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a b s t r a c t 

The goal of this work is to employ a semi-analytical framework to investigate key features associated 

with the transport behavior of an inert solute in non-Gaussian random fields. We focus our analysis on 

the transport dynamics of a solute plume through a porous medium characterized by spatially hetero- 

geneous non-Gaussian log-conductivity fields, Y . We rest on a stochastic Lagrangian framework to pro- 

vide semi-analytical formulations to evaluate the statistical moments and cumulative distribution func- 

tion (CDF) of solute concentration. The heterogeneous structure of the log-conductivity field is modeled 

as a Generalized Sub-Gaussian process. This model has been shown to capture non-Gaussian and scale- 

dependent features displayed by several variables, including key parameters of porous media. Our results 

suggest that the effects of non-Gaussianity in Y on solute concentration statistics are more pronounced 

at locations near the solute source zone and at early times. The impact of the analyzed non-Gaussian na- 

ture of the field of Y is also significant at the lower tails of the distribution. We also explore conditions 

under which when the concentration CDF in Generalized Sub-Gaussian Y fields can be approximated by 

the widely used beta distribution. Furthermore, the methodology used in this work is an alternative to 

the commonly used numerical Monte Carlo method and can be employed as a benchmark tool in com- 

putational stochastic mass transport problems in porous media. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Capturing the effects of spatial heterogeneity on transport of 

issolved chemicals in porous media is key to a variety of Earth 

cience and engineering scenarios including, e.g., effective alloca- 

ion of subsurface water and energy resources, reservoir engineer- 

ng, environmental risk assessment for contaminated groundwa- 

er bodies, or safety assessment of hazardous waste facilities. Spa- 

ial and temporal patterns of a solute plume migrating across a 

orous material are essentially driven by two elements: (a) the in- 

erplay between advective and diffusive mass fluxes and (b) the 

patial disorder of the porous medium. At a continuum scale, the 

atter can be described through the spatial heterogeneity of prop- 

rties/attributes that characterize the medium. Amongst these, hy- 

raulic conductivity is recognized to display spatial heterogeneity 

ver a multitude of scales. The ensuing spatial heterogeneity of 

uid flow leads to solute transport being associated with anoma- 

ous dispersion features. The latter are related to a non-linear tem- 
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oral evolution of solute particle displacement distribution as well 

s heavy-tailed first-passage time distributions [1,2] . Medium prop- 

rties are typically characterized in a stochastic context due to our 

nability to fully capture the details of their spatial variability [3] . 

ence, state variables such as solute fluxes and concentrations are 

lso interpreted as random quantities. 

Space-time evolution of concentration mean and variance in 

orous media characterized by a heterogeneous distribution of hy- 

raulic conductivity have been subject to extensive studies, e.g., 

3–8] . Analytical investigations are generally relying on perturba- 

ion theory and consider the (natural) logarithm of conductivity 

o form a multi-Gaussian random field [7,9,10] . The appraisal of 

he full probability distribution of concentration at a given point 

n space and time has also been subject of investigation. Based on 

he results obtained from turbulent flow studies [11,12] , numerical 

nalyses performed on synthetic random conductivity fields [13–

7] suggest that a beta-distribution could be adopted as a model 

o describe the probability distribution of concentrations in a spa- 

ially heterogeneous flow field. Alternative approaches yielding the 

ull probability density function of concentrations are also reported 

18–23] . The coupled effects of natural heterogeneity and engi- 

eered devices (i.e. sampling volume and solute injection source 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.122244
http://www.ScienceDirect.com
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ones) were also semi-analytically quantified on the concentration 

robability density function, PDF, in two and three dimensional 

ows [22] . Most of these works rely on the assumption that the 

og-conductivity field can be described through a Gaussian distri- 

ution. Studies have shown that non-Gaussian features could have 

n impact on hydraulic connectivity and therefore solute disper- 

ion [24–26] . In this framework, a key element which we address 

n this study (and has not yet been completely explored) is the 

ignificance that documented scale-dependence and non-Gaussian 

eatures of the probability distribution of log-conductivity can have 

n the characterization of the uncertainty associated with solute 

oncentrations. 

The main motivation underlying our work is related to the 

ounting evidences that probability distributions and associated 

tatistical moments of a variety of geophysical and environmen- 

al variables (as well as their spatial increments) display distinc- 

ive scale-dependent features. Typical manifestations of scaling be- 

avior we consider here are those displayed by the increments of 

 given variable, Y . These include (a) evidences that characteristic 

eatures of the probability distributions of the increments of Y vary 

ith the separation distance (or lag) between pairs of points at 

hich such increments are evaluated [27] , and (b) the documented 

xtended Self-Similarity (ESS) displayed in several cases by q -order 

tructure functions associated with such increments [28–30] . Ob- 

ervations indicate that (a) increment distributions appear to be 

ymmetric, with peaks that become higher and tails that become 

eavier as the lag decreases, and (b) the shape of the increment 

istribution tends to transition towards Gaussian as lag increases. 

nvironmental variables displaying such a behavior, and directly 

elated to our study, include log-hydraulic conductivity and per- 

eability [27,30–36] , log-air permeability [37] , electrical resistiv- 

ty [38,39] , vadose zone hydraulic properties [40] , neutron porosity 

41] , sediment transport [42] , and micro-scale geochemical data re- 

ated to surface topography of calcite crystals [43] . 

Riva et al. [41,44] introduced a modeling framework based on 

 Generalized Sub-Gaussian (GSG) process that embeds the above 

mpirical documentations of statistical scaling. In essence, the GSG 

odel allows representing jointly, within a unique framework, all 

f the above-documented scaling manifestations (as described for 

robability distributions and/or structure functions) of a quan- 

ity and its two-point incremental values through the action of 

 (spatially uncorrelated) subordinator on an otherwise spatially 

orrelated Gaussian random field. To date, this modeling strategy 

as been successfully applied to the interpretation of main fea- 

ures displayed by key parameters of porous media, including log- 

ermeability and porosity [27,41,43] , whose spatial heterogeneity is 

ypical of natural subsurface settings. It has also been employed in 

reliminary analytical and numerical studies of flow and transport 

n porous media whose log-conductivity is characterized through a 

SG model [45,46] . 

In the present contribution, we aim at examining key ele- 

ents of the uncertainty related to concentration fields evolv- 

ng through log-conductivity fields displaying scaling features de- 

cribed by the GSG model. Through the use of a semi-analytical 

ramework, we show how such non-Gaussian features control the 

ean, standard deviation and cumulative distribution function, 

DF, of resident concentration at various downstream locations 

rom a source where solute is injected in the system. Given the 

nvironmental relevance of extreme values, we emphasize the way 

uch non-Gaussian features impact the tailing behavior of con- 

entration distributions. In addition to being an alternative com- 

utational method in itself, the proposed approach is well-suited 

or benchmarking purposes. Although the focus of our study lies 

n mass transfer, the method of analysis is directly applicable 

o problems in heat transfer in randomly heterogeneous porous 

edia. 
C

2 
. Problem formulation 

We study transport of an inert solute in a steady-state flow 

eld taking place across a two-dimensional (2D) porous medium 

n the absence of sources and sinks and far from boundaries, so 

hat boundary effects are negligible. The system is characterized 

y a spatially heterogeneous (locally isotropic) hydraulic conduc- 

ivity K(x ) and uniform porosity φ, x = (x 1 , x 2 ) 
T corresponding to

 Cartesian coordinate system. As a result of the spatial variabil- 

ty of K, the flow field is also spatially heterogeneous. Steady-state 

ow is governed by 

 · q (x ) = 0 , (1) 

ith q (x ) denoting the Darcy flux. The spatially heterogeneous K- 

eld of the medium can be mapped onto the divergence free flow 

eld through Darcy’s law 

 (x ) = −K(x ) ∇h (x ) , (2) 

here h (x ) corresponds to the hydraulic head. Velocity v (x ) is 

iven by q (x ) /φ. Given the physical setup, the flow field is 

niform-in-the-mean along the longitudinal, x 1 , direction with 

ean velocity 〈 v (x ) 〉 = (V 1 , 0) T . Here the angled brackets denotes

nsemble expectation and V 1 = K G J /φ with K G representing the 

eometric mean of the conductivity field, and J = −∂ 〈 h (x ) 〉 / ∂ x 1 . 
An inert solute is instantaneously released into the flow domain 

ver a rectangular injection area S o = � 1 × � 2 where � i is the size

f source zone along the i th -direction. The resident concentration 

(x , t) satisfies the advection-dispersion equation 

∂c(x , t) 

∂t 
+ v (x ) · ∇c(x , t) = D ∇ 

2 c(x , t) , (3)

here D denotes the local-scale dispersion coefficient, taken here 

s a constant. Analytical solutions for the advection-dispersion 

q. (3) under uniform flow conditions, i.e. constant v , and differ- 

nt coordinate systems are available in the literature [e.g., 47 , 48, 

nd references therein] . In this work, we account for the effects of 

he spatial random fluctuations of v on the stochastic characteriza- 

ion of c. The initial condition, corresponding to an instantaneous 

njection of the solute, is taken as 

(x , 0) = 

{
C o if x ∈ S o 
0 if x / ∈ S o , 

(4) 

here C o is the initial concentration of the injected solute mass, 

hich is taken as constant. 

. Methods 

.1. Random space function model 

Let Y (x ) denote the log-conductivity field, i.e. Y (x ) = ln K(x ) .

e pattern Y (x ) through the Generalized Sub-Gaussian (GSG) 

odel [41,44] , i.e., 

 (x ) = U(x ) G(x ) . (5) 

ere, G(x ) represents a Gaussian random field whilst U(x ) is a 

ubordinator that is independent of G(x ) . As shown in Riva et al. 

41,44] , U(x ) consists of statistically independent identically dis- 

ributed positive random variables at all points of the domain. 

or this work, we take G(x ) as a statistically homogeneous and 

sotropic Gaussian random field characterized by an isotropic ex- 

onential covariance function (other choices being compatible with 

he GSG model), namely σ 2 
G exp [ −r/I G ] , with variance σ 2 

G and inte- 

ral scale I G , and r = | x − x ′ | denoting the lag-distance. The vari-

nce and integral scale of Y (x ) are given respectively by σ 2 
Y 

= 

U 2 〉 σ 2 
G 

and I Y = I G /η, with η = 〈U 2 〉 / 〈U〉 2 , while the (isotropic)

ovariance of Y (x ) is defined as 

 Y ( r ) = 〈U〉 2 σ 2 
G e 

−r/I G , for r > 0 . (6) 
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ote that whereas for G(x ) the variance and covariance coincide 

t r = 0 , the sub-Gaussian field Y (x ) exhibits a nugget effect. The

eader is referred to Riva et al. [41] for additional details. The spec- 

ral representation Eq. (6) is 

ˆ 
 Y (k ) = 〈U〉 2 σ 2 

G I 
2 
G 

1 

(1 + k 2 η2 I 2 
Y 
) 3 / 2 

, (7) 

r equivalently 

ˆ 
 Y (k ) = ησ 2 

Y I 
2 
Y 

1 

(1 + k 2 η2 I 2 
Y 
) 3 / 2 

, (8) 

here k is the wave number vector. When η = 1 , Eq. (8) reduces

o the spectral representation of a multi-Gaussian log-conductivity 

eld characterized by an exponential covariance function [3] . 

Under the assumptions listed in this work (i.e., 2D uniform-in- 

he-mean flow and negligible boundary effects), for low-to-mild 

evels of heterogeneity (i.e. σ 2 
Y � 1 ), the first-order solution of the 

ourier transform of the velocity covariance function is given by 

elhar and Axness [49] and Dagan [50] 

ˆ 
 ij ( k ) = V 

2 
1 

[
δ1 i −

k i k 1 
k 2 

][
δ1 j −

k j k 1 

k 2 

]
ˆ C Y ( k ) , for i, j = 1 , 2 (9) 

here δi j is the Kronecker delta. 

.2. Uncertainty quantification of the concentration field 

.2.1. Low-order moments 

In order to evaluate the statistics of solute concentration in a 

eterogeneous Y (x ) field, we cast our work within a Lagrangian 

ramework [7,50] . The injection area S o = � 1 × � 2 can be considered 

s a collection of solute particles, each traveling along a specific 

athline across the heterogeneous system. The trajectory evaluated 

t time t for the particle released at location a = (a 1 , a 2 ) 
T , denoted

y X (t; a ) , is a function of the random spatial structure of the Y -

eld. As a consequence, solute pathlines are also random. Making 

se of the Lagrangian framework, solute concentration c(x , t) in 

q. (3) can be expressed as 

(x , t) = C o 

∫ 
S o 

δ[ x − X (t; a )] da , (10) 

here δ is the Dirac’s delta function. 

We recall that the mean particle displacement is given by 

 X (t; a ) 〉 = a + 〈 v (x ) 〉 t and, considering a first-order (in σ 2 
Y ) ap-

roximation theory, the advective and diffusive displacements can 

e assumed to be statistically independent [7] . We further note 

hat, as travel time progresses (i.e., considering large travel dis- 

ances in terms of I Y ) trajectory fluctuations, X 

′ (t; a ) = X (t; a ) −
 X (t; a ) 〉 , tend to become Gaussian (by virtue of the central limit

heorem). Introducing the one-particle, X ii (t) = 〈 (X ′ 
i 
(t; a )) 2 〉 , and

he two-particles Z ii (t; a − b ) = 〈 X ′ 
i 
(t; a ) X ′ 

i 
(t; b ) 〉 trajectory covari-

nce functions, Fiori and Dagan [7] show that, if the injection zone 

s small compared to the characteristic length scale of heterogene- 

ty (i.e., � i < I Y and Z ii (t; a − b ) ∼= 

Z ii (t; 0) ), the mean, 〈 c(x , t) 〉 , and

ariance, σ 2 
c (x , t) , of c(x , t) can be evaluated as 

 c(x , t) 〉 = C o 

2 ∏ 

i =1 

1 

2 

{ 

erf 

[ 

x i −V i t + � i / 2 √ 

2 X ii (t) 

] 

− erf 

[ 

x i − V i t − � i / 2 √ 

2 X ii ( t) 

] } 

, 

(11) 

2 
c (x , t) = C 2 o 

2 ∏ 

i =1 

∫ � i / 2 

−� i / 2 

�(x i ; a i ) da i − 〈 c(x , t) 〉 2 , (12)

here the function �(x i ; a i ) is defined as 

(x i ; a i ) = 

erf [ A (t; a i )] − erf [ B(t; a i )] 

2 

√ 

2 πX ii (t) 
e 

− (x i −a i −V i t) 
2 

2 X ii (t) (13) 
3 
ith 

 (t; a i ) = 

� i + (x i − V i t)(1 − ρii (t) + a i ρii (t)) √ 

2 X ii (t)(1 − ρii (t) 2 ) 
(14) 

(t; a i ) = 

−� i + (x i − V i t)(1 − ρii (t) + a i ρii (t)) √ 

2 X ii (t)(1 − ρii (t) 2 ) 
. (15) 

ere ρii (t) = Z ii (t; 0) /X ii (t) . Semi-analytical expressions for X ii and 

 ii are provided in the Appendix (see Eqs. (A .2) and (A .6) ) as func-

ions of the Fourier transform of the velocity covariance function 

ˆ 
 i j (k ) defined by Eq. (9) . 

.2.2. Cumulative distribution function 

Next we compute the cumulative distribution function (CDF) of 

(x , t) following the framework developed in de Barros and Fiori 

22] . The methodology relies on evaluating the concentration in a 

oving coordinate system, ξ, set along the trajectory of the solute 

lume’s centroid, χ(t; a o ) where a o is the centroid’s position at ini- 

ial time. Then ξ = x − χ(t; a o ) and Eq. (10) can be written as 

( ξ, t) = C o 

∫ 
S o 

δ[ ξ − W (t; a , a o )] da , (16)

here W (t; a , a o ) = X (t; a ) − χ(t; a o ) is the separation distance at

ime t between the trajectories of solute particles released at a and 

 o . Computing the concentration in terms of W in lieu of X allows 

ltering out the uncertainty of the trajectory of the solute plume 

entroid [13,22] . At first-order in σ 2 
Y , mean and variance of W can 

e computed as [13] 

 W (t; a , a o ) 〉 = a − a o 

W i j (t; a , a o ) = X i j (t) + 2 Dt − 2 Z i j (t; a − a o ) + Z i j (t; 0) , (17) 

here X i j and Z i j are given by Eqs. (A.2) and (A.6) , respectively. 

ince, we have assumed that the injection zone is small compared 

o the characteristic length scale of heterogeneity (see also the pre- 

ious Section 3.2.1 ), Eq. (17) reduces to de Barros and Fiori [22] 

 W (t; a , a o ) 〉 ≈ 0 

W i j (t; a , a o ) ≈ X i j (t) + 2 Dt − Z i j (t; 0) . (18) 

rom Eq. (16) one can evaluate the statistical moments of c( ξ, t) . 

t has been shown that the variance of c( ξ, t) vanishes for a finite

éclet and small injection zones (see, e.g., [13] ). Therefore, 〈 c( ξ, t) 〉
c( ξ, t) and Eq. (16) reduces to 

( ξ, t) = C o 

∫ 
S o 

p W 

( ξ; t, a ) da , (19) 

here p W 

is the probability density function, PDF, of W . Making 

se of Eq. (18) and assuming W to be normally distributed (see 

lso the previous Section 3.2.1 ) yields 

( ξ, t) = C o 

2 ∏ 

i =1 

1 

2 

{ 

erf 

[ 

ξi + � i / 2 √ 

2 W ii (t) 

] 

− erf 

[ 

ξi − � i / 2 √ 

2 W ii (t) 

] } 

. (20) 

he approach described above has been also used to quantify the 

ixing of solutes in natural porous media displaying a uni-modal 

ovariance function [51] and in hierarchical and multi-scale sedi- 

entary architecture [52] . 

Finally the concentration CDF, P C (c ∗; x , t) ≡ Prob [ c(x , t) ≤ c ∗] ,

an be obtained by switching the coordinate system from ξ to x . 

hat implies that P C depends on the PDF of χ, i.e. p χ . The latter, for

mall plume sizes, has been shown to be Gaussian and character- 

zed by mean equal to 〈 v (x ) 〉 t and variance approximately equal to

 ii (t; 0) [13,22,51,53] . Then, following Mood et al. [54] , P C (c ∗; x , t) is

valuated as 

 C (c ∗; x , t) = 

∫ 
D 

p χ ( χ; t) d χ. (21) 

C 
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he integration domain D C corresponds to the area of the χi (for 

 = 1 , 2 ) space such that c( χ, t) ≤ c ∗, therefore D C in Eq. (21) is

etermined by using Eq. (20) . Evaluation of Eq. (21) constitutes 

he key step within a probabilistic environmental risk assessment 

ramework, since it allows to quantify the probability that a con- 

aminant concentration is below a threshold, c ∗, fixed, e.g., by gov- 

rnment or by environmental national/international agencies. 

. Results and discussion 

For the purpose of illustration, we quantify solute concentra- 

ion uncertainty in GSG fields by considering that the subordi- 

ator U(x ) in Eq. (5) is lognormally distributed at every point x 

ith zero mean and variance (2 − α) 2 , i.e. η = exp [(2 − α) 2 ] in

qs. (7) and (8). When α → 2 , η = 1 and the log-conductivity field

ecomes Gaussian. As α decreases, the PDF of Y (x ) deviates from 

aussianity, exhibiting long tails and sharp peaks. In the following, 

e analyze the impact of the non-Gaussian nature of Y (x ) by vary-

ng α while maintaining a constant value for the variance, σ 2 
Y 

, and 

ntegral scale, I Y , of Y (x ) . 

Fig. 1 depicts the temporal behavior of the one-particle trajec- 

ory covariance function for three values of α (decreasing from 2 

o 1.2) and for a fixed Péclet number, defined as Pe = V 1 I Y /D . Here
ig. 1. Temporal evolution of the one-particle trajectory covariance function. Com- 

arison with the results reported in Dagan [50] (for multi-Gaussian log-conductivity 

andom fields) and Riva et al. [45] . 

Fig. 2. Temporal evolution of the two-particle trajectory covariance function for Pe 

= 10 0 0 and various values of α. Comparison with the results reported in Fiori and 

Dagan [7] for a multi-Gaussian log-conductivity random field. 
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4 
e set Pe = 10 3 , this condition being characteristic of an advec- 

ive dominated transport. Results are displayed along the longitu- 

inal ( Fig. 1 a) and transverse ( Fig. 1 b) directions. The results of X ii 
re compared with those obtained from the literature for Gaussian 

50] and non-Gaussian [45] random flow fields under purely ad- 

ective conditions, i.e., Pe → ∞ . As shown in Fig. 1 , our results are

n good agreement with those previously reported [45,50] . A simi- 

ar comparison is performed in Fig. 2 for the two-particle trajectory 

ovariance function. 

Fig. 1 a shows that the longitudinal solute spreading decreases 

s the Y -field departs from a Gaussian behavior. This feature is 

inked to the spatial structure of the GSG fields of Y . We start by

oticing that all of the results embedded in Fig. 1 are related to 

nsembles of Y -fields characterized by the same variance and in- 

egral scale. However, due to the shape of C Y , the correlation of 

 (x ) at small lags (local correlation) decreases with α (whereas 

he opposite occurs at large lags). Therefore, following the dis- 

lacement of a particle along the mean flow direction, at a given 

ime, the solute particle will have experienced (within each real- 

zation of the ensemble) a larger variability of Y -values at a low 

alue of α (i.e., as the Y -field deviates from the Gaussian one) as 

ompared to the heterogeneity experienced by a particle at larger 

values (approaching the Gaussian case). As such, and recalling 
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Fig. 3. Mean of C versus dimensionless longitudinal mean displacement ( x 2 /I Y = 0 ), 

for selected values of Pe and α. Results are depicted for (a) early time tV 1 /I Y = 5 

and (b) late time tV 1 /I Y = 20 . 
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Fig. 4. Standard deviation of C versus dimensionless longitudinal mean displace- 

ment ( x 2 /I Y = 0 ), for selected values of Pe and α. Results are depicted for (a) early 

time tV 1 /I Y = 5 and (b) late time tV 1 /I Y = 20 . 
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is constant within each ensemble, the variability of the 

ongitudinal displacement across the ensemble decreases as α de- 

reases, as quantified by Fig. 1 a. Otherwise, the transverse solute 

preading decreases with α only for small travel distances, oth- 

rwise the situation is reversed (see Fig. 1 b). Again, this feature 

s due to the structure of the GSG fields. For small values of α,

n each realization of the ensemble, particles deviate more from 

he mean flow direction with respect to what observed for large 

values (which are characterized by a larger level of local corre- 

ation, i.e., they are locally more homogeneous), resulting in larger 

 22 in the former than in the latter case. This result is consistent 

ith the findings of Riva and Willmann [55] who analyzed the im- 

act of the variogram structure (using exponential, spherical and 

aussian spatial correlation models) on the moments of transport 

bservables in Gaussian Y fields under mean uniform and radial 

ow conditions by means of numerical Monte Carlo simulations. 

hese authors show (see Fig. 7 a in Riva and Willmann [55] ) that

he Gaussian variogram model displays the largest values of X 22 

t very small distances from the release point. Otherwise, the use 

f the exponential variogram (which is associated with the Y -field 

haracterized by the smallest local correlation among those ana- 

yzed) results in the largest values of X 22 . The results depicted in 

ig. 2 for the two-particle trajectory covariance function are consis- 

ent with such findings. When α → 2 , the computed values of Z ii 
atch those obtained by Fiori and Dagan [7] for a multi-Gaussian 

 field. We highlight that non-locality (in the transport behavior) 
5 
s reflected in the temporal dynamics of the one- and two-particle 

rajectory covariances as depicted in Figs. 1 and 2 , where one can 

ppreciate the impact of deviation from a Gaussian behavior of the 

nderlying random conductivity field. 

Next, we compute the spatial distribution of the mean, 〈 c(x , t) 〉 ,
nd standard deviation, σc (x , t) , of c(x , t) at two dimensionless

imes, i.e., tV 1 /I Y = 5 and 20, and for three values of α ( Figs. 3

nd 4 ). Results are reported for Pe = 10 2 and 10 3 . These Pe num- 

ers represent typical values observed in real aquifers. For exam- 

le, a value of Pe = 380 has been inferred from concentration data 

onitored at the Cape Cod (Massachusetts, USA) experimental site 

51,56] . We observe that the highest peak values for 〈 c(x , t) 〉 are

elated to the lowest values of α ( Fig. 3 a). This result is a reflection

f the reduced spreading observed when the Y -field departs from 

he Gaussian behavior. Concentration uncertainty, as quantifies by 

ts standard deviation (see Fig. 4 ), is also higher for small α val- 

es, as compared to the results for the Gaussian field (i.e. α → 2 ). 

s the log-conductivity field departs from Gaussianity (maintain- 

ng a constant variance and integral scale), each realization of the 

nsemble appears to be formed by larger zones displaying similar 

onductivity values and hot-spots of low/high conductivity values. 

his characteristic enhances the ensemble variability (i.e., large val- 

es of σC ) and leads to a decreased solute spreading. As expected, 

he difference between statistics of c(x , t) obtained with diverse α
alues decreases as the travel time increases and as Pe decreases 
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Fig. 5. Coefficient of variation of C versus dimensionless longitudinal mean dis- 

placement ( x 2 /I Y = 0 ), for selected values of Pe and α. 
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Fig. 6. Concentration CDF at the average plume displacement for two dimension- 

less times and selected values of Pe and α. 
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see also Fig. 3 b). We point out that the effect of α on the con-

entration breakthrough curve (BTC) in a single realization of the 

ermeability field has been investigated in the past [46,57] . In gen- 

ral, the authors observed that decreasing the value of α yields (i) 

 delayed first time of arrival of the solute and (ii) an increasing 

egree of asymmetry (and heavier tails) of the BTC. 

The spatial distribution of the coefficient of variation of c(x , t) , 

efined as CV c = σc / 〈 c〉 , is depicted in Fig. 5 . Results are shown for

ifferent Pe and two dimensionless times and α values. In accor- 

ance to the results shown in Figs. 3 and 4 , CV c decreases as α in-

reases and as Pe decreases. The minimum value of CV c is observed 

t the average plume displacement, i.e. at x 1 / (tV 1 ) = 1 . 

Concentration CDFs, P C (c ∗; x , t) , are illustrated for the follow- 

ng cases: (i) position x /I Y = (1 , 0) T and dimensionless time 1 and

ii) x /I Y = (10 , 0) T and dimensionless time 10 for Pe = 10 3 ( Fig. 6 a)

nd Pe = 10 2 ( Fig. 6 b). Both cases corresponds to x 1 / (tV 1 ) = 1 , i.e.

 C is evaluated along the average plume displacement. Close in- 

pection of Fig. 6 reveals that the impact of α on P C decreases 

s the travel distance increases. On the other hand, we observe 

arked differences at the low-concentration tail of the CDFs (as 

hown in the insets of Fig. 6 ) for all values of Pe and travel times

xplored. In particular, for low c ∗, P C increases with α for short 

ravel distances from the source (a result which is in agreement 

ith the numerical simulations of Libera et al. [46] ), this behav- 

or being otherwise reversed (compare values of P C for different α
t dimensionless times 1 and 10). This aspect is of particular rele- 

ance within a probabilistic risk (health or environmental) assess- 

ent framework, where c ∗ coincides with a maximum contami- 

ant level for human or environmental health. To further eluci- 

ate this element, Fig. 7 depicts the probability of concentration 

xceeding the normalized threshold c ∗ = 10 −3 , i.e., 1- P C (c ∗) , versus

evaluated along the average plume displacement at various (di- 

ensionless) times for the two values of Pe considered. At early 

imes, the probability of exceeding the target threshold increases 

s the Y -field deviates from the Gaussian behavior. The opposite 

s seen to occur at late times. Fig. 8 provides a three-dimensional 

iew of the dependence of exceedance probability on dimension- 

ess time and α for the two distinct Péclet numbers analyzed. 

hese results evidence that representing log-conductivity through 

 GSG model can have a marked influence on the assessment of 

he probability that concentration levels exceed a given threshold 

t locations downstream of a source of contamination. This ele- 

ent has also implications to the assessment of risk under un- 

ertainty, as considering a Gaussian model for the log-conductivity 
6 
eld clearly underestimates risk for distances close to the solute 

ource zone (see Fig. 7 ). Our results show that the sensitivity to 

of the probability of exceedance is strongest at early times and 

hort distances from the source. 

Finally, we compare the results for the concentration CDF ob- 

ained from Eq. (21) with the beta distribution. Several works have 

hown that such a distribution can be effectively em ployed as a 

roxy to estimate uncertainty associated with solute resident con- 

entration in Gaussian random fields [13–15,22,53,58] . These au- 

hors appraise the accuracy of the beta distribution model by test- 

ng it against numerical simulations, analytical solutions and field 

ata. Here, we analyze the ability of the beta distribution to ap- 

roximate the uncertainty of the concentration in a non-Gaussian 

andom field characterized through the GSG model. The beta CDF 

s given by: 

 C (c) = 

�[ q 1 + q 2 ] 

�[ q 1 ]�[ q 2 ] 

∫ c 

0 

w 

q 1 −1 (1 − w ) q 2 −1 dw, (22) 

here �[ z] is the Gamma function: 

[ z] = 

∫ ∞ 

0 

ζ z−1 e −ζ dζ , (23) 

nd 

 1 = 

〈 c〉 
β

;q 2 = 

1 − 〈 c〉 
β

;β = 

σ 2 
c 

〈 c〉 (1 − 〈 c〉 ) − σ 2 
. (24) 
c 
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Fig. 7. Probability that concentration levels exceed the normalized threshold c ∗ = 

10 −3 as a function of α and the Péclet number. Results are depicted for x /I Y = 

(0 . 5 , 0) T and tV 1 /I Y = 0.5; x /I Y = (1 , 0) T and tV 1 /I Y = 1; and x /I Y = (10 , 0) T and 

tV 1 /I Y = 10. 

Fig. 8. Probability of exceedance of normalized concentration threshold c ∗ = 10 −3 

at the solute plume centroid position as a function of dimensionless time and α. 

Results are shown for Pe = (a) 10 2 and (b) 10 3 . 
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Fig. 9. Comparison between the concentration CDF model rendered by Eq. (21) and 

the β distribution, Eq. (22) . Results are illustrated for Pe = 10 2 , (a) α = 1 . 2 and (b) 

α → 2 at early and late times. 
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Fig. 9 depicts the concentration CDFs along the average plume 

isplacement at two observation times for Pe = 10 2 and α = 1 . 2 

nd α → 2 . 0 . The results suggest that there is an overall good

greement between the CDF values obtained by Eq. (21) and the 

eta distribution (22) (as parametrized by the mean and variance 

f c, see Eqs. (11) and (12) ). Consistent with the results reported 

n de Barros and Fiori [22] , a mismatch between the beta distribu- 

ion and Eq. (21) is documented at early times and at the lower 
7 
robability tails of the CDFs, where the beta distribution under- 

stimates the probability that the concentration is lower than a 

iven value. By way of example, when considering the concentra- 

ion CDF at tV 1 /I Y = 1 and x /I Y = (1 , 0) T for α = 1 . 2 (see Fig. 9 a),

ne can note that the probability that the normalized concentra- 

ion is lower than 0.01 is approximately equal to 0.27 for the beta 

DF whereas the CDF given by Eq. (21) provides an approximate 

alue of 0.4. On these bases, in the context of risk analysis one 

an view relying on the beta distribution as a worst case scenario, 

s compared to estimates provided by Eq. (21) . For completeness, 

 comparison between the beta distribution and Eq. (21) are also 

llustrated for a Gaussian random log-conductivity field ( Fig. 9 b). 

. Conclusions 

In this work we investigate the effects of non-Gaussianity in a 

andom log-conductivity field, Y , on the statistics of the resident 

oncentration c associated with a solute evolving in a randomly 

eterogeneous porous system. Through the use of a stochastic La- 

rangian framework, we computed the mean, standard deviation 

nd cumulative probabilistic distribution, CDF, of c at a given point 

n space and time for a 2D spatially heterogeneous (non-Gaussian) 

og-conductivity field. The Lagrangian framework utilized in our 

ork has been successfully tested against field data and numer- 
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cal solutions (see [13,51,53] ). Furthermore, we showed that the 

ramework is capable of recovering previously published results for 

aussian Y fields. The effects of non-Gaussianity are incorporated 

n our study upon resting on the Generalized Sub-Gaussian model 

ntroduced by Riva et al. [41] . Our work leads to the following ma-

or conclusions: 

1. The peak of the spatial distribution of the mean concentration 

increases as Y departs from Gaussianity. A similar behavior has 

been observed for the maximum value of the variance and for 

the minimum value of the coefficient of variation of c. 

2. Differences between the statistics of c obtained within Gaussian 

and Generalized Sub-Gaussian Y fields decrease as travel time 

increases and as the Péclet number decreases. 

3. Non-Gaussian effects are mainly manifested at the lower tail of 

the CDF of c at early times. We remark that these effects are 

relevant in probabilistic risk analysis, where exceedance of low 

concentration thresholds can be critical. 

4. The beta distribution model can serve as a viable approxima- 

tion for the concentration distribution in a non-Gaussian Y - 

field, its ability to capture the low probability tail of the CDF 

being otherwise limited. In addition, the beta distribution is 

fully characterized by the mean and standard deviation values. 

This implies that one can efficiently compute uncertainty esti- 

mates for the concentration at a given point in space and time. 

While the success of the beta distribution to represent uncer- 

tainty associated with c has been shown for Gaussian Y fields 

(e.g., see [15,22] ), to the best of our knowledge, it is illustrated 

here for the first time for a non-Gaussian Y field. 

The framework employed in this work can be viewed as an al- 

ernative to the numerical Monte Carlo method commonly used to 

stimate the uncertainty of a solute concentration. The approach 

ere reported can also be used as a benchmark tool in compu- 

ational stochastic mass transport problems in porous media. We 

emark that the results presented in this work are confined to 

mall solute bodies (relative to the correlation length of the log- 

onductivity random field), Y fields displaying low-to-mild hetero- 

eneity, and 2D settings. A comparison between the system behav- 

or in 2D and 3D settings for Gaussian flow fields is provided by de 

arros and Fiori [22] . These authors show that solute concentra- 

ion statistics are affected by flow dimensionality. Expanding the 

urrent framework to 3D settings is a topic of future work. Addi- 

ional future research works will focus on the characterization of 

he effects of enhanced Y heterogeneity on the uncertainty of so- 

ute concentrations. 
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ppendix A. Particle trajectory covariances 

Semi-analytical expressions for the one- and two-particle tra- 

ectory covariances are here included under the assumptions 

dopted within this work (see Section 3 ). The complete set of de- 

ails regarding the derivations of the particle trajectory functions 

re given, e.g., in Rubin [3] , Fiori and Dagan [7] , de Barros et al.

59] . 

The one particle trajectory covariance is given by 

 i j (t) = 

1 

2 π

∫ t 

0 

∫ t 

0 

∫ 
k 

ˆ v i j (k ) cos [ k 1 V 1 (t ′ − t ′′ )] e k 
2 D | t ′ −t ′′ | d t ′ d t ′′ d k . 

(A.1) 

hich can be further simplified with the aid of the Cauchy algo- 

ithm, i.e. 
∫ t 

0 

∫ t 
0 h (| τ − τ ′ | ) d τd τ ′ = 2 

∫ t 
0 (t − τ ) h (τ ) dτ with h repre-

enting a generic function. Therefore, Eq. (A.1) can be reduced to 

 i j (t) = 

4 

π

∫ t 

0 

∫ ∞ 

0 

ˆ v i j (k ) cos [ k 1 V 1 τ ] e k 
2 Dτ dτdk . (A.2) 

The two-particle trajectory covariance Z i j is given by 

 i j (t| a − b ) = 

1 

2 π

∫ t 

0 

∫ t 

0 

∫ 
k 

ˆ v i j (k ) ψ(t ′ , t ′′ , k | a − b ) d k d t ′ d t ′′ 

(A.3) 

ith 

(t ′ , t ′′ , k | a − b ) = e ı k ·(a −b ) e −ı k ·V (t ′ −t ′′ ) e −k 2 D (t ′ + t ′′ ) (A.4)

For a small injection zone, i.e. � i < I Y (with i = 1 , 2 ) 

im 

 → b 
ψ(t ′ , t ′′ , k | a − b ) = e −ık 1 V 1 (t ′ −t ′′ ) e −k 2 D (t ′ + t ′′ ) . (A.5)

ubstituting Eq. (A.5) into (A.3) , yields the following integral ex- 

ression for a 2D uniform-in-the-mean flow 

 i j (t| a − b ) = 

1 

2 π

∫ t 

0 

∫ t 

0 

∫ 
k 

ˆ v i j (k ) cos [ k 1 V 1 (t ′ − t ′′ )] 

e −k 2 D (t ′ + t ′′ ) d k d t ′ d t ′′ . (A.6) 
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