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Abstract
We examine the temporal evolution of the maximum concentration of a dissolved inert 
solute in spatially heterogeneous subsurface flows. The maximum concentration of a given 
substance is at the basis of most of environmental regulatory practices where maximum 
tolerable levels of concentration are typically prescribed for a variety of known contami-
nants. Through the use of the Lagrangian framework, we elaborate over a physically based, 
semi-analytical model for the maximum concentration. Specifically, we address how the 
maximum concentration is affected by key geostatistical parameters (i.e., logconductivity 
variance), local-scale dispersion processes and engineering design variables such as the 
dimensions of the solute injection zone. The model will help in identifying the major com-
ponents that determine the maximum concentration, which is important in order to better 
allocate resources toward site characterization and reduce uncertainty in predictions. The 
ultimate scope is to provide a theoretical framework that is application-oriented to estimate 
the maximum concentration in natural aquifers and provide some guidance in applications. 
It also provides an useful tool for preliminary, screening analysis and testing scenarios. We 
test the performance of the model against the MADE transport experiment, with reason-
ably good agreement.

Keywords  Maximum concentration · Groundwater contamination · Solute dispersion · 
Risk analysis · Stochastic hydrogeology · Uncertainty analysis

1  Introduction

The presence of pollutants in groundwater and their impact in human health and ecosys-
tem’s services have led to efforts in developing physics-driven models that aim to simulate 
the dynamics of dissolved substances. Aquifers are complex systems to model given that 
hydraulic properties are spatially heterogeneous over a multitude of scales Rubin (2003); 
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Sahimi (2011). The spatial fluctuations of these properties impact the overall spreading and 
mixing behavior of a solute body Berkowitz et al. (2002); Dentz et al. (2011) and there-
fore, environmental performance metrics such as solute arrival times and peak concentra-
tions which are critical for probabilistic risk analysis Andričević and Cvetković (1996); 
Maxwell et al. (2008); de Barros et al. (2012); Henri et al. (2016); Moslehi and de Barros 
(2017). Furthermore, due to multiple factors such as sparse site characterization measure-
ments, our incapacity to resolve hydrogeological properties’ variability at all scales and 
model uncertainties, groundwater contaminant predictions are subject to uncertainty Car-
rera (1993); Rubin (2003). To tackle these uncertainties, groundwater hydrologists have 
resorted to the use of probabilistic tools. These stochastic methods have been receiving 
increasing attention in both the scientific community and environmental regulatory bodies 
Kelly and Campbell (2000); USEPA (2001); Verdonck et al. (2005).

The stochastic characterization of solute transport in heterogeneous porous media 
flows has been considered in several theoretical studies Matheron and De Marsily (1980); 
Dagan et al. (1992); Fiori et al. (2002); Morales-Casique et al. (2006); Andricevic (2008). 
Through the use of analytical methods, many works related the spatial moments of a dis-
solved constituent with the geostatistical structure of the hydraulic conductivity field 
Kitanidis (1988); Dagan (1991); Fiori (1998); Attinger et al. (2004); Dentz and de Barros 
(2015). The mean and variance of the solute resident concentration were also investigated 
for stratified media Fiori and Dagan (2002); Fernàndez-Garcia et al. (2008) and multivari-
ate Gaussian logconductivity fields Rubin et al. (1994); Kapoor and Kitanidis (1998); Fiori 
and Dagan (2000); Tonina and Bellin (2008); de Barros et al. (2011). Methods aimed at 
computing the full probabilistic description of the concentration at a given point in space 
and time are also reported in the literature Shvidler and Karasaki (2003); Dentz and Tar-
takovsky (2010); de Barros and Fiori (2014); Boso and Tartakovsky (2016). Other works 
examined the uncertainty in the solute mass discharge at a control plane, i.e., the Break-
through Curve (BTC) Cvetković et al. (1992); Fiori et al. (2002); de Barros (2018, Fiori 
2001) and arrival times Cvetkovic and Shapiro (1990); Rubin and Dagan (1992); Sanchez-
Vila and Guadagnini (2005), as well as the longitudinal mass distribution at a given time 
Harvey and Gorelick (2000); Berkowitz et al. (2006); Fiori et al. (2013).

An important measure of contamination lies in the maximum point concentration in 
groundwater at a given time. The maximum concentration of a given substance is at the 
basis of most of environmental regulatory practices, e.g., US-EPA’s maximum contaminant 
level (MCL), where maximum tolerable levels of concentration are typically prescribed 
for a variety of known contaminants. Hence, the evaluation of the maximum concentration 
of contaminants in groundwater is of crucial importance in risk assessment, for a vari-
ety of flow configurations, as e.g., recently shown by Okkonen and Neupauer Okkonen 
and Neupauer (2016) for the capture zone delineation. The assessment of the maximum 
local concentration is a challenging task when dealing with heterogeneous porous media, 
given that this environmental performance metric is more prone to uncertainty that other 
aggregated and more “robust” transport metrics, like, e.g., the BTC or the longitudinal 
mass distribution (e.g., Jankovic et al. (2017)). Full-blown numerical Monte Carlo simula-
tions were performed to evaluate the uncertainty of the maximum concentration at a con-
trol plane in permeability fields displaying long-range correlations, see e.g., Moslehi and 
de Barros (2017). Similar maximum concentration uncertainty quantification analysis by 
means of numerical Monte Carlo simulations is also reported in the literature Siirila and 
Maxwell (2012); Libera et al. (2019). The uncertainty of the maximum concentration was 
also used within the context of well vulnerability criteria Enzenhoefer et al. (2012); Lib-
era et al. (2017). The temporal behavior of the maximum concentration of a contaminant 
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in groundwater depends on several factors that include the complex interplay between the 
large-scale advection, that is determined by the spatial distribution of the aquifer’s hydrau-
lic properties, and local-scale dispersion. Other key elements consist of the size of the sol-
ute plume after its initial release in the subsurface and the mean aquifer velocity, amongst 
many other factors.

The disentanglement of the several factors ruling the maximum concentration is 
a formidable task, and unfortunately numerical models are of limited help as they typi-
cally struggle in representing both large- and local-scale features of transport in complex 
groundwater systems and the resulting local concentration field Boso et al. (2013). In turn, 
physically based “bottom-up” Hrachowitz et al. (2017) analytical models, characterized by 
lesser complexity and simpler parametrization, may considerably help in elucidating the 
significant components of transport and their impact on the maximum concentrations. This 
is in line with the several and different past approaches based on simple analytical formula-
tions that helped in the last five decades to significantly advance the field of groundwater 
hydrology, i.e., see Bear Bear (1988, 2007).

The key contribution of this paper lies on the analytical investigation of the maximum 
concentration in spatially heterogeneous porous media under mean uniform flow. We shall 
make use of the stochastic Lagrangian concentration framework developed by Fiori (2001) 
that aims at predicting the spatiotemporal dynamics of a solute body. This same concept 
was employed to estimate the dilution index of a solute plume in a heterogeneous aquifer 
and was tested against the Cape Cod field data (de Barros et  al. 2015), the Borden site 
data (Soltanian et al. (2020)), and high-resolution SPH numerical simulations (Boso et al. 
(2013); de Barros et  al. (2015)). The framework adopted in our work will serve us as a 
platform to sort out the factors ruling the spatiotemporal behavior of the maximum con-
centration, identifying the principal components, together with a sensitivity analysis of the 
main parameters and their physical meaning. Hence, the model will help in identifying the 
major components that determine the maximum concentration, which is important in order 
to better allocate resources toward site characterization. The ultimate scope is to provide a 
theoretical framework that is application-oriented to estimate the maximum concentration 
in natural aquifers and provide some guidance in applications; it provides an useful tool 
for preliminary, screening analysis and testing scenarios. Key advantages of the proposed 
approach are that it relies solely on parameters that are physically based and can in prin-
ciple be inferred from site characterization and monitoring campaigns. We test the perfor-
mance of the method by application to the well-known MADE-1 experiment (Adams and 
Gelhar 1992); the test is particularly relevant and challenging as the MADE site is a highly 
heterogeneous aquifer, and to the best of our knowledge this is the first time that a theoreti-
cal model is applied specifically to the analysis of the maximum concentration at MADE.

2 � Problem Formulation

One of the key environmental performance metrics used for risk assessment and aquifer 
remediation is the maximum concentration observed or estimated at an environmentally 
sensitive target such as an observation well or a control plane. Let Cmax denote the maxi-
mum concentration within a flow domain D at a given time t. The Cartesian coordinate sys-
tem is represented by � = [x1, ...xd] where d is the space dimensionality of the flow domain. 
The maximum concentration can be defined as
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Here, c denotes the solute concentration field, defined at the Darcy scale (Dagan 1989). 
Given multiple sources of uncertainty and the high costs associated with site characteri-
zation, the concentration field c(�, t) is conveniently modeled as a random function (and 
therefore Cmax).

The goal of this paper is to estimate the maximum concentration by means of an ana-
lytical framework. In order to achieve this goal, we consider a three-dimensional ( d = 3 ) 
steady-state flow through a porous medium characterized by a locally isotropic spatially 
heterogeneous hydraulic conductivity K field under natural gradient in the absence of 
sinks, sources and boundary effects. Under these conditions, flow is uniform-in-the-mean 
along the x1 direction, which is a rather common condition encountered in most parts of the 
aquifers. The mean velocity vector is ⟨�⟩ = (U, 0, 0) where the angled brackets correspond 
to ensemble average operator. The governing equation for the flow field is

where h is the hydraulic head. The velocity field � is obtained via Darcy’s law (Bear 1988):

where � denotes the formation’s porosity, here assumed to be constant.
The logconductivity, i.e., Y = lnK , is modeled as a random space function based on 

two-point geostatistics. The spatial covariance model for Y adopted in this work is a statis-
tically anisotropic exponential model (Rubin 2003)

with �2

Y
 denoting the logconductivity variance, � = (r1, r2, r3) is the lag-distance, IY is the 

integral scale along the x1 and x2 directions and IY ,v is the integral scale along the vertical x3 
direction. Here, we can define the statistical anisotropic ratio f ≡ IY ,v∕IY.

An inert solute is instantaneously injected over a source zone of volume Vo = 
�1 × �2 × �3 . The inlet concentration is denoted by Co and assumed to be constant. In 
our work, we will assume a point-like injection of cubic dimensions, i.e., � ≡ �j (for 
j = 1, 2, 3 ), where �∕IY ≲ 1 . The concentration field of the injected solute is provided by 
the advection-dispersion equation (Bear 1988, 2007)

where Dd represents the local-scale dispersion coefficient and assumed to be constant.

3 � Methodology

The methodology adopted in the present work is based on the well-established Lagrangian 
framework (Dagan 1984; Fiori and Dagan 2000; Rubin 2003). To obtain a solution for 
the concentration field, we consider a collection of solute parcels that are initially located 
within the injection zone volume Vo . A solute parcel that originates from a location � ∈ Vo 

(1)Cmax(t) = max
�∈D

c(�, t).

(2)∇ ⋅ [K(�)∇h(�)] = 0,

(3)�(�) = −
K(�)

�
∇h(�)

(4)
CY (r1, r2, r3) = �2
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2c(�, t),
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will have a random total trajectory �T . Therefore, following Fiori and Dagan (2000), the 
solute concentration can be expressed as

where � represents Dirac’s delta function. Note that the total solute parcel trajectory can 
be decomposed into an advective component � and a displacement associated with local-
scale dispersive mechanisms �d , i.e., �T = � + �d . Given the random spatial variability 
of the K field, the advective component can be rewritten as � = � + �t + �

� where �′ cor-
responds to the random fluctuation of the trajectory to the randomness of the flow field. 
As mentioned in Sect. 2, we consider a small injection zone �∕IY ≲ 1 . With the goal of 
achieving an analytical solution for the concentration field, we will further assume that the 
heterogeneity of the porous medium is low to mild, i.e., 𝜎2

Y
≲ 1 , in order to use Dagan’s 

first-order approximation in �2

Y
 (Dagan 1984).

Our next step consists in considering the trajectory of the solute plume’s center of mass. 
Following the work of Fiori (2001), we rewrite Equation (6) into a mobile coordinate sys-
tem � = � − �(t;�̄o) centered along the trajectory � of the centroid of a solute macro-parcel 
that originated from the source zone at coordinate �̄o ∈ Vo . Thus, the solute concentration 
can be rewritten as

The integration is executed to account for all possible initial solute parcel locations � ∈ Vo . 
In agreement with this mobile coordinate system, we can define the relative trajectory par-
ticle �(t;�, �̄o) = �T (t;�) − �(t;�̄o) . The relative trajectory � filters out the uncertainty 
associated with the meandering of the centroid trajectory � . The first-order approximation 
in the logconductivity variance is employed to derive expressions for the first two moments 
of � for a point-like source

where Xii and Zii corresponds to the one- and two-particles trajectory covariances which 
can be computed as follows (Fiori and Dagan 2000):

Here, ûii(�) corresponds to the Eulerian velocity covariance in Fourier space and � is the 
wave number vector. Note that the limit |� − �̄o| ≈ 0 present in both Eqs. (8) and (9) is 

(6)c(�, t) = Co ∫
Vo

�[� − �T (t;�)]d�,

(7)c(�, t) = Co ∫
Vo

𝛿[� − (�T (t;�) − �(t;�̄o))]d�.

(8)⟨�(t;�, �̄o)⟩ = � − �̄o ≈ 0

(9)Wii(t;�, �̄o) =Xii(t) + 2Ddt − Zii(t;|� − �̄o| ≈ 0),

(10)
Xii(t) =

1

(2𝜋)3∕2 ∫
t

0
∫

t

0
∫

−∞

+∞

e−𝚤�⟨�⟩(t
�−t��)

e−kpkrDd�t�+t���ûii(�)d�dt
�dt��;

(11)
Zii(t;�� − �̄o� ≈ 0) =

1

(2𝜋)3∕2 ∫
t
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∫

t
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∫
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e−𝚤�⟨�⟩(t
�−t��)

e−kpkrDd(t
�+t��)ûii(�)d�dt

�dt��.
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consistent with the small source approximation previously adopted (i.e., �∕IY ≲ 1 ). The 
expression for ûii(�) is given by Dagan (1989).

with k2 =
∑

i k
2

i
 for i = 1, 2 and 3 and the logconductivity covariance function in Fourier 

space is as follows (Rubin 2003):

The following step consists of computing the statistical moments of the concentration field 
in this mobile coordinate system. We start by evaluating the expected value over all pos-
sible relative trajectories � captured by its probability density function (PDF) fw . The first 
moment is given by

and the variance can be computed by

where fww is the joint PDF of the relative displacement of two solute parcels initially 
released at locations � ∈ Vo and �� ∈ Vo . Under the first-order approximation in the logcon-
ductivity variance, the relative displacement PDF is multivariate Gaussian. Furthermore, it 
is easy to show that �2

c
 , Eq. (15), tends to zero for finite Péclet conditions and a point-like 

injection (see Fiori 2001 for details). The key point of this result is that the concentration 
can be predicted in a moving coordinate system in the absence of uncertainty. It is impor-
tant to note that this uncertainty is not eliminated but transferred to the location of the sol-
ute parcel’s center of mass. This implies that for a finite Péclet and point-like injection, the 
value of the concentration (in the mobile coordinate system) is not subject to uncertainty 
however the location where that event occurs is. Therefore, Eq. (14) can be used to predict 
the concentration, i.e., ⟨c(�, t)⟩ ≡ c(�, t) . Carrying out the integration over the particle tra-
jectory PDF fw , we obtain the following expression for Eq. (14):

We emphasize that for plume sizes that are not point-like, the concentration (in the mobile 
coordinate system) is a random variable subject to uncertainty, quantified by its variance 
�2
c
(�, t) , the computation of which being rather involved. Nevertheless, as discussed above, 

such uncertainty is much lower than the one pertaining to the standard Eulerian approach, 
see (Fiori and Dagan 2000), as most of the variability is filtered out by the Lagrangian 
formulation adopted here, that leads to the definition (7). In the following, we neglect such 
uncertainty for small to intermediate plume sizes and adopt a simple and straightforward 
description of local concentration by its expected value provided in Eq. (16).

(12)ûii(�) = U2

(
𝛿1i −

k1ki

k2

)(
𝛿1i −

k1kj

k2

)
ĈY (�),

(13)ĈY (�) =

√
8
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The expected maximum concentration Cmax is calculated from (16) by setting �i = 0 
( ∀i = 1, 2 and 3), i.e., evaluated at the (random) centroid of the plume where the peak of 
local concentration is expected in average terms. This leads to the final, simple expression 
for the maximum concentration

The above provides the maximum contaminant concentration in a spatially heterogeneous 
porous medium as function of time; the factors appearing in (17) rule the temporal behav-
ior of Cmax , and in particular the plume size �i and the parameters appearing in Wii , i.e., 
the mean velocity U, the logconductivity variance �2

Y
 , that expresses the degree of aquifer 

heterogeneity, the directional correlation lengths of hydraulic conductivity IY , IY ,v , and the 
Péclet number, defined as Pe ≡ UIY∕Dd . According to the modeling framework adopted 
here, those are the fundamental quantities that determine the temporal evolution of Cmax 
and their impact on the solution is further explored and discussed in the sequel.

We remark that the present formulation allows estimating the maximum concentration 
of a given contaminant regardless of the particular location where it occurs; such location 
is not explicitly modeled here and it is typically subject to significant uncertainty.

4 � Results and Discussion

We discuss here a few features of the maximum concentration and the principal factors 
and parameters influencing it. The maximum concentration is calculated by expression 
(17), with moments Wii given by Eq. (9). In the following, all computational results are 
reported in dimensionless form. The maximum concentration, Cmax is normalized by the 
inlet concentration in the source zone Co , and time is normalized by the advective time 
scale �adv = IY∕U . The Péclet number is defined as Pe ≡ UIY∕Dd . Unless specified, the 
source zone is characterized by cube of dimensions � = 0.1IY.

Figure 1 depicts the temporal evolution of the maximum concentration for different val-
ues of Pe and statistical anisotropy ratio f ≡ IY ,v∕IY ; values f < 1 indicate the presence of 
some preferential layering of the hydraulic conductivity in the horizontal plane. The effects 
of f on the maximum concentration are more significant for higher Pe (see Fig. 1, continu-
ous vs dashed lines). For anisotropic geological formations, i.e., f = 0.1 , the heterogeneous 
structure of the porous formation becomes more effective in enhancing the dilution of the 
plume for Pe = 103 . Similar results are reported in the literature in the context of concen-
tration uncertainty analysis (see details in de Barros and Fiori 2014). The reason for such 
behavior is that local dilution and transfer of solutes from neighbor layers is facilitated by 
decreasing values of IY ,v , particularly when local diffusion becomes a limiting factor, i.e., 
for relatively high values of Péclet. This is well represented in Fig. 1. As expected, lower 
values of concentration are observed for Pe = 102 , i.e., for increasing values of the local 
dispersion coefficient Dd . Under this condition (low Pe ), the solute plume dilutes quicker 
and the effects of f become negligible, as described above. It is seen that the reduction of 
the maximum concentration with decreasing Péclet is quite significant, in terms of orders 
of magnitude, confirming the fundamental role played by the interplay between local-scale 
dispersion/diffusion and large-scale advection in ruling the temporal behavior of Cmax.

(17)Cmax(t) = Co

3�

i=1

erf

�
�i∕2√
2Wii(t)

�
.
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The degree of aquifer heterogeneity is also an important factor as it rules large-scale 
advection and the related dispersion (generally denoted as macrodispersion), and its 
combination with Péclet is indeed among the major mechanisms for dilution and the 
decrease of concentration with time. We evaluate the temporal evolution of the maxi-
mum concentration for three distinct degrees of heterogeneity, epitomized by �2

Y
 . The 

anisotropy is set as f = 1 , i.e., we consider a statistically isotropic aquifer, as its role 
was previously discussed. Results are depicted for �2

Y
 = [0.25, 0.5, 1] and for Pe = 102 

(Fig.  2a) and Pe = 103 (Fig.  2b). Figure  2 shows that the maximum concentration is 
sensitive to the level of heterogeneity in the hydraulic conductivity field. Larger val-
ues of logconductivity variance lead to a reduction in the maximum concentration since 
dilution is enhanced for higher levels of heterogeneity, see e.g., (Le Borgne et al. 2013; 
de Barros et  al. 2015; Valocchi et  al. 2019). In fact, a higher level of heterogeneity 
increases large-scale advection, which in turn increases the interfacial area between the 
solute plume and the surrounding fluid thus facilitating local dilution and the decrease 
of concentration.

To better assess the impact of heterogeneity, we compute the maximum concentra-
tion as a function of �2

Y
 for three dimensionless times, namely � = 2.5, 10 and 50 where 

� = t∕�adv . The values of � were selected to represent cases for early, intermediate and 
late times. Bellin et  al. (1992) showed that the first-order theory holds up to value of 
𝜎2

Y
≲ 1.6 for what concerns spreading and for such reasons Fig. 3 reports the maximum 

concentration for values of �2

Y
 ranging from 0.05 to 1.4. Both Fig.  3a, b illustrate the 

results for both Pe = 102 and 103 , respectively, for f = 1 . Figure  3a, b display similar 
decay behavior where the magnitude of the maximum concentration is the only notable 
difference. Figure  3 confirms the important role played by �2

Y
 , i.e., heterogeneity, for 

enhancing the decrease of Cmax with time. It is seen that heterogeneity is more effective 
in the Cmax reduction for increasing times, which is expected as macrodispersion grows 
with time and hence the effectiveness of local dispersion in diluting the contaminant.

Figure  4 displays the relative difference between the maximum concentration 
obtained two levels of heterogeneity, i.e. �2

Y
= 0.25 and 1, and for Pe = 102 and 103 . The 

relative difference is computed according to:

Fig. 1   Temporal evolution of 
the maximum concentration for 
�2

Y
= 1 and � = 0.1IY . Results 

reported for different values of 
Pe and f where Pe ≡ UIY∕Dd and 
f ≡ IY ,v∕IY
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 The results depicted in Fig. 4 illustrate the temporal evolution of � . Figure 4 reveals that 
� ranges approximately from 45% to 65%. In agreement with previous results (see Figs. 2 
and 3), Fig. 4 shows that the impact of heterogeneity on the peak concentration is more 
pronounced for Pe = 103 when compared to Pe = 102.

The solute source dimension is also an important component guiding the decay of Cmax , 
especially at the early stages of transport. In fact, large-scale advection and the related 
macrodispersion require some time to disperse the initial plume and catalyze the dilution 
processes that occurs at the smaller scales. We examine the role of the solute source dimen-
sion � for both Pe = 102 and 103 (see Fig. 5a, b). We only report results within the range 
0 < �∕IY ≲ 1. It is interesting to observe that the memory effects of the source zone on 
the maximum concentration are more persistent when transport is advective dominated 
(see Fig.  5). In any case, the presence of a larger initial plume determines a more per-
sistent maximum concentration closer to the initial one Co because of the aforementioned 

(18)�(t) = 100 ×
|||||

Cmax(t;�
2

Y
= 0.25) − Cmax(t;�

2

Y
= 1)

Cmax(t;�
2

Y
= 0.25)

|||||

Fig. 2   Time evolution of the 
maximum concentration for (a) 
Pe = 102 and (b) Pe = 103 for a 
few values of �2

Y
 . Computational 

results evaluated for � = 0.1IY 
and f = 1
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Fig. 3   Maximum concentration 
as a function of the logconduc-
tivity variance �2

Y
 for f = 1 and 

(a) Pe = 102 and (b) Pe = 103 . 
Results computed for early 
( � = 2.5 ), intermediate ( � = 10 ) 
and late ( � = 50 ) times where 
� = t∕�adv
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Fig. 4   Relative difference (see 
Eq. 18) between the maximum 
concentration computed for �2

Y
=

0.25 and 1. Results for Pe = 102 
(continuous red curve) and 
Pe = 103 (dashed blue curve)
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mechanism: it takes more time, as function of Péclet and �2

Y
 , to start diluting the center of 

the plume. Such feature is particularly evident in the early stages of transport and its effects 
tend to disappear with time, as observed in Fig. 5. Thus, the results depicted in Fig. 5 high-
light the relative importance of the source zone dimension on the maximum concentration.

The results in Fig.  5 can be recast within the context of engineering design and risk 
analysis (see Fig. 6). As opposed to accidental spills and other contamination events which 
cannot be controlled, there are cases where many features that characterize contamination 
sources are engineered, e.g., wastewater discharge into the ground, landfills and drainage 
ponds associated with mining activities. Figure 6 illustrates how the analytical framework 
is application-oriented and could be adopted to design a waste disposal facility based on a 
critical maximum concentration. Figure 6 shows that the dimensions of the source zone � 
can be estimated such that the maximum concentration of a plume is in compliance with a 
regulatory maximum allowed value at a given time.

5 � Application to the MADE‑1 experiment

The first experiment conducted at the Columbus Air Force Base (MADE-1) represents 
a benchmark for analyzing groundwater transport; it has motivated in the years a large 
body of research work. Contributions consist of the development of innovative measuring 

Fig. 5   Three-dimensional plots 
of the normalized maximum 
concentration as a function of 
dimensionless time ( t∕�adv ) 
and source size ( �∕IY ) for (a) 
Pe = 102 and (b) Pe = 103 . 
Results obtained for f = 1
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techniques to the development of novel theoretical frameworks. For such reasons, after 
more than 30 years, the MADE site is still providing insights and topics of discussion in 
the scientific community, as witnessed for instance by the 2015 AGU Chapman Conference 
held in Valencia (Spain) (Gómez-Hernández et al. 2017). The experiment took place in a 
highly heterogeneous sedimentary aquifer at Columbus, Ohio (USA). The site was geosta-
tistically characterized by the intense Direct Push campaign carried out by Bohling et al. 
(2016). The MADE-1 test consisted in the injection of a tracer in a relatively small area of 
the domain. The plume moved from its initial location along the natural hydraulic gradi-
ent and it was continuously monitored for a period approximately equal to two years by a 
dense network of multilevel samplers. Local concentration measured by the samplers were 
collected in eight snapshots at times t = 9, 49, 126, 202, 279, 370, 503 and 594 days since 
injection, e.g., (Adams and Gelhar 1992; Rehfeldt et al. 1992).

Adams and Gelhar (1992) reported the overall maximum concentrations measured by 
the multilevel samplers in the eight snapshots. The data indicate a decay of the maximum 
concentration from its initial value of 2500 mg/l (ppm) at t = 0 days down to Cmax = 99 
mg/l at t = 503 days (the maximum concentration at t = 594 days is not reliable because 
the analysis was incomplete for that snapshot, see details in Ref. Adams and Gelhar 1992). 
We emphasize that in strongly heterogeneous aquifers such as the MADE site (which has 
a logconductivity variance �2

Y
= 5.9 ), an accurate monitoring and representation of the 

concentration field are challenging tasks. Despite the high density of multilevel samplers 
employed at the MADE site, a detailed image of the solute plume is not available. In fact, 
the complex flow field, characterized by strong preferential flows and disconnected quasi-
stagnant zones, results in significant dispersion which leads to challenges in monitoring 
campaigns and therefore, uncertainty. The presence of uncertainty is also manifested by 
the incomplete mass recovery during the MADE-1 experiment (Adams and Gelhar 1992) 
(the matter is further discussed in depth in Fiori (2014)). Thus, for such reasons, we expect 
that the maximum concentrations measured during the MADE-1 experiment might be 
somewhat underestimated, although such underestimation may not be so severe standing 
the exceptionally high density of measurements that was employed during the test, much 
higher than what usually done in the standard hydrogeological practices.

Testing the performance of the model employed in this work, see Eq. (17), against the 
MADE-1 experiment is particularly challenging as our analytical formulation for Cmax 
is formally valid for small heterogeneity (i.e., 𝜎2

Y
≲ 1 ), while the MADE site is highly 

Fig. 6   Source zone dimension 
as a function of the maximum 
concentration at three different 
dimensionless times
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heterogeneous. Still, previous studies have shown that perturbation approaches may pro-
vide reasonable results in terms of overall dispersion for aquifers characterized by moder-
ate heterogeneity, see Bellin et al. (1994), as previously discussed in Sect. 4. Furthermore, 
recent work by Fiori et al. (2017) has shown that the first-order solution is a reasonably 
good predictor of the longitudinal mass distribution observed at the MADE-1 experiment. 
Therefore, the results reported in the literature (Bellin et al. 1992; Fiori et al. 2017) provide 
confidence in the application of first-order-based analytical solutions. Still, we point out 
that the mass distribution is an aggregated quantity and it is presumably more robust than 
the local concentration, which in turn heavily depends on the interplay between large- and 
local-scale features, see discussion in Sect. 4. Hence, the validity of first-order solutions for 
the point concentration needs to be further explored, and this is done in the following for 
the maximum concentration.

In order to apply our model to the MADE site, we shall make use of some specific data 
that was elaborated in the last years from the detailed characterization carried out at the 
site. A summary of the data needed for our model is provided in Table 1 of Fiori et  al. 
(2019); the principal quantities were taken from Boggs et al. (1992); Bohling et al. (2016). 
In particular, the quantities of interest for the model application are the estimated mean 
velocity U = 0.026 m/d, the logconductivity variance �2

Y
= 5.9 , the porosity � = 0.31 , the 

directional logconductivity integral scales IY = 9.1 m and IY ,v = 1.8 m (i.e., the anisot-
ropy ratio is f = 0.197 ). The local dispersivity Dd∕U is not known and a few assump-
tions should be made. First, the dominant component of local dispersion is the vertical 
one because it is more effective in enhancing dilution by transferring solute among lay-
ers in statistically anisotropic formations (Fiori and Dagan 2000). The vertical dispersivity 
can be assumed of similar order of magnitude of the same quantity inferred in other well 
monitored and characterized aquifers, like e.g., Borden and Cape Cod, for which a vertical 
dispersivity around 1 mm was estimated, while the transverse local dispersivity was ten 
times larger. Considering that the MADE site is much more heterogeneous than the afore-
mentioned sites, we can safely assume for local dispersivity a value the order of 10−2 m. 
Therefore, as an approximation, we used a Pe = 103 and f = 0.197 to generate the particle 
trajectory covariances Xii and Zii , see Eqs. (10) and (11).

The remaining parameters pertain to the initial plume size (i.e., the injection zone). 
The tracer (bromide, with an initial concentration of 2500 mg/l) was injected in five wells 
spaced 1 m apart in a linear array, each with a screen of dimensions 0.6 m. The solution, 
of volume Vo = 10.07 m 3 , was injected at a uniform rate over a period of 48.5 hours. Thus, 
the source zone dimensions, that are required by our model, depend on the water flow dur-
ing the injection and are subject to uncertainty. Uncertainty estimates for �j (with j = 1, 2 
and 3) are based on (i) the analysis of the plume development at the early stages, see e.g. 
(Boggs et al. 1992; Adams and Gelhar 1992), and (ii) the source injection data collected 
from multiple references (Julian et al. 2001; Dogan et al. 2014; Fiori et al. 2019). For the 
sake of illustration, we assume that both longitudinal and transverse dimensions �1 and �2 
are uniformly distributed. The uniform distribution assumption is justified by the fact that 
we were only able to identify lower and upper bounds in �j . In the present contribution, 
we assume that the longitudinal and transverse dimensions of the source zone follow a 
U[0.25, 0.75] and U[4, 14.5] , respectively (both �1 and �2 are in SI units, meter). To obtain 
an estimate for �3 , we make use of injected volume Vo and the random variables �1 and �2 , 
i.e., �3 = Vo∕(��1�2) . Based on the data provided in the literature (Dogan et al. 2014; Bar-
lebo et al. 2004), we only consider �3 values that are subject to the following constraint 0.6 
m ≤ �3 ≤ 8 m. We perform a Monte Carlo simulation by generating 500 realizations for �j 
in order to compute the statistics of Cmax , see Eq. (17).
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Figure  7 shows the comparison between the experimental maximum concentration 
measured in the MADE-1 experiment (red circles) and the same quantity predicted by 
the model discussed here, along the above described Monte Carlo procedure for the 
source dimensions (represented by the solid cyan lines). The results in Fig. 7 show that 
the theoretical model captures quite accurately the temporal dynamics of Cmax at MADE, 
all the uncertainties notwithstanding. The favorable behavior is particularly surprising 
mainly because of the complex nature of the MADE aquifer and the associated transport 
phenomena (which are still a matter of debate), and the limitations of the theoretical 
model, formally valid for weak to moderate heterogeneity. A similar positive behavior 
of the first-order-based models was found in Fiori et al. (2017) for the longitudinal mass 
distribution at MADE. In that particular case, the reason for the good performance of 
such models was attributed to the robustness of the quantity under examination, the lon-
gitudinal mass distribution, that is a spatially aggregated measure of contamination. In 
the present case, the reason for the good agreement displayed in Fig. 7 stands probably 
in the particular transformation operated by the Lagrangian concentration approach, as 
discussed in Sect.  3. Due to the change of the coordinate system, the method filters 
out the spatial variability of advective particles, i.e., of the trajectory � , thus focusing 
on the relative, local-scale dispersion around those particles. Since the main source of 
uncertainty is related to � (which is filtered out by the transformation of the coordi-
nate system), the approximations on the statistical distribution of the relative dispersion 
around � are probably less severe than those commonly adopted in methods that do not 
perform such filtering. For instance, the usual assumption of a Gaussian distribution 
for longitudinal trajectories X1 adopted in first-order theories does not hold valid for 
MADE, for which the observed distribution of the trajectory X1 (that corresponds by 
definition to the longitudinal mass distribution) was far from Gaussianity. A discussion 
on the distribution of longitudinal trajectories is found in Fiori et al. (2017). However, 
the model investigated here is not based on the total trajectory �T but on the relative 
displacement � = �T − � , for which the Gaussian assumption is likely less stringent.

Fig. 7   Comparison of the pro-
posed model (Eq. 17) with the 
maximum concentration data col-
lected at the MADE site reported 
in Adams and Gelhar (1992). 
The field data from Adams and 
Gelhar (1992) are represented 
by red circles. The cyan colored 
curves represent the model 
predictions with uncertain source 
zone dimensions
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6 � Summary

In this study, we have employed the Lagrangian concentration framework to investigate 
the behavior of the maximum concentration in natural aquifers. The maximum concen-
tration of a given substance is at the basis of most of environmental regulatory practices 
where maximum tolerable levels of concentration are typically prescribed for different 
contaminants. Through the use of the Lagrangian concentration framework originally 
developed by Fiori (2001), we obtained a semi-analytical expression for the maximum 
concentration. The solution is limited to uniform-in-the-mean flow conditions, small 
injection zones and low-to-moderate levels of heterogeneity. The main scope is to sort 
out the factors ruling the spatiotemporal behavior of the maximum concentration, iden-
tifying the principal components, together with a sensitivity analysis of the main param-
eters and their physical meaning. Hence, the model will help in identifying the major 
components that determine the temporal evolution of the maximum concentration, 
which is important in order to better allocate resources toward site characterization. As 
demonstrated in the literature (Oladyshkin et al. 2012; Fiori 2001), the analytical solu-
tions originating from the stochastic Lagrangian framework could be combined with 
existing global sensitivity analysis to systematically identify the relative role of each 
parameter on the maximum concentration.

We showed how key geostatistical parameters (i.e., the logconductivity variance), typi-
cally inferred from site characterization campaigns, and local-scale dispersion mechanisms 
control the decay rate of the maximum concentration of a solute body. In addition, we illus-
trate the impact of engineered variables, such as the source zone’s dimensions, affected the 
maximum concentration. Finally, we successfully test the performance of the semi-analyt-
ical model against the MADE site maximum concentration data reported in Adams and 
Gelhar (1992). Although our results are strictly valid for low-to-moderate levels of hetero-
geneity, the Lagrangian-based maximum concentration model performs well at MADE due 
to the filtering out of the spatial variability of advective particles.

Summarizing, in the present work, we have discussed a theoretical framework that is 
application-oriented and aimed at estimating the maximum concentration in natural aqui-
fers. The theoretical framework can provide guidance in applications; it also provides an 
useful tool for preliminary, screening analysis and testing the impact of different scenar-
ios in risk predictions (such as the occurrence of an undesired event, i.e., concentration 
exceeding a regulatory established value).
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