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Abstract

Instabilities in a neutron star can generate Alfvén waves in its magnetosphere. Propagation along the curved
magnetic field lines strongly shears the wave, boosting its electric current jA. We derive an analytic expression for
the evolution of the wavevector k and the growth of jA. In the strongly sheared regime, jA may exceed the
maximum current j0 that can be supported by the background e± plasma. We investigate these charge-starved
waves, first using a simplified two-fluid analytic model, then with first-principles kinetic simulations. We find that
the Alfvén wave is able to propagate successfully even when κ≡ jA/j0? 1. It sustains jA by compressing and
advecting the plasma along the magnetic field lines with an increasing Lorentz factor, γ κ1/2. The simulations
show how plasma instabilities lead to gradual dissipation of the wave energy. Our results suggest that an extremely
high charge-starvation parameter κ 104 may be required in order for this mechanism to power the observed fast
radio bursts (FRBs) from SGR 1935+2154. However, cosmological FRBs with much higher luminosities are
unlikely to be a result of charge-starvation.

Unified Astronomy Thesaurus concepts: Plasma physics (2089); Neutron stars (1108); Radio bursts (1339)

1. Introduction

Young and active neutron stars can experience quakes that
are capable of launching low-frequency (kHz) Alfvén waves
into the star’s magnetosphere (Blaes et al. 1989). This process
can power X-ray bursts from magnetars (Duncan & Thomp-
son 1992). Quakes have also been associated with glitches in
the rotational frequencies of young radio pulsars (e.g., Ruder-
man 1976), and the quake excitation of magnetospheric Alfvén
waves was invoked to explain the chocking of the radio signal
from the Vela pulsar during a glitch (Palfreyman et al. 2018;
Bransgrove et al. 2020). Alfvén waves may also be involved in
the production of the fast radio burst (FRB) detected recently
from the galactic magnetar SGR 1935+2154 (Bochenek et al.
2020; CHIME/FRB Collaboration et al. 2020; Mereghetti et al.
2020).
The group velocity of an Alfvén wave in the magnetosphere

of a neutron star is near the speed of light c, and it is directed
along the magnetic field B0. Propagation along the curved
magnetic field lines leads to the growth of k⊥, the wavenumber
perpendicular to B0 (Bransgrove et al. 2020). This process can
strongly enhance the electric current in the Alfvén wave
jA∼ (c/4π)k⊥Bw, where Bw is the wave amplitude.

The maximum current that can be supported by a plasma
with density n0 is en0c, and it is convenient to define the
dimensionless parameter

j

j
j en c, . 1A

0
0 0k º = ( )

The regime of κ> 1 is often called charge-starved. Charge-
starvation has long been invoked as a possible dissipation
mechanism of magnetospheric waves (Blaes et al. 1989;
Thompson & Blaes 1998). Recently, it has been proposed that
waves entering the regime of κ> 1 will develop a strong
electric field E∥ (parallel to B0) and dissipate a large fraction of
the wave energy, possibly accompanied by strong plasma
bunching and coherent radio emission, which was suggested as
a potential mechanism for FRB emission (Kumar et al. 2017;
Kumar & Bošnjak 2020; Lu et al. 2020).
In this paper, we examine the behavior of charge-starved

Alfvén waves. In particular, we wish to know what E∥ is
induced, how much of the wave energy is dissipated, what
plasma instabilities will arise, and what is the resulting particle
distribution. We begin with a discussion of how an Alfvén-
wave packet can become charge-starved as it propagates in the
magnetosphere of a neutron star (Section 2). Then we
investigate what happens with the wave as it enters the regime
of κ> 1. We first use a simplified analytical model (Section 3),
then perform direct kinetic simulations of the plasma dynamics
in the wave (Section 4).

2. Propagation and Shearing of an Alfvén-wave Packet

Consider an Alfvén-wave packet launched into the magneto-
sphere by a shear motion of the neutron star crust. Let Bw be the
wave amplitude and ℓ⊥ be the perpendicular size of the packet.
The initial ℓ⊥ equals the size of the sheared region of the stellar
surface, which determines the current density in the packet
jA∼ (c/4π)Bw/ℓ⊥ that flows along the background magnetic
field B0. Small amplitude waves with Bw= B0 will propagate
along the magnetic field lines without disrupting the structure
of the magnetosphere. Below we examine two main effects that

The Astrophysical Journal, 929:31 (9pp), 2022 April 10 https://doi.org/10.3847/1538-4357/ac59b1
© 2022. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0002-0108-4774
https://orcid.org/0000-0002-0108-4774
https://orcid.org/0000-0002-0108-4774
https://orcid.org/0000-0001-5660-3175
https://orcid.org/0000-0001-5660-3175
https://orcid.org/0000-0001-5660-3175
https://orcid.org/0000-0003-0750-3543
https://orcid.org/0000-0003-0750-3543
https://orcid.org/0000-0003-0750-3543
mailto:yuran.chen@colorado.edu
http://astrothesaurus.org/uat/2089
http://astrothesaurus.org/uat/1108
http://astrothesaurus.org/uat/1339
https://doi.org/10.3847/1538-4357/ac59b1
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac59b1&domain=pdf&date_stamp=2022-04-11
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ac59b1&domain=pdf&date_stamp=2022-04-11
http://creativecommons.org/licenses/by/4.0/


will affect the evolution of jA as the wave packet propagates
away from the star.

First, the divergence of the dipole field lines will increase ℓ⊥
and decrease Bw. The distance between magnetic flux surfaces
increases with radius r as ℓ⊥∝ r3/2 while Bw∝ r−3/2. This
effect leads to a scaling of jA∝ r−3. Incidentally, the
Goldreich–Julian charge density ρGJ in a rotating dipole
magnetosphere also decreases as r−3 (Goldreich & Julian 1969).
This led Kumar & Bošnjak (2020) to suggest that, in a
magnetosphere with plasma density n eGJr= , the Alfvén
wave can become charge-starved if the multiplicity 
decreases with the radius. On closed field lines, when the
wave packet reaches the magnetic equator and turns back to the
star, it follows the converging field lines, and ℓ⊥ decreases
again. If the divergence/convergence of the magnetic flux
surfaces were the only effect, jA would come to its original
value when reaching the stellar surface in the opposite
hemisphere.

However, there is a second effect that can enhance the
perpendicular gradient of the Alfvén-wave packet, hence
increasing jA, especially on closed field lines. Different dipole
field lines have different lengths, and the parts of the packet
propagating along the longer field lines lag behind, leading to a
strong shear of the packet. Bransgrove et al. (2020) described
this effect as “de-phasing,” and studied the evolution of jA as
the wave keeps bouncing in the closed magnetosphere. Here
we use a different approach to compute the evolution of k⊥
within a single pass in the magnetosphere.

A dipole magnetic field line is parameterized by
r r sinm

2 q= , where rm is the radius where it crosses the
magnetic equator (θ= π/2). The field line starts at the stellar
surface (radius rå) at polar angle θ0 related to rm by

r rsin m
2

0q = . It is convenient to use variable cosm q= ,
which varies along the closed field line between μ0 and− μ0.
Starting from the northern footpoint μ0, one can integrate the
length along the dipole field line to a given point μ,
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Note that r r1 m0
1 2m = -( ) , so F(μ0) is a function of rm.

Let us now consider an Alfvén wave with the frequency ω
launched from the stellar surface in the northern hemisphere.
The wave at t> 0 is described by rB r r i texp ,w

3 2 F-( ) [ ( )]* ,
where

r rt r t k s k
c
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As long as c/ω= r* and the initial ℓ⊥= r*, the wavevector is
k=∇Φ=∇Φ0+ (ω/c)∇s. The first term is the contribution to
k from the initial profile of the perturbation. The evolution of
∇⊥Φ0 follows the divergence of the field lines, and is
essentially the first effect we discussed above. We are
interested in the evolution of k⊥ due to the second term,
k⊥= (ω/c)∇⊥s.

To evaluate ∇⊥s, it is convenient to introduce the dipole
coordinates following Swisdak (2006):

r
r
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h
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The η-coordinate coincides with rm, and uniquely labels the
field lines, while the χ-coordinate varies along a single field
line. This is an orthogonal coordinate system with metric
elements:
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The metric coefficient hη quantifies the distance between the
dipole flux surfaces. The perpendicular derivative is simply
given by the following:
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which can be evaluated to be the following:
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The variation of k⊥ along a given field line is shown in
Figure 1. For extended field lines, rm? r*, k⊥ can grow to very
large values in the southern hemisphere. This is a combination
of two effects. The cumulative path difference ∂s/∂η grows
fastest near the equator, which leads to k⊥ ∼ ω/c. Then, due to
the field line convergence in the southern hemisphere, the
existing k⊥ is increased by a factor of h r r1 m

3 2~h ( )* when
the wave reaches the southern footpoint. After N consecutive
bounces, the wave will accumulate a total ck⊥ ∝ Nω/hη,
consistent with the result of Bransgrove et al. (2020; their
Equation (38) used the approximation ∇⊥∼ r−1∂θ, which is
valid for θ away from the equatorial plane). The reflection
coefficient of Alfvén waves at the stellar surface was calculated

Figure 1. The evolution of k⊥ on field lines of different rm. The vertical
markers indicate the footpoints of the magnetospheric field line on the star. The
red dashed vertical line shows the magnetic equator θ = π/2.
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by Li & Beloborodov (2015) to be  0.9~ , so most of the
wave energy is reflected at each bounce, and k⊥ keeps growing
as the waves bounce along the closed magnetic field lines.

The evolution of ck⊥/ω results in the Alfvén wave front
becoming increasingly oblique with respect to the background
field B0. The angle ψ between the wavevector k and B0 grows
as k k cktany w= =^ ^ . The dimensionless parameter κ
grows as follows:

j

en c

B

B
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, 9B
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2
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w w y
w
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where e n m4p e
2

0w p= is the background plasma frequency,
and ωB= eB0/mec is the gyro-frequency of electrons in the
background magnetic field. Due to the ever-growing tany, the
effect of wave shearing can eventually lead to charge-
starvation, κ> 1, even for waves of modest amplitudes.

3. Plasma Dynamics in the Wave: Two-fluid Model

3.1. Problem Setup

As a first step toward understanding charge-starved Alfvén
waves, we examine a simple two-fluid model of plasma motion
in a plane wave propagating into a uniform background. The
uniform approximation is reasonable for sufficiently short
waves. We take the background to be a cold neutral e± plasma
with density n n n const0= = =+ - immersed in a uniform
magnetic field B0. A gradual change of κ may then be treated
as an adiabatic effect on the quasi-steady plane wave.

We are interested in the highly magnetized regime with
B n m c4 1e0

2
0

2s pº  , so that the propagation speed of the
wave along B0 nearly equals c. The electromagnetic field of a
steadily propagating wave is then only a function of t− s/c,
where the s-coordinate runs along B0. Let the x-axis be along
the wavevector k; the wave magnetic field B depends on

t
s

c
t

x

c cos
. 10x
y

= - = - ( )

The propagation speed along x is V c cosx y= . The wave
electric field E is related to the magnetic field B by

E B
B
B

. 110

0
x x= ´( ) ( ) ( )

The wave fields B and E are both perpendicular to the
background field. The electric current density in the wave is
parallel to B0, and its value is

j
dB

d
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4
. 12A x
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p x

=( ) ( )

The charge density in the wave, ρ=∇ · E/4π satisfies the
relation

c j . 13Ar x x=( ) ( ) ( )

The above description gives an exact MHD solution in the
force-free limit σ→∞with no charge-starvation. It relies on
the implicit assumption that there is always enough plasma to
conduct the required electric current jA. We will next examine
the dynamics of the e± particles for any given background
plasma density n0, especially in the regime κ> 1, when the
assumption of a copious plasma supply may not be valid.

The characteristic gyro-frequency ωB in the neutron star
magnetosphere is many orders of magnitude greater than ω.

Therefore, e± particles in the wave move with velocities v
along the magnetic field lines, like beads on a wire. Only E∥ is
relevant for their dynamics. For small amplitude waves
Bw= B0, the field lines are bent only by a small angle, and

v Bv B B Bw0 0
2

0
2= +· ( ) . Therefore we approximate the

particle motion as parallel to B0.
In order to conduct the required electric current, an E∥ will

be induced to accelerate the electrons and positrons in opposite
directions, creating two plasma streams.

3.2. Two-fluid Model

We first examine a simple model assuming that the e±

streams remain cold, neglecting any possible instabilities that
may arise. This “two-fluid” model captures some basic features
of the plasma dynamics in the wave. The parallel electric field
regulating the velocities of the e± streams is nondissipative in
the two-fluid model, as the particles will come to rest behind
the wave.
The two cold fluids are described by their densities n± and

velocities v±. Both are functions of ξ in a steadily propagating
wave. Their values in the background plasma, n±= n0 and
v±= 0, give the boundary conditions ahead of the wave for the
profiles n±(ξ) and v±(ξ). The density and velocity of each
stream satisfies the continuity equation ∂tn± + ∂x(n±v±,x)= 0,
where v v cosx, y=  . This gives

dn

d

d

d
n 0, 14

x x
b- =
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where β±= v±/c. One then finds dn n d1 b b- =   ( ) and

n
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-
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where we used the boundary condition ahead of the wave:
n± = n0 when v±= 0. In the two-fluid picture, the continuity
equation automatically implies the relation j= ρc, where
j= e(n+v+− n−v−) and ρ= e(n+− n−).
The fluid velocities are related to κ= jA/en0c by
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In a successfully propagating Alfvén wave, the plasma motion
must sustain j= jA given in Equation (12), which determines κ
(ξ). Our goal is to find β±(ξ) under a given κ(ξ), and then check
what happens in the charge-starvation regime of κ> 1.
Particles are governed by the equation of motion

dp±/dt=± eE∥, where p±= γ±mev±, 1 2 1 2g b= - 
-( ) , and

d/dt= ∂t+ v±d/ds= (1− β±)d/dξ. This equation gives
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g b=  º -

  ( ) ( )

It implies d(q++ q−)/dξ= 0. Then using the boundary
condition q+= q−= 1 ahead of the wave, we obtain

q q 2. 18+ =+ - ( )

Rewriting Equation (16) in terms of q±,
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we obtain two equations for q±, which can be easily solved for
any given κ(ξ). Once q±(ξ) are found, we also obtain
eE∥=mec dq+/dξ.

A well-behaved solution to Equations (18) and (19) exists
for both |κ|< 1 and |κ|> 1. In particular, consider κ? 1, the
strongly charge-starved regime with j> 0. Then the solution is
q q2 1 42 2k» »+
-

-
- . Using the relation q−1= γ(1+ β),

we find

2
,

5

4
1 . 20

1 2

g
k

g k» »+ -⎛
⎝

⎞
⎠

( ) ( )

Figure 2 shows the solution for p±(ξ), and the corresponding
E∥(ξ), for a plane wave with the following profile:

B
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0, otherwise.
21
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This profile describes an isolated sine pulse, with the additional
factor of sin2 px l( ) introduced to make the derivative dB/dξ
smoothly vanish at the boundaries of the pulse ξ= 0, λ. In our
example, κ(ξ) reaches the maximum κw= 10 at ξ= 0.5λ.

The wave achieves the required j and ρ by inducing E∥ that
sweeps the e± particles along B0. This sweeping compresses
the two fluids by the factors of 1 1b- 

-( ) (Equation (15)). In
the regime of κ? 1, the compression factor is large for e+,
1 21 2b g- »+

-
+( ) . Developing γ+≈ (κ/2)1/2 is sufficient to

enhance the local density of e+ by the factor of κ and thus
achieve ρ and j required by the wave. Charges of the opposite
sign do not suffer from this compression, and they are only
mildly accelerated to γ−≈ 5/4, or β− ≈ 0.6. Particles move
through the wave with the relative speed c− v≈ c/2γ2 when
γ? 1; therefore it takes time t cres kl~ for the plasma to
cross the wave.

It is convenient to define

n
j

ec
. 22w

A= ( )

In the charge-starved regime κ? 1, the wave carries the
density n≈ nw, and the electromagnetic energy available per

particle is described by

B

n m c4
. 23w

w

w e

2

2
s

p
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The wave propagation is weakly affected by charge-starvation
as long as γ+≈ (κ/2)1/2= σw. Otherwise the plasma kinetic
energy will become comparable to the field energy, leading to
significant deviations of E(ξ) and B(ξ) from the force-free
solution.
In neutron star magnetospheres, the plasma frequency ωp is

much higher than the frequencies of Alfvén waves launched by
crustal motion. This implies that the two-fluid model is
deficient, because this configuration is unstable to the two-
stream instability on the short plasma timescale p

1w~ - . In
particular, consider the vicinity of a maximum of p± in
Figure 2, where the two-fluid model gives E∥≈ 0. Since the
parameters of the e± streams are varying slowly compared to
the plasma scale, ω= ωp, one can use the standard linear
instability analysis (e.g., Melrose 1986) to find that the most
unstable mode is near k∼ ωp/c with the growth rate Γ∼ ωp.
The instability will heat the plasma streams and mix them in the
phase space. It is difficult to analytically predict the
consequences of the nonlinear saturation of the instability.
Therefore, we employ direct kinetic plasma simulations to find
a self-consistent solution.

4. Numerical Simulations

4.1. Simulation Setup

We set up a series of particle-in-cell (PIC) simulations using
our own GPU-based PIC code Aperture.7 We use a two-
dimensional, elongated Cartesian box with periodic boundary
conditions in the y direction. An Alfvén wave is initialized at
the left end of the box with the profile described by
Equation (21), with magnitude Bw and wave B pointing in
the z direction. The wave electric field is initialized using
Equation (11). The background magnetic field B0 is inclined
with respect to the x-axis by an angle ψ. In our simulations,

B xcos 0.150y = =ˆ · ˆ . As the wave propagates along B0, it
will move in the box along the x direction. The effective length
of propagation is much longer than the box length due to the
inclination of the background field. A damping layer is placed
at the end of the box x= Lx to prevent the reflection of any
plasma waves.
We start with a small amplitude wave, with Bw/B0= 0.1.

Inside the wave packet, we initialize a pair plasma that satisfies
ρ= jA/c and j= jA with a small initial multiplicity,
n+ + n−= 3jA/ec. The space outside of the wave packet is
filled with a low-density neutral plasma with n+ = n−= n0. We
typically have 5–10 particles per cell corresponding to n0.
Depending on the value of κ, the number of particles per cell in
the wave is often much larger. The characteristic plasma skin
depth c/ωp in the wave is set by jA/ec, and is typically∼ 1/200
of the wavelength in the x direction, λx. The box size is
Lx= 5λx= 10Ly, and has a total resolution 5120× 512. This
translates to ∼5 cells per plasma skin depth. Outside the wave
packet, where plasma density n0= jA/ec, the plasma skin
depth is resolved with many more cells.
This problem has two dimensionless parameters, κ and σw.

In the following discussion, we refer to κ as its maximum value

Figure 2. The momentum profile p±(ξ) of the electron (blue) and positron
(orange) streams in the two-fluid model, for the wave profile given in
Equation (21). The corresponding E∥(ξ) is shown by the green curve. The
maximum κ in this example is 10, reached at the center of the wave profile.

7 https://github.com/fizban007/Aperture4
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at the center of the wave profile. In the simulations shown
below, we always keep σw∼ 100 so that ws k . This
regime is realistic for Alfvén waves in a neutron star
magnetosphere. The simulation results will verify that, in this
limit, the amount of wave energy converted to particle kinetic
energy is small, and the wave electromagnetic fields remain
close to the initial force-free solution.

4.2. Waves in a Uniform Background

We performed a series of simulations where κ is constant in
the box. The value of κ varied from 2 to 100 between the
different runs. In all of these simulations, we observed the rapid
development of the two-stream instability, breaking E∥ into
Langmuir modes that propagate with the Alfvén wave. The
instability saturates quickly, heating the particle streams and
leading to a sustained momentum space configuration shown in
Figure 3.

This configuration differs from the two-fluid model of
Section 3. The plasma momentum distribution in the wave can
be described as a relativistic, hot, and charge-separated stream

traveling into a quasi-neutral static plasma. This configuration
is prone to a warm version of the two-stream instability,
exciting electrostatic wave modes that scatter the fast moving
particles to lower velocities, creating a bridge in momentum
space between the relativistic stream and the static plasma (see
panel (e) in Figure 3). The bridge particles gradually fall behind
the current-carrying beam, which tends to reduce j. As a result,
the plasma responds by inducing a small Eá ñ , which keeps
accelerating the particles traveling in the wave. Effectively, this
creates an anomalous resistivity that continually dissipates the
Alfvén wave energy. A small fraction of the dissipated energy
is converted into the plasma waves launched into the upstream,
but most of the energy goes into gradual acceleration of the
relativistic beam.
Figure 4 shows this gradual and continual acceleration of the

current conducting particles, as well as the scaling of their
Lorentz factor with κ. At any given time, the peak Lorentz
factor scales as k across the simulations with different κ. The
acceleration in all cases seems to be consistent with an average

Figure 3. A snapshot of the simulation with κ = 12. Panels from top to bottom are as follows: (a) the wave magnetic field Bz as color plot and B0 as dashed green
lines; (b) parallel electric field; (c) parallel current density; (d) E∥ averaged over y; (e1) momentum distribution of e± in the green region depicted in panels (a)–(c); (e2)
momentum distribution of e± in the magenta region in panels (a)–(c). B and E are measured in units of mec

2/eλx, while j is measured in units of m c e4e x
3 2p l .
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dissipating electric field
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0.4 , 24e
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where λ is the full wavelength of the Alfvén wave. This electric
field is much smaller than the (nondissipative) spike of E∥ that
was needed in the two-fluid model to polarize the background
plasma. The fractional dissipation rate of the wave energy
density Uw can be estimated as

U

U

E j

B
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. 25

w w w
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2 p

k
s l

~ ~ ( )
 

Thus, a fraction wk s of the wave energy is dissipated in
time λ/c.

In the toy model of Section 3, charges swept by the wave are
accelerated to g k~ , flow with the wave for a residence time
t c cres

2g l kl~ ~ , and exit behind it with the same
upstream condition. By contrast, the simulations demonstrate
that a dissipative electric field Eá ñ is induced, which accelerates
charges linearly with time well beyond k . The characteristic
particle Lorentz factor grows as ct0.4g k l~ , and this
continued acceleration has an important consequence: it helps
the wave to trap the plasma. The residence time t ctres

2k l~
grows quadratically with time, and exceeds the elapsed time t at
t∼ λ/(κc). When κ? 1, tres quickly becomes much greater
than t, i.e., the plasma is trapped in the Alfvén wave. As a
result, the wave can be supported by the advected plasma for a
long time.

After the onset of trapping, we observe that the wave and the
advected relativistic plasma go through the low-density back-
ground plasma with weak interaction—the e± background
remains nearly static inside the wave. This is the origin of the
momentum distribution with a hot relativistic beam propagat-
ing through the static quasi-neutral plasma in Figure 3. The
saturated two-stream instability sustains the dissipative Eá ñ .

The gradual acceleration of the beam γ∝ t should saturate if
it reaches the group speed of the wave,

v

c 1
, 1 , 26A

A
s
s

g s=
+

= + ( )

where B n m c4 w e0
2 2s p= is the magnetization parameter, and

nw is the plasma density in the wave, which can significantly
exceed the background n0 in the regime of κ? 1. The
acceleration of the plasma beam carried by the wave should
saturate when the beam Lorentz factor reaches g s~ , and
further dissipation will likely go into heating the plasma beam.
Note, however, that it can take a long time for the wave to
reach this saturated regime, and it may not occur in a real
neutron star magnetosphere. Instead, the beam speed can
become limited by the radiative drag due to the resonant
Compton scattering of X-rays around magnetars.
The fractional dissipation rate (Equation (25)) scales with κ

and σw, and it is independent of the relative amplitude of the
Alfvén wave Bw/B0. We performed a series of simulations with
the same Bw and different background magnetic field strengths
B0, such that Bw/B0 ranges from 0.01 to 0.5. We find that in all
cases, as long as Bw and κ remain constant and ws k , the
energy dissipation rates and particle acceleration histories are
identical.
Using an approximate volume of the emission region

V ℓ r ℓ r r r2 sin 2 m
1 2l p q l p~ ~l ^ ^ ( ) , one can estimate the

dissipation power per wavelength λ,

L E j V
ceB r

r r
. 27w

e m
diss A

3 2

1 2
k~ ~l ( )

Since B B r rw w
3 2= -( )* , the dissipation power is essentially

only dependent on κ, the initial Alfvén wave amplitude emitted
by the star Bw , and the maximum extent of the field line rm.

4.3. Wave Propagation through a Density Jump

The numerical results described in Section 4.2 are applicable
to waves propagating with a slowly changing κ. We now
investigate the opposite regime where κ increases suddenly, on
a length scale that is comparable or shorter than the Alfvén
wavelength. In particular, we wish to check whether there is
any dramatic transient behavior in the extreme limit when the
Alfvén wave propagates across a sharp boundary where κ
transitions from <1 to ?1.

Figure 4. Particle Lorentz factor vs. κ. Left panel: growth of peak Lorentz factor of the current conducting particles in the wave at different κ. Dashed lines have
slopes 0.4 k l, and are acceleration models with constant E∥. Right panel: orange triangles are peak Lorentz factors at ct/λx = 15, while the blue dashed line
indicates a simple power law γp ∝ κ1/2, which is the prediction of the two-fluid toy model.
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We use the same simulation setup as described in
Section 4.2, with the exception that n0 drops sharply at
x= 0.4Lx. We have carried out a series of simulations where
κ= 0.8 for x< 0.4Lx and κ for x> 0.4Lx is a constant value
above unity. In our simulations, the value of κ after the jump
ranges from 4 to 40. Figure 5 shows the evolution of the peak
electron Lorentz factors for these runs before and after the
density jump.

We find that during its encounter with the density jump, the
Alfvén wave induces a coherent E xk lµ to quickly
accelerate charges of the right sign to g k~ . The parallel
electric field separates the charges and sweeps the required
amount of e± with the wave to conduct the required current.
The most significant acceleration happens near the leading edge
of the wave, which is negatively charged in our wave profile
(see panel (c) of Figure 3). The encounter phase with the high
E∥ has a short duration, and the total dissipated energy during
the simulation is dominated by the later phase, when the wave
continues to propagate through the low-density background. At
this late phase, the wave behavior is similar to that found in
Section 4.2 with constk = .

4.4. Multiple Wavelengths

So far we have studied the plasma dynamics in a charge-
starved Alfvén-wave packet of only one wavelength. A realistic
starquake will likely excite a train of many wavelengths.

The simplified two-fluid model described in Section 3
extends trivially to multiple wavelengths: the plasma enters and
exits each wavelength in exactly the same state with zero β±;
hence each wavelength can be treated independently. However,
in the more realistic picture shown by the simulations in
Sections 4.2 and 4.3, the plasma becomes trapped and advected
by the wave, which could affect the plasma dynamics in
subsequent wavelengths. To investigate how charge-starvation
occurs for a wave train, we carried out an additional series of
simulations with four wavelengths in the Alfvén-wave packet.
One of these simulations is shown in Figure 6.

The simulations show that charge-starvation effects first
develop in the leading wavelength, where the plasma is
accelerated through the mechanism described in Section 4.2

and quickly becomes trapped with the wave. Before the plasma
is completely trapped within the wavelength, some charges will
leak into the next wavelength, delaying its transition into
charge-starvation. Eventually, all wavelengths become charge-
separated and enter the advection regime. We find that the
particle distributions in the train of multiple wavelengths are
identical to that in the single-wavelength simulation shown in
Section 4.2. In this regime, the quasi-neutral background
plasma flows through each wavelength, slightly heated by the
Langmuir oscillations in the wave, but otherwise unaffected by
it. Therefore, each wavelength still remains largely indepen-
dent. We believe that this result is scalable to yet more
wavelengths. This can be further tested in the future with larger
simulations.

5. Discussion

We have studied the propagation of Alfvén waves in
different plasma densities, in particular when the background
plasma density is insufficient to support the required current jA.
We find that such charge-starved Alfvén waves still manage to
propagate with the required current and charge densities by
advecting the required charges with it. The wave becomes
charge-separated rather than truly charge-starved, and the
charge carriers move at near the speed of light. In the highly
magnetized regime of B n m c4w e

2
0

2p  , only a small amount
of the Alfvén wave energy needs to be converted to particle
kinetic energy to sustain this configuration. The particle
acceleration process is gradual and driven by a small regular
Eá ñ averaged over Langmuir oscillations.
We find that the dissipation rate of this electric field scales

with k , and estimate the local dissipation rate to be
Equation (27). We compare this to the FRBs observed from
the galactic magnetar SGR 1935+2154 that is concurrent with
an X-ray burst. The energy budget of the X-ray burst is
consistent with an Alfvén wave of amplitude
B B10 10 Gw p

3 11~ ~- (Yuan et al. 2020). Assuming a large
κ∼ 100, and that the wave is launched on a field line with
maximum extent rm∼ 102R*, we can then estimate the
maximum power dissipated per wavelength λ in the wave
entering charge-starvation as



L
B r

10
10 G 10 cm

erg s . 28w m
diss

30 1 2
11 8

1 2
1k~

-
-⎛

⎝
⎞
⎠
⎛
⎝

⎞
⎠

( )

Assuming that the particles in the wave are accelerated to
Lorentz factors of g k~ , their emission will be beamed into
a solid angle δΩ∼ γ−2, enhancing the apparent luminosity by
γ2. The duration of the emission is governed by the length of
the wave train, with no Doppler compression. The resulting
observed isotropic equivalent luminosity from one wavelength
λ may be estimated as L∼ 1033(κ/100)3/2 erg s−1, if one
optimistically assumes a 100% radiative efficiency.
Note that the beaming δΩ∼ γ−2 occurs only if the radiating

particles move along nearly straight magnetic field lines. In
reality, the field lines are curved on a length scale not much
greater than the wavelength. This broadens the emission solid
angle and reduces the effect of Doppler beaming on the
apparent luminosity. Thus, the observed luminosity will be
even lower than the estimate above. This luminosity can hardly
reach the observed luminosity of the FRB from SGR 1935
+2154, Lradio∼ 3× 1037 erg s−1 (CHIME/FRB Collaboration
et al. 2020).

Figure 5. Evolution of maximum electron Lorentz factor vs. κ when there is a
density jump. Dashed lines have slopes 0.4 k l, and are acceleration models
with constant Eá ñ . After the transient when the wave goes across the density
jump, particle acceleration proceeds in a similar fashion as Figure 4.
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Our simulations do not show strong bunching of e± in the
saturated plasma oscillations in the Alfvén wave, which would
be needed for efficient coherent emission. Even if the plasma
did form bunches, the particles do not gain enough energy or
sufficiently high Lorentz factors for coherent emission in the
radio band. Therefore, our results do not support the proposal
that charge-starved Alfvén waves produce FRBs (Lu et al.
2020). The insufficient energy budget becomes particularly
severe for cosmological FRBs, whose luminosities reach 1042

erg s−1. The mechanism of FRB emission remains a debated
topic (Lyubarsky 2021). Even if the radio waves are emitted in
the inner magnetosphere, it will be subjected to plasma effects
during its propagation, which may significantly change its
waveform, or lead to strong scattering (Beloborodov 2021a).

In the vicinity of magnetars, the resonant inverse-Compton
scattering of the thermal X-ray photons flowing from the star
can exert an efficient drag force on the plasma, depending on
the location in the magnetosphere (Beloborodov 2013; Thomp-
son & Kostenko 2020). This can create a significant additional
channel for dissipation in the charge-starved Alfvén waves,
which can potentially convert most of the energy gained by the
particles into hard X-ray emission. The resulting X-ray
luminosity may be in the observable range. The inverse-
Compton scattering may also induce pair production, which
increases the background plasma density and thus reduces κ.
These effects will be studied in a future work.

Much stronger dissipation of relativistic Alfvén waves can
occur when they collide with each other and create regions of
E> B (Li et al. 2021) or form turbulence cascades (Thompson
& Blaes 1998; Li et al. 2019). Strong dissipation also occurs if
the wave grows to a nonlinear amplitude Bw> B0, triggering
magnetic reconnection (Yuan et al. 2020). Strong dissipation
generally creates copious e± pairs with a subrelativistic
temperature, and the released energy is promptly radiated in
a hard X-ray burst (Beloborodov 2021b).
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