
Revised 12/21/21 

Simulation of Deep Eutectic Solvents: Progress to Promises 

Caroline Velez and Orlando Acevedo* 

Department of Chemistry, University of Miami, Coral Gables, Florida 33146 

E-mail: orlando.acevedo@miami.edu 

 

ADVANCED REVIEW 

ABSTRACT: Deep eutectic solvents (DESs) are binary or ternary mixtures of compounds 

that possess significant melting point depressions relative to the pure isolated 

components. The discovery of DESs has been a major breakthrough with multiple fields 

benefitting from their low cost and tunable physiochemical properties. However, tailoring 

DESs for specific applications through their practically unlimited synthetic combinations 

can be as much a hindrance as a benefit given the expense and time-required to perform 

large-scale experimental measurements. This emphasizes the need for fast 

computational tools capable of making accurate predictions of DES physiochemical 

properties exclusively from molecular structure. Yet, these systems are not trivial to model 

or simulate at the atomic level given their exceedingly non-ideal behaviors, asymmetry of 

components, and the complexity of their molecular electrostatic interactions. Despite the 

challenge, computational reports featuring quantum mechanical (QM) methods have 

provided significant understanding into the relationship between the melting point 

depression and the unique and complex hydrogen bond network present in DESs. 

Classical molecular dynamics (MD) methods have examined bulk-phase solvent 

organization in conjunction with thermodynamic and transport properties. Machine 

learning (ML) algorithms have shown great potential as structure-property prediction 

tools. Overall, this review highlights computational accomplishments that have 
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meaningfully advanced our understanding of DESs and strives to give the reader a sense 

of the overall strengths and drawbacks of the methodologies employed while hinting at 

promises of advances to come. 

KEYWORDS: deep eutectic solvents, molecular simulation, force field, quantum 

mechanics, machine learning 
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GRAPHICAL ABSTRACT:  

 

This review highlights computational accomplishments that have meaningfully advanced 

our understanding of deep eutectic solvents (DESs). 
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1. INTRODUCTION 

The utilization of conventional organic solvents in chemical applications is often 

energy-intensive, produces environmental and health hazards, and requires expensive 

chemical waste disposal.1, 2 Consequently, developing green and sustainable solvents is 

of the utmost importance.3-8 The discovery of deep eutectic solvents (DESs) has been a 

major breakthrough in this respect with research efforts over the past twenty years 

directed towards elucidating the structure-property relationship of these solvents in 

diverse applications.9-14 The term “deep eutectic solvent” has become a catch-all phrase 

that describes binary or ternary mixtures of compounds which decrease in melting 

temperature relative to the melting temperatures of the pure isolated components. Hence, 

the eutectic temperature is defined as the lowest melting temperature for a given mixture 

(with most DESs <150 ºC) and the corresponding composition is called the eutectic 

composition.15 Deep eutectic solvents are generally composed of a hydrogen bond 

acceptor (HBA) such as a quaternary ammonium salt and a neutral hydrogen bond donor 

(HBD) that can form a complex with the halide (Figure 1).16 Accordingly, DES 

physicochemical properties are primarily dependent upon the intermolecular interactions 

maintained by its components.17 Capitalizing on their facile synthesis and purification 

process, favorable physical properties that include low vapor pressures, nonflammability, 

high biodegradability, and their 100% atom utilization rate,18 deep eutectic solvents have 

been effectively adopted for use in multiple fields that include biotechnology and 

biocatalysis,19, 20 materials,21-23 polymers,24-27, extractions and separations,28-32 

dissolution of metals,33 carbohydrate chemistry,34 gas solubility,35, 36 energy and fuels,37, 
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38 biology,39 biomass processing,40, 41 and as a reaction medium for organic reactions.42-

44 

 

Figure 1. Type III deep eutectic solvent forming halide salts and hydrogen bond donors. 

Used with permission from E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev., 2014, 114, 

11060-11082. Deep Eutectic Solvents (DESs) and Their Applications. Copyright 2014, 

The American Chemical Society. 

 

While many DES-based enhancements to chemical applications have been 

realized, meaningfully advancing the “designer solvent” aspect of DESs through their 

virtually limitless synthetic flexibility45 can be as much a hindrance as a benefit given the 

expense and time-required to perform large-scale experimental measurements. The 

efficiency of tailoring DESs for specific purposes could be significantly improved with a 



6 

 

fast computational tool capable of making accurate predictions of DES physiochemical 

properties exclusively from its molecular structure. Yet, these systems are not trivial to 

model or simulate at the atomic level given their exceedingly non-ideal behaviors (in pure 

form or mixtures), asymmetry of components, and the complexity of their molecular 

electrostatic interactions.46 This review aims to inform the reader of advancements in the 

development and application of theoretical and computational methods to help elucidate 

the molecular nature of DESs. 

 In Section 2, a brief background on the history, classification, and composition of 

DESs is provided to familiarize the reader with these unique solvent systems. Section 3 

delves into research efforts that utilized quantum mechanical (QM) methods on gas phase 

structures and ab initio molecular dynamics (AIMD) on small solvent clusters. These 

techniques have played a significant role in elucidating the origin of DES melting point 

depression and the intricacies of intermolecular interactions and hydrogen bonding 

present in these solvents. Section 4 features an overview of molecular dynamics (MD) 

simulations and force field developmental efforts used to model bulk-phase DES systems 

with insight provided into solvent organization and thermodynamic and transport 

properties in pure and heterogeneous environments. Finally, Section 5 reports machine 

learning (ML) algorithms as property prediction tools for DESs with a brief discussion on 

their methodological background. Overall, this review strives to give the reader a sense 

of the overall performance of current simulation models and highlights the strengths and 

drawbacks of each method in representing the structure and properties of DESs. Given 

the length of this brief review, topic discussions cannot be exhaustive; however, earlier 
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reviews highlighting computational accomplishments are available that may fill in some 

of the gaps.11, 46, 47 

2. DEEP EUTECTIC SOLVENTS 

2.1 A brief history of deep eutectic solvents 

The first generation of eutectic solvents included chlorometallate ionic solvents that 

were widely studied in the 1980s, e.g., ionic liquids (ILs) composed of AlCl3 and 

quaternary ammonium salts.48 In 2001, Abbott et al. built upon these previous research 

efforts by synthesizing a combination of metal chlorides (ZnCl2, and/or SnCl2) and 

quaternary ammonium salts in an effort to overcome limitations associated with ILs, e.g., 

moisture sensitivity and high cost.49 Specifically, the mixture between choline chloride 

(ChCl) and zinc chloride in a 1:2 ratio provided the lowest freezing point of 23-25 °C. An 

abnormally deep melting point depression (Teutectic = 12 °C) was noted in a 2003 follow up 

study by the same authors for a 1:2 mole fraction ChCl:urea mixture when compared to 

the individual melting points of 302 and 133 °C for the isolated substrates, respectively.16 

Abbott et al. coined the term “deep eutectic solvent” to describe this observed 

phenomenon.16 Looking to expand into different classes of organic molecules, DESs 

based on ChCl and carboxylic acids were synthesized by Abbott et al. in 2004 and were 

shown to exhibit a similar freezing point depression.50 From this year onward, a steadily 

increasing number of DES-based research efforts were published with a major focus on 

understanding the physicochemical properties and thermodynamics of these solvents. 

DESs share similar physical properties to room temperature ionic liquids (RTILs), 

including high viscosity, large surface tension, low vapor pressure, and non-
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flammability.51-53 While DESs may be considered ionic liquid (IL) analogues, an important 

contrast is that ILs are often more expensive, nonbiodegradable, and can have high 

toxicities compared to the more benign nature of DESs.54, 55 Ultimately, the most important 

difference between conventional ILs and DESs is that ILs are made from discrete anions 

and cations, whereas DESs are synthesized by mixing two components that form a 

eutectic mixture which typically consists of cations, anions, and neutral organic 

compounds. 

2.2 Classification of deep eutectic solvents 

Deep eutectic solvents can be classified by the general formula Cat+X¯zY where 

Cat+ represents the cation, which can be an ammonium, phosphonium, or sulfonium 

cation, and X¯ is a Lewis base, typically a halide anion. The Lewis or Brønsted acid Y 

forms a complex anionic species with X¯, where z refers to the number of interacting Y 

molecules.56 Based on the complexing agent, DESs are commonly divided into four types 

as described in Table 1.12 

Table 1. Classification of Deep Eutectic Solvents.  

Type General formula Terms 

I Cat+X¯zMClX M = Zn, Sn, Fe, Al, Ga, In 

II Cat+X¯zMClX.yH2O M = Cr, Co, Cu, Ni, Fe 

III Cat+X¯zRZ Z = CONH2, COOH, OH 

IV MClx + RZ = MClx−1
+·RZ + MClx+1

- M = Al, Zn and Z = CONH2, OH 

V RZ Z = thymol + menthol 

Adapted with permission from E. L. Smith, A. P. Abbott, K. S. Ryder, Chem. Rev., 2014, 

114, 11060-11082. Deep Eutectic Solvents (DESs) and Their Applications. Copyright 

2014, American Chemical Society. 
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 Type I were the first DESs synthesized by Abbott and coworkers and are 

analogous to ILs formed using a metal chloride and an imidazolium or quaternary 

ammonium salt.49 Type II DESs expanded the scope of available solvents by mixing 

hydrated metal halides with ChCl or a quaternary ammonium salt.57 Abbott et al. also 

synthesized DESs based on quaternary ammonium salts and molecular HBDs such as 

amides, alcohols, and carboxylic acids (Figure 1) giving rise to the most experimentally 

and computationally investigated class: the Type III DESs.16, 50 The use of transition metal 

halides such as ZnCl2 with HBDs such as urea, ethylene glycol, and acetamide constitute 

the Type IV DES.56 More recently, DESs composed of only nonionic, molecular HBAs 

and HBDs have been proposed as a new Type V class that exhibits the characteristic 

melting point depression arising solely from strong hydrogen bonding.58, 59 

2.3 Composition of Type III deep eutectic solvents 

 An overwhelming majority of DES research has focused on the Type III class ever 

since Abbott et al. first reported the ChCl and urea combination dubbed “reline.”16 Table 

2 summarizes the names and compositions of the most common Type III DESs. With an 

ever-growing library of constituents estimated at 106−108 possible binary combinations,45 

many DESs have been organized into subcategories based on their behavior or nature, 

which include hydrophobic,60, 61 metal-free,62 and natural63 DESs. The almost unlimited 

construction choices for Type III DESs allows the solvents to be particularly adaptable 

towards any desired application using relatively inexpensive components that possess 

low toxicity and high biodegradability. However, optimizing DES mixtures towards a 

specific application can become quickly overwhelming when using an uneducated trial-

and-error approach that may easily override any potential advantages provided by the 
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solvent. This highlights the need for systematic studies of DESs to improve their 

fundamental understanding and to ultimately create predictive models.64 As such, the 

present review will primarily focus on computational efforts aimed at providing predictions 

and insight into the structure-property relationship of Type III DESs. 

Table 2. Deep Eutectic Solvents Composed of Choline Chloride (ChCl) and a Hydrogen 

Bond Donor (HBD) at Specific Ratios. 

abbreviation HBD ChCl:HBD name 

CCEtg ethylene glycol 1:2 ethaline 

CCGly glycerol 1:2 glyceline 

CCLev levulinic acid 1:2  

CCMal malonic acid 1:1 maline 

CCOx oxalic acid 1:1 oxaline 

CCPhe phenol 1:2 or 1:3  

CCPro propylene glycol 1:2 propeline 

CCU urea 1:2 reline 

Adapted with permission from B. Doherty, O. Acevedo, J. Phys. Chem. B, 2018, 122, 
9982-9993. OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents. 
Copyright 2018, American Chemical Society. 

 

3. QUANTUM MECHANICS 

Theoretical investigations of DESs have relied heavily on quantum mechanical 

(QM) modeling to help elucidate their physical, thermodynamic, and structural 

relationships.47 The properties of DESs are controlled primarily by interaction energies 

present between the different components of the mixture (cation and anion of HBA, and 

the HBD species), see Figure 2;65, 66 however, contributions from electrostatic interactions 

and van der Waals forces should not be discounted.18, 67 Computational reports featuring 

ab initio based methods have largely focused on understanding the relationship between 
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the melting point depression and solvent organization with a strong emphasis on the 

unique and complex hydrogen bond network present in DESs. Further discussion and 

highlights are provided below. 

 

 

Figure 2. The relationship between structure, physical properties, and applications for 

deep eutectic solvents. Used with permission from A. Kovács, E. C. Neyts, I. Cornet, M. 

Wijnants, P. Billen, ChemSusChem 2020, 13, 3789-3804. Modeling the Physicochemical 

Properties of Natural Deep Eutectic Solvents. Copyright 2020, Chemistry Europe. 

 

3.1 Melting point depression 

3.1.1. Origin of decreased melting point in DESs 

The origin of the characteristic DES melting point depression has been explored 

quite extensively by applying QM methods to small gas-phase structures and clusters. 

Early experimental and simulation studies postulated that negative charge delocalization 

may play a major role in decreasing the melting point of the individual components, a 

result of hydrogen bonding between the mixture components, particularly between the 
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halide ion and the HBD moiety.17, 27 García et al. supported this correlation with B3LYP-

D2/6-31+G(d,p) calculations and an atoms in molecules (AIM)68 topological analysis of 

electron density for a set of 45 small DES clusters based on ChCl and 

tetraalkylammonium salts.69 The authors noted the formation of cage-like structures with 

a linear relationship observed between low electron densities and low melting point 

depressions that arose from large charge delocalization.69 Wagle et al. followed up the 

work with geometry optimizations and a charge decomposition analysis (CDA) of small 

ChCl-based DES clusters at the M06-2X/6-31++G(d,p) theory level and found that charge 

transfer from Ch+ to the HBD in CCU, CCEtg, and CCMal was stronger than the charge 

transferred between Cl- and the HBD.70 Ultimately, Wagle et al. found a correlation 

between the melting point and the bond order of the Ch+…Cl- interaction and not the bond 

order of the HBD…Cl- interaction.70 Yet, when Silva et al. performed a systematic 

modification of urea in the CCU DES by substituting methyl groups at the amine groups, 

a combination of Raman spectroscopy and M06-2X calculations found that the melting 

point depression was governed by the strength of the (urea)N-H…Cl- interaction.71 As a 

final example, Saha et al. optimized a DES cluster of ChCl:acetylsalicylic acid using the 

ωB97XD theory level.72 Their CHELPG and natural bond order (NBO) analyses indicated 

that charge transfer from Cl- to both Ch+ and the HBD was the major driving force for the 

formation of the DES.72 While the specific details in the literature varied depending on the 

ab initio method utilized and/or the DES investigated, the general argument arising from 

the gas-phase QM calculations can be summarized as crystallization of the DES mixture 

at room temperature is hindered through a balance of strong forces present between all 

components.73 
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However, higher-order QM calculations that include explicit solvation effects have 

cast doubt upon a simple charge delocalization explanation as the predominant factor in 

DES melting point depression. For example, charge spreading in CCU, CCGly, and CCOx 

was investigated by Zahn, Kirchner, and Mollenhauer using ab initio molecular 

dynamics74 (AIMD), also referred to as first-principles molecular dynamics75 (FPMD), and 

a Hirshfeld-I partial charge analysis.76 They found that hydrogen bonding enhanced 

negative charge spreading from the anion to the HBD of CCOx and to a lesser extent 

CCGly. However, in the CCU system, a negligible charge spreading was found as the 

negative charge of Cl- was primarily transferred to Ch+ leaving the urea uncharged. 

Instead, the urea may behave more as a “spacer” that increases the charge separation 

of the ions.77 This suggested that strong disorder in the liquid structure may be more 

responsible for the low melting points observed in DESs rather than a charge transfer 

from the anion to the organic compound.76 Stefanovic et al. corroborated many of these 

findings in their quantum mechanical molecular dynamics (QM/MD) simulations of CCU, 

CCEtg, and CCGly nanostructures.73 Their QM/MD methodology found more subtle 

structural origins in the melting point depression that include contributions from HBD 

acidity, HBD structure/conformation, and the extent of HBD self-interaction. For example, 

strong hydrogen bonding interactions between ChCl and urea was noted for CCU, but 

more self-interaction by the HBDs in CCEtg, and CCGly led to weaker Cl- intercalation 

and a reduced melting point depression.73 A follow up AIMD study by Zahn examined 

both the structure and dynamics of CCU.78 Zahn explored whether the cluster formation, 

previously predicted by gas-phase QM calculations, was present in the liquid state. 

Interestingly, the AIMD simulations did not observe the formation of clusters, but instead 
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found the CCU bulk-phase to resemble molecules rattling in long-living molecular 

cages.78, 79 The lack of pairs migrating together suggests that all constituents in CCU have 

overall similar intermolecular interactions that facilitate a large entropy and supported 

Zahn’s hypothesis of “similia similibus solvuntur” (or “like dissolves like”) as the major 

driving force for melting at room temperature.78  

3.1.2 Melting point prediction 

Less work has been published on the prediction of DES melting points, which may 

not be surprising given the difficulty in estimating melting points for even simple organic 

1:1 salts.80 García et al. were able to develop a predictive quantitative structure−activity 

relationship (QSAR) model for ChCl-based DESs by optimizing 29 different HBDS at 

various molar ratios using B3LYP/6-31+G(d).81 A seven-parameter QSAR model was 

developed by selecting the most significant descriptors (from a set of 335 descriptors per 

HBD) by using a genetic function approximation. The QSAR model gave excellent 

correlative ability (R2 = 0.97) and had a high predictive ability (R2 = 0.93).81 An alternative 

and simpler approach was published by Alhadid et al. for preselecting possible DES 

candidates by qualitatively predicting eutectic temperature based on melting enthalpy.82 

3.2 Hydrogen bonding 

Upon formation of a eutectic mixture, complex hydrogen bonding, e.g., neutral, 

ionic, and doubly ionic, arises from a network of interactions between neutral molecules 

and charged species. Accordingly, Stefanovic et al. computed significant hydrogen bond 

densities of 13.8, 10.8, and 9.4 bonds/nm3 present for CCU, CCGly, and CCEtg,  

respectively, which correlated well with their relative viscosities.73 For a deeper 
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understanding of these intermolecular interactions, Ashworth et al. performed a 

systematic and exhaustive DFT-based study to characterize and quantify all potential 

hydrogen bonding types present in the CCU DES.77 An “alphabet soup” of 172 hydrogen 

bonds were identified in contrast to the more homogeneous nature of H-bonds present in 

molecular solvents. In agreement with Zahn et al.’s AIMD calculations,76 Ashworth et al. 

found the cationic urea[Ch]+, i.e., OH…O=C, interaction was the strongest hydrogen bond 

identified and not urea…Cl-.77 Instead, the [Cl(urea)2]- complex was computed to be 

energetically competitive with both urea[Ch]+ and urea[Cl]-. Hammond et al. supported 

the computed ordering of hydrogen bond strength proposed by Ashworth et al. through 

neutron diffraction experiments.83 Overall, Hammond and Edler best summarized DESs 

as disordered, entropy-maximized systems featuring hundreds of potential strong and 

weak hydrogen bonds of different characters and local areas of order.84 Advancing the 

current knowledge of hydrogen bonding in heterogeneous DES systems is another area 

ripe for study using QM methods, such as recent AIMD simulations of DESs with 

dissolved water85, 86 and gases, e.g., CO2 and SO2.87, 88  

Vibrational spectroscopy techniques have been applied as a means to 

characterize the intricate web of hydrogen bonding occurring in DESs and their effect on 

the melting point, polarity, conductivity, and viscosity.67, 89-92 For example, Zhu et al. 

showed that a computational approach using B3LYP-D3 was able to accurately assign 

vibrational modes measured by Fourier transform infrared spectroscopy (FTIR) and 

Raman for the CCGly, CCU, and ChCl:acetic acid DESs.66 In addition, Araujo et al. 

studied the vibrational modes of CCU using inelastic neutron scattering experiments and 

discrete and periodic ab initio calculations and found that two ChCl and four urea units 
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are the minimum cluster size needed to computationally represent the most important 

DES intermolecular interactions (an optimized representation is shown in Figure 3).93 

Interestingly, Araujo et al. also found urea’s geometry to be more pyramidal (sp3) in CCU 

compared to sp2 planar in the crystal, which allows for a more flexible hydrogen bond 

network that encourages eutectic behavior.93 Finally, Rain et al. computed the IR spectra 

of nine different ChCl-based DESs using ωB97XD and analyzed the results with principal 

component analysis (PCA).94 They found maximum shifts for the -OH functional group of 

Ch+ after cluster formation, suggesting active participation in DES formation through 

hydrogen bonding with the acceptor groups of HBDs.94  

 

Figure 3. Molecular representation of the crystal lattices of (a) ChCl, (b) urea, and (c) the 

optimized CCU (or “reline”) geometry. Used with permission from C. F. Araujo et al. 

Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding 

network of deep eutectic solvents. Phys.Chem.Chem.Phys., 2017, 19, 17998-18009. 

Copyright 2017, The Royal Society of Chemistry. 

  

As the DES field continues to grow, the development of protic DESs may be 

envisioned as analogous to the protic ionic liquids (PIL) field.95 As such, future 

computational studies in protic DES applications, e.g., anhydrous proton-conducting 

electrolytes in fuel-cell technology, would require a method that could reproduce both 
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hydrogen bonding and proton diffusion. In this respect, AIMD is the logical method for 

accurately capturing the Grotthuss mechanism, i.e., proton jumping, in protic solvents.96 

For example, Ingenmey et al. utilized AIMD simulations to approximate the ionicity of a 

PIL by considering the proton conduction between ionic and neutral species in the 

system.97 An additional area where AIMD may excel is for DESs that act as electrolytes 

containing redox-active species at electrode surfaces.98 

4. MOLECULAR DYNAMICS 

As computational studies expand towards the reproduction of bulk-phase DES 

thermodynamic and transport properties, the use of QM-based methods quickly become 

cost prohibitive given the extensive computational resources and time required.  As such, 

classical molecular dynamics (MD) methods are better suited for modeling larger sized 

DES systems, e.g., hundreds to thousands of ionic/molecular species. However, MD 

accuracy is dependent upon the availability of suitable force field (FF) parameters. This 

section highlights efforts to develop and refine DES FF potentials, examines solvent 

organization alongside thermodynamic and transport properties of DESs, and 

underscores important conclusions made by ab initio methods. 

4.1 Force field development 

While generalized FFs, such as GAFF99 and DREIDING,100 have proven 

themselves accurate in small molecule and macromolecular systems, the complexity of 

charged solvents has necessitated in the development and refinement of unique 

parameter sets, e.g., similar to ionic liquids.101-103 Force fields provide explicit 

representation of complex atom-to-atom interactions by incorporating geometric 
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descriptions of the molecules/ions in the form of bonded interactions, i.e., bonds, angles, 

and torsions, along with intermolecular forces derived from electrostatic charge 

distributions and Lennard-Jones terms that account for repulsive and dispersive van der 

Waals interactions. The reader is referred to an excellent review by Riniker that provides 

an overview of the classical function form used in major fixed-charge FF families, i.e., 

AMBER, CHARMM, GROMOS, and OPLS.104 Tuning these FF parameters towards high-

level QM and experimental data was required to improve DES simulation accuracy as 

described below. 

4.1.1 Scaling charges, tuning Lennard-Jones terms, and polarizability 

The choice of charge model, e.g., RESP, ChelpG, AIM, and Merz-Kollman, and 

the method in which the atomic partial charges are derived, i.e., from minimal clusters 

consisting of a 1:2 salt:HBD ratio or individual molecules/ions, can have a dramatic 

influence on the predicted structural arrangement of the DES.105 For example, a 

systematic study of ten charge sets for CCLev by García, Atilhan, and Aparicio found that 

the ChelpG106 and Merz-Kollman107 charge models in conjunction with the minimal cluster 

approach yielded the best experimental reproduction of macroscopic properties.105 

Beyond QM-derived partial charges, Doherty and Acevedo tuned empirical charges and 

adjusted LJ parameters during the development of an OPLS-AA FF for ChCl-based DES 

systems (called OPLS-DES)108 to match radial distribution functions (RDFs) derived from 

liquid-phase neutron diffraction data reported by Hammond, Bowron, and Edler.83 A 

potential drawback of this procedure is the transferability of these parameters to 

simulations featuring complex systems, e.g., additional species or heterogeneous 

environments.109 Machine learning methods may offer new opportunities to improve the 
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accuracy of FFs, as recently shown for partial charges.110 For example, Zhong, Velez, 

and Acevedo reported OPLS-AA parameters for DESs constructed from ethylammonium, 

N,N-diethylethanolammonium, and N-ethyl-N,N-dimethylethanolammonium chloride 

salts by developing a genetic algorithm approach that automates the creation of partial 

charges fit to experimental physicochemical properties, e.g., surface tension and 

viscosity.111, 112 

Another avenue for improving agreement with experiment is the tuning of 

nonbonded parameters to treat polarization implicitly. For example, when Ferreira et al. 

tested various FF combinations for CCEtg using an unscaled charge scheme (±1e), the 

self-diffusion coefficients of Ch+ and ethylene glycol were found to be underestimated by 

a factor of 8 compared to experiment; whereas, they observed large accuracy gains when 

scaling the atomic partial charges by 0.8.113 In general, scaling factors between 0.7 and 

0.9 have been commonly applied to atomic charges in DES simulations.105, 108, 114-116 

However, scaling charges can have negative consequences, such as reduced FF 

parameter transferability and an underestimation of the enthalpy and free energy of 

solvation in mixtures or solutes.117 Chaumont et al. questioned whether scaling partial 

charges was even necessary for DESs.118 Instead, they reported that sole refinement of 

Lennard-Jones parameters in the GAFF v2.1 FF yielded comparable accuracy in the 

reproduction of CCEtg and CCGly physicochemical properties.118 In addition, Kaur et al. 

successfully utilized unscaled charges with the CHARMM FF to study the solvent 

organization of bulk CCU119 and CCEtg.120 A final alternative to consider is the use of a 

polarizable FF, as parameters are expected to be more transferable and can remove 

artificial long-range ordering present in some nonpolarizable FFs for charged solvents;121 
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yet, accuracy gains are balanced with increased computational costs.122 Jeong, 

McDaniel, and Yethiraj developed a polarizable FF for CCU by using a symmetry-adapted 

perturbation theory (SAPT) protocol123 refit to FPMD simulations and found that including 

polarizability qualitatively influenced radial distributions, the lifetimes of hydrogen bonds, 

and affected long-range structural order and dynamics.124 In addition, Goloviznina et al. 

expanded their polarizable CL&Pol FF125 to the simulation of CCEtg with a reasonably 

accurate structural reproduction of AIMD simulations.126 

4.2 Solvent organization 

The earliest reported MD simulations of DESs came a decade after their initial 

discovery.114, 127, 128 Refinement of FF parameters have meant that subsequent classical 

simulations have continued to improve in the prediction and reproduction of DES physical 

properties, including density, surface tension, heat capacity, and viscosity.105, 108, 113, 129-

134 Solvent organization can also be easily derived from bulk-phase MD simulations. For 

example, computed center-of-mass radial distribution functions (RDFs) by Sun et al. 

revealed that the long-range ordering of intercalating cations and anions in neat ChCl 

diminished with increasing concentration of urea molecules in CCU.127 At the typical 1:2 

CCU molar ratio, shortened hydrogen bonds and modest interaction energies correlated 

with the lower melting point.127 More recently, Celebri et al. utilized Kirkwood–Buff 

Integrals (KBI)135 with MD simulations to connect the microstructure of CCU mixtures to 

thermodynamic and transport properties.136 They confirmed Sun et al.’s findings that 

ChCl-ChCl and ChCl-urea interactions become weaker while those between urea-urea 

become stronger with increasing urea mole fraction.127, 136 Similarly, Hammond et al.’s 

study of CCU that coupled liquid-phase neutron diffraction data with an empirical potential 
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structure refinement  model (ND/EPSR) found that urea-urea had the largest average 

coordination number compared to other constituent interactions (Table 3).83 Both 

classical OPLS-DES108 and QM-based FPMD85 simulations found substantial 

coordination between urea-urea and choline-urea (Table 3). However, the dominance of 

HBD-HBD interactions may be exclusive to CCU, as Perkins, Painter, and Colina found 

that MD simulations of CCEtg, CCGly, and CCMal favored the HBD-Cl- interaction 

instead.128  

To further investigate the unique role of urea in CCU, Shayestehpour and Zahn 

performed MD simulations on mixtures of ChCl and urea derivatives71 and found that the 

amide hydrogen trans to the oxygen of urea maintained a more favorable interaction with 

Cl- (-27.3 kJ/mol) compared to the cis counterpart (-15.2 kJ/mol), and that both trans 

hydrogens effectively coordinated to a second urea molecule (-21.5 kJ/mol).137 Migliorati 

and D’Angelo further examined the anion interactions by simulating analogous Ch+ and 

urea DESs that differed only in anionic species, i.e., Cl-, F-, NO3
-, and CH3COO-.138 Their 

MD simulations found that the order of DES melting points is not related to the strength 

of urea-anion hydrogen bonds, but instead the ability of the anion to maximize hydrogen 

bonds between all the different moieties.138 Finally, Migliorati et al. studied the role of the 

cation in DESs composed of Cl- and urea using MD simulations and found that the 

presence or lack of a hydroxyl group on the cation strongly affected the DES hydrogen 

bond network with large ramifications on solvent organization.139 
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Table 3. Average Coordination Number (Ncoord) and Positions (Å) of the First Maximum 

and Minimum in Center-of-Mass RDFs between Choline Cation (Ch), Chloride Anion (Cl), 

and Urea in the CCU Deep Eutectic Solvent. 

  OPLS-DES (303 K) ND/ESPR (303 K)83 FPMD (333 K)85 

center shell rmax rmin Ncoord rmax rmin Ncoord rmax rmin Ncoord 

urea Cl 4.3 5.4 1.90 4.0 5.5 2.08 ± 1.01 4.1 5.3 1.9 ± 0.4 

Ch Cl 4.1 6.4 3.49 4.2 6.7 4.35 ± 1.30 4.2 6.5 3.1 ± 0.6 

Ch urea 4.7 7.2 8.76 5.4 6.9 5.91 ± 2.84 5.1 7.1 8.6 ± 0.7 

Ch Ch 6.5 8.2 5.41 6.3 8.0 6.74 ± 2.16 - - - 

urea urea 4.8 6.6 6.00 4.3 6.1 6.77 ± 3.05 4.7 6.3 4.9 ± 0.5 

Used with permission from B. Doherty, O. Acevedo, J. Phys. Chem. B, 2018, 122, 9982-
9993. OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents. Copyright 
2018, The American Chemical Society. 

 

4.3 Thermodynamic and transport properties 

4.3.1 Heats of vaporization 

 Calculating the heat of vaporization (Hvap) for a DES can be tricky as the vapor 

phase composition is experimentally unknown. In a systematic study of DES vaporization, 

Salehi et al. performed MD simulations with three unique clusters escaping into the gas 

phase, i.e., HBD, HBA, and HBA:HBD.140 They postulated that the component least 

“bound” to the system would most likely dominate the vapor phase. Accordingly, the Hvap 

computed for CCU, CCEtg, CCGly, CCMal, and CCOx using OPLS-AA parameters by 

Doherty and Acevedo108 found that sole vaporization of the more volatile HBDs yielded 

closer agreement with experiment.140 For example, Hvap values for CCU derived from 

the vaporization of urea, ChCl, and a ChCl-urea cluster were 82, 165, and 228 kJ/mol, 

respectively, compared to experimental estimates of 46.9 and 79.0 kJ/mol140 derived from 
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fitting vapor pressure data reported by Shahbaz et al.141 and Ravula et al.142 The 

alternative use of GAFF parameters for CCU from Perkins et al.128 gave reduced accuracy 

when computing Hvap but concurred with OPLS-AA that the HBD should dominate the 

vapor phase composition.140 In other work, Ferreira et al. tested various combinations of 

mixed FF parameters for CCEtg to compute Hvap from the vaporization of ethylene 

glycol, ChCl, and a ChCl-ethylene glycol cluster and found large ranges of 133.7−324, 

232.5−307.9, and 167.5−179.5 kJ/mol for each species, respectively.113 Their computed 

Hvap values were overestimated when compared to the experimental approximation of 

55.8 kJ/mol140 or 73 kJ/mol when computed with OPLS-AA.108, 140 Ferreira et al followed 

a similar procedure to calculate Hvap values for CCPro in separate work.143 In general, 

while experimentally measured vapor pressures of DESs are quite close to the vapor 

pressures of their respective pure HBDs,140 MD simulations have provided evidence that 

some proportion of the HBA components should be present in the gas phase of  DESs.144  

4.3.2 Self-diffusion coefficients 

 Diffusion coefficients studies by D’Agostino et al.67 and Abbott et al.89 featuring 

pulse field gradient nuclear magnetic resonance (PFG)-NMR have indicated that 

diffusivity in DESs is dictated by a combination of hole theory145 and the strength of the 

hydrogen bonding network present in the solvent. In modified hole theory,146 ions diffuse 

by moving between vacancies when an ion’s hole size is smaller than an adjacent hole 

(Figure 4). Accordingly, D’Agostino et al. found a very good correlation between diffusion 

rate and the amount of free volume available for the species in the DES compound.67 

This suggests that diffusion in DESs may proceed via a hopping mechanism similar to 
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ionic liquids.67 Hole theory also explains why cations diffuse slower than HBDs, such as 

urea, glycerol, and ethylene glycol; however, malonic acid in CCMal is an exception given 

its ability to dimerize through hydrogen bonding of the carboxylic acid functional groups.67 

In terms of the influence of the DES hydrogen bond network in diffusivity, Abbott et al. 

showed that increasing the concentration of ChCl in CCGly beyond the usual 1:2 molar 

ratio breaks intermolecular forces present between the glycerol molecules leading to 

enhanced mobility for each component.89  

 

 

Figure 4. Hole theory for liquids assumes the solvent continuum is permeated by holes 

that explain transport, thermal, and viscous properties in liquids at equilibrium. Adapted 

with permission from C. D’Agostino Hole theory as a prediction tool for Brownian diffusive 

motion in binary mixtures of liquids. RSC Adv., 2017, 7, 51864-51869. Copyright 2017, 

The Royal Society of Chemistry. 
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Self-diffusion coefficients are typically computed by applying the Einstein relation 

and the average mean square displacement for each constituent’s center of mass.147 It is 

important that the simulated system is within a proper diffusive regime where 

ions/molecules are moving freely, which is typically monitored through the calculation of 

a beta-parameter ().148 As discussed earlier, employing integer charges (±1 e) when 

using nonpolarizable FFs has been shown to significantly underestimate the diffusion 

coefficients, e.g., Mainberger et al. reported 92% errors in the self-diffusion coefficients 

of CCGly when using unscaled MMFF parameters.116 Scaling charges can provide 

considerable improvement. For example, Ferreira et al. reported MD simulations using 

unscaled Perkins et al. charges114 for CCEtg that gave errors of 90.13% and 87.88% for 

Ch+ and ethylene glycol, respectively; the errors were dramatically improved to 11.8% 

and 2.8% when scaling the same charges by 0.8.113 Ferreira et al. also tested a system 

specific 0.74 charge scaling for CCPro and found larger errors of 17% and 15% for Ch+ 

and propylene glycol self-diffusion coefficients, respectively.113  

An additional consideration when computing self-diffusion coefficients is the 

temperature of the simulation. Perkins et al. showed that self-diffusion coefficient errors 

in CCU, CCEtg, and CCGly were considerably improved at higher temperatures, e.g., 

51.4% and 40.9% for Ch+ and urea in CCU at 298 K compared to 3.8% and 3.4% at 330 

K.114, 128 However, even at 330 K, errors as large as 27% were reported for other DES 

systems.102, 114 Doherty and Acevedo also found considerable improvement for 8 unique 

DESs when using empirical charges scaled by 0.8 and simulation temperatures of 

400.15-500.15 K with the calculated diffusion coefficient extrapolated to room 

temperature.108 However, the agreement varied substantially, e.g., in the CCU system 
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errors were reported as 31.4%, 0.0%, and 23.2% for 298.15 K, 308.15K, and 323.15 K, 

respectively.108 Although calculated self-diffusion coefficients can appear accurate at 

specific temperatures, there exists an inconsistency in nonpolarizable FFs when tested 

over a range of temperatures that yield a parabola-like temperature dependence with 

percent errors more than doubled between temperatures.108, 113 To further emphasize the 

challenge of accurately calculating self-diffusivity in DES, we refer once again to the 

polarizable FF for CCU by Jeong et al. that yielded a substantial factor of 3 error when 

compared to experiment.124 In addition, the polarizable CL&Pol FF greatly overestimated 

the diffusion coefficient for the HBD in the simulation of CCEtg.126 Further 

reparameterization of polarizable FFs to improve agreement presents a major challenge 

as the slow dynamics of DESs necessitates in impractically long time lengths to achieve 

statistically accurate results.124 New methods or approaches, perhaps encompassing 

machine learning or FFs with explicit inclusion of charge transfer,149, 150 will be required 

to achieve accurate self-diffusivity reproduction and prediction for DESs. As one 

considers the potential for dramatic computational advances over the next 25 years, it is 

not difficult to imagine a day when FFs could be completely replaced with low-cost QM 

methods, particularly for solvent systems such as DESs.151 

5. MACHINE LEARNING 

5.1 A primer on machine learning 

 Artificial intelligence (AI) in machines can be succinctly defined as reusing the 

feedback from prior calculations to continuously improve predictions without manual 

modification of the code.152 Machine learning (ML) in turn is a sub-field of AI that utilizes 
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statistical methods to solve specific tasks, which in the context of chemistry can guide 

scientific discovery in the space of limitless molecules and synthetic pathways.153-156 ML 

regression algorithms (or classifiers), such as Generalized linear models (GLM), Neural 

networks (NN), and Support vector machines (SVM),157 correlate large data sets to yield 

desired chemical predictions by using artificial features that do not necessarily correspond 

to the physical properties of the molecular system. NNs mimic a biological approach that 

places positive and negative weights between nodes to indicate excitatory and inhibitory 

connections, respectively. Whereas SVM depicts training data as vectors in space with 

the widest possible gap and tries to categorize new data into the appropriate side of the 

gap.158 Ultimately, transforming raw data into more abstract forms better suited to fit 

complex equations led to the development of Deep Learning (DL), a sub-field of ML that 

excels at discovering intricate structures in high-dimensional data.159 It is important to 

note that most regression models create a curve with the minimum possible residual 

distance from the measured points and not through all available data points. 

Consequently, overfitting of the data can occur in the space of limited data or in an overly 

complex model featuring many parameters.160, 161 In addition, a ML algorithm that cannot 

properly capture the underlying structure of the data, i.e., underfitting, will also lead to 

poor predictions. 

 Artificial neural networks (ANNs), a sub-field of DL, are composed of multiple node 

layers, containing an input layer, one or more hidden layers, and an output layer (Figure 

5). Each node is connected to another with an associated weight and a threshold that 

determines if the node is activated. In a typical ANN system, there may be hundreds of 

millions of these adjustable weights, and millions of examples to train the algorithm. 
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These successive layers of processing units correlate the artificial features from the raw 

data to yield the property prediction in the final layer. An ANN possessing more than three 

hidden layers is characteristically defined as a deep neural network (DNN) (Figure 5). 

ANNs are arguably the most widely applied AI method in chemical research and, most 

relevant to this review, in the related field of ionic liquids; Koutsoukos et al. have written 

an excellent review highlighting the use of multiple ML methods for the IL chemical 

space.162 In their publication, the authors pointed out that while the IL field is heavily 

computer-aided (with thousands of published papers featuring MD, QM, Monte Carlo, 

etc.), the use of ML in IL research is extremely limited with ~30 papers published per year 

between 2018 and 2020. In many ways this echoes what is occurring in the DES field 

(which of course are IL analogues) as the reported use of ML for DES property prediction 

is extremely limited. 

 

Figure 5. Conventional feed-forward artificial neural networks (ANNs) (a) differ from deep 

neural networks (DNNs) (b) by having only one hidden neuron layer. Bias terms (output 

of the NNs when input is zero) are not connected in DNN for simplicity. Used with 

permission from S. Koutsoukos, F. Philippi, F. Malaret, T. Welton,  Chem. Sci., 2021, 12, 
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6820-6843. A Review on Machine Learning Algorithms for the Ionic Liquid Chemical 

Space. Copyright 2021, The Royal Chemical Society. 

5.2 Physical properties from artificial neural networks 

5.2.1 Density 

The density of a DES is an important physical property for solvent characterization; 

however, experimental evaluation of densities may not always be practical, e.g., as a 

function of temperature. Estimation methods for DES density predictions have been 

reported,163 but the use of ANNs could provide more accurate results. Accordingly, 

Shahbaz et al. developed and trained an ANN using measured densities over a 

temperature range of 298.15 to 368.15 K for three classes of DESs based on the salts of 

methyltriphenylphosphonium bromide, N,N-diethylethanolammonium chloride, and 

ChCl.164 These DESs featured glycerol and ethylene glycol as the HBDs in different molar 

ratios. Shahbaz et al. applied a three-layer back propagation neural network with 9 

neurons in the hidden layer. A dataset of 270 densities across a range of temperatures 

and compositions were divided randomly into training and evaluation (60%) and 

simulation (40%). A comparison between the ANN-predicted densities and those obtained 

by measurement yielded an absolute relative percentage error (ARPE) of 0.14%, which 

was considerably improved over the authors’ previous group contribution method163 which 

gave an ARPE of 2.03% for the same set of DESs.164 

Adeyemi et al. also trained an ANN to predict the densities of DESs composed of 

ChCl and the HBDs of monoethanolamine, diethanolamine, and methyldiethanolamine in 

molar ratios of 1:6, 1:8, and 1:10 at temperatures of 293.15–353.15 K.165 A feed-forward 

three-layer back propagation conventional ANN with 10 neurons in the hidden layer was 
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trained using 55% of the 105 total experimental data points. In addition, a bagging ANN 

was developed by the authors where a collection (ensemble) of conventional ANNs were 

selected, trained with resampling from bootstrap, and their predictions combined. The 

neural networks gave average absolute relative deviations (AARD) in the range of 0.17-

1.35% when using the conventional ANN and 0.01-0.08% for the bagging ANN compared 

to experimental densities. Densities were also predicted using an empirical group 

contribution method (i.e., the modified Rackett equation),166 but gave a significantly worse 

error range of 5.81-7.03%. 

5.2.2 Electrical conductivity 

Electrical conductivity is a fundamental physical property that describes the degree 

to which a material conducts electricity (and is the reciprocal of resistivity). Accurate 

predictions of conductivity are crucial for the adoption of prospective DESs into industrial 

electrochemical processes, e.g., corrosion prevention.167 Correspondingly, Ghareh Bagh 

et al. created and trained an ANN using experimental measurements of electrical 

conductivity for DESs composed of ChCl, N,N-diethylethanolammonium chloride, and 

methyltriphenylphosphonium bromide as the source of salts with varying mole fractions 

of glycerol and ethylene glycol as the HBDs.168 Temperatures between the range of 

298.15 and 353.15 K in 5 K intervals were used at 1 atm. A feed-forward three-layer back 

propagation neural network was utilized to predict electrical conductivity. The optimal 

ANN architecture was determined to contain 8 neurons within a single hidden layer after 

testing a range of 1-30 neurons. 216 experimental data points were used with 50% of the 

data reversed for training, 25% for validation, and the remainder for testing the accuracy 

of the ANN electrical conductivity predictions. An AARD value of 4.40% was computed 
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compared to experiment and a regression coefficient (R2) value of 0.9983 was 

reported.168 

Electrical conductivity prediction for DESs was also investigated by Adeyemi et al. 

during their development of the conventional and bagging ANNs as discussed previously 

in their DES density predictions.165 Their ANN models of alkanolamine-ChCl DESs aimed 

to improve the accuracy achieved by the ANN 6-8-1 architecture reported by Ghareh 

Bagh et al. for ammonium and phosphonium based DESs.168 A statistical assessment of 

their conventional and bagging ANNs yielded a normalized mean square error (NMSE) 

of 5.9384 x 10-2 and 5.82 x 10-4, respectively, when compared to experimental 

conductivity measurements. Overall, a major improvement in accuracy was found for the 

bagging ANN method over the conventional ANN for both conductivity and density.165 

5.2.3 Viscosity 

 High viscosity is characteristically observed in DESs and is a major drawback in 

many industrial processes, e.g., impeding flow and decreasing the mass transfer rate of 

solutes in solvent extractions. While the addition of co-solvents, changing salt:HBD molar 

ratios, or the use of elevated temperature can help reduce viscosity,169-171 the ability to 

computationally predict and create less viscous DESs would be ideal. However, the 

nonideality of the solvent mixtures and hydrogen bonding present in the system makes 

DES viscosity prediction challenging.46 In the work of Benguerba et al. a predictive 

viscosity model was created using a combination of multilinear regression (MLR) and 

ANN methods.172 In their work, a literature-based data set of 108 experimental viscosity 

measurements was assembled from DESs composed of methyltriphenylphosphonium 
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bromide, ChCl, and tetrabutylammonium bromide and the HBDs monoethanolamine, 

diethanolamine, and methyldiethanolamine. Benguerba et al. used a quantitative 

structure property relationships (QSPR) approach173, 174 where computed S-profile and 

temperature MLR model descriptors were used in the framework of an ANN model 

featuring a three-layer feed-forward neural network with 3 hidden neurons.172 The ANN 

was trained on 72 data points with the remaining 36 data points used for validation. The 

values of statistical indicators for the ANN  model (R2 = 0.9863 and RMSE = 0.1288) 

indicated good agreement with experimental measurements and a significant 

improvement over the simple MLR model (R2 = 0.9305).172 As a word of caution, it should 

be noted that the highly viscous nature of DESs often leads to major inconsistencies in 

the literature under identical conditions. For example, viscosities for CCU at ambient 

conditions have been reported to range from 152 cP16 to 527.28 cP.170 Hence, great care 

is required when assembling a DES viscosity database for ML training.  

5.2.4 Future Directions in Machine Learning for DESs 

 While the present focus of ML in DESs studies has been on property prediction 

from large databases, one can imagine future efforts that are built upon the 

developmental ANN work of Behler and Parrinello175, 176 or the Gaussian Approximation 

Potential (GAP) by Csányi177, 178 for chemical systems. These ML methodologies could 

be implemented into existing modeling frameworks that substitute DFT or higher-level 

QM computed potential-energy surfaces with a neural-network representation.179 

Previously discussed limitations of classical MD simulations, e.g., self-diffusivity errors, 

could be improved by utilizing energies or forces derived from ANNs trained on AIMD 

trajectories. However, bypassing expensive electronic structure calculations to access 
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long time scales and model larger systems will require a significant amount of QM data 

for ML training that may be extremely difficult to produce. For example, the creation of 

such a database may require millions of ab initio calculations on individual DES clusters, 

i.e., similar to the calculated data set of 20 million off-equilibrium conformations for 

organic molecules reported by Smith et al. in the development of the ANI-1 neural 

network.180 Despite all the conceptual, theoretical, and practical challenges needed to be 

solved in order to incorporate ML into computational simulations,181 the promise of 

dramatic breakthroughs in the modeling of DES-based properties and materials provides 

significant motivation for continued innovation. 

6. CONCLUSIONS 

Deep eutectic solvents are an exciting class of solvent that have received a 

considerable amount of attention over the past two decades given the numerous reported 

advantages that include low cost, a facile synthesis and purification process, and a 100% 

atom utilization rate. DESs have been categorized into five major classes, i.e., Types I-V 

based on the complexing agent present, with an overwhelming majority of published 

research focused on the Type III class. These DESs are composed from a eutectic 

composition of HBAs (such as quaternary ammonium halide salts) and molecular HBDs 

that possess significant melting point depressions, e.g., 12 °C for CCU, relative to their 

isolated components, i.e., 302 and 133 °C for ChCl and urea. With an estimated 106−108 

possible binary combinations, the construction of novel DESs tailored towards specific 

applications can quickly become intractable when using an uneducated trial-and-error 

approach that may easily override any potential advantages provided by the solvent. 

Fortunately, multiple experimental and computational investigations have enhanced our 
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fundamental understanding of the complex solvent structure and the unique electrostatic 

interactions present between the constituents. Despite the immense progress, even basic 

concepts, such as the origin of the DES melting point depression, are still under debate. 

As such, fast computational tools capable of making accurate predictions of DES 

physiochemical properties exclusively from molecular structure would represent a 

paradigm shift in the field.  

Theoretical investigations of DESs have relied heavily on QM modeling to help 

elucidate their physical, thermodynamic, and structural relationships. The properties of 

DESs are controlled primarily by interaction energies present between the different 

components of the mixture. QM calculations performed on small gas-phase structures 

and clusters have helped to characterize and quantify the “alphabet soup” of hundreds of 

potential hydrogen bonds present in DESs. Reproduction of vibrational spectroscopy 

measurements and examination of charge transfer between the constituents have aided 

in elucidating the source of the characteristic DES melting point depression. However, 

the exclusion of explicit solvation effects has led to some inconsistencies that were 

brought to light by higher-order QM methods. For example, AIMD (or FPMD) simulations 

have shown that the predominant factor in DES melting point depression may not be the 

simple charge delocalization proposed by the gas-phase QM calculations. Instead, more 

subtle structural origins in the melting point depression may be at play that include 

contributions from HBD acidity, HBD structure/conformation, and the extent of HBD self-

interaction. Alas, further investigation into the thermodynamic and transport properties of 

DESs using AIMD becomes near impossible given the severe limitations in trajectory 

lengths and smaller system sizes imposed by the large computational resources required. 
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Classical MD methods are better suited for modeling DES systems featuring 

thousands of ionic/molecular species. However, the complexity of the charged solvents 

has necessitated in extensive development and validation of new FF parameters. In 

general, most published ChCl-based nonpolarizable FFs accurately reproduce many 

experimental bulk-phase DES physiochemical properties, e.g., density, thermal 

expansion coefficient, surface tension, heat capacity, viscosity, and solvent organization. 

Major gains in accuracy were reported when scaling atomic charges and tuning Lennard-

Jones terms towards neutron diffraction data and AIMD simulations of pure DESs. 

However, modeling more complex DES systems that feature additional species or 

heterogeneous environments have resulted in larger errors suggesting that alternative FF 

functional forms or the use of a polarizable FF may be required in such cases. 

Nevertheless, MD simulations have provided great insight into solvent organization for 

multiple DESs and have examined the subtleties of vapor phase composition in heats of 

vaporization measurements. A major challenge for nonpolarizable FFs has been the poor 

reproduction of self-diffusion coefficients; unfortunately, explicit treatment of polarization 

has not significantly improved predictions. New methods, perhaps encompassing 

machine learning, may be required to achieve accurate self-diffusivity replication. While 

the ML field is currently experiencing exponential growth, its use in DES research has 

been extremely limited. Recent ML applications in DES studies include the use of genetic 

algorithms to improve the accuracy of FF parameters and employing neural networks to 

make predictions of density, electrical conductivity, and viscosity. In the future, the 

incorporation of ML methodology into existing modeling frameworks could potentially yield 
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new and highly accurate methods, e.g., classical MD simulations that utilize energies or 

forces derived from neural networks trained on AIMD data. 

In conclusion, the development and application of simulation methods to DESs 

over the past decade has led to tremendous advances in our fundamental understanding 

of these unique systems. However, given their complexity and large potential, many more 

computational efforts will be needed, particularly beyond the heavily studied Type III 

combinations. 
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