of Y in our problem. Namely, Y = IK ⊗ 1⊤
n , and therefore UY = IK ,

ΣY =
√
nIK and VY = 1√

n
IK ⊗ 1n. This implies that UWΣWV⊤

WUHΣHV⊤
H ⊗ 1√

n
1n is K × K diagonal. So,

necessarily VH = VH ⊗ 1√
n
1n for some K ×K orthogonal matrix VH .

The fact that a global minimizer H can be decomposed to H = UHΣHV
⊤
H ⊗ 1√

n
1⊤
n implies its collapse — H = H⊗ 1⊤

n

for some H ∈ R
d×K . In other words, we proved that (6) is indeed a necessary property of global minimizers. Denoting the

compact SVD of H by UHΣHV⊤
H

, observe that ΣH =
√
nΣH (also, UHΣHV⊤

H = UHΣHV⊤
H
⊗ 1⊤

n ).

By now we have that the objective function (with a slight abuse of notation in the arguments) of the (collapsed) global

minimizers is given by (recall N = Kn)

f(W,H) =
1

2K
‖UWΣWV⊤

WUHΣHV
⊤
H − IK‖2F +

λW

2
‖ΣW ‖2F +

nλH

2
‖ΣH‖2F . (37)

It follows that the global minimizers are necessarily aligned, i.e., WH = βIK with some constant β, where we used the

spectral symmetry of the regularizations and IK that needs to be fitted in the first term. Hence

WH = UWΣWV⊤
WUHΣHV

⊤
H = βIK ,

which implies that

W = ΣWR⊤ ∈ R
K×d (38)

H = RΣH ∈ R
d×K (39)
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for any orthogonal matrix R ∈ R
d×K (R⊤R = IK). Therefore, we have

f(W,H) =
1

2K
‖ΣWΣH − IK‖2F +

λW

2
‖ΣW ‖2F +

nλH

2
‖ΣH‖2F . (40)

The symmetry and separability of (40) with respect to the spectral values implies that ΣW = σW Ik and ΣH = σHIk. The

values of σW and σH are determined by minimizing the simplified objective (again with a slight abuse of notation)

f(W,H) =
1

2
(σWσH − 1)2 +K

λW

2
σ2
W +K

nλH

2
σ2
H
. (41)

The derivatives are given by

∂

∂σW
f = σH(σWσH − 1) +KλWσW = 0, (42)

∂

∂σH

f = σW (σWσH − 1) +KnλHσH = 0, (43)

implying that λWσ2
W = nλHσ2

H
, which can also be obtained by attaining the AM-GM inequality

K
λW

2
σ2
W +K

nλH

2
σ2
H

≥ K
√

nλHλWσWσH .

Therefore, setting β = σWσH , to find the eigenvalues of the minimizers we just need to find β ≥ 0 that minimizes

f̃(β) =
1

2
(β − 1)

2
+ cβ, (44)

for c = K
√
nλHλW > 0. It can be shown that: (i) if c > 1 then f̃ is minimized by β∗ = 0 and the minimal value is 1

2 ; (ii)

if c ≤ 1 then f̃ is minimized by β∗ = 1− c and the minimal value is c− 1
2c

2.

Summarizing our finding, we have that if c = K
√
nλHλW > 1 then the minimizer is (W,H) = (0,0) (because the

singular values of the matrices are zero). On the other hand, if c = K
√
nλHλW ≤ 1 then the minimizers obey H = H⊗1⊤

n ,

W =
√

nλH

λW
H

⊤
, and

WH = σWσHIK = (1− c)IK

H
⊤
H = σ2

H
IK = (1− c)

√

λW

nλH
IK

WW⊤ = σ2
W IK = (1− c)

√

nλH

λW
IK

as stated in the theorem.
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B. Proof of Theorem 3.2

Proof. First, note that the objective

f(W,H,b) :=
1

2N
‖WH+ b1⊤

N −Y‖2F +
λW

2
‖W‖2F +

λH

2
‖H‖2F (45)

is convex w.r.t. b, for which there is the following closed-form minimizer (which depends on WH)

b∗ =
1

N
(Y −WH)1N =

1

N

K
∑

k=1

n
∑

i=1

(yk −Whk,i). (46)

Since {yk} are one-hot vectors, note that for k′ ∈ [K]

b∗k′ =
n

N
− 1

N

K
∑

k=1

n
∑

i=1

w⊤
k′hk,i =

1

K
−w⊤

k′hG, (47)

where hG := 1
N

∑K
k=1

∑n
i=1 hk,i is the global feature mean.

The proof is based on lower bounding f(W,H,b∗) by a sequence of inequalities that hold with equality if and only if

(15)-(20) are satisfied. Observe that

1

2Kn

K
∑

k=1

n
∑

i=1

‖Whk,i + b∗ − yk‖22 +
λW

2

K
∑

k=1

‖wk‖22 +
λH

2

K
∑

k=1

n
∑

i=1

‖hk,i‖22 (48)

=
1

2K

K
∑

k′=1

K
∑

k=1

1

n

n
∑

i=1

(w⊤
k′(hk,i − hG) +

1

K
− 1k′=k)

2 +
λW

2

K
∑

k=1

‖wk‖22 +
λH

2

K
∑

k=1

n
1

n

n
∑

i=1

‖hk,i‖22

(b)

≥ 1

2K

K
∑

k′=1

K
∑

k=1

(

w⊤
k′(

1

n

n
∑

i=1

hk,i − hG) +
1

K
− 1k′=k

)2

+
λW

2

K
∑

k=1

‖wk‖22 +
λH

2

K
∑

k=1

n

∥

∥

∥

∥

∥

1

n

n
∑

i=1

hk,i

∥

∥

∥

∥

∥

2

2

In (b) we used Jensen’s inequality, which (due to the strict convexity of ‖ · ‖2) holds with equality iff hk,1 = . . . = hk,n for

all k ∈ [K]. Indeed, note that the equality condition for (b) is satisfied by (16).

Next, to simplify the notation, let us denote hk := 1
n

∑n
i=1 hk,i (note that hG = 1

K

∑K
k=1 hk). Thus, continuing from the

last RHS in (48), we have

1

2K

K
∑

k′=1

K
∑

k=1

(

w⊤
k′(hk − hG) +

1

K
− 1k′=k

)2

+
λW

2

K
∑

k=1

‖wk‖22 +
nλH

2

K
∑

k=1

‖hk‖22

=
1

2K

K
∑

k=1

(

w⊤
k (hk − hG)−

K − 1

K

)2

+
K − 1

2K

K
∑

k′=1

1

K − 1

K
∑

k=1,k 6=k′

(

w⊤
k′(hk − hG) +

1

K

)2

+
λW

2
K

1

K

K
∑

k=1

‖wk‖22 +
nλH

2
K

1

K

K
∑

k=1

‖hk‖22
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(c)

≥ 1

2

(

1

K

K
∑

k=1

w⊤
k (hk − hG)−

K − 1

K

)2

+
K − 1

2K

K
∑

k′=1





1

K − 1

K
∑

k=1,k 6=k′

w⊤
k′(hk − hG) +

1

K





2

(49)

+
λW

2
K

(

1

K

K
∑

k=1

‖wk‖2
)2

+
nλH

2
K

(

1

K

K
∑

k=1

‖hk‖2

)2

(d)

≥ 1

2

(

1

K

K
∑

k=1

w⊤
k (hk − hG)−

K − 1

K

)2

+
K − 1

2K

K
∑

k′=1





1

K − 1

K
∑

k=1,k 6=k′

w⊤
k′(hk − hG) +

1

K





2

+K
√

nλHλW

(

1

K

K
∑

k=1

‖wk‖2
)(

1

K

K
∑

k=1

‖hk‖2

)

In (c) we used Jensen’s inequality, which holds with equality iff

w⊤
1 (h1 − hG) = . . . = w⊤

K(hK − hG), (50)

w⊤
k′(hk1

− hG) = w⊤
k′(hk2

− hG), ∀k1, k2 ∈ [K] \ k′, (51)

‖w1‖2 = . . . = ‖wK‖2, (52)

‖h1‖2 = . . . = ‖hK‖2, (53)

which are satisfied when conditions (18) and (20) are satisfied. In (d) we used the AM–GM inequality, i.e., a
2 + b

2 ≥
√
ab,

with a = λW

(

1
K

∑K
k=1 ‖wk‖2

)2

and b = nλH

(

1
K

∑K
k=1 ‖hk‖2

)2

. It holds with equality iff a = b, which is satisfied by

(20) that implies λW ‖wk‖22 = nλH‖hk‖22.

Now, observe that the first two terms in the last RHS of (49) are invariant to the global mean of H (since it is subtracted there

from {hk}). Therefore, the expression can be further reduced by requiring that hG minimizes the term 1
K

∑K
k=1 ‖hk‖2. To

this end, using the triangle inequality ‖hk‖2 ≥ ‖hk − hG‖2 − ‖hG‖2, we have

1

K

K
∑

k=1

‖hk‖2 ≥ 1

K

K
∑

k=1

‖hk − hG‖2 − ‖hG‖2,

which becomes equality when hG = 0, as required by condition (17). From (47), this also implies that b∗ = 1
K1K , as

required by condition (15).

Next, consider w⊤
k′hk = ‖wk′‖2‖hk‖2cosα̃k′,k, where α̃k,k′ denotes the angle between wk′ and hk. From (51)-(53) it

follows that α̃k′,k is exactly the same for any chosen k′ ∈ [K] and k ∈ [K] \ k′. This equiangular property implies that the

minimal (most negative) possible value of cosα̃k′,k is given by cosα̃k′,k = − 1
K−1 , as we have in the standard simplex ETF

(Definition 2.2).

Note that so far all the iff conditions are satisfied by both (W∗,H∗,b∗ = 1
K1K) that satisfy (16)-(20) and the naive

(W∗,H∗,b∗) = (0,0, 1
K1K). Now, it is left to show that if K

√
nλHλW ≤ 1 then wk and hk must have the same

direction, as implied by (20), and the simplex equiangular property of {h∗
k} and {w∗

k}. While for K
√
nλHλW > 1, we get

the naive minimizer.

As all the inequalities used so far are attainable with iff conditions, we can consider now (W,H) that satisfy these conditions

to further lower the bound. Specifically, using the symmetry w.r.t. k, and choosing any k′ 6= k, the last RHS in (49) (with

the required hG = 0) turns into the expression

1

2

(

w⊤
k hk − K − 1

K

)2

+
(K − 1)

2

(

w⊤
k′hk +

1

K

)2

+K
√

nλHλW ‖wk‖2‖hk‖2 (54)

=
1

2

(

‖wk‖2‖hk‖2cosα− K − 1

K

)2

+
(K − 1)

2

(

‖wk‖2‖hk‖2cosα̃+
1

K

)2

+K
√

nλHλW ‖wk‖2‖hk‖2,
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where we used α (resp. α̃) to denote the angle between wk and hk (resp. w′
k and hk), and the necessary condition that

‖wk‖2 = ‖w′
k‖2.

Invoking Lemma B.1 with β = ‖wk‖2‖hk‖2 and c = K
√
nλHλW , we get that if K

√
nλHλW > 1 then the minimizer is

(W∗,H∗) = (0,0) (since ‖wk‖2‖hk‖2 = 0), and otherwise, the minimizer must obey α = 0 and α̃ = arccos(− 1
K−1 ).

Therefore, we get the desired results that w∗
k and h∗

k must have the same direction and w⊤
k′hk = −‖wk‖2‖hk‖2 1

K−1 for

any k′ ∈ [K] and k ∈ [K] \ k′. Together with λW ‖wk‖22 = nλH‖hk‖22 (which is required to attain equality for AM-GM),

we get the necessity of w∗
k =

√

nλH/λWh∗
k in (20). Finally, the simplex equiangular property of {h∗

k} (and similarly of

w∗
k) follows from

h∗⊤
k′ h

∗
k =

√

λW

nλH
w∗⊤

k′ h
∗
k =

√

λW

nλH
‖w∗

k′‖2‖h∗
k‖2cosα̃k′,k = ‖h∗

k‖22cosα̃k′,k = −‖h∗
k‖22

1

K − 1
∀k′ 6= k

where we used the simplex equiangular condition between wk′ and hk (k′ 6= k).

Lemma B.1. Let

f̃(α, α̃, β) =
1

2

(

βcosα− K − 1

K

)2

+
(K − 1)

2

(

βcosα̃+
1

K

)2

+ cβ, (55)

where β ≥ 0, − 1
K−1 ≤ cosα̃ ≤ 1 and c > 0. Then, (i) if c > 1 then f̃ is minimized by β∗ = 0 and the minimal value

is K−1
2K ; (ii) if c ≤ 1 then f̃ is minimized by (α∗, α̃∗, β∗) = (0, arccos(− 1

K−1 ),
(1−c)(K−1)

K ) and the minimal value is
K−1
K

(

c− 1
2c

2
)

.

Proof. The proof is based on separately analyzing the cases β = 0, 0 < β < K−1
K and β ≥ K−1

K .

For β = 0, we get objective value of
(K−1)2

2K2 + K−1
2K2 = K−1

2K for any α and α̃. Assuming that 0 < β < K−1
K , clearly, the

minimizer of (55) w.r.t. α is only α∗ = 0 (or other integer multiplications of 2π), and the minimizer of (55) w.r.t. α̃ is

α̃∗ = arccos(− 1
K−1 ) (recall the assumption − 1

K−1 ≤ cosα̃ ≤ 1). Thus, we have

f̃(0, arccos(
−1

K − 1
), β) =

1

2

(

β − K − 1

K

)2

+
(K − 1)

2

(

− β

K − 1
+

1

K

)2

+ cβ, (56)

=
1

2

K

K − 1
β2 − (1− c)β +

1

2

K − 1

K

which is a “smiling” parabola in β, with feasible minimum at β∗ = max{ (1−c)(K−1)
K , 0}. This means that if c > 1 we get

the (feasible) minimum at (α∗, α̃∗, β∗) = (0, arccos( −1
K−1 ), 0), for which f̃(α∗, α̃∗, β∗) = K−1

2K . If c ≤ 1, we get mini-

mum at (α∗, α̃∗, β∗) = (0, arccos( −1
K−1 ),

(1−c)(K−1)
K ) with objective value of f̃(α∗, α̃∗, β∗) = 1

2
K−1
K

(

1− (1− c)2
)

=
K−1
K

(

c− 1
2c

2
)

.

Assuming that β ≥ K−1
K , the first term in (55) is minimized (eliminated) by α∗ = arccos(K−1

Kβ ), and the second term in

(55) is minimized (eliminated) by α̃∗ = arccos( −1
Kβ ). Thus, we get f̃(α∗, α̃∗, β) = cβ, which is minimized by β∗ = K−1

K ,

and the objective value is f̃(α∗, α̃∗, β∗) = cK−1
K . Since c > 0, note that this value is always larger than the minimal value

obtained for β < K−1
K .

To summarize, (i) if c > 1 we get the minimizers f̃(α∗, α̃∗, β∗ = 0) = K−1
2K ; (ii) If c ≤ 1 we get the minimizer

f̃(α∗ = 0, α̃∗ = arccos(− 1
K−1 ), β

∗ = (1−c)(K−1)
K ) = K−1

K

(

c− 1
2c

2
)

.
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C. Proof of Theorem 4.1

We are going to connect the minimization of the three-factors objective of (23)

f(W2,W1,H1) :=
1

2N
‖W2W1H1 −Y‖2F +

λW2

2
‖W2‖2F +

λW1

2
‖W1‖2F +

λH1

2
‖H1‖2F

with two sub-problems that include two-factors objectives. We will use the following lemma from (Zhu et al., 2021) (which

slightly generalizes a result from (Srebro, 2004)). In this lemma, ‖Z‖∗ denotes the nuclear norm of the matrix Z, i.e., the

sum of its singular values.

Lemma C.1 (Lemma A.3 in (Zhu et al., 2021)). For any fixed Z ∈ R
K×N and α > 0, we have

‖Z‖∗ = min
W,H s.t. WH=Z

1

2

(

1√
α
‖W‖2F +

√
α‖H‖2F

)

. (57)

Note that the minimizers W,H obey W = α1/4UΣ1/2R⊤ and H = α−1/4RΣ1/2V⊤, where UΣV⊤ is the SVD of Z

and R is any orthogonal matrix of suitable dimensions.

The first sub-problem is derived as follows:

min
W2,W1,H1

1

2Kn
‖W2W1H1 −Y‖2F +

λW2

2
‖W2‖2F +

λW1

2
‖W1‖2F +

λH1

2
‖H1‖2F (58)

= min
W2,W1,H1,H s.t. H=W1H1

1

2Kn
‖W2H−Y‖2F +

λW2

2
‖W2‖2F +

λW1

2
‖W1‖2F +

λH1

2
‖H1‖2F (59)

= min
W2,W1,H1,H s.t. H=W1H1

1

2Kn
‖W2H−Y‖2F +

λW2

2
‖W2‖2F (60)

+
√

λW1
λH1

1

2

(

1
√

λH1
/λW1

‖W1‖2F +
√

λH1
/λW1

‖H1‖2F

)

≥ min
W2,H

1

2Kn
‖W2H−Y‖2F +

λW2

2
‖W2‖2F (61)

+
√

λW1
λH1

min
W1,H1 s.t. W1H1=H

1

2

(

1
√

λH1
/λW1

‖W1‖2F +
√

λH1
/λW1

‖H1‖2F

)

= min
W2,H

f1(W2,H) :=
1

2Kn
‖W2H−Y‖2F +

λW2

2
‖W2‖2F +

√

λW1
λH1

‖H‖∗ (62)

where the last equality follows from Lemma C.1.

With very similar steps, the second sub-problem is stated as:

min
W2,W1,H1

1

2Kn
‖W2W1H1 −Y‖2F +

λW2

2
‖W2‖2F +

λW1

2
‖W1‖2F +

λH1

2
‖H1‖2F (63)

≥ min
W,H1

f2(W,H1) :=
1

2Kn
‖WH1 −Y‖2F +

λH1

2
‖H1‖2F +

√

λW2
λW1

‖W‖∗ (64)

Therefore, we can analyze the minimizers of (62) and (64) and translate the results to the minimizers of (23), using the

characteristics of the minimizers in Lemma C.1.

Let us start with (62) and denote λH =
√

λW1
λH1

, i.e.,

f1(W2,H) :=
1

2Kn
‖W2H−Y‖2F +

λW2

2
‖W2‖2F + λH‖H‖∗

The subdifferential and gradient are given by

∂f

∂H
= W⊤

2

1

N
(W2H−Y) + λH∂‖H‖∗, (65)

∂f

∂W2
=

1

N
(W2H−Y)H⊤ + λW2

W2, (66)
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where ∂‖H‖∗ = {UHV⊤
H + Z, Z ∈ R

d×N | U⊤
HZ = 0,ZVH = 0, ‖Z‖ ≤ 1} when UHΣHV⊤

H is the SVD of

H ∈ R
d×N (see, e.g., (Watson, 1992; Recht et al., 2010)). From these expressions we have that any stationary point

(W2,H) of f1 (i.e., any point for which all the gradients equal zero) obeys

λW2
W⊤

2 W2 = λHUHΣHU⊤
H (67)

which follows from W⊤
2

∂f1
∂W2

− ∂f1
∂HH⊤ = 0, and (UHV⊤

H +Z)H⊤ = UHΣHU⊤
H . Thus, while W2 ∈ R

K×d is trivially

of rank at most K, we also have that any stationary H is of rank at most K (since UHΣHU⊤
H is of rank at most K).

Thus, let us consider the compact SVDs: W2 = UWΣWV⊤
W and H = UHΣHV⊤

H (note that ΣW ,ΣH ∈ R
K×K since

the SVDs are compact). Denote also the compact SVD of Y ∈ R
K×N as Y = UY ΣY V

⊤
Y . The objective function for

stationary points can be expressed as

f1(W2,H) =
1

2N
‖UWΣWV⊤

WUHΣHV⊤
H −UY ΣY V

⊤
Y ‖2F +

λW2

2
‖W2‖2F + λH‖H‖∗ (68)

=
1

2N
‖U⊤

Y UWΣWV⊤
WUHΣHV⊤

HVY −ΣY ‖2F +
λW2

2
‖ΣW ‖2F + λH‖ΣH‖∗

where we used the fact that unitary operators do not change the Frobenius norm, as well as the fact that the Frobenius and

nuclear norms depend only on the singular values.

As ΣY ∈ R
K×K is a diagonal matrix, clearly a global minimizer obeys that U⊤

Y UWΣWV⊤
WUHΣHV⊤

HVY is a diagonal

matrix as well.

Now, we first use the specific structure of Y in our problem. Namely, Y = IK ⊗ 1⊤
n , and therefore UY = IK ,

ΣY =
√
nIK and VY = 1√

n
IK ⊗ 1n. This implies that UWΣWV⊤

WUHΣHV⊤
H ⊗ 1√

n
1n is K × K diagonal. So,

necessarily VH = VH ⊗ 1√
n
1n for some K ×K orthogonal matrix VH .

The fact that a global minimizer H can be decomposed to H = UHΣHV
⊤
H ⊗ 1√

n
1⊤
n implies its collapse — H = H⊗ 1⊤

n

for some H ∈ R
d×K . Denoting the compact SVD of H by UHΣHV⊤

H
, observe that ΣH =

√
nΣH (also, UHΣHV⊤

H =

UHΣHV⊤
H
⊗ 1⊤

n ).

By now we have that the objective function (with a slight abuse of notation in the arguments) of the (collapsed) global

minimizers is given by (recall N = Kn)

f1(W2,H) =
1

2K
‖UWΣWV⊤

WUHΣHV
⊤
H − IK‖2F +

λW2

2
‖ΣW ‖2F +

√
nλH‖ΣH‖∗. (69)

It follows that the global minimizers are necessarily aligned, i.e., W2H = βIK with some constant β, where we used the

spectral symmetry of the regularizations and IK that needs to be fitted in the first term. Hence

W2H = UWΣWV⊤
WUHΣHV

⊤
H = βIK ,

which implies that

W2 = ΣWR⊤ ∈ R
K×d (70)

H = RΣH ∈ R
d×K (71)

for any orthogonal matrix R ∈ R
d×K (R⊤R = IK). Therefore, we have

f1(W2,H) =
1

2K
‖ΣWΣH − IK‖2F +

λW2

2
‖ΣW ‖2F +

√
nλH‖ΣH‖∗. (72)

The symmetry and separability of (72) with respect to the spectral values implies that ΣW = σW Ik and ΣH = σHIk. The

values of σW and σH are determined by minimizing the simplified objective (again with a slight abuse of notation and

recalling λH =
√

λW1
λH1

)

f1(W2,H) =
1

2
(σWσH − 1)2 +K

λW2

2
σ2
W +K

√

nλW1
λH1

σH . (73)
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The derivatives are given by

∂

∂σW
f1 = σH(σWσH − 1) +KλW2

σW = 0, (74)

∂

∂σH

f1 = σW (σWσH − 1) +K
√

nλW1
λH1

= 0, (75)

implying that λW2
σ2
W =

√

nλW1
λH1

σH . Plugging σH =
λW2

σ2

W√
nλW1

λH1

in (75) we get

λW2
σ4
W −

√

nλW1
λH1

σW +KnλW1
λH1

= 0

The value of σW can be computed numerically as the positive root of the above 4th degree polynomial (the analytical result

is extremely cumbersome) and the same goes for the value of σH . Yet, even without stating these exact constants we can

summarize our findings for (62) as follows. We have shown that the minimizers obey H = H ⊗ 1⊤
n , where H = σHR

and W2 = σWR⊤ for some non-negative constants σH , σW (which depend on K,n, λW2
, λW1

, λH1
) and any orthogonal

matrix R ∈ R
d×K . Therefore, W2 ∝ H

⊤
, and

W2H ∝ H
⊤
H ∝ W2W

⊤
2 ∝ IK .

Now, since H = σHR ⊗ 1⊤
n , from Lemma C.1 we know that the minimal objective value of (62) is attained by the

minimizers W1,H1 of (23) for which we have W1 = 4

√

λH1
/λW1

√
σHRR̃⊤ and H1 = 1

4
√

λH1
/λW1

√
σHR̃⊗1⊤

n for any

orthogonal matrix R̃ ∈ R
d×K . (Note that the last two expressions require the singular value of H, which is σH =

√
nσH ).

We conclude that for d > K and (W∗
2,W

∗
1,H

∗
1) being a (nonzero) global minimizer of (23), we have that W∗

1H
∗
1 collapses

to an orthogonal d×K frame, and W∗
2 is an orthogonal K × d matrix that is aligned with W∗

1H
∗
1.

Analyzing the minimizers of (64) by steps which are very similar to those used for (62) yields the following.

The minimizers of (64) obey H1 = H1 ⊗ 1⊤
n , where H1 = σH1

R̃ and W = σW R̃⊤ for some non-negative constants

σH1
, σW (which depend on K,n, λW2

, λW1
, λH1

) and any orthogonal matrix R̃ ∈ R
d×K . Therefore, W ∝ H

⊤
1 , and

WH1 ∝ H
⊤
1 H1 ∝ WW⊤ ∝ IK .

Now, since W = σW R̃⊤, from Lemma C.1 we know that the minimal objective value of (64) is attained by the minimizers

W2,W1 of (23) for which we have W2 = 4

√

λW1
/λW2

√
σWR⊤ and W1 = 1

4
√

λW1
/λW2

√
σWRR̃⊤ for any orthogonal

matrix R ∈ R
d×K .

We conclude that for d > K and (W∗
2,W

∗
1,H

∗
1) being a (nonzero) global minimizer of (23), we have that H∗

1 collapses to

an orthogonal d×K frame, and W∗
2W

∗
1 is an orthogonal K × d matrix that is aligned with H∗

1.
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D. On the Within-Class Variability Metric NC1

In this section, we discuss some properties of the within-class variability of the features H1 and H2 := W1H1 for the model

in (23). First, let us define the metric NC1 that is used to measure the within-class variability. Note that this metric is related

to the classical Fisher’s ratio. For a given (organized) features matrix H = [h1,1, . . . ,h1,n,h2,1, . . . ,hK,n] ∈ R
d×Kn,

denote the per-class and global means as hk := 1
n

∑n
i=1 hk,i and hG := 1

Kn

∑k
k=1

∑n
i=1 hk,i, respectively. Define the

within-class and between-class d× d covariance matrices

ΣW (H) :=
1

Kn

K
∑

k=1

n
∑

i=1

(hk,i − hk)(hk,i − hk)
⊤,

ΣB(H) :=
1

K

K
∑

k=1

(hk − hG)(hk − hG)
⊤.

We define the corresponding within-class variability metric as

NC1(H) :=
1

K
Tr
(

ΣW (H)Σ†
B(H)

)

, (76)

where Σ
†
B denotes the pseudoinverse of ΣB .

From the definitions above, observe that ΣW (H2) = W1ΣW (H1)W
⊤
1 and ΣB(H2) = W1ΣB(H1)W

⊤
1 . Therefore,

NC1(H2) =
1

K
Tr
(

W1ΣW (H1)W
⊤
1 (W1ΣB(H1)W

⊤
1 )

†) (77)

=
1

K
Tr
(

W1ΣW (H1)W
⊤
1 W

⊤†
1 Σ

†
B(H1)W

†
1

)

=
1

K
Tr

(

W
†
1W1ΣW (H1)

(

W
†
1W1

)⊤
Σ

†
B(H1)

)

.

Now, by their definitions, the columns of ΣW (H1) and ΣB(H1) are in the range of H1. Thus, since W
†
1W1 is an

orthogonal projection matrix (onto the subspace spanned by the rows of W1), we have that

NC1(H2) =
1

K
Tr

(

W
†
1W1ΣW (H1)

(

W
†
1W1

)⊤
Σ

†
B(H1)

)

=
1

K
Tr
(

ΣW (H1)Σ
†
B(H1)

)

= NC1(H1)

is guaranteed when there are no columns of H1 in the null space of W1. One such case is at initialization, when W1

is initialized by continuous random distribution and thus its rows span R
d with probability 1. Moreover, after random

initialization, we empirically observed that H1 and H2 also have similar NC1 along gradient-based optimization (see

Figure 3), which is due to having similar K dimensional subspaces dominantly spanned by the columns of H1 and the rows

of W1 (as well as those of W2). At convergence to the a global minimizer, again it is guaranteed that there are no columns

of H1 in the null space of W1. Specifically, as demonstrated in the proof of Theorem 4.1, the global minimizers necessarily

have that W∗⊤
2 ,W∗⊤

1 and H∗
1 have exactly the same K dimensional range (column space). Briefly, denoting the objective of

(23) by f , this follows from W∗
2W

∗⊤
2 ∝ IK , as well as λW2

W∗⊤
2 W∗

2 = λW1
W∗

1W
∗⊤
1 and λW1

W∗⊤
1 W∗

1 = λH1
H∗

1H
∗⊤
1 ,

where the last two equalities follow from W⊤
1

∂f
∂W1

− ∂f
∂H1

H⊤
1 = 0 and W⊤

2
∂f

∂W2

− ∂f
∂W1

W⊤
1 = 0, respectively.
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E. Proof of Theorem 4.2

The proof is similar to the one of Theorem 4.1 and is a direct consequence of the fact that there exist a non-negative solution

to a suitable sub-problem.

First note that if the problem in (23) has a global minimizer (W∗
2,W

∗
1,H

∗
1) with non-negative multiplication W∗

1H
∗
1 ≥ 0

(i.e., all the entries in the matrix W∗
1H

∗
1 are non-negative), then

min
W2,W1,H1

1

2Kn
‖W2W1H1 −Y‖2F +

λW2

2
‖W2‖2F +

λW1

2
‖W1‖2F +

λH1

2
‖H1‖2F (78)

= min
W2,W1,H1

1

2Kn
‖W2σ(W1H1)−Y‖2F +

λW2

2
‖W2‖2F +

λW1

2
‖W1‖2F +

λH1

2
‖H1‖2F

where the RHS is the problem in (24). Note that without the existence of a non-negative solution to (23), we have that the

RHS is an upper bound on the LHS, since the ReLU can be translated to a non-negativity constraint that reduces the feasible

set of the minimization problem.

Now we can use the result from the proof of Theorem 4.1 that given a minimizer of (23), (W∗
2,W

∗
1,H

∗
1), then (W∗

2,H
∗) =

(W∗
2,W

∗
1H

∗
1) minimizes

f1(W2,H) :=
1

2Kn
‖W2H−Y‖2F +

λW2

2
‖W2‖2F +

√

λW1
λH1

‖H‖∗,

and has the structure H∗ = H⊗ 1⊤
n and

W∗
2 = Σ∗

WR⊤ ∈ R
K×d (79)

H = RΣ∗
H

∈ R
d×K (80)

where Σ∗
W ,Σ∗

H
∈ R

K×K are non-negative diagonal matrices and R ∈ R
d×K can be any orthogonal matrix (R⊤R = IK ).

(The freedom in R is due to the fact that the problem can be expressed only in terms of singular values).

Now, we can get the existence of the desired non-negative matrices by considering

R =

[

IK
0(d−K)×K

]

,

for which

W∗
2 = Σ∗

W

[

IK 0K×(d−K)

]

W∗
1H

∗
1 =

[

IK
0(d−K)×K

]

Σ∗
H
⊗ 1⊤

n

are clearly non-negative. Consequently, the orthogonal collapse and alignment properties of W∗
2 and W∗

1H
∗
1 constructed

from global minimizers of (23) carry on to W∗
2 and σ(W∗

1H
∗
1) constructed from global minimizers of (24).
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F. Proof of Theorem 5.1

As stated in the theorem, we consider (5) with λH = λ̃H

n :

min
W,H

1

2Kn
‖WH−Y‖2F +

λW

2
‖W‖2F +

λ̃H

2n
‖H‖2F , (81)

and denote by (W∗,H∗) a global minimizer. From Theorem 3.1 we have that H∗ = H⊗ 1⊤
n and W∗ =

√

λ̃H/λWH
⊤

for some H ∈ R
d×K that obeys H

⊤
H = ρIK = (1−K

√

λ̃HλW )
√

λW

λ̃H

IK = (
√

λW

λ̃H

−KλW )IK .

Note that for any value of n, we have that (W,H) = (W∗,H∗
n := H⊗ 1⊤

n ) is a global minimizer of (81).

We turn to examine (81) for fixed H and minimization only w.r.t. W. Namely,

Ŵn = argmin
W

1

2Kn
‖WH−Y‖2F +

λW

2
‖W‖2F . (82)

This strongly convex problem has the following closed-form solution

Ŵn(H) =
1

Kn
YH⊤

(

1

Kn
HH⊤ + λW Id

)−1

. (83)

Recalling that Y = IK ⊗ 1⊤
n , for H = H∗

n = H⊗ 1⊤
n we have that

Ŵn(H
∗
n) =

1

Kn
(IKH

⊤ ⊗ 1⊤
n 1n)

(

1

Kn
(HH

⊤ ⊗ 1⊤
n 1n) + λW Id

)−1

(84)

=
1

K
H

⊤
(

1

K
HH

⊤
+ λW Id

)−1

.

This expression can be simplified as follows

Ŵn(H
∗
n) =

1

KλW
H

⊤
(

1

KλW
HH

⊤
+ Id

)−1

(85)

=
1

KλW

(

ρ

KλW
IK + IK

)−1

H
⊤

=
1

KλW + ρ
H

⊤
,

where the second equality follows from the “push-through identity” and the fact that H
⊤
H = ρIK . Note that, as expected,

if we fixed H to be H∗
n, a global minimizer of the joint optimization w.r.t. (W,H), then we get Ŵn = W∗. Indeed,

Ŵn(H
∗
n) =

1
KλW+ρH

⊤
= 1√

λW /λ̃H

H
⊤
= W∗.

Let us turn to examine Ŵn for H = H̃n where H̃n := H⊗ 1⊤
n +En with En ∈ R

d×Kn whose entries are i.i.d. random

variables with zero mean, variance σ2
e , and finite fourth moment. Hence, E [En] = 0 and E

[

EnE
⊤
n

]

= Knσ2
eId.

Substituting H = H̃n in (83), we get

Ŵn(H̃n) =
1

Kn
YH̃⊤

n

(

1

Kn
H̃nH̃

⊤
n + λW Id

)−1

. (86)

Based on the law of large numbers, as well as the convergence of sample covariance matrices of random variables with finite

fourth moment (Vershynin, 2012), we have the following limits

1

Kn
YH̃⊤

n =
1

K
H+

1

Kn
(IK ⊗ 1⊤

n )E
⊤
n

a.s.−−−−→
n−→∞

1

K
H, (87)

1

Kn
H̃nH̃

⊤
n =

1

K
HH

⊤
+

1

Kn
(H⊗ 1⊤

n )E
⊤
n +

1

Kn
En(H

⊤ ⊗ 1n) +
1

Kn
EnE

⊤
n

a.s.−−−−→
n−→∞

1

K
HH

⊤
+ σ2

eId.
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Therefore,

Ŵn(H̃n)
a.s.−−−−→

n−→∞
1

K
H

(

1

K
HH

⊤
+ σ2

eId + λW Id

)−1

. (88)

Repeating the simplifications of (85) (with σ2
e + λW in lieu of λW ) we get

Ŵn(H̃n)
a.s.−−−−→

n−→∞
1

K(σ2
e + λW ) + ρ

H
⊤
=

1

Kσ2
e +

√

λW /λ̃H

H
⊤
. (89)

Comparing (89) with W∗ = 1√
λW /λ̃H

H
⊤

, we get the result that is stated in the theorem:

Ŵn(H̃n)
a.s.−−−−→

n−→∞

√

λW /λ̃H

Kσ2
e +

√

λW /λ̃H

W∗ =
1

1 + σ2
eK
√

λ̃H/λW

W∗.

F.1. Intuitive explanation of the result

The intuition that the asymptotic consequence of En, i.e., the deviation from “perfectly” collapsed features, will only be

some attenuation of W∗ can also be seen from expending the quadratic term in (82) for H = H⊗ 1⊤
n +En and eliminating

the terms that are linear in the zero-mean En. Specifically, observe that

1

2Kn
‖W(H⊗ 1⊤

n +En)−Y‖2F +
λW

2
‖W‖2F =

1

2Kn
‖(WH⊗ 1⊤

n −Y) +WEn‖2F +
λW

2
‖W‖2F (90)

=
1

2Kn
‖WH⊗ 1⊤

n −Y‖2F +
1

Kn
Tr(E⊤

nW
⊤(WH⊗ 1⊤

n −Y)) +
1

2Kn
‖WEn‖2F +

λW

2
‖W‖2F .

Now, suppose we take the limit n −→ ∞ only in the terms that include En, we would get

1

Kn
Tr(E⊤

nW
⊤(WH⊗ 1⊤

n −Y))
a.s.−−−−→

n−→∞
0, (91)

1

2Kn
‖WEn‖2F =

1

2Kn
Tr(EnE

⊤
nW

⊤W)
a.s.−−−−→

n−→∞
1

2
σ2
eTr(W⊤W),

under which (90) can be interpreted as

1

2Kn
‖WH⊗ 1⊤

n −Y‖2F +
σ2
e

2
‖W‖2F +

λW

2
‖W‖2F . (92)

This hints that, asymptotically, the minimizer Ŵ would be similar to the minimizer that is obtained for the case of σe = 0
(as shown above, this is in fact W∗) up to some scaling.

The above intuition is aligned with the results of Theorem 5.1. Yet, contrary to the proof of the theorem, it does not require

having a closed-form expression for the minimizer Ŵ. Interestingly, this allows us to generalize it to the extended UFMs.

Specifically, consider the model in (23) with fixed H1 = H1 ⊗ 1⊤
n +En, where (W∗

2,W
∗
1,H

∗
1 = H1 ⊗ 1⊤

n ) is a global

minimizer (as stated in Theorem 4.1). Namely,

1

2Kn
‖W2W1(H1 ⊗ 1⊤

n +En)−Y‖2F +
λW2

2
‖W2‖2F +

λW1

2
‖W1‖2F (93)

Repeating the above heuristic, asymptotically, we may interpret this objective as

1

2Kn
‖W2W1H1 ⊗ 1⊤

n −Y‖2F +
σ2
e

2
‖W2W1‖2F +

λW2

2
‖W2‖2F +

λW1

2
‖W1‖2F , (94)

which maintains many of the properties of the model analyzed in Theorem 4.1, such as invariance to various orthogonal

transformations and the ability to restate the problem as optimization on the singular values of W2,W1 and H1 (as done in

the proof in Appendix C). Again, this hints that, asymptotically, the minimizer (Ŵ2,Ŵ1) would be similar to the minimizer

that is obtained for the case without En, up to some scaling. While we defer a rigorous study of the effect of fixed features

matrix H1 on the extended UFMs for future research, the discussion here demonstrates the feasibility of this goal.
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G. More Numerical Results for the Unconstrained Features Model

In this section, we present more numerical results, for experiments that are similar to those in Section 6 but with different

configurations. The definitions of the NC metrics appear in Section 6.

Figure 6 corroborates Theorem 3.1 for K = 5, d = 20, n = 100, λW = 0.005 and λH = 0.001 (no bias is used, equivalently

λb −→ ∞). Both W and H are initialized with standard normal distribution and are optimized with plain gradient descent

with step-size 0.1.

Figure 7 corroborates Theorem 3.2 for K = 5, d = 20, n = 100, λW = 0.005 and λH = 0.001 and λb = 0. All W, H and

b are initialized with standard normal distribution and are optimized with plain gradient descent with step-size 0.1.

Figure 8 corroborates Theorem 4.1 for K = 5, d = 20, n = 100, λW2
= 0.005, λW1

= 0.0025 and λH1
= 0.001 (no bias

is used). All W2, W1 and H1 are initialized with standard normal distribution scaled by 0.1 and are optimized with plain

gradient descent with step-size 0.1. The metrics are computed for W = W2 and H = W1H1. We also compute NC1

and NCOF
2 for the first layer’s features H = H1. The collapse of W1H1 and H1 to OF (demonstrated by NC1 and NC2

converging to zero) is in agreement with Theorems 4.1.

Figure 9 corroborates Theorem 4.2 that considers the nonlinear model in (24). We use K = 5, d = 20, n = 100,

λW2
= 0.005, λW1

= 0.0025, and λH1
= 0.001 (no bias is used). All W2, W1 and H1 are initialized with standard

normal distribution scaled by 0.1, 0.1 and 0.2, respectively, and are optimized with plain gradient descent with step-size

0.1. The metrics are computed for W = W2 and H = σ(W1H1). We also compute NC1 and NCOF
2 for the first layer’s

features H = H1 (as well as for the pre-ReLU H = W1H1).

Finally, in Figure 10 we show the similarity of the NC metrics that are obtained for the (nonlinear) extended UFM and

metrics obtained by a practical well-trained DNN, namely ResNet18 (He et al., 2016) (composed of 4 ResBlocks), trained

on CIFAR10 dataset via SGD with learning rate 0.05 (divided by 10 every 40 epochs) and weight decay (L2 regularization)

of 5e-4, MSE loss and no bias in the FC layer.
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Figure 6. Verification of Theorem 3.1 (MSE loss with no bias). From left to right: the objective value, NC1 (within-class variability), NC2

(similarity of the features to OF), and NC3 (alignment between the weights and the features).

Figure 7. Verification of Theorem 3.2 (MSE loss with unregularized bias). From left to right: the objective value, NC1 (within-class

variability), NC2 (similarity of the features to simplex ETF), and NC3 (alignment between the weights and the features).

Figure 8. Verification of Theorem 4.1 (two levels of features). From left to right: the objective value, NC1 (within-class variability), NC2

(similarity of the features to OF), and NC3 (alignment between the weights and the features).

Figure 9. Verification of Theorem 4.2 (two levels of features with ReLU activation). From left to right: the objective value, NC1

(within-class variability), NC2 (similarity of the features to OF), and NC3 (alignment between the weights and the features).

Figure 10. NC metrics for ResNet18 trained on CIFAR10 with MSE loss, weight decay, and no bias. From left to right: training’s objective

value and accuracy, NC1 (within-class variability), NC2 (similarity of the centered features to simplex ETF), and NC3 (alignment between

the weights and the features).


