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ABSTRACT

The goal of this work is to employ a semi-analytical framework to investigate key features associated
with the transport behavior of an inert solute in non-Gaussian random fields. We focus our analysis on
the transport dynamics of a solute plume through a porous medium characterized by spatially hetero-
geneous non-Gaussian log-conductivity fields, Y. We rest on a stochastic Lagrangian framework to pro-
vide semi-analytical formulations to evaluate the statistical moments and cumulative distribution func-
tion (CDF) of solute concentration. The heterogeneous structure of the log-conductivity field is modeled
as a Generalized Sub-Gaussian process. This model has been shown to capture non-Gaussian and scale-
dependent features displayed by several variables, including key parameters of porous media. Our results
suggest that the effects of non-Gaussianity in Y on solute concentration statistics are more pronounced
at locations near the solute source zone and at early times. The impact of the analyzed non-Gaussian na-
ture of the field of Y is also significant at the lower tails of the distribution. We also explore conditions
under which when the concentration CDF in Generalized Sub-Gaussian Y fields can be approximated by
the widely used beta distribution. Furthermore, the methodology used in this work is an alternative to
the commonly used numerical Monte Carlo method and can be employed as a benchmark tool in com-
putational stochastic mass transport problems in porous media.

Environmental fluid mechanics

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Capturing the effects of spatial heterogeneity on transport of
dissolved chemicals in porous media is key to a variety of Earth
science and engineering scenarios including, e.g., effective alloca-
tion of subsurface water and energy resources, reservoir engineer-
ing, environmental risk assessment for contaminated groundwa-
ter bodies, or safety assessment of hazardous waste facilities. Spa-
tial and temporal patterns of a solute plume migrating across a
porous material are essentially driven by two elements: (a) the in-
terplay between advective and diffusive mass fluxes and (b) the
spatial disorder of the porous medium. At a continuum scale, the
latter can be described through the spatial heterogeneity of prop-
erties/attributes that characterize the medium. Amongst these, hy-
draulic conductivity is recognized to display spatial heterogeneity
over a multitude of scales. The ensuing spatial heterogeneity of
fluid flow leads to solute transport being associated with anoma-
lous dispersion features. The latter are related to a non-linear tem-
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poral evolution of solute particle displacement distribution as well
as heavy-tailed first-passage time distributions [1,2]. Medium prop-
erties are typically characterized in a stochastic context due to our
inability to fully capture the details of their spatial variability [3].
Hence, state variables such as solute fluxes and concentrations are
also interpreted as random quantities.

Space-time evolution of concentration mean and variance in
porous media characterized by a heterogeneous distribution of hy-
draulic conductivity have been subject to extensive studies, e.g.,
[3-8]. Analytical investigations are generally relying on perturba-
tion theory and consider the (natural) logarithm of conductivity
to form a multi-Gaussian random field [7,9,10]. The appraisal of
the full probability distribution of concentration at a given point
in space and time has also been subject of investigation. Based on
the results obtained from turbulent flow studies [11,12], numerical
analyses performed on synthetic random conductivity fields [13-
17] suggest that a beta-distribution could be adopted as a model
to describe the probability distribution of concentrations in a spa-
tially heterogeneous flow field. Alternative approaches yielding the
full probability density function of concentrations are also reported
[18-23]. The coupled effects of natural heterogeneity and engi-
neered devices (i.e. sampling volume and solute injection source
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zones) were also semi-analytically quantified on the concentration
probability density function, PDF, in two and three dimensional
flows [22]. Most of these works rely on the assumption that the
log-conductivity field can be described through a Gaussian distri-
bution. Studies have shown that non-Gaussian features could have
an impact on hydraulic connectivity and therefore solute disper-
sion [24-26]. In this framework, a key element which we address
in this study (and has not yet been completely explored) is the
significance that documented scale-dependence and non-Gaussian
features of the probability distribution of log-conductivity can have
on the characterization of the uncertainty associated with solute
concentrations.

The main motivation underlying our work is related to the
mounting evidences that probability distributions and associated
statistical moments of a variety of geophysical and environmen-
tal variables (as well as their spatial increments) display distinc-
tive scale-dependent features. Typical manifestations of scaling be-
havior we consider here are those displayed by the increments of
a given variable, Y. These include (a) evidences that characteristic
features of the probability distributions of the increments of Y vary
with the separation distance (or lag) between pairs of points at
which such increments are evaluated [27], and (b) the documented
Extended Self-Similarity (ESS) displayed in several cases by g-order
structure functions associated with such increments [28-30]. Ob-
servations indicate that (a) increment distributions appear to be
symmetric, with peaks that become higher and tails that become
heavier as the lag decreases, and (b) the shape of the increment
distribution tends to transition towards Gaussian as lag increases.
Environmental variables displaying such a behavior, and directly
related to our study, include log-hydraulic conductivity and per-
meability [27,30-36], log-air permeability [37], electrical resistiv-
ity [38,39], vadose zone hydraulic properties [40], neutron porosity
[41], sediment transport [42], and micro-scale geochemical data re-
lated to surface topography of calcite crystals [43].

Riva et al. [41,44] introduced a modeling framework based on
a Generalized Sub-Gaussian (GSG) process that embeds the above
empirical documentations of statistical scaling. In essence, the GSG
model allows representing jointly, within a unique framework, all
of the above-documented scaling manifestations (as described for
probability distributions and/or structure functions) of a quan-
tity and its two-point incremental values through the action of
a (spatially uncorrelated) subordinator on an otherwise spatially
correlated Gaussian random field. To date, this modeling strategy
has been successfully applied to the interpretation of main fea-
tures displayed by key parameters of porous media, including log-
permeability and porosity [27,41,43], whose spatial heterogeneity is
typical of natural subsurface settings. It has also been employed in
preliminary analytical and numerical studies of flow and transport
in porous media whose log-conductivity is characterized through a
GSG model [45,46].

In the present contribution, we aim at examining key ele-
ments of the uncertainty related to concentration fields evolv-
ing through log-conductivity fields displaying scaling features de-
scribed by the GSG model. Through the use of a semi-analytical
framework, we show how such non-Gaussian features control the
mean, standard deviation and cumulative distribution function,
CDF, of resident concentration at various downstream locations
from a source where solute is injected in the system. Given the
environmental relevance of extreme values, we emphasize the way
such non-Gaussian features impact the tailing behavior of con-
centration distributions. In addition to being an alternative com-
putational method in itself, the proposed approach is well-suited
for benchmarking purposes. Although the focus of our study lies
on mass transfer, the method of analysis is directly applicable
to problems in heat transfer in randomly heterogeneous porous
media.
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2. Problem formulation

We study transport of an inert solute in a steady-state flow
field taking place across a two-dimensional (2D) porous medium
in the absence of sources and sinks and far from boundaries, so
that boundary effects are negligible. The system is characterized
by a spatially heterogeneous (locally isotropic) hydraulic conduc-
tivity K(x) and uniform porosity ¢, X = (x1, ;)T corresponding to
a Cartesian coordinate system. As a result of the spatial variabil-
ity of K, the flow field is also spatially heterogeneous. Steady-state
flow is governed by

V.qx) =0, (1)

with q(x) denoting the Darcy flux. The spatially heterogeneous K-
field of the medium can be mapped onto the divergence free flow
field through Darcy’s law

q(x) = —-K(x)Vh(x), (2)

where h(x) corresponds to the hydraulic head. Velocity v(x) is
given by q(x)/¢. Given the physical setup, the flow field is
uniform-in-the-mean along the longitudinal, x;, direction with
mean velocity (v(x)) = (V;,0)T. Here the angled brackets denotes
ensemble expectation and V; = K;7/¢ with K¢ representing the
geometric mean of the conductivity field, and J = —9d{(h(x))/0x;.
An inert solute is instantaneously released into the flow domain
over a rectangular injection area S, = ¢; x ¢ where ¢; is the size
of source zone along the it"-direction. The resident concentration
c(x, t) satisfies the advection-dispersion equation
dac(x, t)
ot
where D denotes the local-scale dispersion coefficient, taken here
as a constant. Analytical solutions for the advection-dispersion
Eq. (3) under uniform flow conditions, i.e. constant v, and differ-
ent coordinate systems are available in the literature [e.g., 47, 48,
and references therein]. In this work, we account for the effects of
the spatial random fluctuations of v on the stochastic characteriza-
tion of c. The initial condition, corresponding to an instantaneous
injection of the solute, is taken as

|G ifxe S,
C("*O)—{o ifx ¢S, (4)

+v(x) - Vc(x, t) = DV2c(x,t), (3)

where G, is the initial concentration of the injected solute mass,
which is taken as constant.

3. Methods
3.1. Random space function model

Let Y(x) denote the log-conductivity field, i.e. Y (x) = InK(x).
We pattern Y(x) through the Generalized Sub-Gaussian (GSG)
model [41,44], i.e.,

Y(X) = UX)G(X). (5)

Here, G(x) represents a Gaussian random field whilst Z/(x) is a
subordinator that is independent of G(x). As shown in Riva et al.
[41,44], U(x) consists of statistically independent identically dis-
tributed positive random variables at all points of the domain.
For this work, we take G(X) as a statistically homogeneous and
isotropic Gaussian random field characterized by an isotropic ex-
ponential covariance function (other choices being compatible with
the GSG model), namely GGZ exp[—r/Ig], with variance O'G2 and inte-
gral scale I, and r = |x — X’| denoting the lag-distance. The vari-
ance and integral scale of Y(x) are given respectively by a% =
U?)o? and Iy = Ig/n, with n = (U?) / (U)?, while the (isotropic)
covariance of Y (x) is defined as

Cy (r) = (U)*0Ze /e forr > 0. (6)
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Note that whereas for G(x) the variance and covariance coincide
at r =0, the sub-Gaussian field Y (x) exhibits a nugget effect. The
reader is referred to Riva et al. [41] for additional details. The spec-
tral representation Eq. (6) is

. 1
G0 = 06l e @

or equivalently
212 1
(1 + k277212)3/2 ’

where Kk is the wave number vector. When n =1, Eq. (8) reduces
to the spectral representation of a multi-Gaussian log-conductivity
field characterized by an exponential covariance function [3].
Under the assumptions listed in this work (i.e., 2D uniform-in-
the-mean flow and negligible boundary effects), for low-to-mild
levels of heterogeneity (i.e. a% 1), the first-order solution of the
Fourier transform of the velocity covariance function is given by

Gelhar and Axness [49] and Dagan [50]

kik
kl"‘}[su_ ‘;;l}cy(k) for i, j=1,2 (9)

Gy (k) = (8)

(k) = Vl [81, 2

where §;; is the Kronecker delta.
3.2. Uncertainty quantification of the concentration field

3.2.1. Low-order moments

In order to evaluate the statistics of solute concentration in a
heterogeneous Y (x) field, we cast our work within a Lagrangian
framework [7,50]. The injection area S, = ¢; x £, can be considered
as a collection of solute particles, each traveling along a specific
pathline across the heterogeneous system. The trajectory evaluated
at time t for the particle released at location a = (ay, ay)7, denoted
by X(t;a), is a function of the random spatial structure of the Y-
field. As a consequence, solute pathlines are also random. Making
use of the Lagrangian framework, solute concentration c(x,t) in
Eq. (3) can be expressed as

cxt) =G, f 5[x — X(t: a)]da, (10)
So

where § is the Dirac’s delta function.

We recall that the mean particle displacement is given by
(X(t;a)) =a+ (v(x))t and, considering a first-order (in af) ap-
proximation theory, the advective and diffusive displacements can
be assumed to be statistically independent [7]. We further note
that, as travel time progresses (i.e., considering large travel dis-
tances in terms of Iy) trajectory fluctuations, X'(t;a) = X(t;a) —
(X(t;a)), tend to become Gaussian (by virtue of the central limit
theorem). Introducing the one-particle, X;;(t) = ((Xi’(t;a))z), and
the two-particles Z;(t;a —b) = (X/(t;a)X/(t; b)) trajectory covari-
ance functions, Fiori and Dagan [7] show that, if the injection zone
is small compared to the characteristic length scale of heterogene-
ity (i.e., ¢; <Iy and Z;(t; a—b) = Z;;(t; 0)), the mean, (c(x,t)), and
variance, 052 (x,t), of c(x,t) can be evaluated as

X — Vit +£;/2 X — Vit — /2
t))=GC - 7| —erf| ——— | §,
o) 1_[ 2 { |: v 2X;i (t) :| o |: v 2X;i (t) :| }

(11)
2 2
oa2x,t)=C ] £/2®(X,-; aj)da; — (c(x,1))?, (12)
i=1 ¢
where the function ®(x;; g;) is defined as
erflA(t; a;)] — erf|B(t; a; M
O ap) = STAE )] — erflB(: 0] a3

2./21 X;i(t)
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with

At a) _bi+ (i Vi) (4 = pii(t) + a;pi(t)) (14)
V2Xi () (1 = p;i(£)2)

B(t; ai) :—E,- + (Xi V't)(l pu(t) + alpn(t)) (15)

V2% (T = pa(0)?)

Here p;;i(t) = Z;;(t; 0)/X;; (t). Semi-analytical expressions for X;; and
Z;; are provided in the Appendix (see Eqs. (A.2) and (A.6)) as func-
tions of the Fourier transform of the velocity covariance function
D;;(k) defined by Eq. (9).

3.2.2. Cumulative distribution function

Next we compute the cumulative distribution function (CDF) of
c(x,t) following the framework developed in de Barros and Fiori
[22]. The methodology relies on evaluating the concentration in a
moving coordinate system, &, set along the trajectory of the solute
plume’s centroid, x(t; a,) where a, is the centroid’s position at ini-
tial time. Then & = x — x(t; a,) and Eq. (10) can be written as

(g, t) = CO/S 5[& — W(t: a, a,)]da, (16)

where W(t; a,a,) = X(t;a) — x(t; ao) is the separation distance at
time t between the trajectories of solute particles released at a and
a,. Computing the concentration in terms of W in lieu of X allows
filtering out the uncertainty of the trajectory of the solute plume
centroid [13,22]. At first-order in Uf. mean and variance of W can
be computed as [13]

(W(t;a,a,)) =a—a,

Wij(t;a,a,) = X;j(t) + 2Dt — 2Z;;(t; a — a,) + Z;j(t; 0), (17)

where X;; and Z;; are given by Egs. (A.2) and (A.6), respectively.
Since, we have assumed that the injection zone is small compared
to the characteristic length scale of heterogeneity (see also the pre-
vious Section 3.2.1), Eq. (17) reduces to de Barros and Fiori [22]

(W(t;a,a,)) ~ 0

Wij(t;a, ao) %X,-j(t)+2Dt—Zij(t; 0) (18)

From Eq. (16) one can evaluate the statistical moments of c(&,t).
It has been shown that the variance of c(&,t) vanishes for a finite
Péclet and small injection zones (see, e.g., [13]). Therefore, (c(&,t))
~ c(&,t) and Eq. (16) reduces to

cE0) =G /S pw (&: t.a)da, (19)

where py, is the probability density function, PDF, of W. Making
use of Eq. (18) and assuming W to be normally distributed (see
also the previous Section 3.2.1) yields

21 £+ €i/2 & — /2
E0)=CJJ=s]erf| 2—=L2 ) 20
« HZ{“[\Wm] {m @0

The approach described above has been also used to quantify the
mixing of solutes in natural porous media displaying a uni-modal
covariance function [51] and in hierarchical and multi-scale sedi-
mentary architecture [52].

Finally the concentration CDF, P-(c*;X,t) = Prob[c(x,t) < c*],
can be obtained by switching the coordinate system from & to x.
That implies that P- depends on the PDF of , i.e. py. The latter, for
small plume sizes, has been shown to be Gaussian and character-
ized by mean equal to (v(x))t and variance approximately equal to
Z;i(t; 0) [13,22,51,53]. Then, following Mood et al. [54], P-(c*; X, t) is
evaluated as

Pe(c: X, t) = /D Py (X: )dX. (21)
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The integration domain D¢ corresponds to the area of the yx; (for
i=1,2) space such that c(x,t) < c*, therefore D¢ in Eq. (21) is
determined by using Eq. (20). Evaluation of Eq. (21) constitutes
the key step within a probabilistic environmental risk assessment
framework, since it allows to quantify the probability that a con-
taminant concentration is below a threshold, c*, fixed, e.g., by gov-
ernment or by environmental national/international agencies.

4. Results and discussion

For the purpose of illustration, we quantify solute concentra-
tion uncertainty in GSG fields by considering that the subordi-
nator /(x) in Eq. (5) is lognormally distributed at every point x
with zero mean and variance (2 — )2, i.e. 7 =exp[(2 —«)?] in
Egs. (7) and (8). When o — 2, n = 1 and the log-conductivity field
becomes Gaussian. As o decreases, the PDF of Y (x) deviates from
Gaussianity, exhibiting long tails and sharp peaks. In the following,
we analyze the impact of the non-Gaussian nature of Y (x) by vary-
ing o while maintaining a constant value for the variance, aﬁ, and
integral scale, Iy, of Y (x).

Fig. 1 depicts the temporal behavior of the one-particle trajec-
tory covariance function for three values of « (decreasing from 2
to 1.2) and for a fixed Péclet number, defined as Pe = V;I,/D. Here

80 T T T T X T ¥ T

@)
70 o= Dagan (1984), Pe - «

] O Rivaetal. (2017), 0 > 2.0, Pe > »
60 Y% Rivaetal. (2017), o= 1.6, Pe >

& Rivaetal. (2017),0.= 1.2, Pe 5> @
1F---o—20Pe=10°
&> 500 =16, Pe=10°
----a=1.2Pe=10°

0 5 10 15 20 25 30 35 40 45

T T T T T T T T T
(b)
44 3
%@/ ol
34 /@,/@ -LQ("A A A—,,"(-»(-(
b @/,@ *f("f( g__@.@—'@ -7
o~ > 4 T _@"@'
© 5 7{\( *_@-@'
= &, pBe
= 2+ & % - 1
N SAr By
&
q -
0 o T T T T T T T T
0 5 10 15 20 25 30 35 40 45
lV1/ |Y

Fig. 1. Temporal evolution of the one-particle trajectory covariance function. Com-
parison with the results reported in Dagan [50] (for multi-Gaussian log-conductivity
random fields) and Riva et al. [45].
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Fig. 2. Temporal evolution of the two-particle trajectory covariance function for Pe
= 1000 and various values of «. Comparison with the results reported in Fiori and
Dagan [7] for a multi-Gaussian log-conductivity random field.

we set Pe = 103, this condition being characteristic of an advec-
tive dominated transport. Results are displayed along the longitu-
dinal (Fig. 1a) and transverse (Fig. 1b) directions. The results of X;;
are compared with those obtained from the literature for Gaussian
[50] and non-Gaussian [45] random flow fields under purely ad-
vective conditions, i.e., Pe — oco. As shown in Fig. 1, our results are
in good agreement with those previously reported [45,50]. A simi-
lar comparison is performed in Fig. 2 for the two-particle trajectory
covariance function.

Fig. 1 a shows that the longitudinal solute spreading decreases
as the Y-field departs from a Gaussian behavior. This feature is
linked to the spatial structure of the GSG fields of Y. We start by
noticing that all of the results embedded in Fig. 1 are related to
ensembles of Y-fields characterized by the same variance and in-
tegral scale. However, due to the shape of Gy, the correlation of
Y(x) at small lags (local correlation) decreases with o (whereas
the opposite occurs at large lags). Therefore, following the dis-
placement of a particle along the mean flow direction, at a given
time, the solute particle will have experienced (within each real-
ization of the ensemble) a larger variability of Y-values at a low
value of « (i.e., as the Y-field deviates from the Gaussian one) as
compared to the heterogeneity experienced by a particle at larger
o values (approaching the Gaussian case). As such, and recalling
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Fig. 3. Mean of C versus dimensionless longitudinal mean displacement (x,/Iy = 0),
for selected values of Pe and «. Results are depicted for (a) early time tV;/ly =5
and (b) late time tV; /Iy = 20.

that o‘? is constant within each ensemble, the variability of the
longitudinal displacement across the ensemble decreases as o de-
creases, as quantified by Fig. 1a. Otherwise, the transverse solute
spreading decreases with « only for small travel distances, oth-
erwise the situation is reversed (see Fig. 1b). Again, this feature
is due to the structure of the GSG fields. For small values of c,
in each realization of the ensemble, particles deviate more from
the mean flow direction with respect to what observed for large
o values (which are characterized by a larger level of local corre-
lation, i.e., they are locally more homogeneous), resulting in larger
X5, in the former than in the latter case. This result is consistent
with the findings of Riva and Willmann [55] who analyzed the im-
pact of the variogram structure (using exponential, spherical and
Gaussian spatial correlation models) on the moments of transport
observables in Gaussian Y fields under mean uniform and radial
flow conditions by means of numerical Monte Carlo simulations.
These authors show (see Fig. 7a in Riva and Willmann [55]) that
the Gaussian variogram model displays the largest values of X5,
at very small distances from the release point. Otherwise, the use
of the exponential variogram (which is associated with the Y-field
characterized by the smallest local correlation among those ana-
lyzed) results in the largest values of X5,. The results depicted in
Fig. 2 for the two-particle trajectory covariance function are consis-
tent with such findings. When « — 2, the computed values of Z;
match those obtained by Fiori and Dagan [7] for a multi-Gaussian
Y field. We highlight that non-locality (in the transport behavior)
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Fig. 4. Standard deviation of C versus dimensionless longitudinal mean displace-
ment (x,/ly = 0), for selected values of Pe and «. Results are depicted for (a) early
time tV; /Iy = 5 and (b) late time tV; /Iy = 20.

is reflected in the temporal dynamics of the one- and two-particle
trajectory covariances as depicted in Figs. 1 and 2, where one can
appreciate the impact of deviation from a Gaussian behavior of the
underlying random conductivity field.

Next, we compute the spatial distribution of the mean, (c(x, t)),
and standard deviation, o¢(x,t), of c(x,t) at two dimensionless
times, i.e., tVi/ly = 5 and 20, and for three values of o (Figs. 3
and 4). Results are reported for Pe = 102 and 103. These Pe num-
bers represent typical values observed in real aquifers. For exam-
ple, a value of Pe = 380 has been inferred from concentration data
monitored at the Cape Cod (Massachusetts, USA) experimental site
[51,56]. We observe that the highest peak values for (c(x,t)) are
related to the lowest values of « (Fig. 3a). This result is a reflection
of the reduced spreading observed when the Y-field departs from
the Gaussian behavior. Concentration uncertainty, as quantifies by
its standard deviation (see Fig. 4), is also higher for small « val-
ues, as compared to the results for the Gaussian field (i.e. @ — 2).
As the log-conductivity field departs from Gaussianity (maintain-
ing a constant variance and integral scale), each realization of the
ensemble appears to be formed by larger zones displaying similar
conductivity values and hot-spots of low/high conductivity values.
This characteristic enhances the ensemble variability (i.e., large val-
ues of o¢) and leads to a decreased solute spreading. As expected,
the difference between statistics of c(x, t) obtained with diverse o
values decreases as the travel time increases and as Pe decreases
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Fig. 5. Coefficient of variation of C versus dimensionless longitudinal mean dis-
placement (x, /Iy = 0), for selected values of Pe and «.

(see also Fig. 3b). We point out that the effect of « on the con-
centration breakthrough curve (BTC) in a single realization of the
permeability field has been investigated in the past [46,57]. In gen-
eral, the authors observed that decreasing the value of « yields (i)
a delayed first time of arrival of the solute and (ii) an increasing
degree of asymmetry (and heavier tails) of the BTC.

The spatial distribution of the coefficient of variation of c(x, t),
defined as CV; = o./(c), is depicted in Fig. 5. Results are shown for
different Pe and two dimensionless times and « values. In accor-
dance to the results shown in Figs. 3 and 4, CV. decreases as « in-
creases and as Pe decreases. The minimum value of CV, is observed
at the average plume displacement, i.e. at x;/(tV;) = 1.

Concentration CDFs, P-(c*;X,t), are illustrated for the follow-
ing cases: (i) position X/Iy = (1,0)T and dimensionless time 1 and
(i) x/Iy = (10,0)7 and dimensionless time 10 for Pe = 103 (Fig. Ga)
and Pe = 10% (Fig. 6b). Both cases corresponds to x;/(tV;) =1, i.e.
P is evaluated along the average plume displacement. Close in-
spection of Fig. 6 reveals that the impact of @ on P- decreases
as the travel distance increases. On the other hand, we observe
marked differences at the low-concentration tail of the CDFs (as
shown in the insets of Fig. 6) for all values of Pe and travel times
explored. In particular, for low c*, P- increases with o« for short
travel distances from the source (a result which is in agreement
with the numerical simulations of Libera et al. [46]), this behav-
ior being otherwise reversed (compare values of P- for different o
at dimensionless times 1 and 10). This aspect is of particular rele-
vance within a probabilistic risk (health or environmental) assess-
ment framework, where c* coincides with a maximum contami-
nant level for human or environmental health. To further eluci-
date this element, Fig. 7 depicts the probability of concentration
exceeding the normalized threshold c¢* = 103, i.e., 1-P-(c*), versus
o evaluated along the average plume displacement at various (di-
mensionless) times for the two values of Pe considered. At early
times, the probability of exceeding the target threshold increases
as the Y-field deviates from the Gaussian behavior. The opposite
is seen to occur at late times. Fig. 8 provides a three-dimensional
view of the dependence of exceedance probability on dimension-
less time and « for the two distinct Péclet numbers analyzed.
These results evidence that representing log-conductivity through
a GSG model can have a marked influence on the assessment of
the probability that concentration levels exceed a given threshold
at locations downstream of a source of contamination. This ele-
ment has also implications to the assessment of risk under un-
certainty, as considering a Gaussian model for the log-conductivity
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Fig. 6. Concentration CDF at the average plume displacement for two dimension-
less times and selected values of Pe and «.

field clearly underestimates risk for distances close to the solute
source zone (see Fig. 7). Our results show that the sensitivity to
o of the probability of exceedance is strongest at early times and
short distances from the source.

Finally, we compare the results for the concentration CDF ob-
tained from Eq. (21) with the beta distribution. Several works have
shown that such a distribution can be effectively employed as a
proxy to estimate uncertainty associated with solute resident con-
centration in Gaussian random fields [13-15,22,53,58]. These au-
thors appraise the accuracy of the beta distribution model by test-
ing it against numerical simulations, analytical solutions and field
data. Here, we analyze the ability of the beta distribution to ap-
proximate the uncertainty of the concentration in a non-Gaussian
random field characterized through the GSG model. The beta CDF
is given by:

P(c) = %/{:w"”(l — w)®dw, 22)
where I'[z] is the Gamma function:

_ [T 1
Plel = [~ ¢ leeaz, (23)
and

(c) 1-{o) ol

=iz = B = . 24

"= P ga— i -o 24
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at the solute plume centroid position as a function of dimensionless time and c.
Results are shown for Pe = (a) 102 and (b) 103.

Fig. 9 depicts the concentration CDFs along the average plume
displacement at two observation times for Pe = 102 and o = 1.2
and o — 2.0. The results suggest that there is an overall good
agreement between the CDF values obtained by Eq. (21) and the
beta distribution (22) (as parametrized by the mean and variance
of ¢, see Egs. (11) and (12)). Consistent with the results reported
in de Barros and Fiori [22], a mismatch between the beta distribu-
tion and Eq. (21) is documented at early times and at the lower
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probability tails of the CDFs, where the beta distribution under-
estimates the probability that the concentration is lower than a
given value. By way of example, when considering the concentra-
tion CDF at tV;/ly = 1 and x/Iy = (1,0)T for o = 1.2 (see Fig. 9a),
one can note that the probability that the normalized concentra-
tion is lower than 0.01 is approximately equal to 0.27 for the beta
CDF whereas the CDF given by Eq. (21) provides an approximate
value of 0.4. On these bases, in the context of risk analysis one
can view relying on the beta distribution as a worst case scenario,
as compared to estimates provided by Eq. (21). For completeness,
a comparison between the beta distribution and Eq. (21) are also
illustrated for a Gaussian random log-conductivity field (Fig. 9b).

5. Conclusions

In this work we investigate the effects of non-Gaussianity in a
random log-conductivity field, Y, on the statistics of the resident
concentration ¢ associated with a solute evolving in a randomly
heterogeneous porous system. Through the use of a stochastic La-
grangian framework, we computed the mean, standard deviation
and cumulative probabilistic distribution, CDF, of ¢ at a given point
in space and time for a 2D spatially heterogeneous (non-Gaussian)
log-conductivity field. The Lagrangian framework utilized in our
work has been successfully tested against field data and numer-
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ical solutions (see [13,51,53]). Furthermore, we showed that the
framework is capable of recovering previously published results for
Gaussian Y fields. The effects of non-Gaussianity are incorporated
in our study upon resting on the Generalized Sub-Gaussian model
introduced by Riva et al. [41]. Our work leads to the following ma-
jor conclusions:

1. The peak of the spatial distribution of the mean concentration
increases as Y departs from Gaussianity. A similar behavior has
been observed for the maximum value of the variance and for
the minimum value of the coefficient of variation of c.

2. Differences between the statistics of ¢ obtained within Gaussian
and Generalized Sub-Gaussian Y fields decrease as travel time
increases and as the Péclet number decreases.

3. Non-Gaussian effects are mainly manifested at the lower tail of
the CDF of c at early times. We remark that these effects are
relevant in probabilistic risk analysis, where exceedance of low
concentration thresholds can be critical.

4. The beta distribution model can serve as a viable approxima-
tion for the concentration distribution in a non-Gaussian Y-
field, its ability to capture the low probability tail of the CDF
being otherwise limited. In addition, the beta distribution is
fully characterized by the mean and standard deviation values.
This implies that one can efficiently compute uncertainty esti-
mates for the concentration at a given point in space and time.
While the success of the beta distribution to represent uncer-
tainty associated with ¢ has been shown for Gaussian Y fields
(e.g., see [15,22]), to the best of our knowledge, it is illustrated
here for the first time for a non-Gaussian Y field.

The framework employed in this work can be viewed as an al-
ternative to the numerical Monte Carlo method commonly used to
estimate the uncertainty of a solute concentration. The approach
here reported can also be used as a benchmark tool in compu-
tational stochastic mass transport problems in porous media. We
remark that the results presented in this work are confined to
small solute bodies (relative to the correlation length of the log-
conductivity random field), Y fields displaying low-to-mild hetero-
geneity, and 2D settings. A comparison between the system behav-
ior in 2D and 3D settings for Gaussian flow fields is provided by de
Barros and Fiori [22]. These authors show that solute concentra-
tion statistics are affected by flow dimensionality. Expanding the
current framework to 3D settings is a topic of future work. Addi-
tional future research works will focus on the characterization of
the effects of enhanced Y heterogeneity on the uncertainty of so-
lute concentrations.
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Appendix A. Particle trajectory covariances

Semi-analytical expressions for the one- and two-particle tra-
jectory covariances are here included under the assumptions
adopted within this work (see Section 3). The complete set of de-
tails regarding the derivations of the particle trajectory functions
are given, e.g., in Rubin [3], Fiori and Dagan [7], de Barros et al.
[59].

The one particle trajectory covariance is given by

t t
Xij(t) = % /0 /O /k 3 (K)cos[ky Vi (¢ — £7)]eFPI ' de’de " dk.

(A1)

which can be further simplified with the aid of the Cauchy algo-
rithm, ie. fy fo h(|T — T/])dtdt’ = 2 [5(t — T)h(t)dT with h repre-
senting a generic function. Therefore, Eq. (A.1) can be reduced to

4 t [} R
Xij(t) = ;/ / 7;j (k) cos[k; Vi T ]ed’PTd T dk. (A2)
o Jo
The two-particle trajectory covariance Z;; is given by
] t t N ! 1" / 1"
Zij(tla—b) = — D)y (¢, t”, kla — b)dkdt'dt
21 Jo Jo Jx
(A.3)

with
w(t/’ t”, kla _ b) — exk-(a—b)e—lk-V(t’—t”)e—kzD(t’-H”) (A4)

For a small injection zone, i.e. ¢; < Iy (withi=1,2)
lim w(tC t”, k|a _ b) — e—1k1V1 (t,_f/’)e—k2D(t’+t”). (AS)
a—b

Substituting Eq. (A.5) into (A.3), yields the following integral ex-
pression for a 2D uniform-in-the-mean flow

t pt
Z,-j(t|a—b) = %‘/(; A /kfj,](k) COS[kl‘/] (t/ —t”)]

e KD+ dRdt' dt” . (A.6)
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