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ABSTRACT

Turbulent high-energy astrophysical systems often feature asymmetric energy injection: for instance, Alfvén waves propagating
from an accretion disc into its corona. Such systems are ‘imbalanced’: the energy fluxes parallel and antiparallel to the large-scale
magnetic field are unequal. In the past, numerical studies of imbalanced turbulence have focused on the magnetohydrodynamic
regime. In this study, we investigate externally driven imbalanced turbulence in a collision-less, ultrarelativistically hot,
magnetized pair plasma using 3D particle-in-cell (PIC) simulations. We find that the injected electromagnetic momentum
efficiently converts into plasma momentum, resulting in net motion along the background magnetic field with speeds up to a
significant fraction of lightspeed. This discovery has important implications for the launching of accretion disc winds. We also
find that although particle acceleration in imbalanced turbulence operates on a slower time-scale than in balanced turbulence,
it ultimately produces a power-law energy distribution similar to balanced turbulence. Our results have ramifications for black

hole accretion disc coronae, winds, and jets.

Key words: acceleration of particles — plasmas —relativistic processes —turbulence.

1 INTRODUCTION

High-energy astrophysical systems such as accretion discs, jets,
and pulsar wind nebulae often comprise collision-less, relativisti-
cally hot plasmas and are likely turbulent (Shakura & Sunyaev
1973; Sparks, Biretta & Macchetto 1996; Balbus & Hawley 1998;
Hester 2008). Turbulence in systems with magnetization (the ratio
of magnetic enthalpy to plasma enthalpy) o = 1 can efficiently
accelerate particles, as recently demonstrated in particle-in-cell (PIC)
simulations (Zhdankin et al. 2017, 2018b; Comisso & Sironi 2018,
2019). Such non-thermal particle acceleration (NTPA) could explain
the power laws seen in spectra of jets, pulsar wind nebulae, and stellar
mass black hole X-ray binary systems (Remillard & McClintock
2006; Abdo et al. 2009; Aleksi¢ et al. 2015).

These previous studies of turbulence in relativistic collision-less
plasmas have assumed symmetric energy injection into the plasma.
However, this assumption is not true in a variety of space and as-
trophysical systems where turbulence is preferentially stirred on one
side of the system. For example, in an accretion disc—wind system,
turbulence in the disc may shake the footpoint of an open large-
scale magnetic field line, sending Alfvén waves predominately away
from the disc’s mid-plane and into the corona (Chandran, Foucart &
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Tchekhovskoy 2018). This asymmetric propagation of Alfvén waves
could impact NTPA. In addition, if efficiently coupled to the plasma,
such asymmetrically injected electromagnetic momentum could
result in bulk motion of the plasma — an outflow/wind. Understanding
both NTPA and the possible formation of an outflow necessitates
studying turbulence with asymmetric momentum injection — the so-
called ‘imbalanced’ turbulence.

Most studies of imbalanced turbulence have focused on the mag-
netohydrodynamic (MHD) regime. Canonical phenomenological
models for strong, ‘balanced” MHD turbulence consider ensembles
of counter-propagating Alfvén waves with equal energy fluxes along
a background magnetic field (Iroshnikov 1964; Kraichnan 1965;
Goldreich & Sridhar 1995; Thompson & Blaes 1998; Boldyrev
2006); see Schekochihin (2020) for a recent review. Phenomeno-
logical models for imbalanced turbulence relax the assumption of
equal fluxes, leading to predictions that are ripe for numerical
exploration (Lithwick, Goldreich & Sridhar 2007; Beresnyak &
Lazarian 2008; Chandran 2008; Perez & Boldyrev 2009). Nu-
merical attempts to model imbalanced turbulence in the MHD
regime have proven difficult due to questions about the effects
of varying dissipation prescriptions, limited dynamic ranges of
accessible simulation domains, and limited run times (Beresnyak
& Lazarian 2009, 2010; Perez & Boldyrev 2010a,b; Mason et al.
2012; Perez et al. 2012). Some numerical studies have extended
beyond standard MHD to the relativistic MHD regime using the
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force-free assumption that o > 1 (Cho & Lazarian 2014; Kim &
Cho 2015).

Below MHD scales, analytic models of imbalanced kinetic
turbulence have recently been formulated in the non-relativistic
regime (Voitenko & De Keyser 2016; Passot & Sulem 2019;
Gogoberidze & Voitenko 2020). These models of collision-less
imbalanced turbulence can be tested against measurements of the
solar wind (Chen 2016). Meanwhile, numerical studies have made
approximations of infinite ion-to-electron mass ratio to model scales
below the proton gyroradius (Cho & Kim 2016), demonstrated the
importance of finite Larmor radius effects on the turbulent energy
cascade (Meyrand et al. 2021), or employed a diffusive model to
study turbulence from fluid to sub-ion scales (Miloshevich, Passot &
Sulem 2020). A few numerical studies have modelled the fully kinetic
collision-less regime with an eye towards the solar wind (GroSelj
et al. 2018). However, none to our knowledge have examined
the ultrarelativistic, collision-less regime relevant to high-energy
astrophysical systems. Studying this regime is important because
quasi-linear models of turbulent particle acceleration for imbalanced
MHD predict a decrease in the Fokker—Planck momentum diffusion
coefficient for increasing imbalance, leading to less efficient NTPA
and posing a potential obstacle to turbulence as an astrophysical
particle accelerator in some systems (Schlickeiser 1989; Chandran
2000).

In this work, we explore imbalanced, relativistic turbulence in
magnetized collision-less electron—positron (pair) plasmas using 3D
PIC methods (Zhdankin et al. 2018a). We study how imbalance
affects self-consistent NTPA, inaccessible in fluid-based models, and
how it introduces an effect entirely absent in balanced models: the
transfer of net momentum to the plasma, which in realistic systems
could form outflows. Though the regime we simulate is particularly
applicable to black hole accretion disc coronal heating (Chandran
et al. 2018) and wind-launching, our results should be generally
applicable to relativistic astrophysical turbulence where the source
of perturbations is localized, such as the jets originating from active
galactic nuclei.

To frame our study of this numerically and analytically unexplored
regime of turbulence, we focus on four main questions:

(i) How does imbalance affect the formation of a turbulent
cascade?

(ii) How does imbalance affect the partition of large-scale injected
energy into electromagnetic, internal, and turbulent kinetic energy?

(iii) Does imbalance drive net motion of the plasma?

(iv) How does imbalance affect NTPA?

We first introduce the numerical tools and parameters used to describe
imbalanced turbulence (Section 2). We then present the results of
3D collision-less, relativistic PIC simulations with varying degrees
of imbalance and ratio of system size to initial Larmor radius that
address each of the above questions in order. After first demonstrating
the presence of a turbulent cascade (Section 3.1), we discuss how
and why the energy partition changes with imbalance (Section 3.2).
Then we examine the formation of a net flow via efficient momentum
transfer to the plasma and provide an analytic framework for under-
standing it (Section 3.3). We continue by demonstrating, for the first
time, the similarity of NTPA in balanced and imbalanced turbulence
(Section 3.4). We check the dependence of our results on simulation
domain size in Appendix A. We conclude with implications for high-
energy astrophysical systems and remaining questions (Section 4).
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2 METHODS

In this section, we will first review physical properties of relativistic
magnetized plasmas (Section 2.1), and then outline the simulation
suite used to study imbalanced turbulence (Section 2.2). The last
subsection discusses various diagnostics that will be used to analyse
our simulations (Section 2.3).

2.1 Plasma physical regime

The plasmas considered in this paper are collision-less, ultrarelativis-
tically hot, and magnetized. This section discusses the parameters
that characterize such a plasma. Throughout this work, we will use (-)
to denote the time-dependent volume- or particle ensemble-average
of a quantity and — to denote the time-average of a quantity in the
time interval 10 < #¢/L < 20 unless otherwise specified; here L/c is
the light-crossing time of the simulation domain with length L.

The parameters that characterize an ultrarelativistic, magnetized
pair plasma with (y) > 1 include: an average total (electron plus
positron) particle density n, average particle energy (y)m,.c?, and
(B2 + B? + B2).
Here, m, is the mass of the electron (or positron) and () is the aver-
age particle Lorentz factor (y = 1/\/1 —v2/c? = \/1 + pr/m2c?
for a particle with velocity v, mass m,, and momentum p). The
fundamental physical length scales in this plasma are: the char-
acteristic Larmor radius p, = (y)m.c*/eB.n,, the plasma skin
depth d, = ((y)m.c*/(4mnge®))"?, and the size of the system L.
For a plasma with a Maxwell-Jiittner particle distribution f(y) =
Y21 —1/y2[0K2(1/0)] " exp(—y/0), the plasma has a well-
defined temperature T, = (y )m,c?/3 (assumed equal for electrons and
positrons) and the Debye length simplifies to Ap = d./+/3. Here 6
= T.,/m.c* and K, (x) is the modified Bessel function of the second
kind. The three length scales p,, d,, and L form two dimensionless
quantities: the magnetization 0 = B2, /4mh = 3(d,/p.)*/4 and the
ratio of the largest characteristic scale of spatial variation L/27w
(which will be the turbulence driving scale in our study as described
below) to the Larmor radius p,. Here h = ny(y)m.c> + (P)
A 4no(y)m.c*/3 is the characteristic relativistic enthalpy density
and (P) ~ no(y)mec2/3 is the (assumed isotropic) average plasma
pressure. The magnetization is related to the plasma beta parame-
ter § =8 (P)/ BrzmS as B = 1/(20) and determines the relativistic
Alfvén speed vy = ci/o /(0 + 1). Since we consider primarily
Alfvénic turbulence, the magnetization governs how relativistic the
large-scale turbulent motion is.

characteristic magnetic field strength B, =

2.2 Numerical simulations

To explore the properties of imbalanced turbulence in a collision-less
relativistic pair plasma from first principles, we use the electromag-
netic PIC code ZELTRON (Cerutti et al. 2013). ZELTRON samples the
particle phase space with macroparticles and evolves them according
to the Lorentz force law, providing an approximate solution to the
relativistic Vlasov equation. The electric and magnetic fields evolve
according to Maxwell’s equations, with the addition of an externally
driven volumetric current to Ampere’s law to generate turbulence, as
discussed below.

The physical parameters of the simulations we present are iden-
tical to those described in Zhdankin et al. (2018a, b) except for
the modifications outlined below to introduce imbalance. Each
simulation is initialized with an electron—positron plasma at rest
with a Maxwell-Jiittner distribution function, a uniform background
magnetic field By = ByZ and no initial electromagnetic fluctuations.
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For each of the simulations, we set the initial magnetization to oy =
0.5, yielding a relativistic Alfvén velocity v4o = 0.58¢ and plasma
beta By = 1.0. The initial temperature of the plasma is fixed at 7, =
100m,c? across all simulations, corresponding to an initial average
particle Lorentz factor of (y) ~ 300.

To obtain the largest possible inertial range, the simulation suite’s
chosen numerical parameters maximize the separation between the
large driving scale L/2m and the small initial kinetic scales p.o
and d,g, while still resolving the latter. We resolve the initial plasma
length scales with fixed Ax = p.0/1.5 = d,¢/1.22, where Ax = Ay =
Az is the grid cell length in each direction. The simulation domain
is cubic with periodic boundary conditions and length L = NAx,
where N is the number of cells in a spatial dimension (throughout, N,
=N, =N, = N). The time-step is a fraction of the cell light-crossing
time, i.e. At = 37"2Ax/c. The simulations are initialized with 32
particles per cell per species. To scan the ratio L/2w p,9, we vary
the number of cells in each spatial dimension, with N = 256, 384,
512, and 768 corresponding to L/2m p,o € {27.1, 40.7, 54.3, 81.5}.
When examining the dependence of results on simulation size, we
also include three simulations of balanced turbulence with L/27 p,q
€ {81.5,108.7, 164} (N € {768, 1024, 1536}) used in Zhdankin et al.
(2018b) that are otherwise identical to the simulations presented in
this work.

The initial equilibrium is disrupted by an externally driven current.
We employ an oscillating Langevin antenna (OLA; TenBarge et al.
2014) to drive turbulence volumetrically and continually throughout
each simulation’s duration. The OLA is implemented by adding
the external current to the evolution equation for the electric field
(Ampere’s law). This current generates counter-propagating Alfvén
waves. The amplitudes of these counter-propagating waves are mod-
ified to induce imbalanced turbulence, as described in the following
paragraphs. Because of the random nature of the OLA driving, a
single simulation may not be representative of the entire ensemble
of possible random seeds. To avoid basing all our conclusions on
a single data point for each balance parameter, we also present
a statistical study of random seeds. For each balance parameter,
eight values of the random seed are simulated for the domain
size L/12m p.o = 40.7 (N = 384). The results of the statistical study are
compared against the largest simulation domains L/27 p,o = 81.5 (N
= 768). Statistical variation could potentially be reduced in a single
simulation by introducing more than eight driving modes.

We drive imbalanced turbulence via eight independently evolved,
externally driven sinusoidal current modes. These current modes
create magnetic field perturbations propagating in opposite directions
along the background magnetic field, i.e. Alfvén waves. The driven
current modes have the form:

[ 2
2me ik;x —ikj-x
T, = “5Re > (aj0e™* + b)) (M
_J=I
2rc &
I =5 Re |3 (a0 +bjn)e ") @)
j=3
2c I
I 0= 5Re Y (—a@eM T i) | G)
j=1

The sign of k, dictates the direction of the current mode’s propaga-
tion. Four of the modes have no y-component of their wavevector
and four have no x-component; four propagate in the +z-direction
and four propagate in the —z-direction. These wavevectors are

ki = ko(—1,0,1) kz = ko(1,0, 1) 4)
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k3 =ko(0, =1, 1) kg = ko(0, 1, 1). (&)

Here, kg = 27/L, so that the driving scale is the largest scale L/27r. We
ensure V - J.q = 0 to avoid local injection of net charge. Currents
driven in Jey . and Jey, create Alfvén waves with magnetic field
perturbations in the y- and x-directions, respectively. The amplitudes
of these currents can be adjusted to create counter-propagating
Alfvén waves of unequal amplitudes, thus enabling our study of
imbalanced turbulence.

The external current’s time-dependence is dictated by the coeffi-
cients a;(f) and b;(f). The coefficient at the (n+1)th time-step is found
from the previous nth time-step as

a;n+|) — a;n)e—iwAt + ajl/l(jn)At (6)

b = pe M + Biv( At @)

The coefficients a;(r) and b;(¢) thus oscillate at frequency w with ran-
dom kicks at each time-step (cf. Langevin equation, hence the name
‘oscillating Langevin antenna’; TenBarge et al. 2014). The initial
coefficients 05_0) and bfio) are set to amplitudes A and B multiplied
by random phases db;-“) and ¢;-b) : a;-o) = Ae"d’(im and b;o) = Beid’»{fm. We
set A = ByL /8, which for balanced turbulence achieves & Bps =

2 — B} ~ By. The random kicks 1" and v’ in equations (6)
and (7) are complex random numbers with real and imaginary com-
ponents drawn from a uniform distribution between —0.5 and 0.5.
The constant parameters «; and §; are set such that when ensemble-
averaged, (|a(/-") |?) = A%and (|b§") |?) = B2. The complex driving fre-
quency o has real component @, and an imaginary component —I"¢
which we set to be non-integer multiples of the Alfvén frequency w4
= 2w v4/L to avoid initial resonances: wy = (0.6/\/§)w,4 ~ 0.35w,
and Ty = (0.5/v/3)wa ~ 0.29w,4. In frequency space, the driving
is a Lorentzian centered at wy with a full-width half-max of I'y;
see TenBarge et al. (2014) for details. The amplitudes .4 and 3 (and
therefore the o; and B; values) are the same for all ; and b, but the
random parameters u;, v;, and the initial phases ¢.(,-”‘b) are different
for each k;.

We introduce imbalance by adjusting the amplitudes of the currents
propagating in the —z-direction relative to those propagating in
the +z-direction. The coefficients a; control the currents propagating
in the +z-direction, whereas b; control the waves propagating in
the —z-direction. These currents’ amplitudes are dictated by their
respective A and 5 amplitudes. To achieve imbalanced turbulence,
we hold A fixed and vary B. We quantify how balanced the turbulence
is via the balance parameter,

E=B/A, 8)

where B is the amplitude for the —z-modes and A is the fixed
amplitude for the 4+z-modes. A value of £ = 1 corresponds to the
canonical balanced case, whereas & = 0 corresponds to current
modes propagating only in the -+z-direction. Because we drive
currents rather than Alfvén modes, we do not directly control the
exact amplitude of counter-propagating Alfvén waves. If & = 0
corresponded exactly to the case of Alfvén waves propagating in
a single direction, we would not expect turbulence to develop in a
non-relativistic, ideal MHD plasma. Indeed, turning off the random
kicks by setting a; = B; = 0 does not result in turbulence for
simulations with & = 0 (not shown). However, with our set-up of
non-zero «; and f;, the & = 0 case does become turbulent because the
OLA forcing excites counter-propagating Alfvén waves. In principle,
more imbalanced turbulence should be achievable by, e.g. a decaying
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Table 1. Measured values of the Elsasser fields’ energy ratio rz = (z2)/ (z%r)
for a sampling of balance parameter & values. The first number gives the ratio
for N = 768 and the second gives one standard deviation of the N = 384
statistical seed studies. Time averages are taken over 5.0 < f¢/L < 20.0.

& 0.0 0.5 1.0

rE 0.72 £ 0.06 092 £0.14 1.01 £0.14

turbulence problem or by changing the driving mechanism. For this
work, we simply term the & = 0 case the ‘most imbalanced’ case.

We will use the balance parameter & throughout this paper to refer
to the degree of imbalance; however, since £ measures the imbalance
of the driving mechanism rather than the turbulence, we now
briefly discuss the relationship of & to other methods of measuring
imbalance. Cross-helicity, an invariant in ideal MHD, measures the
difference in the energy densities associated with waves propagating
antiparallel (with energy density £, and amplitude 6B ) and parallel
to the magnetic field (with energy density £_ and amplitude §B_).
In ideal, non-relativistic, incompressible MHD, &£ = (p|z+|?)/4,
where z.. = dv £ b are the Elsasser fields (Elsasser 1950). Here §v
is the fluctuating plasma velocity, b = § B v, /By is the fluctuating
magnetic field in velocity units, and p is the plasma mass density (not
to be confused with the Larmor radius p, ). The total energy density is
thengivenby & =&, + E_ = (1/2)(p (|81)|2 + |b|2)) and the cross-
helicity H. = (£, — £_) /(p) can be re-expressed as H. = (§v - b).
Cross-helicity is related to the volume-averaged z-component of
the Poynting flux S(x, ) = (¢/4m) [E x B] under the assumptions
of incompressible, non-relativistic, ideal reduced MHD that 6B <
By and that the fluctuations § B and v are perpendicular to the
background field ByZ:

B, 1 B2
(S.)(1) = —ﬁ(swm = —Gv—jma). ©)

For a single Alfvén wave, §v/vs = £38 B/ By and thus the magnitude
of the Poynting flux for a single Alfvén wave [(S.)1—wave| 1S

1
(82D 1-vavel = 7— (8B*)v,. (10)
T

We can estimate the values of the driven Alfvén wave energies in
our simulations of imbalanced turbulence as E, ~ (§B2) ~ |a;|*
(where 6B, is the amplitude of the magnetic perturbation travelling
in the +z direction) and E_ ~ |bj|2, leading to

(S,) o« Hy oc 1 — £2. (11)

Equation (11) will be tested in Section 3.3.2. Normalizing to the
total energy, the ‘normalized cross-helicity’ H, = (£, — £_)/(E4 +
£_) (Perez & Boldyrev 2009; Chen 2016; Meyrand et al. 2021)
can be estimated as H, ~ (1 — £2)/(1 + &£?). Finally, we calculate
the ratio (z2)/(z%) of Elsasser field energies for several & (Table 1).
These fields are calculated with v4(t) = ¢+/o()/(o (t) + 1) using the
instantaneous magnetization. For our most imbalanced turbulence (&
= 0.0), the ratio of energies is about 0.72, whereas for perfectly
imbalanced turbulence the ratio would be zero. The discrepancy
between the driving’s imbalance and the turbulence’s imbalance is
due to the excitation of counter-propagating Alfvén waves (discussed
in the previous paragraph), and possibly relativistic, kinetic, and
moving frame effects, which the Elsasser fields we use do not take
into account.

The main goal of our study is to determine the impact of imbalance
on the properties of collision-less turbulence. We do so by varying
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the balance parameter & between O (‘most imbalanced’) and 1
(‘balanced’) at every value of L/27 p .

2.3 Energy diagnostics

In this section, we discuss diagnostics that will be used in Section 3
to partition the energy of the system into four main types.

The total energy density in the system can be decomposed into the
energy density Egy in the electric and magnetic fields and the total
(kinetic plus rest mass) energy density & in the plasma particles.
Fluid quantities provide intuition into the plasma’s behaviour by
partitioning & into internal, net flow, and turbulent flows:

gpl(xy 1) = 5inl(x7 1)+ gnet(t) + gturb(xa 1). (12)

The plasma’s total kinetic, internal, and turbulent kinetic energy
densities are calculated for each simulation cell from both the electron
and positron macroparticles’ positions and momenta, though they
will often be discussed in terms of their volume averages (1), (Eine),
and (&), respectively. The net flow energy density £, is a key
quantity for characterizing how efficiently imbalanced turbulence
can drive a directed plasma flow. It is a global quantity calculated
from the total momentum in the system. Explicitly, these quantities
are defined as:

Em(x,1) = /E3(x. 1) — Ph(x, e (13)
Enat(t) = (E) (1) — /(Eq)2(1) — (Pp)*(1)c? (14)
Eurn(X, 1) = Eow (X, 1) — Eper (1), (15)

where Epow(x, 1) = Epi(x, 1) — Ein(x, 1) (equation 8, Zhdankin et al.
2018a) and P,i(x, 1) is the local momentum density of the electron—
positron plasma. This framework is similar to that in Zhdankin
et al. (2018a), with the renaming of the ‘bulk’ energy density to
the ‘flow’ kinetic energy density and further breakdown of the
flow energy density into the energy density associated with the
net flow of the plasma &, through the simulation domain and the
turbulent motions &y Equation (13) for the internal energy density
is analogous to the relativistic energy E of a single particle E> =
(mc?)? + p2c®. In this analogy, the plasma internal energy acts
like a particle rest mass, the plasma momentum acts as a particle
momentum, and the total plasma kinetic energy acts like a relativistic
particle mass. Equation (14) for the net flow energy density uses a
similar analogy, specifically applied to the quantity volume-averages.

The change in the energy of the plasma and the electromagnetic
fields comes from the energy injected into the system by the OLA
driving. The energy injection rate (Sinj> = —(Jex - E) is statistically
constant in time. Integrating it over time gives the total injected
energy density up to time : &,(7). Because the injected energy
depends on the amplitude of the driven waves, its value at any given
time varies with & within a factor of two or so (see Section 3.2). To
account for this dependence of injected energy on balance parameter,
we normalize the volume-averaged changes in the various energy
components by the volume-averaged injected energy to obtain energy
efficiencies:

1 = A (gint> A(c/‘net A (gturb) A (gEM)
(Einj) (Einj) (Einj) (Emj)

where the terms on the right are the internal efficiency, net flow ef-

ficiency, turbulent kinetic efficiency, and electromagnetic efficiency,

respectively. We use A€ to indicate the change in a type of energy
density since the start of the simulation, i.e. AE(r) = E(t) — £(0).

16)
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Figure 1. A turbulent cascade forms for all balance parameters. (a) The magnetic energy spectra Pmag(k1) for L/27 p.o = 81.5 simulations of varying balance
parameter averaged between times 8.8 < t¢/L < 9.9 (comprising five outputs) show an inertial range between &k p.(f) ~ 0.1 and 1.0. A break in the spectrum
at ky p.(t) ~ 1.0 indicates the onset of kinetic effects. (b) When compensated by k2, the spectra for the balanced & = 0.75 and 1.0 cases are slightly steeper
than o klz, whereas the imbalanced case & = 0.0 is slightly flatter. The Elsasser fields’ spectra, shown in dash-dot red lines for & = 0, exhibit slightly different
slopes, with the stronger field (z., top line) being slightly steeper than the weaker field (z_, bottom line). In both panels, shaded lines show one temporal

standard deviation about the mean. The black dashed lines show the scaling kls/ 3; black dotted lines show kj_z. The grey lines show the L/27 p,o = 164 balanced

simulation’s magnetic energy spectrum, taken at = 8.9 L/c.

3 RESULTS

In this section, we investigate how imbalanced turbulence differs
from balanced turbulence through a series of comparisons. After
demonstrating the presence of a turbulent cascade for all values
of balance parameter (Section 3.1), we examine how the injected
energy transforms into the plasma’s internal and turbulent energy
(Section 3.2). We next turn to the novel aspect of imbalanced
turbulence: the presence of a net flow (Section 3.3). By using
the statistical study of eight random seeds at smaller simulation
domains L/2mwp, = 40.7 to enhance the trends in the largest
simulation domains L/27 p,o = 81.5, we constrain the dependence of
each of these energy types on balance parameter. We then explore the
decomposition of the plasma energy into thermal and non-thermal
components and how particle acceleration depends on the balance
parameter (Section 3.4). The influence of simulation domain size on
the fluid quantities is explored by varying L/2m p, in Appendix A.

3.1 Formation of a turbulent cascade

The spectrum of the turbulent magnetic energy is a common
diagnostic when examining turbulence. Much of the previous work
on imbalanced turbulence in MHD plasmas has examined the power-
law indices of the two Elsasser fields and how they may or may not
deviate from Goldreich-Sridhar kls/ ? scalings (Goldreich & Sridhar
1995; Lithwick et al. 2007; Beresnyak & Lazarian 2008). In this
study, we simply calculate the overall turbulent magnetic energy
spectrum via:

| - -
fm@w=/%wm§wmﬂmmw&% a7

where 8B, = B, — By, k, are the parallel wavenumbers, ¢ are the
azimuthal angles, and ~ indicates the Fourier transform.

We find that the magnetic energy spectrum shows the formation of
a turbulent cascade for all balance parameters (Fig. 1a). The spectra
averaged over the time interval 8.8 < tc/L < 9.9 (corresponding to 5.1
< tvao/L <5.7),1.e. after the turbulent cascade has fully developed but
before the plasma’s heating has diminished the inertial range, show
similar shapes for all values of the balance parameter. The inertial
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range forms between k p.(f) ~ 0.08 and 0.6 for the most imbalanced
case; a slightly shifted inertial range beginning at k, p.(f) ~ 0.15
rather than k, p.(f) ~ 0.08 for the simulations with more balanced
turbulence (§ = 1.0 and 0.75) results from the faster heating at these
balance parameters. The power-law index in the inertial range is
roughly consistent with —5/3, the classic MHD prediction for strong
turbulence (Goldreich & Sridhar 1995). Although the magnetic
energy spectrum better matches the kf scaling characteristic of
weak turbulence in the non-relativistic (Galtier et al. 2000) and
relativistic (Ripperda et al. 2021; TenBarge et al. 2021) regimes,
the turbulence in our simulations is strong. The steeper than 5/3
spectrum is likely due to a small domain size, as found by Zhdankin
et al. (2018a). Identical balanced simulations with twice the domain
size are consistent with a power-law index of —5/3 (dark grey
line in Fig. 1a). Accurately measuring the power-law indices of
imbalanced turbulence via larger domain sizes is beyond the scope
of this study. Below the characteristic Larmor radius (k; p, = 1), the
spectrum steepens to another power law that covers a more limited
range between k  p.(f) ~ 1 and 2 and is broadly consistent with
the formation of a kinetic cascade with a power-law index of —4
for all values of imbalance (also found in Zhdankin et al. 2018a),
much steeper than in the inertial range. Again, however, providing
more exact values to test against the predictions and measurements
in Schekochihin et al. (2009) or Zhdankin et al. (2018a) would
require larger, better-resolved simulation domains. Numerical noise
dominates at scales smaller than k, p.(7) ~ 2.

Although determining the precise dependence of the inertial
range’s slope on balance parameter would require a larger inertial
range, there are hints that the slope depends on &. When the
magnetic energy spectrum is compensated by the scaling klz, the
simulation with balanced turbulence (¢ = 1.0) has a downward-
sloping spectrum, whereas the simulation of turbulence with & =
0 has a slightly positive slope (Fig. 1b). However, this steepening
is most likely due to increased damping. The balanced simulations
heat up faster (as discussed in Section 3.2), resulting in smaller values
of L/p, than the imbalanced simulations. Due to the small domain
sizes, our simulations cannot distinguish differences in slope caused
by imbalance or dissipation.
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Figure 2. The amount of energy injected into a simulation depends on its
balance parameter. The simulations of more balanced turbulence (purple
and blue) have more injected energy than the simulations of less balanced
turbulence (yellow and green). Red x’s indicate the ‘equivalent’ times where
the same amount of energy has been injected for each simulation (see Table 3),
which all have L2 p,o = 81.5.

Because previous MHD predictions for imbalanced turbulence
generally discuss the spectra of the Elsasser fields rather than the
magnetic energy spectra, we also plot the Elsasser fields’ spectra for
the & = 0 case (dash-dot red lines in Fig. 1b). The larger amplitude
field appears to have a slightly steeper slope than the smaller
amplitude field, consistent with previous MHD simulations (Perez
& Boldyrev 2010b; Perez et al. 2012). However, constraining the
variation in the power-law index is difficult to quantify with such a
short inertial range. If the dependence of the Elsasser fields’ energy
spectra on imbalance persists in larger simulations, it could support
MHD predictions that the spectra’s power-law indices depend on
imbalance (Galtier et al. 2000; Chandran 2008).

Further evidence for the formation of a turbulent cascade comes
from comparing the evolution of the energy injected into the
simulation and the internal energy of the plasma. Whereas the
accumulated injected energy increases linearly from ¢+ = 0 onward
(Fig. 2), the internal energy density does not begin to increase until
about 2.5 L/c, close to one Alfvén-crossing time (see Section 3.2.3,
Fig. 3c). Presumably the energy injected at the driving scale cascades
to smaller scales over the time period r = 0—2.5 L/c until it reaches
the characteristic Larmor radius and dissipates into internal energy
—1i.e. the turbulent cascade forms in the first couple of light-crossing
times. There appears to be an increase in the cascade formation time
for decreasing balance parameter (see Section 3.2.3).

3.2 Partition of the injected energy

3.2.1 Framework for the energy partition

Because we drive the plasma in each simulation without an energy
sink, the overall energy of each case increases in time. By adding a
statistically constant amount of energy at each time-step, the overall
amount of injected energy increases linearly in time (Fig. 2). The
amplitude of the driven waves by definition depends on the balance
parameter £ (equation 8), and so the amount of energy injected also
depends on &. The increase in injected energy is twice as fast for
the balanced case & = 1.0 as for the most imbalanced case & = 0.0
(Fig. 2). This doubling of injected energy occurs because twice as
many modes are driven in the balanced as in the most imbalanced
case.
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The injected energy converts into various types of plasma energy,
each of which will be discussed in the following subsections. Fig. 3
shows temporal evolution of each quantity’s energy density (left-
hand panel) and energy efficiency (right-hand panel). The large-
scale injected energy cascades to smaller scales in the form of
bulk kinetic and electromagnetic energy until it is dissipated into
internal energy, thereby implying that the internal energy should
increase linearly in time during the statistical steady state — and it
does, as shown in Fig. 3(c). As stationary conduits for the turbulent
Alfvénic cascade, we expect both the turbulent kinetic and magnetic
perturbations to fluctuate around steady-state values rather than
continually increasing over time. Simulations support this idea of
statistically steady-state values: the turbulent electromagnetic and
kinetic energies saturate to their mean values around 7.5 L/c and
fluctuate thereafter around these values (Figs 3 aand b). These values’
dependence on balance parameter will be explored in Section 3.2.2,
while the dependence of the internal energy density’s slope on
balance parameter is discussed in Section 3.2.3. The final component
of plasma energy, the kinetic energy of net motion through the
simulation domain, does not have an easily characterized evolution
(Fig. 3d); its dependence on balance parameter will be discussed in
Section 3.3.2.

Normalizing the change in each type of energy to the injected
energy (the energy efficiency; equation 16) allows direct comparison
between turbulence with different balance parameters while account-
ing for the injected energy’s dependence on & (Fig. 4). By the end
of the simulations at = 20 L/c, the percentage of injected energy
that dissipates into internal energy depends on balance parameter,
varying from &80 per cent for the most imbalanced case (§ = 0)
to ~90 per cent for the balanced (§ = 1) case. For all balance
parameters, this percentage increases over time as the majority of
injected energy converts into internal energy. In contrast, the fractions
of injected energy that convert into turbulent electromagnetic and ki-
netic energy (i.e. the electromagnetic and kinetic energy efficiencies)
decrease in time as 1/, plotted as dashed black lines in Fig. 4, with
similar magnitudes for the balanced (§ = 1.0) and most imbalanced
(¢ = 0.0) case. These fits are motivated by the discussion in the
previous paragraph; when normalized to the injected energy oz, these
two types of turbulent energy can be fit to the function A + B/t. The
fraction of injected energy that converts into net flow energy differs
by an order of magnitude between the balanced case (1 per cent) and
the imbalanced case (10 per cent). In both cases, however, the net
flow efficiency remains relatively constant in time, indicating that a
constant fraction of injected energy converts into net flow energy,
with a clear dependence on & (also seen in Fig. 3h).

With a broad framework for the temporal evolution of internal,
turbulent kinetic, and magnetic energy in hand, the following sections
will explore each type of energy’s dependence on balance parameter
using various averages and highlighting statistical variation with the
random seed study.

3.2.2 Electromagnetic and turbulent kinetic energy

After an initial transient period, the turbulent electromagnetic and
kinetic energies become statistically constant in time (Figs 3a and
b). The turbulent electromagnetic energy increases until it contains
approximately the same amount of energy as in the background field
(Fig. 3a). As & increases from 0 to 1, (A&y,,) increases by about
50 per cent for turbulence in the largest simulation domain sizes
(Fig. 5a). In contrast, the electric energy density decreases from 10
to 25 per cent of B3 /87 for & = 0.0 to 1017 per cent for § = 1.0 (not
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Figure 3. Energy partition into electromagnetic, turbulent kinetic, internal, and net flow energy depends on balance parameter. Left-hand column: each type of
energy density evolved over time, normalized to the constant value of the initial magnetic energy density Bg /8. The turbulent electromagnetic (a) and kinetic
(b) energy densities reach a constant value whereas the internal (c) and net flow (d) energy densities increase over time. Right-hand column: the change in
each type of energy density evolved over time, normalized to the total amount of injected energy density &inj(z). Summing over the four panels on the right
for each simulation adds to 1. Turbulent electromagnetic (e) and kinetic (f) energy efficiencies decay as ot~!, whereas internal (g) and net flow (h) energy
efficiencies saturate at a constant fraction of the injected energy. Note that the net flow energy (h) has a different vertical axis. Colours and markers indicate

balance parameter. These simulations all have L/27 p.o = 81.5.

shown). This decrease in electric energy density could be due to the
decrease in the plasma velocity, which is approximately the Alfvén
speed: E ~ (§v/c) x B ~ (v4/c)By. Faster heating in the balanced
turbulence case leads to smaller v4 and hence smaller electric field.
The simulations show that the time-averaged turbulent kinetic energy
density (A&um) also depends on &, increasing from 75 per cent of the
background magnetic energy for the most imbalanced case (§ = 0.0)
to about 125 per cent for balanced turbulence with & = 1.0 (Fig. 5b).
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The smaller values of (A&ny,e) and (A&yw) in the imbalanced case
result from the injection of less energy in this case (Fig. 2). The
fraction of injected energy that converts into turbulent and magnetic
energy (i.e. the corresponding energy efficiencies) at any given time
is almost independent of balance parameter (Figs 3e, f), with slightly
higher (A&gm)/(Einj) for £ = 0 compared to £ = 1.

To test whether the turbulence is Alfvénic, we use the ‘Alfvén
ratio’ r4 = (Afuw)/(AEmag). The Alfvén ratio is related to the
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Figure 4. Time evolution of the energy partition for the balanced case (§ =
1.0; left-hand panel) and most imbalanced case (§ = 0.0; right-hand panel).
Both show a decay in turbulent electromagnetic and kinetic energies and a
saturation of internal and net flow energy densities; black dashed lines show
fits to A + B/t, with A and B constants. The imbalanced case has net flow
energy density about an order of magnitude higher than the balanced case
and correspondingly lower internal energy density, whereas the turbulent
electromagnetic and kinetic energy densities are comparable for both balance
parameters.

residual energy E, (defined as the difference between the turbulent
kinetic and turbulent magnetic energies) via E, = (r4 — 1)/(ra
+ 1). Ideal MHD predicts that the time- and volume-averaged
kinetic and perturbed magnetic energies in an Alfvén wave (and
thus perfectly imbalanced turbulence) should be in equipartition: r4
= 1. We might expect the same Alfvén ratio for turbulence (both
balanced and imbalanced) comprising many Alfvén waves — though
due to an increase in non-linear interactions, physical plasmas such
as the solar wind often have an excess of magnetic energy such
that r4 =~ 0.7 (Chen et al. 2013; Chen 2016); see Boldyrev &
Perez (2009), Boldyrev et al. (2011), and Wang, Boldyrev & Perez
(2011) for MHD models of this excess. Our simulations show that
both balanced and imbalanced turbulence are in equipartition to
within error bars (Table 2). The standard deviations of mean values
for (A&wmw) and (A&ny,e) in Table 2 were calculated for the L/27 p .
= 81.5 and L2mp., = 40.7 simulations (nine values for each
balance parameter) and summed in quadrature. These error bars
suggest that the large-scale ratio of turbulent kinetic to magnetic
energies is independent of £. However, the residual energy may have
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Table 2. The turbulence in all simulations of balanced and imbalanced turbu-
lence is approximately Alfvénic. The Alfvénratio ry = (A&wub)/(AEmag) is
approximately 1 for the largest simulations (L/27 p.o = 81.5) for all values of
the balance parameter & . Standard deviations are calculated from the statistical
seed studies at each balance parameter.

f (Agturb”(ASmag)
1.0 1.1 £0.3
0.75 12+£02
0.5 1.0+0.1
0.25 1.0£0.1
0.0 09 +0.1

a scale-dependent power-law spectrum with significant dependence
on imbalance, which we do not address here. The solar wind shows
a clear dependence of the residual energy spectrum’s slope on
imbalance, with a value of —2 for balanced turbulence and closer
to —1.8 for totally imbalanced turbulence (Chen et al. 2013). The
dependence of the residual energy spectrum’s slope on imbalance is
a major outstanding puzzle that has not been successfully addressed
by any phenomenological model of imbalanced turbulence thus far.

Our finding of approximate equipartition indicates that the turbu-
lence is predominantly Alfvénic. In addition to Alfvén waves, slow
and fast compressive modes also contribute to the turbulence. The
fast modes, introduced by the OLA driving (Zhdankin 2021) or non-
linear relativistic wave conversion (Takamoto & Lazarian 2016), and
the slow modes, passively mixed by the turbulence (Lithwick &
Goldreich 2001), lead to total density fluctuations on the order of
20-30 per cent of the background density in our simulations (not
shown). Though the presence of fast and slow modes could affect the
Alfvén ratio, characterizing their contribution is beyond the scope of
this study.

3.2.3 Internal energy

The increase in internal energy dominates the plasma energy budget
at late times. Though the initial internal energy starts out at about
three times the initial magnetic energy for all balance parameters, the
plasmas with balanced turbulence heat up almost twice as quickly
as the plasmas with imbalanced turbulence (Fig. 3c). At late times,
about 80 per cent of the injected energy is converted into internal
energy in the imbalanced case (¢ = 0), slightly lower than the
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Figure 5. Trends of the turbulent magnetic and kinetic energy densities with balance parameter. Quantities are time-averaged from 10 < f¢/L < 20. The
largest domain size L/2m po = 81.5 (filled markers) shows a linear trend with balance parameter for the turbulent magnetic (a) and kinetic (b) energy densities,
respectively. The statistical deviation is shown by the L/27 p.o = 40.7 seed study (unfilled markers). The dashed lines show linear fits. Colours and markers are

the same as in Fig. 3.
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corresponding value of closer to 90 per cent for the balanced case
(Fig. 3g).

Because the plasma’s internal energy increases linearly after an
initial transient, we characterize its heating rate (i.e. slope) through
the dimensionless ‘injection efficiency’ parameter 7;,;. We define this
order-unity coefficient as the ratio of the plasma heating rate (&, )(f)
to a ‘reference’ heating rate (E.r). We define (E.r) by dividing
the turbulent magnetic energy density, ¢SBr2mS /8m, by a characteristic
non-linear cascade time at the outer scale L/§vs ~ L/(V 400 Brns/Bo),
assuming strong Alfvénic turbulence and v4¢/c < 1. This formulation
gives us an operational definition of the injection efficiency in terms
of quantities that can be directly measured in our simulations at any
moment of time:

(Eine) _ 87 BoL(Eimt)
(gref> 8331151)140 .

The injection efficiency quantifies how efficiently turbulent magnetic
energy cascades to small scales and dissipates. The heating rate of
the plasma is extracted by fitting the slope of the internal energy in
the interval 5 < 7¢/L < 20 and converting to the injection efficiency
via equation (18), taking the value of 8B, as the time-average over
the same time period. The statistical mean value of the injection
efficiency varies from about 1.0 for the most imbalanced case (§ =
0.0) to about 1.5 for the balanced case (§ = 1.0) as seen in Fig. 6(a),
with a statistical standard deviation on the order of 0.2.

As discussed in Section 3.2.2, the magnitude of the magnetic
field fluctuations depends on balance parameter, which in principle

Ninj = (18)
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may influence energy dissipation and the injection efficiency. To
verify that the trend in the injection efficiency 7, with balance
parameter £ is not due to the variation of the amplitude of magnetic
energy perturbations §B2 /B2 with &, we ran a simulation of
imbalanced turbulence with & = 0 and a driving amplitude /2
times its canonical value. The magnetic field fluctuation level § B2
changes from 0.8B3 for the unadjusted amplitude case to 1.2B2
for the increased amplitude case, consistent with the unadjusted
amplitude of the balanced case with the same random seed. The
injection efficiency, however, increases to 1.1 with the increased
amplitude, compared to 0.9 for the unadjusted & = O case and 1.4
for the unadjusted £ = 1 case with the same random seed. Thus,
two simulations with the same level of magnetic field perturbations
but different balance parameters experience significantly different
injection efficiencies, suggesting that the injection efficiency has an
inherent dependence on balance parameter rather than 6B,. This
result suggests that the cascade time depends on balance parameter.
To explore the possibility that the cascade time 7., depends on
balance parameter, we define
oo = A2EEM T+ Cus) (19)
(Sint>
The cascade time is normalized to the global Alfvén time L/v,(f) and
then time-averaged over 10 < tc/L < 20 (i.e. 5.8 < tvao/L < 11.6).
We expect the cascade time to be on the order of an Alfvén time
for an Alfvénic cascade, and for balanced turbulence we indeed find
that the cascade time varies statistically between 0.8 and 1.2 L/v(f)
(Fig. 6b). However, the cascade time increases to about 2.2 L/v(t)
on average for the imbalanced case & = 0. The lack of overlap
between the cascade times of imbalanced and balanced turbulence
suggest that the difference is statistically significant, rather than a
fluke of random seeds. A longer cascade time for more imbalanced
turbulence is consistent with Lithwick et al. (2007)’s suggestion that
the dominant waves are less strongly scattered in the imbalanced case.

3.3 Net flow energy and momentum transfer

As a component of the energy not present in balanced turbulence,
we expect the kinetic energy in the net motion of the plasma through
the simulation domain to depend on the balance parameter. In the
balanced case, the statistically symmetric (although not necessarily
momentum conserving) driving should on average lead to no net
motion. In contrast, because imbalanced driving breaks the symmetry
along the background magnetic field, we may expect a non-zero net
flow energy for & < 1.0 if the asymmetric wave momentum converts
into plasma momentum. In a gravitational potential, the net flow that
results from efficient wave-plasma momentum coupling could form
a wind or outflow. In this section, we first propose a simple model for
the properties of such a net flow (Section 3.3.1) and then compare to
numerical results (Section 3.3.2).

3.3.1 Analytic framework for momentum transfer

A net flow could result from the efficient transfer of injected wave
momentum into plasma momentum. In this section, we propose that
the net flow velocity should be constant and provide a scaling for its
magnitude. We can write the net flow energy density as

(Em) (V2 (1)
2¢? ’

where the last expression holds for v, () < ¢. We have defined the
net Lorentz factor [y (#) = (1 — v2,./c*) 712

Ene(t) = (Caea(t) = D) () (1) ~ (20)
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Analogously, the internal energy density relates to the net plasma
momentum density as

gint
(Prao® = Caap) Oatt) ~

Unet(1), @n

where again v, < cin the last expression. In simulations, both & ()
and (P, 1) (¢) increase linearly in time (Section 3.3.2). Because these
two quantities depend on different powers of vy, we deduce that
the net velocity should be relatively constant in time. We test this
prediction in the next section.

We can understand the net flow as a relativistic effect. As a
limiting case, assume that the maximal asymmetric Poynting flux
for a single Alfvén wave [(S;)i—wave| (equation 10) is injected into
a plasma. If a fraction € of the momentum density |(SZ)1,WH\,6|/C2
in this electromagnetic wave converts into the plasma momentum
density (P, o), We have

(8B*)va0
47 c?
where the last equality follows from equation (21). By writing the

relativistic mass density (p) = (y)m.ng, we find

(8B%)

[hetVnet = €Vp0 =
7 (p)c

(Pz,tot) =€ = Fnet<p>vneta (22)

4
§€ 8o va0 (23)

16 802 v2, /2 4
A VL. FP Y (24)

Upet = CEY| —————————F——
“ 9+ 16802 13,/c2 3

where we have defined 80 = (§B%)/(47h) and the last expression
again holds for v, < c. From equation (24), we see that the net flow’s
velocity approaches 0 as the magnetization goes to 0. Though the
efficiency € of converting electromagnetic momentum into plasma
momentum can never be greater than 1, it could change with .

3.3.2 Numerical results for momentum transfer

In this section, we test the assumptions behind the above calculations
and demonstrate that our simulations do indeed find a net flow in line
with the above framework.

Our simulations find that about 8 per cent of the injected energy
converts into net flow energy even in the most imbalanced case
(¢ = 0.0), a fraction that becomes comparable to the turbulent
electromagnetic or kinetic energy efficiencies after the latter two have
decayed by a factor of two or more, around 15 L/c (Fig. 4). Since the
net flow efficiency fluctuates strongly about a mean value in time, we
compare different balance parameters by averaging over 10 < fc¢/L
< 20. The result, shown in Fig. 7, reveals that the net flow efficiency
increases with decreasing &, as expected. The mean over an ensemble
of identical simulations with & = 0 and varying random seeds is about
0.06, approximately three times as large as that for the balanced
turbulence (about 0.02). The statistical spread in the balanced case
is on the order of 0.01, and about 0.03 for the imbalanced case.
Because energy is a strictly positive quantity and a limited number
of modes were driven, even the simulations of balanced turbulence
(¢ = 1.0) have a non-zero (albeit small) net flow energy due to short
periods of net motion. Notably, there are three prominent outliers in
Fig. 7 in the magnitude of the net flow efficiency in simulations with
balance parameters & = 0.5, 0.75, and 1.0. Each of these outlying
simulations was initialized with the same random seed, suggesting
that the particular random phases of the driven modes resulted in non-
zero mean velocity later in the simulations’ evolutions. The presence
of these outliers demonstrates the need for a suite of random seeds
to tease out statistically robust trends.
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Figure 7. The net flow energy efficiency decreases with increasing bal-
ance parameter. The plotted values are volume-averaged and time-averaged
from 10 < t¢/L < 20. The largest domain size L/27 p,o = 81.5 is shown with
filled markers and the statistical deviation is shown by the L/27 p.o = 40.7
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seed study were run with the same random seed. Colours and markers are the
same as in Fig. 3.

Although the net flow energy density demonstrates the importance
of the net flow in the overall energy budget, it does not contain
information about the direction of the plasma’s net motion. To
address this issue, we now examine momentum rather than energy.
First, we discuss the injected electromagnetic momentum and look
at the Poynting flux § = (¢/4m)E x B. For balance parameters &
< 1.0, we expect the driven waves’ Poynting flux to be non-zero
along the background magnetic field (‘parallel Poynting flux’; S.).
The spatial distribution of the parallel Poynting flux, plotted in
Fig. 8, is highly non-uniform. Similar to MHD turbulence (Perez &
Boldyrev 2009), our balanced simulation has local patches of strong
Poynting flux and thus high imbalance, highlighting the fundamental
connection between balanced and imbalanced turbulence at small
scales. The total, volume-averaged parallel Poynting flux (S.) is
statistically constant in time and, for the balanced case (¢ = 1.0),
oscillates around zero (Fig. 9a). After time-averaging over the period
from 10 < #c/L < 20, the parallel Poynting flux is clearly positive
for imbalanced turbulence and consistent with zero for balanced
turbulence (Fig. 9b). The value (S.) ~ 0.2 (cB3/47) at £ = 0.0 is
about 30 per cent of the limiting value (8 B/Bo)*va/c (cB3/4m) ~
va/c (cB3/4m) ~ 0.58 (¢ B} /47) expected for a single Alfvén wave
(equation 10). The decrease in the Poynting flux with increasing
balance parameter agrees well with the quadratic fit predicted by
equation (11), as shown by the dotted and dash-dot black lines in
Fig. 9(b), though we do not rule out a linear dependence. The same
outliers discussed for the net flow efficiency are present in the parallel
Poynting flux. The time- and volume-averaged Poynting flux in the x-
and y-directions are much smaller than the parallel Poynting flux:
within 0.1 (¢ Bé /4m) of zero for all balance parameters (not shown),
indicating that the net electromagnetic momentum is primarily along
the background magnetic field.

The injected Poynting flux imparts net momentum to the
plasma. In agreement with the interpretation in Section 3.2.1,
the volume-averaged parallel momentum (7, ) of the plasma
increases approximately linearly over time (Fig. 9c). The ra-
tio (P..ic?)/ ({S.) tvao/L), shown in Fig. 9(d), is approximately
constant in time and fluctuates around values of the order of unity for
any given balance parameter. In this figure, the parallel Poynting flux
has been converted to an electromagnetic momentum density (S.)/c?,
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Figure 8. Even turbulence that is balanced as a whole has spatial and temporal pockets of locally imbalanced turbulence. Slices of the Poynting flux (c¢/47)E x B
in the z-direction, taken at the plane z = 0 at time ¢t = 16.1 L/c and normalized to (c/4n)B§ for balanced turbulence (§ = 1.0; left-hand panel) and most
imbalanced turbulence (£ = 0.0; right-hand panel) show variation in the sign of Poynting flux throughout the domain.
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Figure 9. The average parallel Poynting flux is approximately constant in time, whereas the z-momentum of the plasma increases linearly in time. (a) The
time evolution of the volume-averaged Poynting flux (¢c/47)(E x B) in the z-direction, normalized to (¢ /471)35, shows fluctuations around some mean value;
time-averaging the curves over 10 < #¢/L < 20 shows a quadratic dependence on balance parameter (b). The time evolution (c) of the parallel plasma momentum
shows an increase in time. The ratio (Pz_mlcz) / ((Sz) tvap/L), shown in (d), is of the order of unity for all values of balance parameter. The black dash-dot lines
show a quadratic fit; the dotted line is a quadratic fit without the outlier seed. The dashed black lines indicate zero. Colours and markers are the same as in Fig. 3.

and the momentum densities of both the plasma and the electromag- trarily large values due to a small Poynting flux. To further illustrate
netic waves are normalized to gy = Bg /(4w c), allowing for direct the relationship between (S;) and (P, (), Fig. 10 shows their values
comparison between the two quantities. The ratio of the volume at each time snapshot (given by individual dots) for each balance
averages has been smoothed with a Hanning window to remove arbi- parameter (shown via marker and colour). In general, the plasma
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momentum dominates over the electromagnetic momentum, with a
time-dependent ratio given by the slope of the linear fit. The positive
ratio shows that a positive volume-averaged parallel electromagnetic
momentum corresponds to a positive parallel plasma momentum,
as expected if Poynting flux converts to plasma momentum. The
balanced turbulence’s electromagnetic momentum and plasma mo-
mentum span both positive and negative values; for more imbalanced
turbulence, the distribution shifts up and right, demonstrating that
the asymmetric driving of electromagnetic momentum results in
asymmetric net motion of the plasma in the z-direction.

Using equation (21) to solve for vy shows that v, fluctuates
around a mean value dependent on balance parameter (Fig. 11a).
The net velocity of the plasma with balanced turbulence oscillates
around zero, never reaching more than 0.2¢. The plasmas with the
most imbalanced turbulence can reach net velocities up to 0.5c.
Averaging over 10 < fc/L < 20 shows a clear dependence of the net
velocity on balance parameter (Fig. 11b). As expected, plasmas with
balanced turbulence experience a time-averaged net velocity near
zero, though the finite simulation duration means that temporary
movements parallel or antiparallel to the background magnetic field
are not completely averaged out. Equation (24) predicts a net velocity
of 0.4¢ for the most imbalanced turbulence (plugging in four waves
with 8B ~ By, and setting o9 = 0.5, vsgp = 0.58¢, and € = 1),
remarkably close to the values found in Fig. 11(b).

Previous studies of imbalanced turbulence appear to exclude the
possibility of generating net plasma motion along the background
magnetic field, either through the assumption of reduced MHD,
gyrokinetics, or force-free description (Perez et al. 2012; Cho &
Lazarian 2014; Meyrand et al. 2021). As such, this work presents, to
our knowledge, the first numerical demonstration and investigation
of net flow due to imbalanced turbulence. Such a large net motion of
the plasma may have implications for driving accretion disc winds,
particularly if the wind comprises mostly non-thermal particles.

3.4 Non-thermal particle acceleration

Non-thermal particle acceleration can explain high-energy flares
and power laws seen in spectra of various astrophysical systems.
Studying NTPA self-consistently requires PIC simulations. Recent
PIC simulations of turbulence (Zhdankin et al. 2017, 2018a; Comisso
& Sironi 2018, 2019) have successfully produced non-thermal
particle populations that result in power-law spectra. Similar results
have been produced in PIC simulations of kink-unstable jets (Alves,
Zrake & Fiuza 2018; Davelaar et al. 2020) and the magnetorotational
instability in accretion discs (Riquelme et al. 2012; Hoshino 2013;
Kunz, Stone & Quataert 2016), where turbulence may play a funda-
mental role in the particle acceleration. Because power-law spectra
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Figure 12. Particle acceleration occurs for all values of balance parameter.
(a) The distribution function of the most imbalanced case (§ = 0.0) becomes
shallower in time from an initial Maxwell-Jiittner distribution (purple) to a
Maxwell-Jiittner distribution plus a hard power-law component at later times
(yellow). (b) Spectra taken at the same time ¢ = 8.0 L/c for different balance
parameters show different peak energies but similar power-law components.
The dashed black line shows a Maxwell-Jiittner fit to the § = 0.0 case. The
vertical green dash-dot line shows the mean Lorentz factor (y) extracted from
this fit. The vertical green dotted line shows the maximum energy y max. The
dash-dot black line in panel (a) shows the power-law y 27, while the dotted
black line in panel (b) shows y ~3. Colours are the same as in Fig. 3.

are observed in systems with asymmetric energy injection, it is
important to understand how imbalance affects particle acceleration.

We find that imbalanced turbulence can accelerate a significant
portion of the plasma’s particles to suprathermal energies (Fig. 12),
much like balanced turbulence at similar magnetizations o ~ 1. Even
the most imbalanced case & = 0.0 shows the development of a high-
energy power-law tail, which hardens and reaches an asymptotic
slope after about 12 L/c (Fig. 12a). At late times 7 2> 12 L/c, the sim-
ulation domain’s boundary conditions limit the maximum attainable
Lorentz factor to y yna = LeBo/m,c?, resulting in the ‘pile-up’ of high-
energy particles at y ., followed by a sharp cutoff rather than the
continuation of the power law to even higher energies (Zhdankin
et al. 2018b). Visually, the non-thermal distribution matches the
power-law scaling f(y) o ¥ 27 between (y) and ¥ ., shown by
the dash-dot line in Fig. 12(a). Comparing turbulence with different
balance parameters, we see that more balanced turbulence heats the
plasma more quickly and forms a power-law spectrum faster than
imbalanced turbulence (Fig. 12b). For particle spectra taken at t =
8.0 L/c, the simulation of balanced turbulence £ = 1.0 has already
heated to a peak Lorentz factor of about 700 and is experiencing
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Table 3. Table of ‘equivalent’ times feq in L/c where the same amount of
energy density 10.3 33/871 has been injected. Values of the non-thermal
particle and energy fraction at feq, shown in the second and third rows, are
discussed in Section 3.4. Equivalent times are labelled in Fig. 2 as red x’s.

& 0.0 0.25 0.5 0.75 1.0
leq 20.0 17.4 13.1 9.4 8.0

Nron-thermal/Nrotal 0.20 0.19 0.20 0.21 0.21
(Enonthermat) / (Ept) 0.54 0.53 0.55 0.54 0.54

pile-up, as shown by the spectrum’s break around y ~ 5 x 10*. In
contrast, the most imbalanced case & = 0.0 still has a peak Lorentz
factor of around 400 and its power-law index has not yet reached an
asymptotic value (Fig. 12b).

Because of the different rates at which energy is injected into
simulations with different balance parameters, it may be more
meaningful to compare particle spectra not at the same fixed absolute
time, but rather at ‘equivalent times’ when a fixed amount of energy
has been injected. For definiteness, we take this time to coincide
with the end (¢ = 20 L/c) of the simulation for the most imbalanced
case, & = 0, corresponding to an injected energy of 10.3 B2/8x.
The equivalent times for the simulations vary from 8 L/c for the
balanced case & = 1.0 to 20 L/c for the most imbalanced case & =
0.0 (Table 3). When compared at these equivalent times, particle
spectra for different & essentially collapse to a single universal
curve (Fig. 13a). In particular, the peak Lorentz factors and the
power-law tails up to y & 10* become nearly indistinguishable.
This similarity suggests that NTPA operates similarly in balanced
and imbalanced turbulence when considered on appropriate time-
scales. In particular, the non-thermal segments of the distribution
function match the power-law scaling f(y) oc y = (dotted line) for
all values of balance parameter, suggesting that imbalanced and
balanced turbulence accelerate particles with the same asymptotic
spectra. Finer differences appear at higher energies when the spectra
are compensated by y3; whereas the balanced cases & = 1.0 and 0.75
closely follow this y ~3 scaling in the interval 200 < y < 4 x 10%, the
more imbalanced cases are never quite flat and appear to more closely
follow the scaling  ~>”7 (dash-dot line), as shown in Fig. 13(b). This
power-law index of —2.7 matches the power-law index of balanced
turbulence particle spectra in smaller box sizes (Zhdankin et al.
2018b), suggesting that pile-up contaminates the spectra. Because
the equivalent times for the simulations of imbalanced turbulence
are much longer, the high-energy pile-up could be due to a small
subpopulation of particles whose stochastic scattering events pushed
them to higher energies. Larger simulation domains are needed to
determine what influence the high-energy particle pile-up could have
on the particle spectra at lower energies.

The partition of the plasma particles’ energy (E,)(¢) into thermal
and non-thermal components further demonstrates that non-thermal
particles are energetically important in the system. The fraction of
non-thermal particles is calculated by subtracting the Maxwell—
Jiittner distribution that best fits the total, box-averaged particle
distribution up to the peak Lorentz factor from the total distribution
function. This fraction reaches 20 per cent of the total number of
particles at 20 L/c for the & = 0 case (Fig. 14a). The balanced
case’s fraction of non-thermal particles is larger, reaching 25 per cent
of the total number of particles by the same time. At 20 L/c,
the energy in these particles comprises 55 per cent of the total
plasma energy in the imbalanced case, as compared to 65 per cent
for the balanced case (Fig. 14b). At equivalent times, the non-
thermal fractions of particles and energy do not vary more than
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Figure 13. At equivalent times, the power laws of imbalanced turbulence
are slightly flatter/harder than balanced turbulence. (a) The particle energy
spectra at equivalent times (see Table 3) show a similar mean energy and
similar power laws until y ~ 10*. The dashed black line shows a Maxwell—
Jiittner fit to the £ = 0.0 case. (b) Compensating by y> reveals that more
imbalanced turbulence (£ = 0.0, 0.25, and 0.5) has flatter power laws than the
more balanced turbulence with § = 0.75 or 1.0. The vertical green dash-dot
line shows the mean Lorentz factor () extracted from the Maxwell-Jiittner
fit. The vertical green dotted line shows the maximum energy ¥ max. The black
dash-dot line in panel (b) shows the spectrum compensated to 3, while the
dotted black line shows the power-law y =3 *3 (a constant). Colours are the
same as in Fig. 3.
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Figure 14. The partition of plasma energy () into thermal and non-thermal
components shows a moderate increase with the balance parameter at any
given time. Both the fraction of particles with non-thermal energies (a) and
the fraction of total plasma energy density (£p) contained in such particles
(b) are calculated by fitting a thermal Maxwell-Jiittner function to the low-
and medium-energy particle distribution at each time and subtracting the fit
from the total particle distribution. Colours are the same as in Fig. 3.
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2 per cent across balance parameters (Table 3), suggesting that
particle acceleration by imbalanced turbulence is just as efficient as
acceleration by balanced turbulence. For comparison, the fractions
for the balanced simulations are slightly smaller than those found for
similar simulations of electron—ion plasmas in the relativistically hot
limit (Zhdankin et al. 2019).

Though highly idealized, quasi-linear theory can explain many
aspects of turbulent NTPA. In particular, the treatment of NTPA
as a diffusion in momentum space (Schlickeiser 1989; Chandran
2000) has been justified by measurements of the momentum diffusion
coefficient in PIC simulations of balanced turbulence (Comisso &
Sironi 2019; Wong et al. 2020) and improved by considering reso-
nance broadening (Demidem, Lemoine & Casse 2020). The original
models suggest that the diffusion coefficient scales as 1 — A2, which
is supported by test particle simulations of imbalanced MHD turbu-
lence when parallel acceleration is negligible (Teaca et al. 2014). Our
simulations show that imbalance increases the acceleration timescale
for NTPA, which is broadly consistent with a decrease in the diffusion
coefficient. It is not clear why this increased acceleration time-scale
does not affect the power-law index.

4 CONCLUSIONS

In this study we investigate, for the first time, imbalanced kinetic
turbulence in a collision-less, magnetized, relativistically hot plasma.
Using 3D PIC simulations, we simulate a pair plasma driven by
large-scale external currents, creating Alfvén waves propagating
parallel and antiparallel to the background magnetic field with
different amplitudes. We demonstrate the formation of a turbulent
cascade with a similar power-law index for all values of the balance
parameter covered by the simulations (Section 3.1). We find that
the energy injected into the plasma by the external driving is not
only converted into internal energy through small-scale dissipative
processes (Section 3.2), but also drives net bulk motion of the
plasma (Section 3.3). This efficient transfer of momentum to the
plasma appears as a relativistic effect, resulting in a net plasma
velocity ["pevnet ~ 80 v40. We also find efficient particle acceleration
over two decades of particle Lorentz factor even for our most
imbalanced turbulence (Section 3.4).

Our results on imbalanced turbulence should apply to high-energy
astrophysical systems with asymmetric energy injection, such as
accretion disc coronae, relativistic jets, and pulsar wind nebulae. We
find that NTPA remains efficient in imbalanced turbulence, meaning
that particle acceleration models developed for balanced turbulence
are still applicable to astrophysical systems with asymmetric energy
injection. In addition, our finding that the momentum from the driven
Alfvén waves efficiently transfers to the plasma itself constitutes a
new mechanism for propelling winds from, for instance, the surface
of a turbulent accretion disc. This efficient momentum transfer could
also amplify existing astrophysical outflows.

This work represents an important step in studying global
properties of imbalanced turbulence in collision-less plasmas. It
demonstrates a method for driving imbalanced turbulence in PIC
simulations and develops diagnostics to study the unique aspects
of imbalanced turbulence, including net motion of the plasma.
Our study has revealed a number of factors that could influence
the development of imbalanced turbulence and should be further
explored: the driving mechanism, the amplitude of magnetic field
fluctuations, and the plasma magnetization, to name a few. Our
main findings of efficient NTPA and efficient momentum transfer
merit further investigation: how are the Fokker—Planck momentum
diffusion and advection coefficients for NTPA modified by imbal-
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ance? How does the momentum transfer manifest in a more realistic
system with density gradients? Thus far, our finding of a net flow is a
momentum-transfer mechanism, not a wind-launching mechanism.
More work is needed to determine how the transfer efficiency
changes with o and whether the wind comprises the thermal bulk
of particles or non-thermal particles. Simulations of imbalanced
turbulence in non-relativistic, semirelativistic, and transrelativistic
electron—ion plasmas, particularly relevant to accretion flows, will
also be important for understanding the fraction of energy that heats
electrons. Understanding these aspects of imbalanced turbulence
will aid in modelling astrophysical systems with asymmetric energy
injection, such as accretion disc coronae, relativistic jets, and pulsar
wind nebulae.
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APPENDIX A: DEPENDENCE ON DOMAIN SIZE

If the ratio L/2mwp,y is small, the small separation between the
characteristic scale of kinetic effects and the system size scale could
influence the results presented in Section 3. In this appendix, we
examine the box-size dependence of representative quantities for
extremal values of the balance parameter £ = 0.0 and &€ = 1.0
and for L2 p., € {27.1, 40.7, 54.3, 81.5}, corresponding to N
€ {256, 384, 512, 768}. These results also include three very large
simulations of balanced turbulence from Zhdankin et al. (2018b)
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Figure Al. The injection efficiency and Poynting flux along the background
magnetic field depend weakly on simulation domain size within statistical
variation. When averaged from r = 5—14 L/c, the injection efficiency (a) and
Poynting flux along the background magnetic field (b) are shown as a function
of L/21 p.o. Both the balanced (§ = 1.0; purple circles) and most imbalanced
values (§ = 0; yellow triangles) are mostly within statistical variation of
the L2 p.o = 40.7 sample of eight random seeds. The black dashed line
indicates zero.

with L2mp,o € {81.5, 108.7, 164} (N = 768, 1024, and 1536)
that are otherwise identical to the other simulations of balanced
turbulence. The time-averaging window has been changed from 10
< tc/L < 20 to 5 < tc/L < 14, because 14 L/c is the latest time
included in all simulations. Here we focus on the convergence of
energetic quantities; for convergence of the balanced turbulence’s
particle energy spectra with system size, see Zhdankin et al. (2018b).

We find that the injection efficiency 7i,j depends weakly on
simulation domain size for both balanced and imbalanced turbulence
(Fig. Ala). The simulations with £ = 1.0 and L/27p,o = 81.5 and
164 domains have slightly lower injection efficiencies than those for
the smallest (L/27 p,o = 40.7) domains. Kinetic damping of large-
scale fluctuations, which would drain energy faster than turbulence
alone, may explain the larger ni,; for smaller domain sizes. For § =
0, the L/27 p,o = 54.3 simulation’s 1, is within the statistical spread
of the L/2m p,o = 40.7 simulations’ injection efficiencies, whereas
the L/2w p,o = 81.5 injection efficiency is slightly below. The time-
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averaged Poynting flux shows a weak positive trend with increasing
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Figure A2. The magnetic and turbulent kinetic densities are weakly de-
pendent on simulation domain size. When averaged from t = 5 — 14 L/c,
the magnetic energy density (a) and turbulent kinetic energy density (b) are
shown as a function of L/27 p.o. Both the balanced (¢ = 1.0; purple circles)
and most imbalanced (§ = 0; yellow triangles) values are mostly within
statistical variation of the L/27w p,o = 40.7 sample of eight random seeds.

domain size (Fig. A1b). Though the L/27 p,o = 81.5 domain size for
the imbalanced & = O case has a value higher than the largest L/2m p .
= 40.7 value, the difference is only about 0.05 (cBg /4m) (about
15 per cent), within two standard deviations of the statistical variation
shown by the L/2m p,o = 40.7 study.

The turbulent and magnetic energy densities show a slight depen-
dence on simulation domain size (Fig. A2). Both quantities’ values
for L2 p.y 2 54.3 are consistently about 15 per cent greater than
the largest value of the statistical ensemble of L/27w p,o = 40.7, § =
1.0 simulations. Though the imbalanced turbulence simulations do
not appear to exhibit a trend in turbulent kinetic energy with box size
(Fig. A2b), the L2 p,o = 81.5, § = 0 case’s value for magnetic
energy is noticeably higher (20 per cent) than the L/2m p, o = 54.3
value, which lies within the statistical spread of the L/2w p,o = 40.7
ensemble study (Fig. A2a).
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