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ADVANCED REVIEW

ABSTRACT: Deep eutectic solvents (DESs) are binary or ternary mixtures of compounds
that possess significant melting point depressions relative to the pure isolated
components. The discovery of DESs has been a major breakthrough with multiple fields
benefitting from their low cost and tunable physiochemical properties. However, tailoring
DESs for specific applications through their practically unlimited synthetic combinations
can be as much a hindrance as a benefit given the expense and time-required to perform
large-scale experimental measurements. This emphasizes the need for fast
computational tools capable of making accurate predictions of DES physiochemical
properties exclusively from molecular structure. Yet, these systems are not trivial to model
or simulate at the atomic level given their exceedingly non-ideal behaviors, asymmetry of
components, and the complexity of their molecular electrostatic interactions. Despite the
challenge, computational reports featuring quantum mechanical (QM) methods have
provided significant understanding into the relationship between the melting point
depression and the unique and complex hydrogen bond network present in DESs.
Classical molecular dynamics (MD) methods have examined bulk-phase solvent
organization in conjunction with thermodynamic and transport properties. Machine
learning (ML) algorithms have shown great potential as structure-property prediction

tools. Overall, this review highlights computational accomplishments that have



meaningfully advanced our understanding of DESs and strives to give the reader a sense
of the overall strengths and drawbacks of the methodologies employed while hinting at

promises of advances to come.
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This review highlights computational accomplishments that have meaningfully advanced

our understanding of deep eutectic solvents (DESs).



1. INTRODUCTION

The utilization of conventional organic solvents in chemical applications is often
energy-intensive, produces environmental and health hazards, and requires expensive
chemical waste disposal.’ 2 Consequently, developing green and sustainable solvents is
of the utmost importance.3® The discovery of deep eutectic solvents (DESs) has been a
major breakthrough in this respect with research efforts over the past twenty years
directed towards elucidating the structure-property relationship of these solvents in
diverse applications.®'* The term “deep eutectic solvent” has become a catch-all phrase
that describes binary or ternary mixtures of compounds which decrease in melting
temperature relative to the melting temperatures of the pure isolated components. Hence,
the eutectic temperature is defined as the lowest melting temperature for a given mixture
(with most DESs <150 °C) and the corresponding composition is called the eutectic
composition.’™® Deep eutectic solvents are generally composed of a hydrogen bond
acceptor (HBA) such as a quaternary ammonium salt and a neutral hydrogen bond donor
(HBD) that can form a complex with the halide (Figure 1).'® Accordingly, DES
physicochemical properties are primarily dependent upon the intermolecular interactions
maintained by its components.'” Capitalizing on their facile synthesis and purification
process, favorable physical properties that include low vapor pressures, nonflammability,
high biodegradability, and their 100% atom utilization rate,'® deep eutectic solvents have
been effectively adopted for use in multiple fields that include biotechnology and
biocatalysis,’® 2° materials,?’?®> polymers,?*?’, extractions and separations,?8-32

dissolution of metals,3 carbohydrate chemistry,3* gas solubility,3> 3¢ energy and fuels,3"-



38 biology,* biomass processing,*® 4! and as a reaction medium for organic reactions.**
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Figure 1. Type Ill deep eutectic solvent forming halide salts and hydrogen bond donors.
Used with permission from E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev., 2014, 114,
11060-11082. Deep Eutectic Solvents (DESs) and Their Applications. Copyright 2014,
The American Chemical Society.

While many DES-based enhancements to chemical applications have been
realized, meaningfully advancing the “designer solvent” aspect of DESs through their
virtually limitless synthetic flexibility*> can be as much a hindrance as a benefit given the
expense and time-required to perform large-scale experimental measurements. The

efficiency of tailoring DESs for specific purposes could be significantly improved with a



fast computational tool capable of making accurate predictions of DES physiochemical
properties exclusively from its molecular structure. Yet, these systems are not trivial to
model or simulate at the atomic level given their exceedingly non-ideal behaviors (in pure
form or mixtures), asymmetry of components, and the complexity of their molecular
electrostatic interactions.*® This review aims to inform the reader of advancements in the
development and application of theoretical and computational methods to help elucidate

the molecular nature of DESs.

In Section 2, a brief background on the history, classification, and composition of
DESs is provided to familiarize the reader with these unique solvent systems. Section 3
delves into research efforts that utilized quantum mechanical (QM) methods on gas phase
structures and ab initio molecular dynamics (AIMD) on small solvent clusters. These
techniques have played a significant role in elucidating the origin of DES melting point
depression and the intricacies of intermolecular interactions and hydrogen bonding
present in these solvents. Section 4 features an overview of molecular dynamics (MD)
simulations and force field developmental efforts used to model bulk-phase DES systems
with insight provided into solvent organization and thermodynamic and transport
properties in pure and heterogeneous environments. Finally, Section 5 reports machine
learning (ML) algorithms as property prediction tools for DESs with a brief discussion on
their methodological background. Overall, this review strives to give the reader a sense
of the overall performance of current simulation models and highlights the strengths and
drawbacks of each method in representing the structure and properties of DESs. Given

the length of this brief review, topic discussions cannot be exhaustive; however, earlier



reviews highlighting computational accomplishments are available that may fill in some

of the gaps.! 46.47

2. DEEP EUTECTIC SOLVENTS

2.1 A brief history of deep eutectic solvents

The first generation of eutectic solvents included chlorometallate ionic solvents that
were widely studied in the 1980s, e.g., ionic liquids (ILs) composed of AICI3 and
quaternary ammonium salts.*® In 2001, Abbott et al. built upon these previous research
efforts by synthesizing a combination of metal chlorides (ZnCl2, and/or SnCl2) and
quaternary ammonium salts in an effort to overcome limitations associated with ILs, e.g.,
moisture sensitivity and high cost.*® Specifically, the mixture between choline chloride
(ChCl) and zinc chloride in a 1:2 ratio provided the lowest freezing point of 23-25 °C. An
abnormally deep melting point depression (Teutectic = 12 °C) was noted in a 2003 follow up
study by the same authors for a 1:2 mole fraction ChCl:urea mixture when compared to
the individual melting points of 302 and 133 °C for the isolated substrates, respectively.'®
Abbott et al. coined the term “deep eutectic solvent” to describe this observed
phenomenon.'® Looking to expand into different classes of organic molecules, DESs
based on ChCI and carboxylic acids were synthesized by Abbott et al. in 2004 and were
shown to exhibit a similar freezing point depression.®® From this year onward, a steadily
increasing number of DES-based research efforts were published with a major focus on
understanding the physicochemical properties and thermodynamics of these solvents.
DESs share similar physical properties to room temperature ionic liquids (RTILs),

including high viscosity, large surface tension, low vapor pressure, and non-



flammability.>'-53 While DESs may be considered ionic liquid (IL) analogues, an important
contrast is that ILs are often more expensive, nonbiodegradable, and can have high
toxicities compared to the more benign nature of DESs.54 % Ultimately, the most important
difference between conventional ILs and DESs is that ILs are made from discrete anions
and cations, whereas DESs are synthesized by mixing two components that form a
eutectic mixture which typically consists of cations, anions, and neutral organic

compounds.
2.2 Classification of deep eutectic solvents

Deep eutectic solvents can be classified by the general formula Cat*X zY where
Cat* represents the cation, which can be an ammonium, phosphonium, or sulfonium
cation, and X is a Lewis base, typically a halide anion. The Lewis or Bragnsted acid Y
forms a complex anionic species with X , where z refers to the number of interacting Y
molecules.%® Based on the complexing agent, DESs are commonly divided into four types

as described in Table 1.12

Table 1. Classification of Deep Eutectic Solvents.

Type General formula Terms
I Cat*X zMCiIx M = Zn, Sn, Fe, Al, Ga, In
Il Cat*X zMClIx.yH20 M = Cr, Co, Cu, Ni, Fe
1] Cat*X zRzZ Z = CONH2, COOH, OH
v MClx + RZ = MCIx-1"*RZ + MClx+1~ M= Al, Zn and Z = CONHz, OH
V RZ Z = thymol + menthol

Adapted with permission from E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev., 2014,
114, 11060-11082. Deep Eutectic Solvents (DESs) and Their Applications. Copyright
2014, American Chemical Society.



Type | were the first DESs synthesized by Abbott and coworkers and are
analogous to ILs formed using a metal chloride and an imidazolium or quaternary
ammonium salt.*® Type Il DESs expanded the scope of available solvents by mixing
hydrated metal halides with ChCI or a quaternary ammonium salt.%” Abbott et al. also
synthesized DESs based on quaternary ammonium salts and molecular HBDs such as
amides, alcohols, and carboxylic acids (Figure 1) giving rise to the most experimentally
and computationally investigated class: the Type /Il DESs.'® % The use of transition metal
halides such as ZnCl2 with HBDs such as urea, ethylene glycol, and acetamide constitute
the Type IV DES.%¢ More recently, DESs composed of only nonionic, molecular HBAs
and HBDs have been proposed as a new Type V class that exhibits the characteristic

melting point depression arising solely from strong hydrogen bonding.%8 %°
2.3 Composition of Type lll deep eutectic solvents

An overwhelming majority of DES research has focused on the Type Il class ever
since Abbott et al. first reported the ChCl and urea combination dubbed “reline.”’® Table
2 summarizes the names and compositions of the most common Type /Il DESs. With an
ever-growing library of constituents estimated at 106-108 possible binary combinations,*°
many DESs have been organized into subcategories based on their behavior or nature,
which include hydrophobic,®? 8" metal-free,®? and natural®® DESs. The almost unlimited
construction choices for Type /Il DESs allows the solvents to be particularly adaptable
towards any desired application using relatively inexpensive components that possess
low toxicity and high biodegradability. However, optimizing DES mixtures towards a
specific application can become quickly overwhelming when using an uneducated trial-
and-error approach that may easily override any potential advantages provided by the

9



solvent. This highlights the need for systematic studies of DESs to improve their
fundamental understanding and to ultimately create predictive models.®* As such, the
present review will primarily focus on computational efforts aimed at providing predictions

and insight into the structure-property relationship of Type /Il DESs.

Table 2. Deep Eutectic Solvents Composed of Choline Chloride (ChCl) and a Hydrogen
Bond Donor (HBD) at Specific Ratios.

abbreviation HBD ChCI:HBD name
CCEtg ethylene glycol 1:2 ethaline
CCGly glycerol 1:2 glyceline
CCLev levulinic acid 1:2

CCMal malonic acid 1:1 maline
CCOx oxalic acid 1:1 oxaline
CCPhe phenol 1:20r1:3

CCPro propylene glycol 1:2 propeline
CCU urea 1:2 reline

Adapted with permission from B. Doherty, O. Acevedo, J. Phys. Chem. B, 2018, 122,
9982-9993. OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents.
Copyright 2018, American Chemical Society.

3. QUANTUM MECHANICS

Theoretical investigations of DESs have relied heavily on quantum mechanical
(QM) modeling to help elucidate their physical, thermodynamic, and structural
relationships.*” The properties of DESs are controlled primarily by interaction energies
present between the different components of the mixture (cation and anion of HBA, and
the HBD species), see Figure 2;5% 66 however, contributions from electrostatic interactions
and van der Waals forces should not be discounted.'® 67 Computational reports featuring

ab initio based methods have largely focused on understanding the relationship between
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the melting point depression and solvent organization with a strong emphasis on the
unique and complex hydrogen bond network present in DESs. Further discussion and

highlights are provided below.
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Figure 2. The relationship between structure, physical properties, and applications for
deep eutectic solvents. Used with permission from A. Kovacs, E. C. Neyts, |. Cornet, M.
Wijnants, P. Billen, ChemSusChem 2020, 13, 3789-3804. Modeling the Physicochemical
Properties of Natural Deep Eutectic Solvents. Copyright 2020, Chemistry Europe.

3.1 Melting point depression
3.1.1. Origin of decreased melting point in DESs

The origin of the characteristic DES melting point depression has been explored
quite extensively by applying QM methods to small gas-phase structures and clusters.
Early experimental and simulation studies postulated that negative charge delocalization
may play a major role in decreasing the melting point of the individual components, a

result of hydrogen bonding between the mixture components, particularly between the
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halide ion and the HBD moiety.'”- 27 Garcia et al. supported this correlation with B3LYP-
D2/6-31+G(d,p) calculations and an atoms in molecules (AIM)®8 topological analysis of
electron density for a set of 45 small DES clusters based on ChCl and
tetraalkylammonium salts.®® The authors noted the formation of cage-like structures with
a linear relationship observed between low electron densities and low melting point
depressions that arose from large charge delocalization.®® Wagle et al. followed up the
work with geometry optimizations and a charge decomposition analysis (CDA) of small
ChCl-based DES clusters at the M06-2X/6-31++G(d,p) theory level and found that charge
transfer from Ch* to the HBD in CCU, CCEtg, and CCMal was stronger than the charge
transferred between CI- and the HBD.’® Ultimately, Wagle et al. found a correlation
between the melting point and the bond order of the Ch*---ClI- interaction and not the bond
order of the HBD-CI- interaction.”® Yet, when Silva et al. performed a systematic
modification of urea in the CCU DES by substituting methyl groups at the amine groups,
a combination of Raman spectroscopy and M06-2X calculations found that the melting
point depression was governed by the strength of the (urea)N-H--CI- interaction.”? As a
final example, Saha et al. optimized a DES cluster of ChCl:acetylsalicylic acid using the
wB97XD theory level.”? Their CHELPG and natural bond order (NBO) analyses indicated
that charge transfer from CI- to both Ch* and the HBD was the major driving force for the
formation of the DES.”? While the specific details in the literature varied depending on the
ab initio method utilized and/or the DES investigated, the general argument arising from
the gas-phase QM calculations can be summarized as crystallization of the DES mixture
at room temperature is hindered through a balance of strong forces present between all

components.’3
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However, higher-order QM calculations that include explicit solvation effects have
cast doubt upon a simple charge delocalization explanation as the predominant factor in
DES melting point depression. For example, charge spreading in CCU, CCGly, and CCOx
was investigated by Zahn, Kirchner, and Mollenhauer using ab initio molecular
dynamics’* (AIMD), also referred to as first-principles molecular dynamics” (FPMD), and
a Hirshfeld-l partial charge analysis.”® They found that hydrogen bonding enhanced
negative charge spreading from the anion to the HBD of CCOx and to a lesser extent
CCGly. However, in the CCU system, a negligible charge spreading was found as the
negative charge of ClI- was primarily transferred to Ch* leaving the urea uncharged.
Instead, the urea may behave more as a “spacer” that increases the charge separation
of the ions.”” This suggested that strong disorder in the liquid structure may be more
responsible for the low melting points observed in DESs rather than a charge transfer
from the anion to the organic compound.”® Stefanovic et al. corroborated many of these
findings in their quantum mechanical molecular dynamics (QM/MD) simulations of CCU,
CCEtg, and CCGly nanostructures.” Their QM/MD methodology found more subtle
structural origins in the melting point depression that include contributions from HBD
acidity, HBD structure/conformation, and the extent of HBD self-interaction. For example,
strong hydrogen bonding interactions between ChCI and urea was noted for CCU, but
more self-interaction by the HBDs in CCEtg, and CCGly led to weaker CI- intercalation
and a reduced melting point depression.” A follow up AIMD study by Zahn examined
both the structure and dynamics of CCU.”® Zahn explored whether the cluster formation,
previously predicted by gas-phase QM calculations, was present in the liquid state.

Interestingly, the AIMD simulations did not observe the formation of clusters, but instead

13



found the CCU bulk-phase to resemble molecules rattling in long-living molecular
cages.”® 70 The lack of pairs migrating together suggests that all constituents in CCU have
overall similar intermolecular interactions that facilitate a large entropy and supported
Zahn’s hypothesis of “similia similibus solvuntur” (or “like dissolves like”) as the major

driving force for melting at room temperature.”®
3.1.2 Melting point prediction

Less work has been published on the prediction of DES melting points, which may
not be surprising given the difficulty in estimating melting points for even simple organic
1:1 salts.89 Garcia et al. were able to develop a predictive quantitative structure—activity
relationship (QSAR) model for ChCl-based DESs by optimizing 29 different HBDS at
various molar ratios using B3LYP/6-31+G(d).8" A seven-parameter QSAR model was
developed by selecting the most significant descriptors (from a set of 335 descriptors per
HBD) by using a genetic function approximation. The QSAR model gave excellent
correlative ability (R? = 0.97) and had a high predictive ability (R? = 0.93).8' An alternative
and simpler approach was published by Alhadid et al. for preselecting possible DES

candidates by qualitatively predicting eutectic temperature based on melting enthalpy.8?
3.2 Hydrogen bonding

Upon formation of a eutectic mixture, complex hydrogen bonding, e.g., neutral,
ionic, and doubly ionic, arises from a network of interactions between neutral molecules
and charged species. Accordingly, Stefanovic et al. computed significant hydrogen bond
densities of 13.8, 10.8, and 9.4 bonds/nm?® present for CCU, CCGly, and CCEtg,

respectively, which correlated well with their relative viscosities.”> For a deeper
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understanding of these intermolecular interactions, Ashworth et al. performed a
systematic and exhaustive DFT-based study to characterize and quantify all potential
hydrogen bonding types present in the CCU DES.”” An “alphabet soup” of 172 hydrogen
bonds were identified in contrast to the more homogeneous nature of H-bonds present in
molecular solvents. In agreement with Zahn et al.’s AIMD calculations,”® Ashworth et al.
found the cationic urea[Ch]*, i.e., OH--O=C, interaction was the strongest hydrogen bond
identified and not urea~CI.”” Instead, the [Cl(urea)2] complex was computed to be
energetically competitive with both urea[Ch]* and urea[CI]. Hammond et al. supported
the computed ordering of hydrogen bond strength proposed by Ashworth et al. through
neutron diffraction experiments.83 Overall, Hammond and Edler best summarized DESs
as disordered, entropy-maximized systems featuring hundreds of potential strong and
weak hydrogen bonds of different characters and local areas of order.8* Advancing the
current knowledge of hydrogen bonding in heterogeneous DES systems is another area
ripe for study using QM methods, such as recent AIMD simulations of DESs with

dissolved water®® 86 and gases, e.g., CO2 and SO>.87. 88

Vibrational spectroscopy techniques have been applied as a means to
characterize the intricate web of hydrogen bonding occurring in DESs and their effect on
the melting point, polarity, conductivity, and viscosity.6”- 892 For example, Zhu et al.
showed that a computational approach using B3LYP-D3 was able to accurately assign
vibrational modes measured by Fourier transform infrared spectroscopy (FTIR) and
Raman for the CCGly, CCU, and ChCl:acetic acid DESs.%¢ In addition, Araujo et al.
studied the vibrational modes of CCU using inelastic neutron scattering experiments and

discrete and periodic ab initio calculations and found that two ChCI and four urea units
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are the minimum cluster size needed to computationally represent the most important
DES intermolecular interactions (an optimized representation is shown in Figure 3).9
Interestingly, Araujo et al. also found urea’s geometry to be more pyramidal (sp3) in CCU
compared to sp? planar in the crystal, which allows for a more flexible hydrogen bond
network that encourages eutectic behavior.®® Finally, Rain et al. computed the IR spectra
of nine different ChCl-based DESs using wB97XD and analyzed the results with principal
component analysis (PCA).% They found maximum shifts for the -OH functional group of
Ch* after cluster formation, suggesting active participation in DES formation through

hydrogen bonding with the acceptor groups of HBDs.%*

0%0% % ‘ &O %ﬁ

ogo

Choline Chloride Urea Reline

Figure 3. Molecular representation of the crystal lattices of (a) ChCl, (b) urea, and (c) the
optimized CCU (or “reline”) geometry. Used with permission from C. F. Araujo et al.
Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding
network of deep eutectic solvents. Phys.Chem.Chem.Phys., 2017, 19, 17998-180009.
Copyright 2017, The Royal Society of Chemistry.

As the DES field continues to grow, the development of protic DESs may be
envisioned as analogous to the protic ionic liquids (PIL) field.%> As such, future
computational studies in protic DES applications, e.g., anhydrous proton-conducting

electrolytes in fuel-cell technology, would require a method that could reproduce both
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hydrogen bonding and proton diffusion. In this respect, AIMD is the logical method for
accurately capturing the Grotthuss mechanism, i.e., proton jumping, in protic solvents.%
For example, Ingenmey et al. utilized AIMD simulations to approximate the ionicity of a
PIL by considering the proton conduction between ionic and neutral species in the
system.%” An additional area where AIMD may excel is for DESs that act as electrolytes

containing redox-active species at electrode surfaces.%

4. MOLECULAR DYNAMICS

As computational studies expand towards the reproduction of bulk-phase DES
thermodynamic and transport properties, the use of QM-based methods quickly become
cost prohibitive given the extensive computational resources and time required. As such,
classical molecular dynamics (MD) methods are better suited for modeling larger sized
DES systems, e.g., hundreds to thousands of ionic/molecular species. However, MD
accuracy is dependent upon the availability of suitable force field (FF) parameters. This
section highlights efforts to develop and refine DES FF potentials, examines solvent
organization alongside thermodynamic and transport properties of DESs, and

underscores important conclusions made by ab initio methods.

4.1 Force field development

While generalized FFs, such as GAFF® and DREIDING,'® have proven
themselves accurate in small molecule and macromolecular systems, the complexity of
charged solvents has necessitated in the development and refinement of unique
parameter sets, e.g., similar to ionic liquids.’'-193 Force fields provide explicit

representation of complex atom-to-atom interactions by incorporating geometric
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descriptions of the molecules/ions in the form of bonded interactions, i.e., bonds, angles,
and torsions, along with intermolecular forces derived from electrostatic charge
distributions and Lennard-Jones terms that account for repulsive and dispersive van der
Waals interactions. The reader is referred to an excellent review by Riniker that provides
an overview of the classical function form used in major fixed-charge FF families, i.e.,
AMBER, CHARMM, GROMOS, and OPLS."% Tuning these FF parameters towards high-
level QM and experimental data was required to improve DES simulation accuracy as

described below.

4.1.1 Scaling charges, tuning Lennard-Jones terms, and polarizability

The choice of charge model, e.g., RESP, ChelpG, AIM, and Merz-Kollman, and
the method in which the atomic partial charges are derived, i.e., from minimal clusters
consisting of a 1:2 salt:HBD ratio or individual molecules/ions, can have a dramatic
influence on the predicted structural arrangement of the DES.'%® For example, a
systematic study of ten charge sets for CCLev by Garcia, Atilhan, and Aparicio found that
the ChelpG'% and Merz-Kollman'%” charge models in conjunction with the minimal cluster
approach yielded the best experimental reproduction of macroscopic properties.'
Beyond QM-derived partial charges, Doherty and Acevedo tuned empirical charges and
adjusted LJ parameters during the development of an OPLS-AA FF for ChCl-based DES
systems (called OPLS-DES)'%8 to match radial distribution functions (RDFs) derived from
liquid-phase neutron diffraction data reported by Hammond, Bowron, and Edler.83 A
potential drawback of this procedure is the transferability of these parameters to
simulations featuring complex systems, e.g., additional species or heterogeneous

environments.'® Machine learning methods may offer new opportunities to improve the
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accuracy of FFs, as recently shown for partial charges.''° For example, Zhong, Velez,
and Acevedo reported OPLS-AA parameters for DESs constructed from ethylammonium,
N,N-diethylethanolammonium, and N-ethyl-N,N-dimethylethanolammonium chloride
salts by developing a genetic algorithm approach that automates the creation of partial
charges fit to experimental physicochemical properties, e.g., surface tension and

viscosity.11. 112

Another avenue for improving agreement with experiment is the tuning of
nonbonded parameters to treat polarization implicitly. For example, when Ferreira et al.
tested various FF combinations for CCEtg using an unscaled charge scheme (t1e), the
self-diffusion coefficients of Ch* and ethylene glycol were found to be underestimated by
a factor of 8 compared to experiment; whereas, they observed large accuracy gains when
scaling the atomic partial charges by 0.8.'"3 In general, scaling factors between 0.7 and
0.9 have been commonly applied to atomic charges in DES simulations.05 108, 114-116
However, scaling charges can have negative consequences, such as reduced FF
parameter transferability and an underestimation of the enthalpy and free energy of
solvation in mixtures or solutes.'” Chaumont et al. questioned whether scaling partial
charges was even necessary for DESs.''8 Instead, they reported that sole refinement of
Lennard-Jones parameters in the GAFF v2.1 FF yielded comparable accuracy in the
reproduction of CCEtg and CCGly physicochemical properties.''® In addition, Kaur et al.
successfully utilized unscaled charges with the CHARMM FF to study the solvent
organization of bulk CCU"'® and CCEtg."?° A final alternative to consider is the use of a
polarizable FF, as parameters are expected to be more transferable and can remove

artificial long-range ordering present in some nonpolarizable FFs for charged solvents;'?’
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yet, accuracy gains are balanced with increased computational costs.'?? Jeong,
McDaniel, and Yethiraj developed a polarizable FF for CCU by using a symmetry-adapted
perturbation theory (SAPT) protocol'?? refit to FPMD simulations and found that including
polarizability qualitatively influenced radial distributions, the lifetimes of hydrogen bonds,
and affected long-range structural order and dynamics.'?* In addition, Goloviznina et al.
expanded their polarizable CL&Pol FF'?® to the simulation of CCEtg with a reasonably

accurate structural reproduction of AIMD simulations.%®

4.2 Solvent organization

The earliest reported MD simulations of DESs came a decade after their initial
discovery.'4.127. 128 Refinement of FF parameters have meant that subsequent classical
simulations have continued to improve in the prediction and reproduction of DES physical
properties, including density, surface tension, heat capacity, and viscosity. 05 108, 113, 129-
134 Solvent organization can also be easily derived from bulk-phase MD simulations. For
example, computed center-of-mass radial distribution functions (RDFs) by Sun et al.
revealed that the long-range ordering of intercalating cations and anions in neat ChCl
diminished with increasing concentration of urea molecules in CCU."?” At the typical 1:2
CCU molar ratio, shortened hydrogen bonds and modest interaction energies correlated
with the lower melting point.'?” More recently, Celebri et al. utilized Kirkwood—Buff
Integrals (KBI)'3% with MD simulations to connect the microstructure of CCU mixtures to
thermodynamic and transport properties.’® They confirmed Sun et al.’s findings that
ChCI-ChCl and ChCl-urea interactions become weaker while those between urea-urea
become stronger with increasing urea mole fraction.'?”- 136 Similarly, Hammond et al.’s

study of CCU that coupled liquid-phase neutron diffraction data with an empirical potential
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structure refinement model (ND/EPSR) found that urea-urea had the largest average
coordination number compared to other constituent interactions (Table 3).8% Both
classical OPLS-DES' and QM-based FPMD?# simulations found substantial
coordination between urea-urea and choline-urea (Table 3). However, the dominance of
HBD-HBD interactions may be exclusive to CCU, as Perkins, Painter, and Colina found
that MD simulations of CCEtg, CCGly, and CCMal favored the HBD-CI" interaction

instead.28

To further investigate the unique role of urea in CCU, Shayestehpour and Zahn
performed MD simulations on mixtures of ChCl and urea derivatives’' and found that the
amide hydrogen trans to the oxygen of urea maintained a more favorable interaction with
Cl (-27.3 kd/mol) compared to the cis counterpart (-15.2 kd/mol), and that both trans
hydrogens effectively coordinated to a second urea molecule (-21.5 kJ/mol)."3” Migliorati
and D’Angelo further examined the anion interactions by simulating analogous Ch* and
urea DESs that differed only in anionic species, i.e., Cl-, F-, NO3z", and CHzCOO"."3 Their
MD simulations found that the order of DES melting points is not related to the strength
of urea-anion hydrogen bonds, but instead the ability of the anion to maximize hydrogen
bonds between all the different moieties.'®® Finally, Migliorati et al. studied the role of the
cation in DESs composed of CI- and urea using MD simulations and found that the
presence or lack of a hydroxyl group on the cation strongly affected the DES hydrogen

bond network with large ramifications on solvent organization.'39
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Table 3. Average Coordination Number (Ncoord) and Positions (A) of the First Maximum
and Minimum in Center-of-Mass RDFs between Choline Cation (Ch), Chloride Anion (Cl),
and Urea in the CCU Deep Eutectic Solvent.

OPLS-DES (303 K) ND/ESPR (303 K)83 FPMD (333 K)8°
center  shell I'max Fmin Neoord I'max Fmin Neoord I'max Fmin Neoord
urea Cl 43 5.4 1.90 4.0 5.5 2.08+1.01 | 4.1 5.3 19+04
Ch Cl 4.1 6.4 3.49 4.2 6.7 435+1.30 | 4.2 6.5 3.1+0.6
Ch urea 4.7 7.2 8.76 5.4 6.9 591+284 | 5.1 71 86+0.7
Ch Ch 6.5 8.2 5.41 6.3 8.0 6.74 +2.16 - - -
urea urea 4.8 6.6 6.00 43 6.1 6.77+3.05 | 4.7 6.3 4905

Used with permission from B. Doherty, O. Acevedo, J. Phys. Chem. B, 2018, 122, 9982-
9993. OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents. Copyright

2018, The American Chemical Society.

4.3 Thermodynamic and transport properties

4.3.1 Heats of vaporization

Calculating the heat of vaporization (AHvap) for a DES can be tricky as the vapor

phase composition is experimentally unknown. In a systematic study of DES vaporization,

Salehi et al. performed MD simulations with three unique clusters escaping into the gas

phase, i.e., HBD, HBA, and HBA:HBD.'¥ They postulated that the component least

“bound” to the system would most likely dominate the vapor phase. Accordingly, the AHvap

computed for CCU, CCEtg, CCGly, CCMal, and CCOx using OPLS-AA parameters by

Doherty and Acevedo'® found that sole vaporization of the more volatile HBDs yielded

closer agreement with experiment.’® For example, AHvap values for CCU derived from

the vaporization of urea, ChCI, and a ChCl-urea cluster were 82, 165, and 228 kJ/mol,

respectively, compared to experimental estimates of 46.9 and 79.0 kJ/mol'#? derived from
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fitting vapor pressure data reported by Shahbaz et al.'*' and Ravula et al.’*? The
alternative use of GAFF parameters for CCU from Perkins et al.’?8 gave reduced accuracy
when computing AHvap but concurred with OPLS-AA that the HBD should dominate the
vapor phase composition.'? In other work, Ferreira et al. tested various combinations of
mixed FF parameters for CCEtg to compute AHvap from the vaporization of ethylene
glycol, ChCl, and a ChCl-ethylene glycol cluster and found large ranges of 133.7-324,
232.5-307.9, and 167.5-179.5 kJ/mol for each species, respectively."’® Their computed
AHvap values were overestimated when compared to the experimental approximation of
55.8 kJ/mol'#° or 73 kJ/mol when computed with OPLS-AA.1%8. 140 Ferreira et al followed
a similar procedure to calculate AHvap values for CCPro in separate work.'3 In general,
while experimentally measured vapor pressures of DESs are quite close to the vapor
pressures of their respective pure HBDs, 4 MD simulations have provided evidence that

some proportion of the HBA components should be present in the gas phase of DESs.'44
4.3.2 Self-diffusion coefficients

Diffusion coefficients studies by D’Agostino et al.%” and Abbott et al.®? featuring
pulse field gradient nuclear magnetic resonance (PFG)-NMR have indicated that
diffusivity in DESs is dictated by a combination of hole theory'#S and the strength of the
hydrogen bonding network present in the solvent. In modified hole theory,'# ions diffuse
by moving between vacancies when an ion’s hole size is smaller than an adjacent hole
(Figure 4). Accordingly, D’Agostino et al. found a very good correlation between diffusion
rate and the amount of free volume available for the species in the DES compound.®”

This suggests that diffusion in DESs may proceed via a hopping mechanism similar to
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ionic liquids.%” Hole theory also explains why cations diffuse slower than HBDs, such as
urea, glycerol, and ethylene glycol; however, malonic acid in CCMal is an exception given
its ability to dimerize through hydrogen bonding of the carboxylic acid functional groups.5”
In terms of the influence of the DES hydrogen bond network in diffusivity, Abbott et al.
showed that increasing the concentration of ChCl in CCGly beyond the usual 1:2 molar
ratio breaks intermolecular forces present between the glycerol molecules leading to

enhanced mobility for each component.®®

Fluid_ Empty “hole”

11

/

!
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Figure 4. Hole theory for liquids assumes the solvent continuum is permeated by holes
that explain transport, thermal, and viscous properties in liquids at equilibrium. Adapted
with permission from C. D’Agostino Hole theory as a prediction tool for Brownian diffusive
motion in binary mixtures of liquids. RSC Adv., 2017, 7, 51864-51869. Copyright 2017,
The Royal Society of Chemistry.



Self-diffusion coefficients are typically computed by applying the Einstein relation
and the average mean square displacement for each constituent’s center of mass.'#" It is
important that the simulated system is within a proper diffusive regime where
ions/molecules are moving freely, which is typically monitored through the calculation of
a beta-parameter (B).'® As discussed earlier, employing integer charges (+1 e) when
using nonpolarizable FFs has been shown to significantly underestimate the diffusion
coefficients, e.g., Mainberger et al. reported 92% errors in the self-diffusion coefficients
of CCGly when using unscaled MMFF parameters.''® Scaling charges can provide
considerable improvement. For example, Ferreira et al. reported MD simulations using
unscaled Perkins et al. charges''* for CCEtg that gave errors of 90.13% and 87.88% for
Ch* and ethylene glycol, respectively; the errors were dramatically improved to 11.8%
and 2.8% when scaling the same charges by 0.8.''3 Ferreira et al. also tested a system
specific 0.74 charge scaling for CCPro and found larger errors of 17% and 15% for Ch*

and propylene glycol self-diffusion coefficients, respectively.''3

An additional consideration when computing self-diffusion coefficients is the
temperature of the simulation. Perkins et al. showed that self-diffusion coefficient errors
in CCU, CCEtg, and CCGly were considerably improved at higher temperatures, e.g.,
51.4% and 40.9% for Ch* and urea in CCU at 298 K compared to 3.8% and 3.4% at 330
K.114. 128 However, even at 330 K, errors as large as 27% were reported for other DES
systems.'92 114 Doherty and Acevedo also found considerable improvement for 8 unique
DESs when using empirical charges scaled by 0.8 and simulation temperatures of
400.15-500.15 K with the calculated diffusion coefficient extrapolated to room

temperature.’® However, the agreement varied substantially, e.g., in the CCU system
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errors were reported as 31.4%, 0.0%, and 23.2% for 298.15 K, 308.15K, and 323.15 K,
respectively.'%® Although calculated self-diffusion coefficients can appear accurate at
specific temperatures, there exists an inconsistency in nonpolarizable FFs when tested
over a range of temperatures that yield a parabola-like temperature dependence with
percent errors more than doubled between temperatures.'% 13 To further emphasize the
challenge of accurately calculating self-diffusivity in DES, we refer once again to the
polarizable FF for CCU by Jeong et al. that yielded a substantial factor of 3 error when
compared to experiment.'?* In addition, the polarizable CL&Pol FF greatly overestimated
the diffusion coefficient for the HBD in the simulation of CCEtg.'?®® Further
reparameterization of polarizable FFs to improve agreement presents a major challenge
as the slow dynamics of DESs necessitates in impractically long time lengths to achieve
statistically accurate results.’?* New methods or approaches, perhaps encompassing
machine learning or FFs with explicit inclusion of charge transfer,4® 150 will be required
to achieve accurate self-diffusivity reproduction and prediction for DESs. As one
considers the potential for dramatic computational advances over the next 25 years, it is
not difficult to imagine a day when FFs could be completely replaced with low-cost QM

methods, particularly for solvent systems such as DESs.'®"

5. MACHINE LEARNING

5.1 A primer on machine learning

Artificial intelligence (Al) in machines can be succinctly defined as reusing the
feedback from prior calculations to continuously improve predictions without manual

modification of the code.'®? Machine learning (ML) in turn is a sub-field of Al that utilizes
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statistical methods to solve specific tasks, which in the context of chemistry can guide
scientific discovery in the space of limitless molecules and synthetic pathways.53-15 ML
regression algorithms (or classifiers), such as Generalized linear models (GLM), Neural
networks (NN), and Support vector machines (SVM), ' correlate large data sets to yield
desired chemical predictions by using artificial features that do not necessarily correspond
to the physical properties of the molecular system. NNs mimic a biological approach that
places positive and negative weights between nodes to indicate excitatory and inhibitory
connections, respectively. Whereas SVM depicts training data as vectors in space with
the widest possible gap and tries to categorize new data into the appropriate side of the
gap.’®® Ultimately, transforming raw data into more abstract forms better suited to fit
complex equations led to the development of Deep Learning (DL), a sub-field of ML that
excels at discovering intricate structures in high-dimensional data.’®® It is important to
note that most regression models create a curve with the minimum possible residual
distance from the measured points and not through all available data points.
Consequently, overfitting of the data can occur in the space of limited data or in an overly
complex model featuring many parameters.'®?. 161 |n addition, a ML algorithm that cannot
properly capture the underlying structure of the data, i.e., underfitting, will also lead to

poor predictions.

Artificial neural networks (ANNSs), a sub-field of DL, are composed of multiple node
layers, containing an input layer, one or more hidden layers, and an output layer (Figure
5). Each node is connected to another with an associated weight and a threshold that
determines if the node is activated. In a typical ANN system, there may be hundreds of

millions of these adjustable weights, and millions of examples to train the algorithm.
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These successive layers of processing units correlate the artificial features from the raw
data to yield the property prediction in the final layer. An ANN possessing more than three
hidden layers is characteristically defined as a deep neural network (DNN) (Figure 5).
ANNSs are arguably the most widely applied Al method in chemical research and, most
relevant to this review, in the related field of ionic liquids; Koutsoukos et al. have written
an excellent review highlighting the use of multiple ML methods for the IL chemical
space.'®? In their publication, the authors pointed out that while the IL field is heavily
computer-aided (with thousands of published papers featuring MD, QM, Monte Carlo,
etc.), the use of ML in IL research is extremely limited with ~30 papers published per year
between 2018 and 2020. In many ways this echoes what is occurring in the DES field
(which of course are IL analogues) as the reported use of ML for DES property prediction

is extremely limited.

Input Hidden Output Input > Output
a) Layer Layer Layer b) Layer Hidden Layers (n>3) Layer

Input 1

Input 1

XX

Wt/
i

Input 2

%) ¢

WH W
i

WA

N
7

Input 3

Input n
i Input n

Figure 5. Conventional feed-forward artificial neural networks (ANNSs) (a) differ from deep
neural networks (DNNs) (b) by having only one hidden neuron layer. Bias terms (output
of the NNs when input is zero) are not connected in DNN for simplicity. Used with
permission from S. Koutsoukos, F. Philippi, F. Malaret, T. Welton, Chem. Sci., 2021, 12,
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6820-6843. A Review on Machine Learning Algorithms for the lonic Liquid Chemical
Space. Copyright 2021, The Royal Chemical Society.

5.2 Physical properties from artificial neural networks

5.2.1 Density

The density of a DES is an important physical property for solvent characterization;
however, experimental evaluation of densities may not always be practical, e.g., as a
function of temperature. Estimation methods for DES density predictions have been
reported,’® but the use of ANNs could provide more accurate results. Accordingly,
Shahbaz et al. developed and trained an ANN using measured densities over a
temperature range of 298.15 to 368.15 K for three classes of DESs based on the salts of
methyltriphenylphosphonium bromide, N,N-diethylethanolammonium chloride, and
ChCl."%* These DESs featured glycerol and ethylene glycol as the HBDs in different molar
ratios. Shahbaz et al. applied a three-layer back propagation neural network with 9
neurons in the hidden layer. A dataset of 270 densities across a range of temperatures
and compositions were divided randomly into training and evaluation (60%) and
simulation (40%). A comparison between the ANN-predicted densities and those obtained
by measurement yielded an absolute relative percentage error (ARPE) of 0.14%, which
was considerably improved over the authors’ previous group contribution method'®3 which

gave an ARPE of 2.03% for the same set of DESs. 64

Adeyemi et al. also trained an ANN to predict the densities of DESs composed of
ChCl and the HBDs of monoethanolamine, diethanolamine, and methyldiethanolamine in
molar ratios of 1:6, 1:8, and 1:10 at temperatures of 293.15-353.15 K.'65 A feed-forward

three-layer back propagation conventional ANN with 10 neurons in the hidden layer was
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trained using 55% of the 105 total experimental data points. In addition, a bagging ANN
was developed by the authors where a collection (ensemble) of conventional ANNs were
selected, trained with resampling from bootstrap, and their predictions combined. The
neural networks gave average absolute relative deviations (AARD) in the range of 0.17-
1.35% when using the conventional ANN and 0.01-0.08% for the bagging ANN compared
to experimental densities. Densities were also predicted using an empirical group
contribution method (i.e., the modified Rackett equation),®® but gave a significantly worse

error range of 5.81-7.03%.

5.2.2 Electrical conductivity

Electrical conductivity is a fundamental physical property that describes the degree
to which a material conducts electricity (and is the reciprocal of resistivity). Accurate
predictions of conductivity are crucial for the adoption of prospective DESs into industrial
electrochemical processes, e.g., corrosion prevention.'®” Correspondingly, Ghareh Bagh
et al. created and trained an ANN using experimental measurements of electrical
conductivity for DESs composed of ChCI, N,N-diethylethanolammonium chloride, and
methyltriphenylphosphonium bromide as the source of salts with varying mole fractions
of glycerol and ethylene glycol as the HBDs.'®® Temperatures between the range of
298.15 and 353.15 K in 5 K intervals were used at 1 atm. A feed-forward three-layer back
propagation neural network was utilized to predict electrical conductivity. The optimal
ANN architecture was determined to contain 8 neurons within a single hidden layer after
testing a range of 1-30 neurons. 216 experimental data points were used with 50% of the
data reversed for training, 25% for validation, and the remainder for testing the accuracy

of the ANN electrical conductivity predictions. An AARD value of 4.40% was computed
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compared to experiment and a regression coefficient (R?) value of 0.9983 was

reported.68

Electrical conductivity prediction for DESs was also investigated by Adeyemi et al.
during their development of the conventional and bagging ANNs as discussed previously
in their DES density predictions.'® Their ANN models of alkanolamine-ChCl DESs aimed
to improve the accuracy achieved by the ANN 6-8-1 architecture reported by Ghareh
Bagh et al. for ammonium and phosphonium based DESs.'%8 A statistical assessment of
their conventional and bagging ANNs yielded a normalized mean square error (NMSE)
of 5.9384 x 102 and 5.82 x 10, respectively, when compared to experimental
conductivity measurements. Overall, a major improvement in accuracy was found for the

bagging ANN method over the conventional ANN for both conductivity and density.'%°
5.2.3 Viscosity

High viscosity is characteristically observed in DESs and is a major drawback in
many industrial processes, e.g., impeding flow and decreasing the mass transfer rate of
solutes in solvent extractions. While the addition of co-solvents, changing salt:HBD molar
ratios, or the use of elevated temperature can help reduce viscosity,'6%-71 the ability to
computationally predict and create less viscous DESs would be ideal. However, the
nonideality of the solvent mixtures and hydrogen bonding present in the system makes
DES viscosity prediction challenging.*® In the work of Benguerba et al. a predictive
viscosity model was created using a combination of multilinear regression (MLR) and
ANN methods.’”? In their work, a literature-based data set of 108 experimental viscosity

measurements was assembled from DESs composed of methyltriphenylphosphonium
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bromide, ChCI, and tetrabutylammonium bromide and the HBDs monoethanolamine,
diethanolamine, and methyldiethanolamine. Benguerba et al. used a quantitative
structure property relationships (QSPR) approach'”® 74 where computed Soprofie and
temperature MLR model descriptors were used in the framework of an ANN model
featuring a three-layer feed-forward neural network with 3 hidden neurons.’”? The ANN
was trained on 72 data points with the remaining 36 data points used for validation. The
values of statistical indicators for the ANN model (R? = 0.9863 and RMSE = 0.1288)
indicated good agreement with experimental measurements and a significant
improvement over the simple MLR model (R? = 0.9305).'72 As a word of caution, it should
be noted that the highly viscous nature of DESs often leads to major inconsistencies in
the literature under identical conditions. For example, viscosities for CCU at ambient
conditions have been reported to range from 152 cP' to 527.28 cP.""° Hence, great care

is required when assembling a DES viscosity database for ML training.
5.2.4 Future Directions in Machine Learning for DESs

While the present focus of ML in DESs studies has been on property prediction
from large databases, one can imagine future efforts that are built upon the
developmental ANN work of Behler and Parrinello”® 176 or the Gaussian Approximation
Potential (GAP) by Csanyi'’” 78 for chemical systems. These ML methodologies could
be implemented into existing modeling frameworks that substitute DFT or higher-level
QM computed potential-energy surfaces with a neural-network representation.'”®
Previously discussed limitations of classical MD simulations, e.g., self-diffusivity errors,
could be improved by utilizing energies or forces derived from ANNSs trained on AIMD
trajectories. However, bypassing expensive electronic structure calculations to access
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long time scales and model larger systems will require a significant amount of QM data
for ML training that may be extremely difficult to produce. For example, the creation of
such a database may require millions of ab initio calculations on individual DES clusters,
i.e., similar to the calculated data set of 20 million off-equilibrium conformations for
organic molecules reported by Smith et al. in the development of the ANI-1 neural
network.'8% Despite all the conceptual, theoretical, and practical challenges needed to be
solved in order to incorporate ML into computational simulations,'®' the promise of
dramatic breakthroughs in the modeling of DES-based properties and materials provides

significant motivation for continued innovation.

6. CONCLUSIONS

Deep eutectic solvents are an exciting class of solvent that have received a
considerable amount of attention over the past two decades given the numerous reported
advantages that include low cost, a facile synthesis and purification process, and a 100%
atom utilization rate. DESs have been categorized into five major classes, i.e., Types I-V
based on the complexing agent present, with an overwhelming majority of published
research focused on the Type Il class. These DESs are composed from a eutectic
composition of HBAs (such as quaternary ammonium halide salts) and molecular HBDs
that possess significant melting point depressions, e.g., 12 °C for CCU, relative to their
isolated components, i.e., 302 and 133 °C for ChCl and urea. With an estimated 106-108
possible binary combinations, the construction of novel DESs tailored towards specific
applications can quickly become intractable when using an uneducated trial-and-error
approach that may easily override any potential advantages provided by the solvent.

Fortunately, multiple experimental and computational investigations have enhanced our
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fundamental understanding of the complex solvent structure and the unique electrostatic
interactions present between the constituents. Despite the immense progress, even basic
concepts, such as the origin of the DES melting point depression, are still under debate.
As such, fast computational tools capable of making accurate predictions of DES
physiochemical properties exclusively from molecular structure would represent a

paradigm shift in the field.

Theoretical investigations of DESs have relied heavily on QM modeling to help
elucidate their physical, thermodynamic, and structural relationships. The properties of
DESs are controlled primarily by interaction energies present between the different
components of the mixture. QM calculations performed on small gas-phase structures
and clusters have helped to characterize and quantify the “alphabet soup” of hundreds of
potential hydrogen bonds present in DESs. Reproduction of vibrational spectroscopy
measurements and examination of charge transfer between the constituents have aided
in elucidating the source of the characteristic DES melting point depression. However,
the exclusion of explicit solvation effects has led to some inconsistencies that were
brought to light by higher-order QM methods. For example, AIMD (or FPMD) simulations
have shown that the predominant factor in DES melting point depression may not be the
simple charge delocalization proposed by the gas-phase QM calculations. Instead, more
subtle structural origins in the melting point depression may be at play that include
contributions from HBD acidity, HBD structure/conformation, and the extent of HBD self-
interaction. Alas, further investigation into the thermodynamic and transport properties of
DESs using AIMD becomes near impossible given the severe limitations in trajectory

lengths and smaller system sizes imposed by the large computational resources required.
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Classical MD methods are better suited for modeling DES systems featuring
thousands of ionic/molecular species. However, the complexity of the charged solvents
has necessitated in extensive development and validation of new FF parameters. In
general, most published ChCl-based nonpolarizable FFs accurately reproduce many
experimental bulk-phase DES physiochemical properties, e.g., density, thermal
expansion coefficient, surface tension, heat capacity, viscosity, and solvent organization.
Major gains in accuracy were reported when scaling atomic charges and tuning Lennard-
Jones terms towards neutron diffraction data and AIMD simulations of pure DESs.
However, modeling more complex DES systems that feature additional species or
heterogeneous environments have resulted in larger errors suggesting that alternative FF
functional forms or the use of a polarizable FF may be required in such cases.
Nevertheless, MD simulations have provided great insight into solvent organization for
multiple DESs and have examined the subtleties of vapor phase composition in heats of
vaporization measurements. A major challenge for nonpolarizable FFs has been the poor
reproduction of self-diffusion coefficients; unfortunately, explicit treatment of polarization
has not significantly improved predictions. New methods, perhaps encompassing
machine learning, may be required to achieve accurate self-diffusivity replication. While
the ML field is currently experiencing exponential growth, its use in DES research has
been extremely limited. Recent ML applications in DES studies include the use of genetic
algorithms to improve the accuracy of FF parameters and employing neural networks to
make predictions of density, electrical conductivity, and viscosity. In the future, the

incorporation of ML methodology into existing modeling frameworks could potentially yield
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new and highly accurate methods, e.g., classical MD simulations that utilize energies or

forces derived from neural networks trained on AIMD data.

In conclusion, the development and application of simulation methods to DESs
over the past decade has led to tremendous advances in our fundamental understanding
of these unique systems. However, given their complexity and large potential, many more
computational efforts will be needed, particularly beyond the heavily studied Type Il

combinations.
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