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ABSTRACT
Relativistic magnetic reconnection is a powerful agent through which magnetic energy can be tapped in astrophysics, energizing
particles that then produce observed radiation. In some systems, the highest energy photons come from particles Comptonizing
an ambient radiation bath supplied by an external source. If the emitting particle energies are high enough, this inverse Compton
(IC) scattering enters the Klein–Nishina regime, which differs from the low-energy Thomson IC limit in two significant ways.
First, radiative losses become inherently discrete, with particles delivering an order-unity fraction of their energies to single
photons. Secondly, Comptonized photons may pair produce with the ambient radiation, opening up another channel for radiative
feedback on magnetic reconnection. We analytically study externally illuminated highly magnetized reconnecting systems for
which both of these effects are important. We identify a universal (initial magnetization-independent) quasi-steady state in which
gamma-rays emitted from the reconnection layer are absorbed in the upstream region, and the resulting hot pairs dominate the
energy density of the inflow plasma. However, a true pair cascade is unlikely, and the number density of created pairs remains
subdominant to that of the original plasma for a wide parameter range. Future particle-in-cell simulation studies may test various
aspects. Pair-regulated Klein–Nishina reconnection may explain steep spectra (quiescent and flaring) from flat-spectrum radio
quasars and black hole accretion disc coronae.
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1 I N T RO D U C T I O N

Many accreting and jet-launching compact objects host tenuous,
highly magnetized plasmas that are prone to dissipation through
collisionless relativistic magnetic reconnection (Blackman & Field
1994; Lyutikov & Uzdensky 2003; Lyubarsky 2005). Reconnection
represents an important pathway that transfers free magnetic energy
to plasma internal and kinetic energy, two forms that may then be
channelled into observable radiation. In some circumstances, the
two steps in this energy conversion process – from the magnetic field
to plasma through reconnection, and from plasma to light through
radiative processes – can be imagined as happening separately. This
is true, for example, when the plasma radiative cooling time is longer
than the characteristic time-scale on which reconnection occurs.

If, however, the emitting particles cool on time-scales comparable
to – or even much shorter than – the reconnection dynamical time,
then radiative and reconnection physics are inseparable. The coupling
between them may, furthermore, be facilitated by much more than
just optically thin radiative cooling, where the emitting particles
suffer radiative drag but the produced photons passively escape the
system. In some situations, the optical depths to various processes,
including Thomson scattering and pair creation, may exceed unity,
affording the emitted photons further opportunity to impact the
ongoing reconnection process. Even when these optical depths are
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small – but especially when they are not – a self-consistent approach
that models radiation and reconnection simultaneously is required
to capture the modifications that the various radiative interactions
may make to the reconnection-powered photon spectrum. In this
paper, we term any regime of this kind, in which reconnection and
photon processes are inextricably coupled, as a ‘radiative’ regime of
magnetic reconnection (Uzdensky 2016).

Due to high magnetic and radiation energy densities, reconnection
in relativistic compact object environments is likely to be highly ra-
diative, and much recent work on radiative reconnection is related to
these systems, including studies of pulsar winds (Pétri 2012; Cerutti
& Philippov 2017; Cerutti, Philippov & Dubus 2020), pulsar wind
nebulae (Uzdensky, Cerutti & Begelman 2011; Cerutti, Uzdensky &
Begelman 2012a; Cerutti et al. 2013, 2014a, b; Yuan et al. 2016),
pulsar magnetospheres (Lyubarskii 1996; Uzdensky & Spitkovsky
2014; Philippov, Spitkovsky & Cerutti 2015; Cerutti, Philippov &
Spitkovsky 2016; Philippov & Spitkovsky 2018; Hakobyan, Philip-
pov & Spitkovsky 2019), magnetar magnetospheres (Schoeffler
et al. 2019), gamma-ray bursts (McKinney & Uzdensky 2012),
accreting black holes (Beloborodov 2017; Werner, Philippov &
Uzdensky 2019; Sironi & Beloborodov 2020), blazars (Nalewajko
et al. 2011, 2012; Nalewajko, Yuan & Chruślińska 2018; Mehlhaff
et al. 2020; Ortuño-Macı́as & Nalewajko 2020), and black hole
magnetospheres (Parfrey, Philippov & Cerutti 2019; Crinquand et al.
2021). Some studies have not focused on a single object class,
but have still been motivated by some combination of the above
(e.g. Jaroschek & Hoshino 2009; Uzdensky 2011, 2016; Uzdensky
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Figure 1. Schematic of Klein–Nishina radiative magnetic reconnection when
the system is optically thick τγ γ � 1 to pair production. In this regime,
the mean free path λmfp of a high-energy photon is less than the system
size L: λmfp = L/τγ γ � L. Thus, every high-energy photon (red wiggled
arrows) annihilates against an ambient seed photon (cyan wiggled arrows)
before escaping the system. Newborn pairs are denoted by black arrows and
magnetic field lines by blue arrows. The reconnection layer is opaque pink;
the region penetrated by high-energy photons (one mean free path away from
the layer) is transparent pink. See the text for a description of stages 1–4.

& McKinney 2011; Nättilä & Beloborodov 2020; Hakobyan et al.
2021).

In many astrophysical contexts, the reconnection region is ex-
pected to be illuminated by an external source of soft photons – with
energies much lower than the electron temperature – and inverse
Compton (IC) scattering of these photons dominates the emitted light.
For some such systems, observations further suggest that particles
emitting at the highest photon energies do so in the Klein–Nishina
regime. For example, TeV observations of the flat-spectrum radio
quasar (FSRQ) PKS 1222+21 (Aleksić et al. 2011) indicate that the
observed TeV photons, if Comptonized from radiation impinging on
the jet from a hot dust region, are produced in the marginal Klein–
Nishina regime of the IC process (Mehlhaff et al. 2020). Thus, if
the radiating particles are accelerated by relativistic reconnection
(for which a case has been made by Nalewajko et al. 2012; Mehlhaff
et al. 2020), then it is likely that the collective reconnection dynamics
are significantly impacted by Klein–Nishina IC effects. In an entirely
different type of system, an X-ray binary, recent Fermi observations
reveal that the spectral cut-off in the quiescent high-luminosity state
of Cyg X-1 lies in the 40–80 MeV range (Zdziarski et al. 2017).
As in the case of FSRQs, this hints that the most energetic particles
Comptonize ambient photons (sourced, in this case, by the accretion
disc) in the Klein–Nishina regime.

In addition to qualitatively modifying the radiative cooling ex-
perienced by particles, Klein–Nishina physics also has important
consequences for the scattered photons. When Comptonized deep
in the Klein–Nishina limit, these may go on to pair produce
with their parent population of ambient seed photons. Therefore,
an astrophysically relevant treatment of reconnection with Klein–
Nishina Compton cooling must also account for pair production.

So motivated, we provide, in this study, an analytical model
for a relatively unexplored regime of radiative reconnection: the
pair-regulated Klein–Nishina regime. Our model hinges on a self-
regulation mechanism that we diagram in Fig. 1 and describe below.
In that description as throughout this text, the term ‘reconnection
layer’ (sometimes just ‘layer’) refers to the region permeated by
reconnected magnetic flux; the term ‘upstream’ (sometimes ‘inflow’)
refers to the region filled with unreconnected flux.

First (step 1 in Fig. 1), particles accelerated in the reconnection
layer Comptonize ambient seed photons to gamma-ray energies.

Secondly (step 2 in Fig. 1), IC-produced gamma-rays penetrate into
the upstream region about one pair-production mean free path from
the layer. While propagating, these photons are immune to secondary
IC scattering because the Thomson optical depth τT is very small
(even though the pair-production optical depth τ γ γ exceeds unity).
In step 3, high-energy photons are absorbed by the background
radiation, producing pairs in the upstream plasma. Newborn pairs
are then advected towards the layer. While en route, they radiatively
cool, and thus some of their initial energy never returns to the layer.
Nevertheless, the created pairs remain hot enough that their energy
density dominates that of the originally present colder upstream
particles. Thus, the plasma feeding the layer in step 4 possesses a
reduced magnetization – the ratio of magnetic energy density to total
(original + hot pairs) matter enthalpy density. This inhibits particle
acceleration and subsequent photon emission in the reconnection
layer, closing the negative feedback loop.

Our model predicts two types of pair-regulated Klein–Nishina
reconnection dynamics. If only a small fraction of the energy radiated
away from the layer is recaptured as hot pairs, reconnection enters a
steady state characterized by a universal (independent of the initial
value) pair-regulated magnetization. However, if the nearly all of
the radiated energy gets swept back into the layer as pairs, the
steady state is never realized. Instead, the system overshoots its
theoretical fixed point solution, getting caught between two extreme
magnetization states. In these ‘swing cycles’, the high magnetization
state yields efficient above-threshold photon emission from the layer
and subsequent injection of hot pairs into the upstream region. This
initiates a very low/pair-loaded magnetization. Here, pair production
is quenched until the created pairs vacate the inflow plasma by
entering the layer, restoring the high magnetization.

In both a steady state and a swing cycle, the created particles, when
present, dominate the upstream pressure, but a prolific pair cascade is
not expected. The (power-law) distribution of pairs injected into the
inflow region, though potentially quite broad, is too steep for later
pair generations – born from photons emitted by earlier upstream
generations – to outnumber the first generation. Furthermore, for a
wide range of parameters, the newborn pairs are also few in number
relative to the original plasma particles.

This last aspect of our model qualitatively departs from earlier
treatments of radiative reconnection with pair production (e.g.
Lyubarskii 1996; Uzdensky 2011; Hakobyan et al. 2019). Rather
than being dressed in a coat of pairs that dominates both the
upstream matter energy and number densities, the reconnection layer
in this regime is self-consistently fed by a few high-energy newborn
particles that control only the energy, and hence the magnetization,
of inflowing material.

Our model also predicts the power-law index of the particle energy
distribution yielded by Klein–Nishina reconnection. However, this
index is sensitive to our free parameters and simplifying assumptions.
Therefore, although the present analysis holds promise for making
contact with observed features (e.g. the photon power-law index)
of FSRQs and black hole accretion disc coronae (ADCe), future
numerical studies, for which this work lays the foundation, are
necessary to refine the model and make testable predictions.

Our discussion is organized as follows. In Section 2, we review
some of the salient features of radiative magnetic reconnection
when low-energy Thomson IC scattering is the dominant radiative
process. We focus here on organizing the relevant energy scales in the
reconnection problem, classifying different radiative regimes from
the hierarchy of these scales. This provides a jumping-off point from
which to generalize our discussion to Klein–Nishina IC losses in
Section 3. After introducing scales and classifying regimes of Klein–
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Nishina reconnection in that section, we present our model, which
pertains to a subset of the available scale hierarchies, in Section 4.
We comment on the model’s observable features and its implications
for FSRQ jets and ADCe in the high-luminosity states of black hole
X-ray binaries in Section 5. We conclude in Section 6.

2 R E V I E W O F T H O M S O N R A D I AT I V E
R E C O N N E C T I O N

Although a variety of radiation mechanisms (e.g. synchrotron emis-
sion) may impact the dynamics of relativistic collisionless magnetic
reconnection, in this work, we specialize to the case where external
IC scattering is the dominant and most dynamically consequential
radiative channel. In this section, we further restrict our discussion
to the case where the IC process occurs in the low-energy Thomson
limit (defined below). This allows us both to review some of the
principal results applicable in this regime and to assemble a set
of energy scales that will anchor our exploration of Klein–Nishina
radiative reconnection in subsequent sections.

2.1 Single-particle Thomson IC cooling

To begin, we review Thomson IC radiative cooling at the level of
individual particles. Afterwards, we extend the discussion to include
collective effects governed by the interplay between radiation and
reconnection.

We consider a static, homogeneous, isotropic bath of ambient
radiation with spectral energy density uph(ε). An ultrarelativistic
electron or positron with energy E = γ mec2 � mec2 traversing
this radiation field preferentially IC-scatters photons that appear
strongly blueshifted in its rest frame: the lab-frame photon energy ε

transforms to the rest-frame energy ε′ ∼ γ ε (except for a negligible
few photons that travel within an angle 1/γ � 1 of the particle’s
velocity and so transform to much smaller energies). If ε′ �
mec2, then the encounter reduces to Thomson scattering, which is
approximately elastic, yielding final (scattered) rest-frame photon
energy ε′

f � ε′. Moreover, the Thomson differential cross-section
lacks a strong angular dependence. Thus, very few photons are
emitted to within angle 1/γ opposite the scattering particle’s velocity,
and the vast majority of scatterings yield typical final lab-frame
photon energy εf ∼ γ ε′

f ∼ γ 2ε.
The same assumptions that place us in the Thomson regime also

imply that the particle loses a very small fraction of its energy in
one collision: εf/γ mec2 ∼ ε ′/mec2 ∼ γ ε/mec2 � 1. This allows
IC radiative losses to be treated classically – as a continuous
drag force, fff T = −(4/3)σTγ 2Uphβββ, where σT = 8πe4/3m2

ec
4 is the

Thomson cross-section, Uph ≡ ∫ dε uph(ε) is the total background
radiation energy density, and cβββ is the scattering particle’s velocity
vector (cf. Blumenthal & Gould 1970; Rybicki & Lightman 1979;
Phinney 1982; Pozdnyakov, Sobol & Syunyaev 1983; Uzdensky
2016; Werner et al. 2019; Mehlhaff et al. 2020; Sironi & Beloborodov
2020). Importantly, fff T depends only on Uph and not on the spectral
distribution uph(ε) of IC seed photons. Thus, provided a plasma
radiates purely in the Thomson IC regime and is also optically thin
to Thomson scattering, the collective dynamics are insensitive to the
incident spectrum (though the Comptonized spectrum is not). The
Thomson IC radiated power per particle is

PT(γ ) = |cβββ · fff T| = 4

3
σTcβ2γ 2Uph . (1)

All of the features discussed here – continuous emission, εf ∝ γ 2,
and incident-spectrum independence – change significantly when we

later allow particles to experience general Klein–Nishina Compton
losses. However, before we get there, let us move on from this single-
particle picture of IC cooling and chart out how Thomson radiative
cooling impacts the collective reconnection dynamics.

2.2 Thomson IC effects on collective plasma behaviour

We first introduce a set of parameters, cast as particle energy scales
(Lorentz factors), that characterize Thomson IC scattering in the
context of magnetic reconnection. We then examine the radiative
regimes represented by the possible scale hierarchies.

2.2.1 Reconnection energy scales

The reconnecting magnetic field, B0, can be recast in terms of a
length-scale: the nominal relativistic gyroradius ρ0 ≡ mec2/eB0. This
is a useful form for comparing B0 with other length-scales in the
problem. For example, introducing the length of the reconnection
layer L (see Fig. 1), one may define a ‘Hillas criterion’: the energy,

γHillas ≡ eB0L

mec2
= L

ρ0
, (2)

of a particle with Larmor radius γ Hillasρ0 equal to the system
size (Hillas 1984).1 Equivalently, γ Hillas is the energy imparted
to a particle accelerated across the system by an electric field of
strength B0.

While γ Hillas gives a firm upper bound on the achievable particle
energies, a more practical scale for reconnection problems is

γmax ≡ 0.1γHillas , (3)

corresponding to extreme acceleration (Aharonian et al. 2002;
Uzdensky et al. 2011; Cerutti et al. 2012a). We use γ max instead
of γ Hillas because the reconnection electric field, Erec, is not quite
as strong as B0, but about equal to β recB0 where β rec is the
dimensionless reconnection rate. For collisionless reconnection, β rec

can be expressed in terms of the Alfvén speed vA as β rec � 0.1vA/c. In
the relativistic limit treated in this paper, vA � c and hence β rec � 0.1.

It is sometimes helpful to equivalently define γ max by equating
time-scales. We therefore introduce the acceleration time for a
particle being linearly accelerated by the electric field Erec � 0.1B0:

tX(γ ) ≡ γmec
2

ecErec
= γmec

2

βrececB0
� 10γρ0

c
� 1.6

2πγρ0

c
, (4)

equal to 10/2π � 1.6 cyclotron periods in the magnetic field B0.
Here, subscript ‘X’ denotes that the spatial regions where this type
of linear acceleration is active usually surround magnetic X-points
– locations where the magnetic field reconnects and near which
particles become unmagnetized (e.g. Uzdensky et al. 2011; Cerutti
et al. 2012a). Equivalently to (3), one may define γ max such that a
particle is X-point-accelerated over one system light crossing time:

tX(γmax) ≡ L

c
. (5)

Another important reconnecting system parameter is the (com-
bined electron + positron) upstream plasma density n0. With B0

fixed, n0 can be cast in terms of the (dimensionless) upstream cold
magnetization

σc,0 ≡ B2
0

4πn0mec2
, (6)

1For simplicity, we assume that L characterizes the size of the system in all
spatial dimensions in addition to its horizontal length (Fig. 1).
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Physically, σ c,0 represents the initial magnetic energy per parti-
cle: σ c,0mec2/2. Since reconnection delivers an appreciable fraction
of the magnetic energy to the plasma, σ c,0 also characterizes
the average Lorentz factor 〈γ 〉 of reconnection-energized particles
(absent radiative cooling). Assuming that half of the initial magnetic
energy is dissipated, we have 〈γ 〉 ∼ σ c,0/4 (cf. Sironi, Petropoulou &
Giannios 2015; Werner et al. 2016; Sironi & Beloborodov 2020). In
this way, just like γ max furnishes a characteristic particle energy scale
to stand in for the system size L, the cold magnetization provides an
energy scale that acts as a proxy for the upstream number density n0.

We report here, for reference, one more important dimensionless
parameter, the hot magnetization (cf. Melzani et al. 2014; Werner
et al. 2018)

σh,0 ≡ B2
0

4πw0
. (7)

Here, w0 = p0 + u0 is the relativistic plasma enthalpy density
with p0 the upstream pressure and u0 the internal energy density.
For a relativistically hot upstream plasma with temperature θ0 =
T0/mec2 � 1, the enthalpy density is w0 � 4θ0n0mec2 (p0 =
θ0n0mec2 = u0/3); for a cold θ0 � 1 plasma, w0 � u0 � n0mec2

is dominated by rest-mass energy. Thus, in the relativistically hot
case, σ h,0 � 1/(2βpl) = σ c,0/(4θ0) � σ c,0 where βpl = 8πp0/B

2
0 is

the plasma beta parameter, but in the opposite limit, σ h,0 � σ c,0.
Physically, the hot magnetization determines whether the energy
flux into the reconnection region is dominated by the magnetic
field (σ h,0 � 1) or by the matter (σ h,0 � 1). In the former σ h,0

� 1 limit, the Alfvén speed, vA = c
√

σh,0/(1 + σh,0), approaches c
and, as a result, magnetic reconnection may drive not only relativistic
individual particle motion (which merely requires σ c,0 � 1) but also
relativistic bulk flows. Thus, σ h,0 � 1 is really the defining feature
of ‘relativistic’ reconnection. In the spirit of our present discussion,
one may regard σ h,0 as a proxy for the upstream temperature θ0,
especially when θ0 � 1. However, we do not make explicit use
of σ h,0 for some time (until Section 4). For now, we simply assume
that we are in the relativistic limit of reconnection, σ h,0 � 1, and,
within that context, scope out the possible regimes by ordering our
other important energy scales (which so far include γ max and σ c,0).

Armed with γ max and σ c,0 (and also assuming σ h,0 � 1), we can
describe the size of the relativistic reconnection system. A ‘large’
system satisfies γ max � σ c,0. In terms of the global geometry, this
implies a high aspect ratio: the system is much longer than the
microscopic current sheet thickness, of order 〈γ 〉ρ0 – the typical
Larmor radius of reconnection-energized particles (specifically, γ max

� σ c,0⇒L � 10σ c,0ρ0; cf. Werner et al. 2016). This renders the layer
plasmoid-unstable and initiates plasmoid-dominated reconnection
(e.g. Ji & Daughton 2011).

In terms of individual particles, γ max � σ c,0 also alleviates system-
size constraints on particle energization, at least up to the mean
Lorentz factor 〈γ 〉 ∼ σ c,0/4. In addition, when 1 � θ0 � 〈γ 〉 ∼
σ c,0/4 and, hence, σ h,0 � 1, previous non-radiative 2D particle-in-
cell (PIC) simulations have found that direct/fast acceleration by the
reconnection electric field saturates at γ X ∼ (several)σ c,0 (e.g. 4σ c,0;
Werner et al. 2016; Kagan, Nakar & Piran 2018). Thus, when γ max �
σ c,0, both the physics governing average-energy particle acceleration
and the direct acceleration mechanism are unencumbered by the
system size.

However, we remark that there are, in addition to primary X-
point acceleration, other energization channels in the large-system
plasmoid-dominated regime: most of them take place on slower time-
scales but are not limited to Lorentz factors of order several σ c,0. We
term these ‘secondary’ acceleration processes because they typically

operate on plasma that has already been processed into the layer (the
region of reconnected magnetic flux). One example of such a process
is adiabatic heating by slowly compressing reconnected magnetic
fields inside plasmoids (Petropoulou & Sironi 2018; Hakobyan et al.
2021). A different, but related, example is a Fermi-type mechanism
(Drake et al. 2006; Dahlin, Drake & Swisdak 2014; Guo et al.
2014, 2015, 2016, 2019, 2020) in which particles bounce from
end to end across contracting plasmoids. (See Uzdensky 2020 for a
review of secondary acceleration mechanisms in 2D reconnection.)
The existence of such acceleration channels may, without radiative
cooling, allow the highest particle energies to grow well beyond γ X

– even if the dynamics of average particles and X-point acceleration
top out at much lower energies. This is one aspect where even weakly
radiative reconnection differs from its non-radiative counterpart.
Radiative losses can impose a system-size-independent high-energy
cut-off even on acceleration processes with no intrinsic upper energy
limit (e.g. Mehlhaff et al. 2020; Hakobyan et al. 2021), potentially
allowing the spectrum of accelerated particles to become independent
of L. With this in mind, we now turn to quantifying the impact of
Thomson IC radiative cooling on reconnection.

As discussed above, particles emitting in the Thomson limit suffer
a drag force fff IC determined by the total background radiation
energy density Uph. Thus, Thomson radiation introduces just one
extra parameter, Uph, into the reconnection problem. To cast Uph

as an energy scale, we define the Lorentz factor, γ rad,T, at which
radiative drag matches the acceleration force from the reconnection
electric field, eErec � 0.1eB0, or (equivalently) such that the X-point
acceleration time, tX(γ ), equals the Thomson cooling time, tcool,T(γ )
≡ γ mec2/PT(γ ), over which a particle radiates a significant frac-
tion of its energy γ . Putting fIC(γ rad,T) ≡ 0.1eB0 [or tX(γ rad,T) ≡
tcool,T(γ rad,T)] yields (cf. Nalewajko 2016; Uzdensky 2016; Werner
et al. 2019; Mehlhaff et al. 2020; Sironi & Beloborodov 2020)

γrad,T ≡
√

0.3eB0

4σTUph
. (8)

There is also a third way to define γ rad,T: it is the Lorentz factor of
a particle that cools in ∼1 cyclotron period in the magnetic field B0

(cf. Uzdensky 2016).
Despite the fact that it is defined only by balancing radiative cool-

ing against X-point energization, the energy γ rad,T firmly radiatively
caps the achievable particle energies (Werner et al. 2019; Mehlhaff
et al. 2020). This is because acceleration by the coherent reconnection
electric field may be the fastest significant particle energization
channel in magnetic reconnection.2 Other channels (such as those
discussed by Petropoulou & Sironi 2018; Guo et al. 2019, 2020;
Hakobyan et al. 2021), while not saturating at γ X like X-point
acceleration, are much slower and hence radiatively stall at Lorentz
factors less than γ rad,T (e.g. Mehlhaff et al. 2020).

To sum up, we now have three energy scales, each characterizing
different physical parameters in relativistic reconnection. Two of
these, γ max and σ c,0 – representing, respectively, the system size L
and the upstream particle density n0 – are non-radiative, common
to all reconnection problems. The third scale, γ rad,T, encodes the

2It is unclear whether motional electric fields EEEmotion = −vvv × BBB/c (v � vA

� c) – e.g. due to rapidly moving compact plasmoid cores where B > B0 and,
hence, Emotion ∼ vAB/c > B0 – yield an overall faster effective acceleration
than X-point regions. A similar remark applies to momentary pulses of high
electric fields associated with waves launched at plasmoid mergers (Philippov
et al. 2019). In both cases, the issue is not just one of field strength but also
of spatio-temporal coherence.
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Table 1. Scale hierarchies and associated radiative regimes of relativistic reconnection subject to Thomson IC losses. A relativistic
large-system ordering γ max > γ X > 〈γ 〉 > 1 is assumed throughout. Inserting γ rad,T and γ cool at different locations in this base ordering
corresponds to different regimes. To guide the eye, the ‘independent’ parameters (i.e. independent of γ max, γ X, and 〈γ 〉 but not of each
other) γ rad,T and γ cool are typeset in red. The regimes are semantically distinguished based on which particles – either those in the bulk of
the particle energy distribution near the average energy 〈γ 〉 or those in the high-energy tail – cool on time-scales shorter than L/c (strong
cooling) versus those that cool in one gyroperiod (saturated cooling). For Thomson IC radiation reaction (but not in the more general
Klein–Nishina limit) saturated cooling is more efficient than, and therefore implies, strong cooling.

Bulk particles High-energy particles
Strong Saturated Strong Saturated

Scale hierarchy Regime name cooling (Y/N) cooling (Y/N) cooling (Y/N) cooling (Y/N)

γ cool > γ rad,T > γ max > γ X > 〈γ 〉 Non-radiative N N N N
γ max > γ rad,T > γ cool > γ X > 〈γ 〉 Quasi non-radiative N N Ya N
γ max > γ rad,T > γ X > γ cool > 〈γ 〉 N N Y N
γ max > γ rad,T > γ X > 〈γ 〉 > γ cool Y N Y N
γ max > γ X > γ rad,T > γ cool > 〈γ 〉 N N Y Y
γ max > γ X > γ rad,T > 〈γ 〉 > γ cool Y N Y Y
γ max > γ X > 〈γ 〉 > γ rad,T > γ cool Extremely radiative Y Y Y Y

aHighest energy particles may or may not achieve strong cooling. If they do, it is not through impulsive X-point acceleration (see the text).

energy density of ambient radiation and is unique to reconnection
with IC cooling. Furthermore, one of these energies, σ c,0, splits into
two: it represents both the average energy of reconnection-energized
particles 〈γ 〉 ∼ σ c,0/4 and the intrinsic maximum energy deliverable
by the X-point acceleration mechanism γ X ∼ 4σ c,0 in the large-
system plasmoid-mediated regime. We later argue (Section 5.1.2)
that, under some circumstances, γ X may exceed the nominal value γ X

= 4σ c,0 found from 2D PIC simulations (Werner et al. 2016; Kagan
et al. 2018), but in the case where γ X truly is of order 4σ c,0, γ X

and 〈γ 〉 are only offset by about a factor of 16.

2.2.2 Regimes of Thomson radiative reconnection

Next, we enumerate the various orderings of the scales discussed
above and examine the physical regimes each ordering represents.
To simplify this program, we concentrate solely on the large-
system regime with a relativistic amount of magnetic energy per
particle: γ max � σ c,0 � 1 (or, if we split the scale σ c,0 into γ X

∼ 4σ c,0 and 〈γ 〉 ∼ σ c,0/4, the regime γ max � γ X � 〈γ 〉 � 1).
Different scale hierarchies are then realized by inserting γ rad,T into
various positions of the base ordering γ max � γ X � 〈γ 〉 � 1. The
possible orderings are summarized in Table 1.

This procedure is made more conceptually transparent if we
introduce the derived scale γ cool, the Lorentz factor of a particle that
cools in one dynamical time L/c of the system. Writing tcool,T(γ cool)
≡ L/c yields

γcool ≡ γ 2
rad,T/γmax . (9)

Interestingly, the radiatively limited Lorentz factor γ rad,T is always
intermediate between γ cool and γ max, equal to the geometric mean
of those two scales. Note that one may have γ cool < 1, in which
case γ cool does not correspond to a physical Lorentz factor. In that
case, all particles cool to non-relativistic energies in tcool,T(1) < L/c.
Related to γ cool is the compactness of the system

� ≡ UphσTL

mec2
= 3

4γcool
. (10)

The time for a particle to cool from any initial γ to γ = 1 is ∼L/c�.
We begin our exploration of the various radiative regimes by

quantifying the non-radiative limit γ cool > γ rad,T > γ max � σ c,0 �
1. Hereafter, we do not list σ c,0 � 1 explicitly. We also only use ‘>’
(not ‘�’) symbols, with the understanding that all regimes become

more distinct when the corresponding scales are well separated.
The regime γ cool > γ rad,T > γ max > σ c,0 corresponds to the
limit Uph → 0 and, hence, γ rad,T → ∞. Here, no particle radiates a
significant fraction of its energy within one dynamical time L/c,
effectively decoupling radiation from reconnection. This is the
regime mentioned in the Introduction where magnetic reconnection
can, in principle, be studied on its own and the radiative signatures
calculated independently.

The first step up in radiative efficiency might be called the quasi-
non-radiative regime γ max > γ rad,T > γ cool > γ X > 〈γ 〉. Here,
primary X-point acceleration does not impart enough energy to
particles so that they significantly radiate on one dynamical time L/c,
let alone so that they achieve radiative saturation γ rad,T. Secondary
acceleration channels, on the other hand, might be able to deliver
particles to energies ≥γ cool so that those particles radiate faster
than the global time-scale. However, this depends on the detailed
nature of each secondary acceleration process – whether any of them
radiatively stall above γ cool is not guaranteed.

As an example of a secondary acceleration mechanism relevant to
the quasi-non-radiative regime, one may consider particles slowly
energized inside of adiabatically compressing magnetic islands
(also ‘plasmoids’), as detailed by Petropoulou & Sironi (2018) and
Hakobyan et al. (2021). The energy where radiative losses shut this
process down is determined by matching the plasmoid compression
time to the particle cooling time-scale. As reported by Hakobyan et al.
(2021), this upper-limit energy is γ sec ∼ mec2β rec/wσ TUph, where w

� 0.1L is the size of the largest plasmoids formed by reconnection.
[We ignore that smaller plasmoids compress faster and so may
yield, for the smaller number of particles they contain, higher γ sec

(Hakobyan et al. 2021).] In effect, γ sec ∼ �−1 = (4/3)γ cool. Thus,
this secondary energization channel only barely accelerates some
particles up to γ cool, and most reach energies much less than this.
Hence, considering only this secondary mechanism, the reconnection
process can be regarded as marginally non-radiative, with only very
few highest energy particles cooling in less than one dynamical time.

Increasing the cooling efficiency once more brings us to the first
of several truly radiative regimes where radiation is dynamically
important for at least some of the particles. Aptly naming these
regimes is cumbersome because different particles can experience
varying degrees of radiative efficiency. The high-energy particles,
for example, may be rapidly cooled and the particles at the average
energy 〈γ 〉 cooled quite slowly. Therefore, we do not classify
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Klein–Nishina reconnection 4537

these regimes globally, calling the entire system weakly or strongly
radiative, but we refer to them based on which populations of particles
cool on various time-scales.

We call particles strongly cooled if radiation reaction causes them
to lose an appreciable fraction of energy in less than one dynamical
time L/c – i.e. if their Lorentz factors exceed γ cool. This agrees with
typical notions of strong cooling in astrophysics, which indicate
that radiative cooling occurs faster than some macroscopic system
time-scale. Correspondingly, we call particles with γ < γ cool weakly
cooled (because they are not strongly cooled) and sometimes non-
radiative (because they do not radiate appreciably in a dynamical
time). The particles with much higher energies, close to γ rad,T >

γ cool, we say exhibit saturated cooling: their Lorentz factors are
radiatively saturated because intense emission prevents further ener-
gization (tcool,T = tX). Although, in the Thomson IC limit, particles
undergoing saturated cooling radiate much more efficiently than just
strongly cooled particles, this is not always true once Klein–Nishina
effects come into play (see Section 3.2 and Fig. 5). Thus, we wish to
avoid associating the saturated cooling regime with a term connoting
excessively efficient or fast cooling (e.g. ‘very strong cooling’).

Using these terms, we see that the scale hierarchy γ max > γ rad,T

> γ X > γ cool > 〈γ 〉 indicates that average (or ‘bulk’) particles are
weakly radiative; most of them cool slower than L/c (〈γ 〉 < γ cool).
Meanwhile, at least some of the high-energy particles accelerated
by the primary X-point channel are strongly cooled (γ X > γ cool).
Even so, radiative losses are not so fast as to hinder direct X-point
acceleration, with tX(γ X) faster than tcool,T(γ X) because γ X < γ rad,T.
Thus, X-point acceleration (because it is intrinsically capped to
below γ rad,T) – and, hence, all other (known) secondary energization
channels (because they are slow) – cannot deliver particles up to the
radiative saturation limit γ rad,T.

Permuting scales again by swapping the positions of γ cool and 〈γ 〉,
we arrive in the regime γ max > γ rad,T > γ X > 〈γ 〉 > γ cool. Here, most
particles radiate strongly because γ cool < 〈γ 〉 < γ X. However, like
in the previous regime, virtually no particles are expected to achieve
radiative saturation (γ X < γ rad,T), and X-point acceleration, while
unaffected by radiative cooling on the short time-scale on which it
occurs [tX(γ X) < tcool,T(γ X)], does produce particles of sufficiently
high energies (>γ cool) to be strongly cooled.

Next we arrive at scale hierarchies where at least a few particles
exhibit saturated cooling. One such domain is γ max > γ X > γ rad,T

> γ cool > 〈γ 〉. Here, some particles are promptly accelerated near
X-points to the upper-limit energy γ rad,T < γ X, but the bulk particles,
with 〈γ 〉 < γ cool, barely radiate even on global L/c time-scales. This
is perhaps the most extreme example of how vastly different the
cooling rates can be for different reconnection-energized particles.
However, unless γ X can substantially exceed its nominal 4σ c,0

value, this regime may not be realized in astrophysical contexts.
This is because, if γ X = 4σ c,0, then γ X/〈γ 〉 � 16, implying
that γ rad,T/γ cool < 16, and, through equation (9), that γ max/γ rad,T

< 16, whereas γ max, γ rad,T, and γ cool are each usually separated by
several decades in astrophysical systems (see Section 5.2).

Moving to the last two possible orderings, we have γ max > γ X >

γ rad,T > 〈γ 〉 > γ cool, in which the high-energy particles accelerated
near X-points attain radiative saturation (γ rad,T < γ X) and the bulk
particles are strongly cooled (γ cool < 〈γ 〉). Finally, there is an
extremely radiative regime, γ max > γ X > 〈γ 〉 > γ rad,T > γ cool.
Here, IC losses firmly cap the acceleration of nearly all particles
– not even the formal mean energy, 〈γ 〉, available per particle can
be attained – and should have dramatic effects on the large-scale
reconnection dynamics (Uzdensky 2016). Table 1 summarizes the
radiative reconnection regimes discussed in this section.

To complete our tour of the Thomson IC reconnection landscape,
we review some of the previously identified physical effects that
occur in these regimes. Several systematic PIC studies of Thomson
radiative reconnection have been conducted in recent years, including
those by Werner et al. (2019), Sironi & Beloborodov (2020), and
Mehlhaff et al. (2020). There have also been radiative PIC studies of
reconnection with strong synchrotron cooling (e.g. Cerutti et al. 2013,
2014a, b; Yuan et al. 2016) and QED effects (like pair production;
Hakobyan et al. 2019; Schoeffler et al. 2019). In some cases, the
qualitative features of reconnection regimes mediated by different
radiative processes are similar, but, in this section, which is intended
chiefly as a jumping-off point for our more general discussion of
Klein–Nishina physics to come, we focus only on those effects
studied within the context of Thomson IC losses.

The three radiative PIC studies conducted by Werner et al. (2019),
Sironi & Beloborodov (2020), and Mehlhaff et al. (2020) explored
a number of regimes outlined in this section. Werner et al. (2019)
studied the effect of Compton losses on large-scale reconnection dy-
namics and on non-thermal particle acceleration (NTPA), exploring
all the way from the non-radiative regime to that of fully saturated
high-energy cooling and strong bulk cooling (γ max > γ X > γ rad,T >

〈γ 〉 > γ cool). They found that radiation steepens the high-energy part
of the non-thermal tail of reconnection-accelerated particles but that
the overall reconnection rate is virtually unaffected. Mehlhaff et al.
(2020) focused on the angular distributions of high-energy particles,
showing that particles approaching radiative saturation (γ rad,T � γ X)
exhibit energy-dependent collimation in momentum space, forming
narrow beams at the highest energies. Strong radiative losses thus
appear to be an essential ingredient in mediating this ‘kinetic
beaming’ effect, which was first discovered by Cerutti et al. (2012b).
Numerically exploring the scenario first outlined by Beloborodov
(2017), Sironi & Beloborodov (2020) focused primarily on the
regime γ max > γ X > γ rad,T > 〈γ 〉 > γ cool where the bulk particles
are strongly cooled and the highest energy particles saturate at γ

= γ rad,T. They found that, here, plasmoids are generally filled with
cold plasma that has already released much of its energy through
Compton losses. The plasma kinetic energy inside plasmoids is then
dominated by bulk motion. This motion is also subject to radiative
drag and, hence, is slower than in the non-radiative case. Sironi &
Beloborodov (2020) also confirmed that the highest energy particles
are accelerated near reconnection X-points and top out at Lorentz
factors close to γ rad,T.

3 OV E RV I E W O F K L E I N – N I S H I NA R A D I AT I V E
R E C O N N E C T I O N

We now generalize our discussion to Klein–Nishina IC losses,
focusing first on single-particle cooling and then on collective effects.

3.1 Single-particle Klein–Nishina IC cooling

We begin with some guiding intuition. One can readily infer that the
quadratic Thomson scaling of the scattered photon energy, εf ∼ γ 2ε,
must break down at some point: the particle cannot emit a photon
of greater energy than its own γ mec2 (ignoring the small initial
energy ε). A new physical regime must take over when γ 2ε becomes
of order γ mec2. At that point, the particle can no longer radiate
continuously; it will lose an order-unity fraction of its energy in a
single scattering event. Moreover, for even higher Lorentz factors,
the photon energy can scale, at most, linearly with γ mec2. The
following analysis shows how these basic observations are borne
out quantitatively.
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4538 J. M. Mehlhaff et al.

At high energies, when the Thomson limit begins to break down,
the seed photon energy ε becomes a dynamically important variable,
influencing not just the spectrum of Comptonized photons, but also
the power radiated by a particle PIC(γ ). To simplify our treatment in
the presence of this complication, we specialize to a monochromatic
distribution of background radiation

uph(ε) = Uphδ(ε − εph) . (11)

To quantify the IC cooling domain, it is useful to define a critical
Lorentz factor

γKN ≡ mec
2

4εph
(12)

and a Klein–Nishina parameter

q ≡ 4γ εph

mec2
= γ

γKN
. (13)

Scattering particles suffer little recoil from individual photons when q
� 1 (γ � γ KN): IC radiation proceeds in the Thomson regime. The
opposite, deep Klein–Nishina limit is when q � 1 (γ � γ KN). The
crossover point q = 1 (γ = γ KN) corresponds to setting the maximum
Thomson emission energy, 4γ 2εph, equal to the Comptonizing
particle energy, γ mec2.

The Lorentz factor γ KN, like γ rad,T for Uph in the Thomson limit,
is the fundamentally new energy scale introduced by Klein–Nishina
physics. It serves as a proxy for the underlying physical parame-
ter εph. By ordering γ KN with respect to our other fundamental energy
scales discussed in the preceding section, γ rad,T, σ c,0, and γ max,
we can determine what new radiative regimes of reconnection
are accessible once Klein–Nishina effects have been added to our
physical framework.

Before embarking on that task, however, we focus purely on the
radiative physics (ignoring collective plasma effects), to build our
intuition for how individual particles experience IC losses. In the
presence of the seed photon distribution (11), the IC power radiated
by a single particle becomes

PIC(γ ) = PT(γ ) fKN(γ /γKN) , (14)

This is the same as the Thomson expression (1) but modified by the
dimensionless function of q (cf. Jones 1968; Nalewajko et al. 2018;
Appendix A)

fKN(q) = 9

q3

[(
q

2
+ 6 + 6

q

)
ln (1 + q)

− 1

(1 + q)2

(
11

12
q3 + 6q2 + 9q + 4

)
− 2 + 2 Li2(−q)

]
, (15)

where Li2 is the dilogarithm. Fig. 2 displays fKN(q) together with its
asymptotic large-argument limit

fKN(q � 1) � (9/2q2) [ln(q) − 11/6] (16)

and its approximate form (e.g. Moderski et al. 2005)

fKN(q) � 1

(1 + q)1.5
, (17)

which is roughly correct up to q ∼ 104 (at q � 104, the error reaches a
factor of 3 and begins increasing rapidly). The function fKN(q) tends
to unity as q becomes small, as required in the Thomson-limit PIC(γ )
→ PT(γ ). For large arguments, fKN(q) falls off quadratically with a
logarithmic correction: the scattering cross-section is suppressed in
the deep Klein–Nishina limit.

Let us now examine the ‘discreteness’ of radiative losses as q
increases through unity. To do so, we note that, similar to the radiated

Figure 2. The function fKN(q) as defined in equation (15) in blue, its
asymptotic form (16) in red, and its approximation (17) in green.

power PIC(γ ), the rate RIC(γ ) at which a single electron or positron
scatters photons distributed according to (11) can be written as the
corresponding Thomson rate, RT(γ ) = RT = cσ TUph/εph, times a
dimensionless function:

RIC(γ ) = RT gKN(γ /γKN) , (18)

where gKN(q) reads (Appendix A)

gKN(q) = 3

2q2

[(
q + 9 + 8

q

)
ln(1 + q)

− 1

1 + q

(
q2

2
+ 9q + 8

)
+ 4 Li2(−q)

]
(19)

and has asymptotic form

gKN(q � 1) � 3

4q
[2 ln(q) − 1] . (20)

Using (18), one can write down the average photon energy 〈ε〉(γ )
emitted by a particle with Lorentz factor γ :

〈ε〉(γ ) ≡ PIC(γ )

RIC(γ )
=
[

γ

3γKN

fKN(γ /γKN)

gKN(γ /γKN)

]
γmec

2 . (21)

The quantity in square brackets here is the ‘inelasticity’
〈ε〉(γ )/γ mec2, the typical fraction of a particle’s energy lost in a
single scattering encounter (Moderski et al. 2005). Using the small-
argument limits fKN(q � 1) → 1 and gKN(q � 1) → 1, one may read
off the well-known Thomson inelasticity

lim
γ�γKN

〈ε〉(γ )

γmec2
= γ

3γKN
� 1 , (22)

or, more commonly,

lim
γ�γKN

〈ε〉(γ ) = γ 2mec
2

3γKN
= 4

3
γ 2εph . (23)

Similarly, plugging in the asymptotic forms for fKN and gKN verifies
that the inelasticity approaches unity as q is taken to infinity:

lim
γ→∞

〈ε〉(γ )

γmec2
= lim

γ→∞
ln(γ /γKN) − 11/6

ln(γ /γKN) − 1/2
= 1 . (24)

However, the limiting value is approached quite slowly, for the ratio
in (24) is only � 1 when ln (γ /γ KN) � 11/6. In fact, 〈ε〉(γ ) does not
surpass 3γ mec2/4 until γ � 300γ KN. Nevertheless, the inelasticity
does obtain a value of order unity for much more modest q. For
example, 〈ε〉(γ ) ≥ γ mec2/4 when γ � 2γ KN.
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Figure 3. Top panel: The function gKN(q) (equation 19) in blue and its
asymptotic form (20) in red. Bottom panel: The inelasticity 〈ε〉(γ )/γ mec2

= qfKN(q)/3gKN(q) (equation 21). The shaded region shows the appreciable
range q ∈ [1.75, 315] over which 〈ε〉 is between γ mec2/4 and 3γ mec2/4 (i.e.
where it is close to γ mec2/2). This indicates that, although 〈ε〉(γ ) eventually
approaches its asymptotic limit of γ mec2, it does so rather slowly.

Both of these effects – the inelasticity slowly approaching, but
rapidly rising to the vicinity of, unity for q � 1 – as well as the
function gKN(q) and its asymptotic form (20), are plotted in Fig. 3.
In the figure, one sees that 〈ε〉(γ ) � γ mec2/2 for a wide range of q.
Therefore, when we later need 〈ε〉 for estimates, we adopt 〈ε〉(γ )
� γ mec2/2 rather than 〈ε〉 � γ mec2 whenever q � 1. The latter
becomes a more accurate approximation than the former for q �
300, but it is unclear that the astrophysical systems we attempt to
model contain particles at such high energies. (However, even if q
� 300 in some systems, the distinction here between factors of
order unity is well within the uncertainty of all of the estimates in
this paper.) Furthermore, our model (Section 4) is mostly concerned
with q < 280 (equation 60).

We have now verified our qualitative expectations for the deep
Klein–Nishina regime: radiative losses become discrete when q � 1,
with particles losing an appreciable fraction of their energy to single
photons. Moreover, the scattered photon energy scales approximately
linearly with the pre-collision energy of the particle (rather than
quadratically, as in the Thomson limit).

Next, because we are concerned primarily with IC radiation in this
paper, we consider the circumstances in which synchrotron losses
may be neglected. For an isotropic particle pitch-angle distribution,
the average synchrotron power radiated per particle is

Ps = 4

3
σTcβ2γ 2UB . (25)

Note that this is the same as the Thomson IC power (1) but with
the ambient radiation energy density Uph replaced by the magnetic
field energy density UB ∼ B2

0 /8π (we approximate the magnetic
field strength throughout the reconnection system by its upstream
value B0). Equation (25) gives a total (IC + synchrotron) radiated

power per particle

Ptot(γ ) = PIC(γ ) + Ps(γ )

= PIC(γ )

(
1 + UB

UphfKN(γ /γKN)

)
. (26)

Clearly, IC losses dominate if

fKN(q) >
UB

Uph
. (27)

Because fKN(q) ≤ 1, this criterion can only be met for systems whose
ambient radiation energy density exceeds the magnetic field energy
density. And, importantly, because Klein–Nishina effects begin to
suppress IC cooling for γ > γ KN, even when Uph � UB, there is
always a high-energy Lorentz factor γ s above which synchrotron
losses dominate. Using the approximate form fKN(q) � (1 + q)−1.5

(equation 17), one has (cf. Moderski et al. 2005)

γs � γKN

[(
Uph

UB

)2/3

− 1

]
. (28)

Thus, neglecting synchrotron losses is justified when γ s exceeds
the highest Lorentz factors reached in the system. We assume that
this is indeed the case for the remainder of this work. We return
to discuss the effects of finite γ s as an effective limitation of our
analysis in Section 5.

3.2 Klein–Nishina IC effects on collective plasma behaviour

We now examine how the collective reconnection dynamics are
influenced by Klein–Nishina radiation reaction. We focus especially
on differences from the case of purely Thomson radiative cooling.

Previously (in the Thomson regime), the highest Lorentz factor
to which a particle could be accelerated was γ rad,T. However,
from equation (14), radiative losses are suppressed once q exceeds
unity. This enables acceleration beyond γ rad,T, and our definition of
the radiative cut-off Lorentz factor can be generalized to include
this effect. By equating the force from the reconnection electric
field 0.1eB0 to the (Klein–Nishina) Compton radiation reaction
force PIC(γ )/c, one may define a generalized cut-off γ rad,IC through

1 ≡ γ 2
rad,IC

γ 2
rad,T

fKN

(
γrad,IC

γKN

)
= γ 2

rad,IC

γ 2
rad,T

fKN

(
γrad,IC

γrad,T

γrad,T

γKN

)
. (29)

The second equality explicitly shows that the ratio γ rad,IC/γ rad,T is
determined solely by the ratio γ rad,T/γ KN. Thus, γ rad,IC is a derived
scale; it is fixed by the other radiative Lorentz factors γ KN and γ rad,T

(or, equivalently, through the physical parameters εph and Uph).
Equation (29) can always be satisfied for a finite γ rad,IC, and a

numerical solution to the equation is displayed in Fig. 4. When γ rad,T

� γ KN, the equation is satisfied by γ rad,IC � γ rad,T because, in that
case, fKN(γ rad,T/γ KN � 1) � 1. However, when γ rad,T becomes greater
than γ KN, the cut-off γ rad,IC becomes a rapidly increasing function
of γ rad,T/γ KN. In fact, in the limit γ rad,T � γ KN, for which the large-
argument approximation to fKN (equation 16) applies, γ rad,IC grows
superexponentially:

γrad,IC � γKN exp

[
2

9

(
γrad,T

γKN

)2

+ 11

6

]
. (30)

As shown in Fig. 4, this limiting form gives a good approximation
to γ rad,IC, even when γ rad,T only slightly exceeds γ KN. We note that
the rapid transition between the γ KN � γ rad,T and γ KN � γ rad,T

limits is smoothed out in the presence of an extended (e.g. power-
law) distribution of ambient radiation. Then, γ rad,IC does not grow
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Figure 4. The Klein–Nishina cut-off Lorentz factor γ rad,IC (29) and its
asymptotic form (30), both normalized by the Thomson equivalent γ rad,T.
The asymptotic form is already accurate when γ rad,T � 2.5γ KN.

superexponentially until mec2/4εlow � γ rad,T, where εlow is the energy
of the softest ambient photons.

Hence, when γ KN becomes less than γ rad,T, Klein–Nishina physics
inhibits radiative cooling from competing with rapid acceleration
near reconnection X-points. It is then highly likely that the cut-off
energy for X-point acceleration is set intrinsically rather than by
radiative cooling (one expects γ X � γ rad,IC).

We now frame the superexponential divergence in γ rad,IC from a
different perspective: that of competing acceleration and radiative
cooling time-scales. We then predict whether divergences occur in
the cut-off energies of secondary acceleration channels by similarly
comparing their time-scales against the cooling time. Including
Klein–Nishina effects, the IC cooling time-scale is3

tcool,IC(γ ) ≡ γmec
2

PIC(γ )
= γcool

γ fKN(γ /γKN)

L

c

= γcool

γKN
[(γ /γKN)fKN(γ /γKN)]−1 L

c
, (31)

where γ cool (equation 9) is the Lorentz factor of a particle with
Thomson cooling time tcool,T(γ ) = γ mec2/PT(γ ) equal to L/c. A plot
of tcool,IC(γ ) is presented in Fig. 5.

The relationship (31) encodes a wealth of information. In the
Thomson regime γ � γ KN, fKN → 1, and tcool,IC → tcool,T =
γ coolL/γ c, which decreases inversely with γ . However, for γ �
γ KN, fKN assumes its asymptotic form (16), inducing the scaling

tcool,IC(γ � γKN) � 2Lγcool

9cγKN

γ /γKN

ln(γ /γKN) − 11/6
. (32)

Thus, in the deep Klein–Nishina limit, tcool,IC(γ ) increases linearly
in γ with a logarithmic correction. This is the source of the
superexponential divergence of γ rad,IC with γ rad,T in equation (30).
Equation (4) shows that the time-scale, tX, on which X-point
acceleration occurs is also linear in γ . Upon equating tcool,IC and tX,
which defines the radiative cut-off γ rad,IC, γ cancels. Thus, tX can
only surpass tcool,IC if ln (γ /γ KN) grows large enough, inducing the
superexponential scaling in equation (30).

3As shown later (equation 36), the factor γ cool/γ KN in equation (31)
equals 3/5τγ γ where τγ γ is the characteristic pair-production optical depth
of the system.

Figure 5. The IC cooling time ctcool,IC(γ )/L (equation 31). In the plot, γ cool is
fixed, γ max = 10γ rad,T = 100γ cool, and γ KN varies between curves. Arrows
indicate the progression of particle cooling times during acceleration near
reconnection X-points, which terminates at γ = γ rad,IC (denoted by filled
circles). For reference, each curve continues past γ rad,IC as a dashed line.
The cooling time is non-monotonic. Depending on γ KN, some (or even all)
of the particles may attain high enough energies not to radiate [possessing
cooling times tcool,IC(γ ) > L/c]. If γ KN < 2.3γ cool, then all particles are
non-radiative. If γ KN > 2.3γ cool, then only the low-energy (γ < γ cool,1 ∼
γ cool) and high-energy (γ > γ cool,2) particles are non-radiative. For particles
to exceed γ cool,2, the condition γ rad,IC ≥ γ cool,2 is necessary, but not sufficient
(see the text).

Importantly, a similar situation does not arise for secondary
acceleration channels, which are slower, possessing time-scales
superlinear in γ (e.g. Mehlhaff et al. 2020). As an example,
consider the secondary process described in Section 2, where
particles inside contracting plasmoids are gradually energized. The
Lorentz factors of such particles grow as γ (t) ∝ √

t (Petropoulou
& Sironi 2018; Hakobyan et al. 2021), yielding the acceleration
time tsec(t) = γ (t)/γ̇ (t) ∝ γ 2(t). Thus, it is much easier for this
secondary mechanism – and any other for which tsec ∝ γ ζ with ζ >

1 – to radiatively saturate, as we now show.
For the sake of generality, suppose that tsec = Cγ ζ with C a

constant independent of εph and Uph (and, hence, of γ cool, γ rad,T, γ KN,
and γ rad,IC; cf. the argument in Mehlhaff et al. 2020). Then, when
IC cooling proceeds deep into the Klein–Nishina regime, the equal-
ity tcool,IC = tsec reduces to γ ζ−1

sec ∝ γcool/γ
2
KN. The key difference

from the direct X-point acceleration channel is that here we can
ignore the ln (γ ) correction – its dependence on γ is much weaker
than γ ζ − 1. As a result, the cut-off γ sec scales merely polynomially
in γ cool (i.e. in γ rad,T) and γ KN: γsec ∝ (γcool/γ

2
KN)1/(ζ−1). Plugging

in ζ = 2 for the adiabatic plasmoid compression process gives γsec ∝
γcool/γ

2
KN (different from γ sec reported in Section 2 because we are

now considering deep Klein–Nishina cooling). Thus, Klein–Nishina
physics may effectively remove the high-energy radiation reaction
cap on impulsive X-point acceleration, but not on other processes,
potentially increasing the relative importance of the primary direct
energization channel.

As discussed above, tcool,IC(γ ) is non-monotonic, decreasing
with γ when γ � γ KN and increasing when γ � γ KN. It reaches the
minimum

min
γ

(
ctcool,IC(γ )

L

)
� 2.32

γcool

γKN
(33)
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Figure 6. The Lorentz factors γ cool,1 and γ cool,2 where tcool,IC(γ ) dips
below and above one dynamical time L/c, respectively. Since γ cool,1 occurs
almost entirely in the Thomson regime, it is almost always quite close
to γ cool, differing from γ cool by at most the factor 7.4 = 3.20 × 2.32 (equa-
tions 33 and 34) when γ KN approaches the non-radiative value 2.32γ cool.
In contrast γ cool,2 grows approximately quadratically in γ KN/γ cool (with a
logarithmic correction).

at a critical fastest-cooling Lorentz factor

arg min
γ

(
ctcool,IC(γ )

L

)
� 3.20γKN , (34)

[i.e. min γ (tcool,IC(γ )) = tcool,IC(3.20γ KN)]. The minimum cooling
time (33) implies that, when γ KN < 2.32γ cool, all of the particles in
the system radiate weakly (they have cooling times exceeding L/c).
Even if γ KN falls above this threshold and, hence, min (tcool,IC) < L/c,
some high-energy particles may radiate weakly. Namely, if a particle
surpasses the fastest-cooling Lorentz factor 3.20γ KN by a sufficient
amount, it reaches a high-energy domain with tcool,IC(γ ) > L/c. This
effect does not occur in the Thomson regime.

These remarks are illustrated in Fig. 5. The figure dis-
plays ctcool,IC(γ )/L for fixed γ cool = γ rad,T/10 = γ max/100 and
several γ KN. On each curve for which γ KN > 2.32γ cool, the line tcool,IC

= L/c is crossed twice, once at a low Lorentz factor γ cool,1 and once
at a high Lorentz factor γ cool,2. We analyse γ cool,1 and γ cool,2 shortly,
but we point out some basic features of Fig. 5 beforehand. First,
when γ rad,IC � γ rad,T ≤ γ KN (implying γ KN > 2.32γ cool because γ KN

> γ rad,T = 10γ cool > 2.32γ cool), particles may access only the
Thomson portion of a cooling curve where tcool,IC ∝ γ −1. The γ KN

= 30γ cool = 3γ rad,T case illustrates this. Next, in the opposite limit,
when γ KN becomes smaller than γ rad,T, the radiative cut-off γ rad,IC

begins to grow rapidly, opening up the portion of a curve that
bends upward. Eventually, at the critical Lorentz factor γ cool,2, the
cooling time tcool,IC once again equals L/c. Thus, if γ rad,IC > γ cool,2,
particles accelerated near X-points could break into the high-energy
weakly radiative regime. However, in reality, whether particles will
actually cross this boundary does not depend solely on whether γ rad,IC

surpasses γ cool,2. That is just a necessary condition. In addition, the
intrinsic X-point acceleration Lorentz factor γ X must exceed γ cool,2,
or – if it does not – secondary acceleration channels must be able to
energize particles against radiative cooling past γ cool,2.

Both γ cool,1 and γ cool,2 are illustrated in Fig. 6 as functions
of γ KN/γ cool (they only depend on γ rad,T and γ max through γ cool).
In general, γ cool,1 is close to γ cool, because, as illustrated in Fig. 5,
particles are almost completely in the Thomson limit when tcool,IC

crosses L/c from above. In contrast, γ cool,2, where tcool,IC crosses L/c
in the opposite direction, depends rather strongly on γ KN. Be-

cause γ cool,2 occurs fairly deep into the Klein–Nishina regime, one
may employ expression (32) to see that γ cool,2 satisfies

9γKN

2γcool
� γcool,2/γKN

ln(γcool,2/γKN) − 11/6
, (35)

implying that γcool,2/γcool ∝ (γKN/γcool)2 × O(ln(γcool,2/γKN)).
Thus, γ cool,2 is approximately quadratic in γ KN. This differs

from γ rad,IC, which grows as γ KN is reduced. Let us imagine that
one starts with γ KN high enough that γ cool,2 � γ max � γ rad,IC (e.g.
as on the γ KN = 30γ cool curve in Fig. 5). Then, dialing down γ KN,
eventually γ cool,2 will cross γ rad,IC and γ max from above. It turns out
that, by definition, these crossings occur simultaneously. For, if γ cool,2

= γ max, then tX(γ max) ≡ L/c (equation 5) and tcool,IC(γ cool,2) ≡
L/c (equation 31). Consequently, tcool,IC(γ cool,2) = tX(γ cool,2), which
implies γ max = γ cool,2 = γ rad,IC. By similar reasoning, one can show
that, if γ cool,2 = γ rad,IC, then γ cool,2 = γ max. Continuing to reduce γ KN

beyond this ‘triple point’ yields the scale ordering γ rad,IC � γ max

� γ cool,2 (typified in the γ KN = 3γ cool curve of Fig. 5, although
the separation of scales is rather small in that example). The first
of these inequalities, γ rad,IC � γ max, means that no particles achieve
radiative saturation; all have Lorentz factors γ <γ rad,IC (see Section 2
discussion). The second inequality γ cool,2 � γ max, potentially allows
various acceleration channels (e.g. X-point acceleration if γ X >

γ cool,2) to break a population of high-energy particles through the
weakly radiative γ = γ cool,2 barrier.

To summarize up to this point, we have encountered several stark
departures from the Thomson picture of radiative cooling induced
by finite γ KN. Not only do particles with Lorentz factors γ > γ KN

radiate their energy in discrete chunks, but their radiative cooling
times can actually be quite long. When γ KN � γ rad,T, the effective
cut-off Lorentz factor γ rad,IC begins to grow rapidly, and comes, with
just a small change in γ KN, to exceed γ max, the analogue of the Hillas
Lorentz factor for relativistic magnetic reconnection. When γ KN is
decreased even more, eventually it falls below γ cool, and no particles
in the system radiate efficiently. Thus, even in a nominally strongly
radiative Thomson scale ordering, by making γ KN small enough,
a non-radiative regime can be reached. At intermediate γ KN, a
variety of intriguing and exotic physical effects can occur, which
we elucidate later in this study. But first we cover one additional
piece of physics that is entirely new to the Klein–Nishina realm:
pair production.

3.2.1 Pair production in Klein–Nishina reconnection

A Comptonized photon of energy ε may collide with a background
photon (energy εph) to produce an electron–positron pair if the
threshold criterion, εεph ≥ (mec2)2, is met. In this work, we assume
that γ KN = mec2/4εph � 1 (εph � 100 keV), implying that ε �
mec2 � εph is required to reach pair-production threshold. Such a
high-energy photon can only be emitted in the Klein–Nishina IC
regime. (The first author would here like to acknowledge Benoı̂t
Cerutti, who originally pointed this out to him.) If one assumes that
the IC scattering occurs in the Thomson limit, then a contradiction
arises because 1 ≤ εεph/(mec2)2 ∼ (γ εph/mec2)2 ∼ q2. In contrast,
assuming a Klein–Nishina scaling ε ∼ γ mec2/2 yields the self-
consistent result, q ≡ 4γ εph/mec2 ∼ 8εεph/(mec2)2 ≥ 8. We adopt γ pp

≡ 8γ KN (used mainly in Section 4) as the characteristic minimum
particle Lorentz factor to emit above-threshold photons.

Now, the pair-production cross-section σγγ is zero precisely at
threshold, εεph = (mec2)2, but, for the (isotropic, monochromatic)
background distribution (11), it soon peaks at σγγ � σ T/5 when εεph

� 3.6(mec2)2 (Gould & Schréder 1967). For such photons q ∼ 3.6 × 8
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(a)

(b)

(c)

Figure 7. Basic orderings of γ KN with respect to γ cool, γ rad,T, and γ max.
Note that γ rad,T ≡ (γ coolγ max)1/2 (equation 9). The case γ max < γ rad,T <

γ cool, which is non-radiative irrespective of γ KN, is not considered. The
pair-production optical depth τγ γ ∼ γ KN/γ cool is roughly the separation
between γ KN and γ cool. The cut-off γ rad,IC is virtually identical to γ rad,T

when γ rad,T � γ KN; otherwise, it is much larger than γ rad,T. Case A:
A Thomson radiative reconnection ordering (Section 2); γ rad,T � γ KN

prevents particles from accessing the Klein–Nishina regime and from emitting
above-threshold photons. Case B: A scale hierarchy where Klein–Nishina IC
losses (because γ KN � γ rad,T) and pair production (because γ cool � γ KN

implies τγ γ � 1) are both likely. Case C: All orderings with γ KN � γ cool are
non/weakly radiative because tcool,IC > L/c. Even the few photons radiated
above pair threshold are not absorbed because τγ γ � 1.

� 30. Hence, although the energy scales at which Klein–Nishina
IC cooling and pair production occur are both set, fundamentally,
by γ KN, they are offset from one another by a factor of about 10−30.
The former kicks in when q ∼ 1 and the latter when q ∼ 8−30. In
this sense, the energy scale γ KN ‘splits’, similarly to σ c,0 (Section 2),
into two that are offset by a fixed ratio.

However, it is not clear that astrophysical reconnection accelerates
particles to energies that are high enough to stray from the Thomson
limit but not to emit pair-producing photons. If, contrary to our
simplified monochromatic assumption, the seed photons have any
spread in energy, then photons Comptonized from the high-energy
end of the background will more easily pair produce with the
lower energy component. Even for a thermal radiation bath, the two
frequencies where the Planck spectrum attains half its maximum
value are offset from each other by about a factor of 5, reducing the
effective splitting of γ KN from a factor of 10−30 to 2−6. The cut-off
in the reconnection-energized particle distribution would then have
to fall precisely in a narrow range for Klein–Nishina effects to kick in
but for pair production to remain impossible. And, even in this case,
only the very highest energy sliver of particles would experience
Klein–Nishina IC losses; most of the particles would still be cooled
in the Thomson regime. Thus, from here on, we assume that Klein–
Nishina IC scattering coincides with the emission of above-threshold
photons in reconnection.

However, just because a high-energy photon is above threshold
does not mean that it gets absorbed inside the reconnection system.
One must also consider the optical depth, τ γ γ = Uphσγγ L/εph, to
pair production. For simplicity, we evaluate τ γ γ at the peak cross-
section σγγ � σ T/5, which is attained when εεph � 3.6mec2. Thus,

τγ γ ≡ UphσTL

5εph
= 3

5

γmaxγKN

γ 2
rad,T

= 3

5

γKN

γcool
. (36)

We have already encountered τ γ γ . It is the (inverse of the) prefactor
in the expression for the cooling time tcool,IC(γ ) in equation (31).
Thus, the condition γ KN > 2.32γ cool (equation 33), which ensures
that at least some particles cool in times shorter than L/c, is the same
as the optically thick condition τ γ γ > (3/5) × 2.32 � 1.

This means that there is an appreciable range of parameters where
one expects both dynamically important Klein–Nishina radiative

cooling and pair production. Both mechanisms may actively feed-
back on the reconnection process when γ cool � γ KN � γ rad,T. The
first relationship, γ cool � γ KN, is necessary both for τ γ γ � 1 and
for min [tcool,IC(γ )] � L/c. The second criterion γ KN � γ rad,T is
required for at least some particles to enter the regime where Klein–
Nishina effects begin to impact their radiative cooling, also enabling
them to emit photons above pair threshold.

We are thus equipped with a simple rule for deciding when
Klein–Nishina and pair-production physics become important in
reconnection. We just assemble all of our energy scales: γ max, σ c,0

(i.e. γ X and 〈γ 〉), γ rad,T, and γ cool, arrange these into a familiar
Thomson hierarchy (as in Section 2), and insert γ KN into a relevant
location. If γ KN is larger than γ rad,T, Klein–Nishina effects are absent
because γ rad,T imposes a hard upper bound on particle acceleration,
and, consequently, no particles ever reach γ KN. If, on the other
hand, γ KN < γ cool, then Klein–Nishina effects suppress cooling so
much that the whole system becomes non-radiative. Only if γ cool

� γ KN � γ rad,T are Klein–Nishina IC cooling and pair production
both important. And, in that case, it is also necessary to consider
how γ rad,T, γ KN, and γ cool are ordered with respect to the other
scales in the problem. These remarks are illustrated in Fig. 7 and
elaborated in the next subsection.

3.2.2 Regimes of Klein–Nishina radiative reconnection

We now systematically explore, as we did for Thomson IC cooling
in Section 2.2.2, how to classify regimes of Klein–Nishina radiative
reconnection. As an example, consider the Thomson ordering γ max

> γ rad,T > γ X > 〈γ 〉 > γ cool (4th row in Table 1). If we insert γ KN

between γ rad,T and γ X, then Klein–Nishina effects do not affect
primary X-point acceleration. They only come into play if secondary
energization channels can push particles up to γ ∼ γ KN. If γ KN

is instead placed between γ X and 〈γ 〉, Klein–Nishina radiative
cooling definitely impacts high-energy particles accelerated near X-
points, and these particles are also likely to emit pair-producing
photons. Klein–Nishina and pair-production physics become even
more important if γ KN is made smaller than 〈γ 〉 ∼ σ c,0/4. Then, the
bulk of the accelerated particles – not just the high-energy tail – emit
in the Klein–Nishina regime and, likely, many pairs are produced.

Because γ KN is not the only new scale, but also introduces a
few derived scales (e.g. γ cool,2 and γ rad,IC), exhaustively discussing
all possible regimes like in Section 2.2.2 is prohibitively tedious.
Even in the preceding paragraph, we did not consider subtleties such
as whether γ X > γ cool,2, in which case some high-energy particles
radiate inefficiently. In lieu of an exhaustive discussion, we supply
Fig. 8, a ‘phase diagram’, in the γ rad,T/σ c,0–γ KN/σ c,0 plane, of the
complex radiative parameter space for Klein–Nishina reconnection.
The parameter space is, in reality, 3-dimensional, depending also
on γ max/σ c,0. To display it in 2D, we set γ max = 103σ c,0 in Fig. 8.

In the figure, contours highlight important values of energy scales
and often distinguish different-coloured regimes of interest. We
caution that the colour scheme is somewhat arbitrary. Almost every
sliver of parameter space enclosed within a set of contours is its
own physical regime, and only a subset of the relevant contours are
shown. Without analysing every possible contour-enclosed region,
the best we can do is group regions based on similar expected
qualitative behaviour, a heuristic that guides the colour-coding in
Fig. 8. However, this exercise is ultimately subjective. A given
grouping is useful for conceptualizing some physical similarities, but
may need to be reevaluated if the physics of main interest changes.
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Figure 8. Radiative phase diagram for Klein–Nishina relativistic magnetic
reconnection. The diagram is inherently three-dimensional – it depends
on γ rad,T/σ c,0, γ KN/σ c,0, and γ max/σ c,0 – but we display a 2D slice
where γ max = 103σ c,0. In the plot, σ c,0 is abbreviated as σ . Contours show
important equalities between energy scales. The γcool,i = const. contours
transition, when they strike the curve γ KN = 2.32γ cool, from a dashed
portion along which γ cool,2 is fixed, to a dotted portion where γ cool,1 is
fixed to the same value. Regions with a common colour exhibit similar
qualitative behaviour. The colours are inspired by assuming that γ X = 4σ c,0

and, fictitiously, that X-point acceleration is the only operative energization
mechanism. Thus, the highest Lorentz factor attained is min (γ rad,IC, 4σ c,0).
In the purple region, 4σ c,0 < γ KN, γ rad,IC. Hence, radiative cooling does not
furnish an upper bound on particle acceleration, and no particles suffer Klein–
Nishina losses. In the orange region, γ rad,IC < γ KN, 4σ c,0. Here, Thomson
IC losses firmly cap the maximum particle energy to γ rad,IC � γ rad,T < γ KN,
and, consequently, the highest energy particles are radiatively saturated. In the
blue region, γ KN < γ X, γ rad,IC and γ rad,IC < γ max < γ cool,2. Because γ KN

< γ X some particles reach q ≥ 1. In addition, in the subset of the region
where γ rad,IC < γ X = 4σ c,0, the highest energy particles are radiatively
saturated. The red region is defined by γ rad,IC > γ max > γ cool,2 > 4σ c,0.
Thus, radiative losses do not bound particle acceleration, and, as a result,
there is likely a broad spectrum of particles above the threshold energy γ �
8γ KN to emit pair-producing radiation. In the green γ cool,2 < 4σ c,0 region,
Klein–Nishina effects suppress cooling so that some high-energy particles
are weakly radiative, having γ > γ cool,2 and, hence, tcool,IC > L/c. In the
white γ KN < 2.32γ cool region, all particles have tcool,IC > L/c.

We now describe the (colour-coded) grouping of regions adopted
in Fig. 8. We begin with the fundamentally new domains corre-
sponding to case B in Fig. 7, γ cool < γ KN < γ rad,T, where Klein–
Nishina effects feature prominently. One of these is the blue area, in
which γ KN < γ rad,IC and γ rad,IC < γ max < γ cool,2. In this area, the
overall radiative cut-off Lorentz factor γ rad,IC is finite (less than γ max)
while γ cool,2 is not (γ cool,2 > γ max). This means that, despite Klein–
Nishina suppression of the IC cross-section, radiative losses may
still regulate the highest achievable energies. To illustrate this, the
contour γ rad,IC = 4σ c,0 = γ X is drawn (in this discussion, we assume
that γ X = 4σ c,0 for definiteness), below which IC radiation limits di-
rect acceleration near reconnection X-points. Straying from the blue
region across the line γ max = γ rad,IC = γ cool,2 lands one in the red area.
Here, the ordering of γ cool,2 and γ rad,IC about γ max is flipped: γ cool,2

< γ max < γ rad,IC. Thus, the radiative cut-off energy γ rad,IC is no
longer finite, but the energy γ cool,2, beyond which particles are weakly
radiative (cooling on time-scales longer than L/c), is now accessible.
Here, it may be possible for high-energy particles to surpass γ cool,2

and enter into a weakly radiative regime. As one moves to the north-
west through the red region, γ cool,2 becomes lower. Eventually, when

the contour γ cool,2 = 4σ c,0 is crossed, γ cool,2 falls below γX (= 4σc,0),
guaranteeing that some particles venture into the high-energy Klein–
Nishina weakly radiative limit. Continuing even farther upward in
the diagram, one eventually crosses the γ KN = 2.32γ cool line, where
the whole system becomes virtually non-radiative (case C in Fig. 7).

Finally, let us discuss Fig. 8 regions corresponding to case A
of Fig. 7 (γ cool < γ rad,T < γ KN, γ max). The first of these is the
orange area, where γ rad,IC � γ rad,T < γ KN, γ X. Here, IC radiation
limits X-point energization to below γ KN. In the final remaining
region, the purple area, we have 4σ c,0 = γ X < γ rad,IC, γ KN. In
this regime, radiative losses do not inhibit X-point acceleration, and
X-point acceleration also cannot promote particles to high enough
energies to stray outside the Thomson IC cooling limit.

Having overviewed the rich radiative parameter space available
to IC-cooled relativistic reconnection, we now specialize to one as-
yet relatively unexplored regime where pair production and Klein–
Nishina radiative cooling can conspire together to form an important
self-regulation mechanism. We devote the following section to a
theoretical exploration of this pair-regulated Klein–Nishina radia-
tive reconnection. We discuss applications to reconnection-driven
emission from ADCe and FSRQ jets in Section 5.

4 A M O D E L O F PA I R - R E G U L AT E D
K L E I N – N I S H I NA R E C O N N E C T I O N

This section explores technical aspects of reconnection with Klein–
Nishina radiative cooling and pair production. The general picture
is that pairs are primarily born into the upstream region, where they
load the plasma energetically (i.e. the pairs are hot) but not from a
number density standpoint (i.e. the pairs are tenuous). Before diving
in, we state the following basic assumptions to clarify the relevant
region of radiative phase space (in the sense of Fig. 8):

(i) Radiation takes place in the Klein–Nishina regime, where γ KN

< γ rad,IC and γ KN < γ X.
(ii) The reconnection region is radiatively efficient, with all

particles accelerated above γ cool,1 � γ cool cooling in less than a
dynamical time L/c and most particles reaching these energies: 〈γ 〉
� γ cool.

(iii) The pair-production mean free paths λmfp of all gamma-rays
above pair threshold are

(a) independent of photon energy, and
(b) between the full thickness � of radiation zones – the

parts of the reconnection layer where above-threshold photons
are produced – and the layer’s full length L, i.e. � � λmfp � L.

As a reminder, we refer to as the ‘layer’ the region of the system
threaded with reconnected magnetic flux.

Assumption (i) places us in the Klein–Nishina – i.e. blue or red
– region of the radiative phase diagram (Fig. 8). Assumption (ii)
excludes the white and green regions, implying that all of the
accelerated particles – from the average energy 〈γ 〉 to the cut-off
energy – are between γ cool,1 and γ cool,2, and hence are strongly
cooled. Statement (iii)(a) is not strictly true, but the pair-production
cross-section σγγ (ε) varies relatively weakly with energy beyond
its peak σγγ (ε) � σ T/5 when ε � 3.6(mec2)2/εph. For exam-
ple, σγγ (100m2

ec
4/εph) � 0.08σT. Finally, the inequality λmfp � L

in assumption (iii)(b) means that almost all above-threshold photons
produced in the system are also absorbed in the system, and � �
λmfp further means that absorption predominantly occurs in the inflow
(upstream) plasma. Note that we distinguish between the effective
full thickness of the reconnection layer itself, which could be taken
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as the width of the largest plasmoids � 0.1 L (Uzdensky, Loureiro
& Schekochihin 2010), and the thickness, �, of the radiation zone,
which (as discussed below in Section 4.1) could be much thinner,
even approaching the thicknesses of interplasmoid current layers. We
illustrate the difference between � and 0.1L in Fig. 9.

In addition to all of these assumptions, we ignore effects due
to synchrotron radiation. These enter at energy scales γ > γ s

[see equation (28) and its surrounding discussion]. We estimate γ s

for certain astrophysical systems, and comment on the consequent
limitations on the applicability of our model, in Section 5.

To investigate the basic features of reconnection in this radiative
regime, we begin (Section 4.1) with some relatively simple energy-
budget arguments. Based on energy considerations alone, we show
that a self-regulated steady state or limit cycle should emerge –
irrespective, even, of whether a pair cascade develops in the upstream
region. We then decorate this basic picture by analysing the number
of produced pairs. This shows (Section 4.2) that an exponential pair
cascade, with each generation containing a constant factor >1 more
particles than the previous one, is not expected except for (almost
unrealistically) efficient particle acceleration in the reconnection
layer. We further apply detailed information on the distribution of
newborn pairs, showing that (Section 4.3), for σ c,0 � γ KN, these
should be fewer than those originally present in the upstream region.

4.1 The large energy density of newborn upstream pairs

Because we assume a radiatively efficient reconnection layer (ii), a
sizeable fraction (e.g. one-half; Werner et al. 2019) of the inflowing
Poynting flux is promptly emitted. A fraction F of this radiated
energy lies above pair threshold with the ambient photon bath and
therefore penetrates only a distance λmfp [assumption (iii)(b)] into the
upstream plasma on both sides of the layer.4 There, it is recaptured
as newborn hot pairs and, ultimately, readvected into the layer. If
the energy density of fresh pairs is high enough, the overall enthalpy
density w = w0 + wγγ of inflowing material substantially increases.
This reduces the effective hot magnetization

σh ≡ B2
0

4πw
(37)

below σh,0 = B2
0 /4πw0 (equation 7), which characterizes the far

upstream region (beyond λmfp from the layer). In our convention,
subscript ‘0’ denotes far upstream quantities and subscript ‘γ γ ’
quantities sourced by pair creation within λmfp of the layer. Corre-
sponding naked symbols (e.g. σ h or w) are decided by a combination
of pair-creation-sourced and far upstream values.

A reduced effective σ h may strongly suppress the efficiency of
NTPA in the layer (e.g. Guo et al. 2014, 2015; Sironi & Spitkovsky
2014; Sironi, Giannios & Petropoulou 2016; Werner et al. 2016,
2018; Werner & Uzdensky 2017; Ball, Sironi & Özel 2018). This
enables a negative feedback loop, in which a layer fed initially by
highly magnetized (σ h,0 � 1) plasma efficiently accelerates particles
to gamma-ray emitting energies. The gamma-rays, in turn, produce
pairs in the inflow region, reducing its effective magnetization and,
hence, suppressing subsequent NTPA (cf. Hakobyan et al. 2019;
see Fig. 1). In this section, we calculate the fixed point σ h for this

4For simplicity, we ignore kinetic beaming (Uzdensky et al. 2011; Cerutti
et al. 2012b; Mehlhaff et al. 2020), which produces potentially important
anisotropy in the distributions of high-energy particles and their emitted pho-
tons. We comment on expected consequences of this beaming in Appendix C
but ultimately defer its full treatment to a future simulation study.

Figure 9. A more detailed view of the Klein–Nishina radiative reconnection
system. The layer (region threaded with reconnected flux) contains subregions
– radiation zones – where particles are radiating photons above pair-
production threshold (gold). These occupy a combined fraction L′/L < 1
of the layer’s full length. They are also thin, having full transverse width, �

� 0.1L, much smaller than the expected size of the largest plasmoids. A
detailed view of a hypothetical radiation zone is displayed on the lower half
of the plot. The thinness of the region ultimately stems from the kinetic-scale
current sheets where particles (red dots) are accelerated near reconnection X-
points. Following their impulsive acceleration in these locations, the particles
(magenta dots) are magnetized by the reconnected magnetic field, which
carries them away from the vicinity of an X-point. We concentrate on particles
(green dots) confined to one reconnected field line. Before these particles are
able to fill an entire ring in a large plasmoid where they eventually end up,
they cool down below the minimum energy γ pp (light blue dots) to radiate
photons above pair-production threshold. The transition point where particles
cool below γ pp – where the colouring changes from green to light blue –
determines both the length of the radiation zone (distance from the X-point)
and its width, i.e. the spread in red/magenta/green particles (those with γ >

γ pp) about the mid-plane.

feedback loop. Additionally, we determine the conditions governing
whether the system asymptotically approaches its fixed point in a
late-time steady state. We further show that, if the fixed point is not
reached, the system exhibits undamped, large-amplitude cycles of
copious pair creation followed by shutdown of NTPA.

The Poynting flux delivered to the reconnection layer (per unit
length in the out-of-plane direction) is

PPoynt ∼ 2Lβrecc
B2

0

4π
. (38)

The leading factor of 2 results from Poynting flux entering the
reconnection region from two directions. If half of this power is
given to particles that quickly [within L/c; assumption (ii)] radiate it
away through the IC process, the volume-averaged IC emissivity jIC

(power radiated per unit volume) in the reconnection layer satisfies

jIC�L′ ∼ 1

2
PPoynt ∼ Lβrecc

B2
0

4π
, (39)

where L′ is the combined length of all radiation zones in the reconnec-
tion layer. One can ignore all plasmoid/current-sheet substructure,
taking the entire layer to be one large radiation zone, by setting L′

= L. However, given our assumption (ii) of a radiatively efficient
reconnection system, L′ may actually be shorter than L. This is
because particles may cool to below the minimum energy, γ pp ≡
8γ KN (Section 3.2.1), to emit pair-producing photons before travel-
ling far from their primary X-point acceleration sites. Moreover,
as particles travel away from an X-point, they also spread out
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Figure 10. Left: A plot of F (p, z) as a function of z ≡ γ 2/γ KN for several values of p. Dot–dashed lines indicate limz→∞ F (p, z). Right: A plot of F (p, z) as
a function of p for several values of z. The fraction F is strongly dependent on p but not on z (at least after the threshold value z = 8 is crossed).

about the reconnection mid-plane. Thus, a cooling limit on the
combined length of radiation zones (such that L′ < L) also limits
their effective thickness, �, potentially keeping them much thinner
than the characteristic large-plasmoid width (e.g. � < 0.1L; Fig. 9).

To determine the total enthalpy density w and, from it, the effective
magnetization σ h (equation 37), we need to know the fraction F
of power radiated away from the reconnection layer above pair-
production threshold (and, hence, captured in the upstream region
as electron–positron pairs). Using γ pp along with the distribution
function of radiating layer particles dN/dγ , F reads

F =
∫∞

γpp
dγ dN/dγ PIC(γ )∫∞

1 dγ dN/dγ PIC(γ )
. (40)

To evaluate F , we insert a power-law reconnection-energized pair-
plasma distribution:

dN

dγ
= A

{
γ −p γ1 ≤ γ ≤ γ2

0 otherwise
, (41)

where A is a normalization factor and γ 1 � γ KN is assumed. If p
< 3, the γ 2-dependence of PIC(γ ) when γ � γ KN suppresses the
dependence of F on the onset energy γ 1 � γ KN of the power law,
and γ 1 can thus be taken to unity. If, instead, p ≥ 3, the onset
energy, γ 1, can also be ignored – the same dependence, PIC(γ �γ KN)
∝ γ 2, pushesF to zero independently of γ 1. Thus, our assumption γ 1

� γ KN is equivalent to setting γ 1 = 1.
Substituting, now, (14) and (41) into (40), as well as putting γ pp

= 8γ KN and γ 1/γ KN = 0, gives

F (p, z) =
∫ z

8 dx x−p+2fKN(x)∫ z

0 dx x−p+2fKN(x)
, (42)

where z ≡ γ 2/γ KN. Fig. 10 displays F (p, z) computed ac-
cording to (42). The graphs confirm the above argument
that limp→3 F (p, z) = 0 for all z. Furthermore, because fKN(x) ∼
ln (x)/x2 as x → ∞, when p ≤ 1, the integrals in (42) diverge with z,
but in such a way that F = 1. This signals that virtually all radiation
from the layer is emitted above pair threshold. Fig. 10 also shows
that, modulo a strong z-dependence near pair threshold z = 8,F (p, z)
becomes nearly z-independent once z � 12. Essentially, F (p, z �
12) � F (p,∞).

Next, we explicitly connect the fraction F to the effective hot
magnetization σ h. The power FjIC�L′ shining out of the reconnec-
tion layer’s radiation zones penetrates a distance λmfp back into the

upstream area before being deposited as hot pairs. Assuming this
deposition is approximately uniform in space up to a distance λmfp

above and below the reconnection layer, hot pairs add to the upstream
plasma energy density at a rate duγ γ /dt satisfying

duγγ

dt
(2λmfp)L ∼ FjIC�L′

⇒ duγγ

dt
∼ FjIC

2

�

λmfp

L′

L
∼ F βrecc

λmfp

B2
0

8π
. (43)

In the first line, we assume that, as the radiation propagates away
from the layer, it also fills in the gaps between radiation zones so that
the upstream region receives pairs approximately uniformly across
its length L. The second line in (43) is obtained from the first by
plugging in equation (39). The factor of 2 accounts for radiated
energy being absorbed both below and above the layer.

Consider a plasma parcel with initial energy density u0 that starts
far upstream, |y| � λmfp, of the layer. The parcel is advected inward
at transverse velocity vy = − sign(y)βrecc � − sign(y)0.1c, and,
upon reaching the pair-creation zone, |y| ∼ λmfp, begins accruing
additional energy at the rate duγ γ /dt. The extra energy acquired in
transit from |y| ∼ λmfp to the layer ( |y| ∼ �) is simply

u+
γ γ ∼ 1

βrecc
(λmfp − �)

duγγ

dt
� λmfp

βrecc

duγγ

dt
∼ F B2

0

8π
. (44)

The accumulated internal energy density u+
γ γ is less than B2

0 /8π

because F ≤ 1, but it can still far exceed u0 given sufficient
magnetization σ h,0 � 1. The superscript ‘+’ denotes that this is only
energy added to the plasma; we have not yet considered that some
energy may be lost en route to the layer – either through radiation or
because particles physically escape the system.

Importantly, the ‘readvection time’ tra ≡ λmfp/β recc cancels in (44).
Thus, whether the pair-creation zone is truly confined to transverse
distances |y| ∼ λmfp or occupies a much larger region (for example,
for an N-generation pair cascade, one expects |y| ∼ √

Nλmfp � λmfp

– a possibility that we entertain in Section 4.2), u+
γ γ remains

approximately the same. For reference, the readvection time is related
to the global dynamical time L/c through

tra ≡ λmfp

βrecc
� 10

τγ γ

L

c
, (45)

where we used λmfp = L/τ γ γ and β rec � 0.1. Note that the prefix
‘re’ in ‘readvection’ applies only to the energy, which is captured
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again by the reconnection layer. The pairs that carry this energy, by
contrast, are advected into the layer for their first time.

We now estimate uγ γ , the energy density retained by the fresh
plasma swept into the reconnection layer. This yields the enthalpy
density wγγ and, through equation (37), the effective hot magnetiza-
tion σ h. Now, uγ γ is less than the deposited energy density u+

γ γ

because, while travelling to the layer, newborn pairs may both
radiatively cool and escape the system. To account for this, we define
the energy recapture efficiency, ξ ≡ uγγ /u+

γ γ ≤ 1, and write

ξ = fnocoolfnoesc . (46)

Here, fnocool and fnoesc are, respectively, the fraction of the accumulated
energy that is not radiated away (fnocool) and that is not lost through
escaping particles (fnoesc).

We calculate the cooling factor fnocool in detail in Appendix B.
There, we identify a physically allowed range fnocool ∈ [3/400, 1]
and show how, within this interval, fnocool depends on the other
parameters in the problem (on the effective magnetization σ h and
on the cut-off z). While that calculation allows us to compute σ h

self-consistently (since, in reality, fnocool depends on σ h), it is
mathematically complicated. Furthermore, we find that the main
qualitative features of self-regulated Klein–Nishina reconnection are
captured by treating fnocool as an independent parameter and scanning
it across the allowed interval [3/400, 1]. That is the approach we adopt
in this section.

In addition to this simplified prescription for fnocool, we set the
escape factor fnoesc to unity, effectively putting ξ = fnocool. This is
what one expects if the time L/c for a relativistic particle to stream out
of the system is longer than the readvection time (45), which is true
for τ γ γ � 10 (and hence for a broad range of radiative parameters).
We comment more thoroughly on the many additional kinetic effects
that may influence fnoesc in Appendix C. However, because most of
these effects tend to push fnoesc towards unity, we simply leave fnoesc

� 1 from here onward.
Using ξ , the energy density of fresh pairs entering the reconnection

layer is

uγγ = ξu+
γ γ ∼ ξF B2

0

8π
. (47)

If these pairs are relativistically hot, then pγ γ = uγ γ /3 and wγγ = pγ γ

+ uγ γ � (4/3)uγ γ ; otherwise wγγ = uγ γ . We take wγγ = (4/3)uγ γ –
still a good approximation in the non-relativistic limit.

The effective inflowing plasma magnetization σ h is then

σh ≡ B2
0

4π (w0 + wγγ )
= B2

0 /4πw0

1 + wγγ /w0
∼ σh,0

1 + 2ξFσh,0/3
. (48)

Equation (48) encodes two main possible fixed points for σ h. The
first is when ξFσh,0 � 1. Then, pair production is too inefficient
to load the upstream plasma substantially and the solution to (48)
is simply σ h � σ h,0. The other regime is when ξFσh,0 � 1. In this
situation, hot pairs suppress σ h to a universal value

σh ∼ 3

2ξF , (49)

which is entirely independent of σ h,0. Not only is (49) universal,
but, in principle, it can be solved to yield self-consistent values
of σ h and p. This is because the effective magnetization governs
the efficiency of NTPA (cf. Werner et al. 2016, 2018; Werner
& Uzdensky 2017; Ball et al. 2018) and ultimately specifies the
power-law index p. One only needs to know the reconnection NTPA
‘equation of state’, p(σ h).

Figure 11. Solutions to equations (49) and (50) for several ξ values. Lower ξ

causes the pairs born into the upstream region to cool more. This somewhat
inhibits the feedback mechanism by reducing the overall enthalpy density w

= w0 + wγγ � wγγ of plasma arriving at the layer.

Let us assume that a suitable p(σ h) can be borrowed from non-
radiative reconnection studies. We take

p(σh) = 1 + 2/
√

σh , (50)

which can be obtained from fitting the data in fig. 3 of Werner et al.
(2016) to the general form p = C0 + C1/

√
σh used by Werner &

Uzdensky (2017) (see also Ball et al. 2018; Werner et al. 2018).
We acknowledge that the distribution dN/dγ in equation (41) is the
instantaneous distribution of radiating particles in the reconnection
layer, which – in our radiative context – may differ from the injected
(non-radiative) power-law distribution characterized by p(σ h). Later
on, we account for approximate radiative modifications to the
distribution of emitting particles. For mathematical transparency,
however, in this first calculation, we plug (50) directly into our
expression for F .

To simplify further, we take z = γ 2/γ KN → ∞ when evaluating F
even though calculating σ h and p runs the same for any z. As
previously remarked, the fraction F (p, z) is relatively z-independent
as long as z � 12, so taking z → ∞ gives a solution representing a
wide range of likely values (i.e. almost all values beyond those very
close to the threshold z = 8 for pair production to turn on).

We now solve (49) and (50) for a variety of ξ values and graphically
present the solutions in Fig. 11. A lower ξ (lower fnocool) increases
radiative cooling of newborn pairs as they travel towards the recon-
nection layer. This diminishes their enthalpy density, wγγ (which,
nevertheless, still dominates over the initial plasma because w =
w0 + wγγ � wγγ ), enhancing the effective magnetization σ h, and,
through p(σ h), hardening the resulting distribution of reconnection-
energized particles.

In Fig. 11, we solve equations (49) and (50) rather than the more
general form (48). This presupposes that the solution σ h is much
smaller than the original (far upstream) hot magnetization σ h,0. To
illustrate the effect of a finite σ h,0, we also display solutions to
equation (48) for σ h,0 = 100 in Fig. 12. As expected, a finite σ h,0

has relatively little impact on the value of σ h when σ h � σ h,0 –
the universal regime in which the solution is insensitive to the far
upstream magnetization. However, as the resulting solution σ h gets
closer to σ h,0, the approximate solution obtained from (49) becomes
less accurate. This occurs roughly when ξ ∼ 1/σ h,0 (compare, for
example, the solutions obtained for ξ = 0.03 = 3/σ h,0 in Figs 11
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Figure 12. Solutions to the more general equations (48) and (50) using σ h,0

= 100. Unlike equation (49), equation (48) does not assume a priori that σ h �
σ h,0. The figure also depicts the stability of each solution. Systems starting
with magnetization σ h,0 transition to a new magnetization σ h,1 = h(σ h,0)
after approximately one readvection time λmfp/βrecc. This is illustrated for
each ξ by a horizontal line running left from h(σ h,0) to the corresponding
new value of σ h,1 on the blue diagonal [which represents the curve x = h(x)].
Then, after another readvection time, the second modified magnetization σ h,2

= h(σ h,1) is reached. This is represented by both an upward-running dashed
line from σ h,1 to h(σ h,1) and a horizontal line, from left to right, terminating on
the corresponding value σ h,2 on the diagonal. Further transitions are denoted
by one vertical and one horizontal dashed line: either down-then-left or up-
then-right. For low ξ , the system approaches the fixed point σ h after just a
few transitions. For high ξ , pair feedback is so efficient that the system gets
stuck in a two-state swing cycle.

and 12). In addition, Fig. 12 illustrates the stability of the fixed
point σ h, which is the topic of the next section.

4.1.1 Stability of the pair-loaded σ h

Now that we know how to calculate the fixed point σ h, we can
also begin to ask whether a system that starts from the initial
magnetization σ h,0 actually approaches σ h at some late time. We
call the fixed point ‘stable’ if the plasma feeding the reconnection
layer approaches a quasi-steady magnetization σ h, and ‘unstable’
otherwise. Where necessary, we further distinguish ‘global stability’,
which refers to the notion of stability just described, from ‘local
stability’, which is simpler, and only determines whether a system
that starts at a magnetization some infinitesimal distance δσ h away
from σ h approaches σ h.

To discuss stability quantitatively, we abbreviate the right-hand
side of (48) as

h(x) ≡ σh,0

1 + 2ξ F [p(x),∞] σh,0/3
. (51)

A system that begins with initial magnetization σ h,0 (i.e. before
any pairs have been produced) accelerates a distribution of particles
in the reconnection layer with a power-law index p(σ h,0) given by
equation (50). These particles then radiate photons, some of which are
above pair threshold with the background radiation and consequently
– after a time ∼λmfp/c – pair produce somewhere in the zone |y|
� λmfp. The newborn pairs are then advected towards the layer,
reaching it after a readvection time tra = λmfp/β recc. At that point the
layer witnesses a new effective magnetization σ h,1 that is determined
by σ h,0 via σ h,1 = h(σ h,0). Assuming that the time for the layer

to respond to a new magnetization is smaller than λmfp/β recc, the
lag time between when the layer starts processing a σ h,0-plasma and
when it starts to see a σ h,1-plasma is λmfp/c + λmfp/β recc � λmfp/β recc.
Thus, the readvection time characterizes the transition period from
the initial magnetization σ h,0 to the first modified magnetization σ h,1.

By similar reasoning, after about nλmfp/β recc, the layer witnesses
effective magnetization

σh,n = h(σh,n−1) . (52)

Thus, the system approaches the fixed point σ h as an asymptotic
steady state if limn → ∞σ h,n = σ h. Of course, if the convergence is
slow, then the system may not actually reach the fixed point σ h (even
though it is stable) before reconnection finishes. All that is certain in
that case is that oscillatory swings about σ h are damped: with each
successive readvection time, the system reaches a magnetization that
is somewhat closer to the asymptotic steady state. However, if the
long-time limit of the iterated map σ h,n = h(σ h,n−1) does not approach
the fixed point σ h, then some other behaviour occurs. That late-time
outcome is large-amplitude, undamped oscillations about σ h between
two states, one with a low magnetization σ h,< < σ h and one with
a high value σ h,> > σ h. The high-σ h,> state drives efficient NTPA
in the reconnection layer and, consequently, pair production in the
upstream region. When the created hot pairs reach the layer, they
initiate the low-σ h,< state, where NTPA is shut down, pair creation
ceases, and, eventually (after another λmfp/β recc), the high-σ h,> state
is restored. The cycle repeats from there.

Both behaviours – an asymptotic steady state and a late-time two-
state cycle – are illustrated in Fig. 12. For low-energy recapture
efficiency ξ , the system tends towards a steady state; when ξ

is increased beyond a critical threshold, the system bifurcates,
asymptotically favouring large-amplitude swings. This can be un-
derstood as follows. For efficient feedback, so much of the energy
radiated from the layer is caught in, and then recaptured from, the
upstream region that the system overshoots the fixed point σ h by
a wide margin. This chokes subsequent pair-producing emission
from the layer effectively enough that the system violently ricochets
back to a high magnetization, getting caught between two extreme
magnetizations σ h,< and σ h,> as described above.

We now show how this physical picture is encoded in our
mathematical machinery. As is well known from the theory of iterated
maps, the fixed point σ h = h(σ h) is locally stable if |h′(σh)| ≤ 1
(meaning, as discussed before, that magnetizations σ h + δσ h move
towards σ h with each successive iteration). Higher ξ lowers the
curve h(x), which increases the magnitude of the slope h

′
(σ h) (i.e.

makes it more negative) at the location of the fixed point (see Fig. 12),
pushing the system towards the instability threshold |h′(σh)| = 1 for
swing cycles. Even though this is only a local stability condition, we
argue in Appendix D that, for the restricted class of monotonically
decreasing h(x) functions, local instability is sufficient for global
instability: σ h is never approached by systems that start at σ h,0

when |h′(σh)| > 1. In that case, the late-time dynamics consist of
a two-state swing cycle. In contrast, if |h′(σh)| < 1, the system may
or may not converge towards σ h depending on the details of the
map function h(x). However (as also argued in Appendix D), at late
times, all monotonically decreasing h(x) functions result in either a
steady state or a swing cycle. For such functions, no other late-time
dynamics are allowed.

To illustrate these remarks, we supply Fig. 13. That figure displays
the fixed point σ h as a function of ξ . The system bifurcates at a critical
value of ξ = ξ c � 0.84: the fixed point σ h becomes unstable [ |h′(σh)|
goes above 1] and a new attractor for the late-time dynamics appears –
a two-state cycle characterized by a low magnetization σ h,< < σ h and
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4548 J. M. Mehlhaff et al.

Figure 13. The fixed point σ h of the reconnection layer [i.e. of the iterated
map σ h,n = h(σ h,n−1) with h(x) as defined in equation 51] plotted as a function
of ξ . Also displayed are the magnitude of the slope of h(x) evaluated at the
fixed point and the low-σ h,< and high-σ h,> magnetizations associated with
two-state cycles. At the critical value ξ = ξ c � 0.84, the system undergoes
a bifurcation: the fixed point σ h goes unstable, as signalled by |h′(σh(ξ ))|
crossing above 1. The fixed point still exists when ξ > ξ c (and is indicated
by a dotted line in that case), but does not control the late-time dynamics.
Instead, the system comes to hop between two magnetizations σ h,< < σ h

and σ h,> > σ h.

a high magnetization σ h,> > σ h. Importantly, the condition |h′| > 1
implies that the system traps into a limit cycle at late times. While,
in general, it is not the case that |h′| < 1 implies convergence to the
fixed point σ h, for this particular system that happens to be true. (We
discuss a case where this does not hold in Appendix B.)

4.1.2 Calculating σ h with more realistic radiative feedback

Having established the mathematical techniques for computing the
self-regulated magnetization σ h and determining its stability, we now
repeat our calculation with more physical realism. In particular, we
modify our assumed layer particle distribution dN/dγ from a single
power law, as in (41), to a broken power law

dN

dγ
= A

{
(γ /γKN)−pT γ ≤ γKN

(γ /γKN)−pKN γ > γKN
. (53)

This allows us to account for the different expected modifications
to the power-law scaling of the distribution function in both the
Thomson (γ ≤ γ KN) and deep Klein–Nishina (γ > γ KN) regimes.

Given a steady injected particle distribution with power-law
index p, the realized distribution, if cooled in the Thomson limit,
is steepened to index pT = p + 1. In contrast, if one adopts the
approximate form for fKN(q) from equation (17), then, for γ >

γ KN, the actual distribution of radiating particles, in fact, hardens,
attaining a power-law scaling pKN � p − 0.5 (Moderski et al.
2005). We therefore take pT = p(σ h) + 1 and pKN = p(σ h) − 0.5
where p(σh) = 1 + 2/

√
σh as in equation (50). Admittedly, this is

still very crude. It ignores the finite time-scale of particle energization
in the reconnection layer and the finite time it takes for the full energy
range of the distribution function to respond to radiative losses. It
ignores, moreover, the bursty nature of magnetic reconnection at the
highest energies (e.g. Werner et al. 2019; Mehlhaff et al. 2020).
However, these relationships for pT and pKN are at least a first
step towards capturing some of the qualitative effects that radiative
cooling may have on the pair feedback mechanism.

Using (53), the power fraction becomes (cf. equation 42)

F̃(pT, pKN, z) ≡
∫ z

8 dx x−pKN+2fKN(x)∫ 1
0 dx x−pT+2fKN(x) + ∫ z

1 dx x−pKN+2fKN(x)
. (54)

Note that F̃ (pT, pKN, z ≤ 8) = 0, and so it is not necessary to
consider the case z < 1 in the denominator. The fraction F̃ , with pT

= p + 1 and pKN = p − 0.5 is displayed as a function of z and p
in Fig. 14. The opposite impacts of radiative losses in the Thomson
and deep Klein–Nishina limits – where, respectively, the particle
energy distribution tends to steepen and become shallower – have a
pronounced effect on the p-dependence of F̃ . Due to the steepening
of the distribution at lower energies, the denominator diverges when p
> 2 (pT > 3). Meanwhile, due to the hardening in the Klein–Nishina
regime, the fraction F̃ goes to 1 as z → ∞ when p < 1.5 (pKN <

1). This compresses the effective range in p over which F̃ varies.
Whereas our original power fraction F (p,∞) in equation (42) starts
to decline from 1 only once p � 1.5, not reaching zero until p = 3,
our new fraction F̃ (p + 1, p − 0.5, ∞) departs from 1 when p > 1.5
but hits zero already by the time p = 2.

This dramatically impacts the fixed points σ h(ξ ) and their stabili-
ties. In analogy to equation (51), we define

h̃(x) = σh,0

1 + 2ξ F̃[p(x) + 1, p(x) − 0.5, ∞]σh,0/3
. (55)

Fig. 15 displays a few h̃(x) curves, each one with different energy
recapture efficiency ξ . As promised, h̃(x) is flat when p(x) =
1 + 2/

√
x > 1.5 (i.e. when x > 16) because it is here that F̃ = 1.

At the same time, h̃(x < 4) = σh,0 since p(x < 4) > 2, and,
hence, F̃ = 0. The rapid transition in h̃(x) from nearly vertical to
nearly flat between x = 4 and x = 16 induces a sharp transition in
the stability of the fixed point σ h. The fixed point becomes unstable
at ξ = ξ c � 0.30, and further increasing ξ beyond this point yields
much more dramatic swing cycles than did incremental changes
in ξ beyond the threshold ξ c � 0.84 of h in equation (51). By
the time ξ � 0.5, the reconnection layer starts in a swing cycle,
hopping between its initial magnetization σ h,0 = σ h,> and a much
lower magnetization σ h,< < 4. In the low-magnetization state, pair
production completely ceases (F̃ = 0) and, after one readvection
time, the plasma flowing into the layer contains no newborn pair
component and once again possesses the initial magnetization σ h,0.

Although we are still a long way from a detailed model, in this sec-
tion, we have uncovered what appears to be a robust mechanism for
pair feedback on Klein–Nishina relativistic reconnection. An initially
highly magnetized system σ h,0 � 1 can efficiently accelerate gamma-
ray-radiating leptons in the reconnection layer. These gamma-rays
collide with ambient background photons to produce a hot newborn
pair component in the upstream plasma. Subsequently, the new pairs
are advected into the layer where they suppress NTPA and, hence,
the production of additional pairs. This mechanism operates even
when radiative cooling of the layer particles is taken into account.
If the energy recapture efficiency ξ approaches order unity, then the
system undergoes undamped, large-amplitude oscillations between
a high magnetization (even as high as the initial value σ h,0) –
sourcing copious upstream pairs – and a low magnetization where
pair production is completely shut down. For ξ � 1 however,
the system approaches a steady state – characterized by a balance
between upstream pair-loading and particle energization in the layer
– after just one or a few readvection times tra = λmfp/β recc.

MNRAS 508, 4532–4572 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/3/4532/6375433 by U
niversity of C

olorado user on 01 June 2022



Klein–Nishina reconnection 4549

Figure 14. Left: A plot of F̃ (p + 1, p − 0.5, z) as a function of z ≡ γ 2/γ KN for several p. Dot–dashed lines indicate limz→∞ F̃ (p + 1, p − 0.5, z). Right: A
plot of F̃ (p, z) as a function of p for several z. Due to the opposite influences of radiative cooling in the Thomson and deep Klein–Nishina regimes, where the
particle energy distribution tends to be softened and hardened, respectively, the range in p over which F̃ significantly varies compresses relative to that of F (1.5
< p < 2 for the former instead of 1.5 < p < 3 for the latter).

Figure 15. Left: The analogue of Fig. 12 for F̃ (as defined in equation 54) instead of F (as defined in equation 42). Right: The analogue of Fig. 13 for F̃ .
The tendency for radiative losses to steepen the particle distribution in the Thomson regime and, in contrast, to harden it in the deep Klein–Nishina limit creates
a sharp and dramatic bifurcation. The critical value of the energy recapture efficiency ξ c � 0.30 is smaller than ξ c = 0.84 obtained in Fig. 13, indicating that
radiation back reaction makes the system more ‘touchy’: more susceptible to late-time limit cycles. Once ξ exceeds this threshold, the system rapidly transitions
to a two-state cycle featuring very large amplitude swings between the initial magnetization σ h,> = σ h,0 and a small magnetization σ h,< ∼ 1.

4.2 Upstream pair cascades are not generally expected

So far, we have described a fixed point solution in which the
reconnection layer regulates itself, maintaining a universal effective
hot magnetization σ h, or, potentially, exhibiting large-amplitude two-
state limit cycles. The arguments that allowed us to characterize this
behaviour were based solely upon tracing the flow of energy through
the system. We now undertake an analogous program, tracing the
plasma particles instead of the energy.

Here, we must deal with an additional complication that was not
present in the preceding energy-based arguments. Namely, because
of pair production, particle number is not conserved, and one cannot
simply equate the number of pairs born into the inflow plasma
with the number of above-threshold photons radiated away from
the layer. In principle, additional pair creation in the upstream
region can occur: newborn pairs can radiate additional photons
that are themselves above pair-production threshold and capable of
producing secondary pair generations. We address this issue in this

section. As an immediate byproduct of the analysis, we show that
a pair cascade is not generally expected – the number of particles
only grows exponentially in each subsequent pair generation under
certain optimal conditions.

An important quantity here is the distribution of particles (electrons
+ positrons) injected in the inflow plasma as the result of high-energy
photons, originally emitted from the reconnection layer, getting
absorbed in the upstream region. We denote this as

Q(1)
γ γ (γ ) = B1

{
γ −�1 γ

(1)
1 ≤ γ < γ

(1)
2

0 otherwise
. (56)

Here, the superscript ‘(1)’ (subscript ‘1’ on �1 and B1) indicates the
first generation. In this section, we calculate

Q(n)
γ γ (γ ) = Bn

{
γ −�n γ

(n)
1 ≤ γ < γ

(n)
2

0 otherwise
(57)
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4550 J. M. Mehlhaff et al.

the injected distribution of nth-generation pairs, in terms of Q(1)
γ γ (γ ).

The dimensions of Q(n)
γ γ (γ ) are that of a rate: particles per unit time per

unit energy. We have not normalized by spatial volume. Thus, Q(n)
γ γ (γ )

is averaged over the spatial region where nth-generation pair produc-
tion is active. For now, we assume that Q(n)

γ γ (γ ) is a power law and
check this a posteriori.

4.2.1 Newborn pair generations: basic observations

Before calculating the Q(n)
γ γ (γ ) distributions in detail, we offer a few

guiding remarks. These primarily pertain to the range of energies
present in each generation – i.e. to γ

(n)
1 and γ

(n)
2 – and to the number

of generations that the upstream region can support.
As discussed in Section 3, a particle with Lorentz factor γ ≥

γ pp = 8γ KN emits photons of characteristic energy Eγ ∼ γ mec2/2.
Upon absorption by the soft radiation background, these photons
each create two particles with approximate Lorentz factors Eγ /2mec2

∼ γ /4. Thus, the power law (56) begins and ends at energies
about a factor of 4 less than the corresponding energies of layer
particles: γ

(1)
1 ∼ γpp/4 = 2γKN and γ

(1)
2 ∼ γ2/4, (γ 2 is the cut-off

layer particle energy; see equation 41).
In general, the low and high injected energies in each successive

pair generation follow by identical reasoning to those of the first gen-
eration. One has γ

(n)
1 ∼ γ

(1)
1 ∼ γpp/4 = 2γKN and γ

(n)
2 ∼ γ2/4n. The

last generation, N, possesses cut-off at or below the threshold to emit
pair-producing radiation: γpp = 8γKN ≥ γ

(N )
2 = γ2/4N . This caps the

number of generations to N = �log4(γ 2/8γ KN)�, where �x� rounds x
up to the nearest integer. Note that, if log4(γ 2/8γ KN) is not an integer,
then a partial additional generation is produced from the subset of
pairs in the preceding generation with Lorentz factors above γ pp. For
example, if log4(γ 2/8γ KN) is 2.4 – and, hence, N = 3 – then two full
generations are created in addition to a partial third generation.

One may also place a potentially firmer limit on the number of
generations. Note that newborn upstream particles with tcool,IC(γ )
> tra do not radiate before entering the layer, and, thus, do not
yield additional upstream pairs. This condition is marginally satisfied
if γ = γ̃cool such that

tcool,IC(γ̃cool) ≡ 10

τγ γ

L

c
� λmfp

βrecc
, (58)

where, for convenience, we use the approximate form tra � 10L/τ γ γ c
(equation 45). Note that the cooling time tcool,IC is the product
of the readvection time with a dimensionless function of q =
γ /γ KN: namely, tcool,IC(γ ) = (3/50)(10L/τ γ γ c)[qfKN(q)]−1, which
follows from equations (31) and (45). This implies that the solution
to (58) depends only on γ KN – it is independent of all other system
parameters (e.g. γ max, γ rad,T, and σ c,0). Moreover, because tcool,IC(γ )
is non-monotonic (see equation 31, Fig. 5, and the surrounding
discussion), there are actually two solutions to (58). These can be
found numerically and are

γ̃cool,1 � 0.066γKN � (3/50)γKN , (59)

which is in the Thomson limit, and

γ̃cool,2 � 280γKN , (60)

which is in the deep Klein–Nishina regime.
All pairs born into the upstream region with γ > γ̃cool,2

have tcool,IC(γ ) > tra and thus do not radiate before being swept
into the reconnection layer. However, pairs born with γ < γ̃cool,2

(which also have γ > γ̃cool,1 because γ ≥ γ
(n)
1 ∼ 2γKN > γ̃cool,1)

have tcool,IC(γ ) < tra. They maintain this condition as they radiatively

cool all the way until they reach γ = γ̃cool,1, at which point tcool,IC(γ )
= tra. Thus, pairs born between the energies γ̃cool,1 and γ̃cool,2 may
cool all the way down to γ̃cool,1 before entering the layer. (They may
not cool quite this far if not born a full mean-free-path λmfp upstream
of the layer.)

Because first-generation pairs whose parent layer particles had
Lorentz factors ≥ 4γ̃cool,2 do not spawn additional pairs, the
number of generations is limited to N = �log4(4γ̃cool,2/8γKN)� �
�log4(282/2)� = 4. Combining this with the previous limit yields

N = min

[⌈
log4

(
γ2

8γKN

)⌉
, 4

]
, (61)

which slightly modifies the cut-off energies from γ
(n)
2 ∼ γ2/4n to

γ
(n)
2 ∼

{
γ2/4 n = 1
min(γ2, 4γ̃cool,2)/4n n > 1

. (62)

While the first generation’s cut-off is determined entirely in terms of
the layer cut-off γ 2, only particles in the first generation with γ <

γ̃cool,2 can give rise to further generations before entering the layer.
The maximum number of generations N places an important

constraint on the self-regulated reconnection system. The mean
excursion of nth-generation photons (those that create nth-generation
pairs) from the reconnection layer is |ȳ(n)| ∼ √

nλmfp, which scales
with n as a 1D random walk. Thus, photons would begin to escape
the system if N ≥ (L/λmfp)2 � 1. But, because N cannot exceed 4,
this is not expected.

4.2.2 Newborn pair generations: detailed calculation

We now calculate, in detail, the Q(n)
γ γ (γ ) distributions in terms

of Q(1)
γ γ (γ ). To do this, we set up a system of coupled differential

equations for N (n)
γ γ (γ ), the (volume-integrated) distributions of pairs

born into the inflow plasma, and for N
(n)
ph (ε), the (volume-integrated)

distributions of photons residing in the upstream region. To formu-
late these equations, we temporarily add time-dependence to the
distributions though we ultimately specialize to the steady state. The
time-derivatives of the N (n)

γ γ ’s can be expressed as

∂

∂t
N (n)

γ γ (γ, t) = (injection) − (cooling)

= Q(n)
γ γ (γ, t) − ∂

∂γ

(
γ̇ N (n)

γ γ (γ, t)
)

. (63)

Here, we have fictitiously assumed that the discrete Klein–Nishina-
limit cooling of particles can be represented continuously. However,
this approximation has proven to be quite accurate for non-mono-
energetic pair distributions N (n)

γ γ (Zdziarski 1989; Moderski et al.
2005). The signed cooling rate is given by −γ̇ = |γ̇ | = γ /tcool,IC(γ ).

Simultaneously, the time-derivatives of the N
(n)
ph ’s are

∂

∂t
N

(n)
ph (ε, t) = (emission) − (annihilation)

= 2
N (n−1)

γ γ (2ε, t)

tcool,IC(2ε)
− N

(n)
ph (ε, t)

λmfp/c
, (64)

where, in this section only, we write photon energies ε in units
of mec2. The leading factor 2 on the first term comes from the
Jacobian dγ /dε = 2 corresponding to γ = 2ε. Equation (64) is
written explicitly in the Klein–Nishina regime, where each upstream
pair cools in time tcool,IC(γ ), and, when it does, emits a photon
of energy γ mec2/2. Then, each photon travels a distance λmfp in
time λmfp/c before annihilating against the background to produce

MNRAS 508, 4532–4572 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/3/4532/6375433 by U
niversity of C

olorado user on 01 June 2022



Klein–Nishina reconnection 4551

a new pair. Because 2 particles are injected into the nth generation
upon each annihilation of an nth-generation photon, one has

Q(n)
γ γ (γ, t) = 2 × 2

N
(n)
ph (2γ, t)

λmfp/c
. (65)

Here again, one factor of 2 comes from the Jacobian from particle to
photon energies.

Equations (63)–(65) achieve a steady state if the readvection
time, over which the n = 1 injection term is constant, is longer
than the cooling times of newborn pairs and the photon streaming
time λmfp/c. The first condition is satisfied because all pairs (at
least for n > 1) are born with Lorentz factors γ < γ̃cool,2, while
the latter is satisfied because the nth-generation readvection time
is

√
nλmfp/βrecc ∼ 10

√
nλmfp/c � λmfp/c. (The particles in the n =

1 generation with γ > γ̃cool,2 do not produce additional pairs and so
can be excluded from these equations.) Let us therefore specialize
to the steady state of equations (63) and (64). This gives, upon
plugging (65) into (64),

Q(n)
γ γ (γ ) = 8

N (n−1)
γ γ (4γ )

tcool,IC(4γ )
, (66)

which, in turn, allows one to write

∂

∂γ

(
γ̇ N (n)

γ γ (γ )
) = −1

8

∂

∂γ

(
γQ(n+1)

γ γ (γ /4)
)

, (67)

where we have used −γ̇ = γ /tcool,IC(γ ).
Then, inserting (67) into the steady state of (63) gives a recursive

formula for the Q(n)
γ γ (γ )’s:

− 1

8

∂

∂γ

(
γQ(n+1)

γ γ (γ /4)
) = Q(n)

γ γ (γ ) . (68)

Let us integrate this equation from γ ≥ γ pp to γ = ∞. The upper
bound gives zero on the left-hand side of (68) since Q(n)

γ γ (∞) = 0.
The lower bound does not give zero on the left because γ /4 exceeds
the lowest energy γ

(n)
1 = 2γKN in the (n + 1)st injected distribution.

Hence,

Q(n+1)
γ γ (γ ) = 2

γ

∫ ∞

4γ

Q(n)
γ γ (γ ′)dγ ′ . (69)

Let us now use (69) to determine Q(n+1)
γ γ (γ ) explicitly, assum-

ing Q(n)
γ γ (γ ) is given by a power law as in equation (57). Restricting

to 2γKN = γ
(n+1)
1 ≤ γ < γ

(n+1)
2 = γ

(n)
2 /4, we have

Q(n+1)
γ γ (γ ) = 2Bn

γ

∫ γ
(n)
2

4γ

(γ ′)−�n dγ ′

= 2Bn

γ (�n − 1)
(4γ )−�n+1

⎡
⎣1 −

(
4γ

γ
(n)
2

)�n−1
⎤
⎦ . (70)

For γ not between 2γ KN and γ
(n)
2 /4, the distribution Q(n)

γ γ (γ ) is

zero. Strictly speaking, for n = 1, γ
(1)
2 = γ2/4 needs to be modified

to min(γ (1)
2 , γ̃cool,2)/4, since only first-generation particles with

energies less than γ̃cool,2 can spawn additional pairs.
Noting that the term in square brackets in (70) is roughly unity

except when γ ∼ γ
(n)
2 /4, we see that Q(n+1)

γ γ (γ ) is just a power law

with a cut-off at γ
(n+1)
2 = γ

(n)
2 /4, in agreement with equation (62).

This verifies the assumed power-law form (57) provided the initial
injected distribution Q(1)

γ γ (γ ) is also a power law. In that case,

�n+1 = �n = �1 ≡ � (71)

and

Bn+1 = A(�)Bn = [A(�)]n B1 , (72)

where we have defined

A(�) ≡ 8

4� (� − 1)
. (73)

These recurrence formulae imply that the total pair injection rate
in the upstream region is

N∑
n=1

∫
Q(n)

γ γ (γ )dγ = B1

N∑
n=1

[A(�)]n−1 γ −�+1
min

� − 1

⎡
⎣1 −

(
γmin

γ
(n)
2

)�−1
⎤
⎦

� B1γ
−�+1
min

� − 1

N−1∑
n=0

[A(�)]n

�
[∫

Q(1)
γ γ (γ )dγ

] N−1∑
n=0

[A(�)]n

= 1 − [A(�)]N

1 − A(�)

∫
Q(1)

γ γ (γ )dγ , (74)

where, for convenience, we define γmin ≡ γ
(n)
1 = 2γKN. In the sec-

ond and third lines, we assume that � > 1 and, hence, that the
term (γmin/γ

(n)
2 )�−1 can be neglected. The final line is the crux of

this section. It determines under what conditions a true pair cascade
develops – when the total number of injected pairs in the upstream
region is exponential in the number of generations N. We have,

A(�) > 1 ⇐⇒ pair cascade ,

A(�) < 1 ⇐⇒ no pair cascade . (75)

The multiplication factor A(�) is less than unity for � > 1.73.
Whether a pair cascade develops comes down to the expected value
of � in the first-generation injected distribution.

We expect that Q(1)
γ γ (γ ) inherits its power-law scaling from the

distribution of photons emitted into the upstream region from the
layer. For a power-law distribution (53) of radiating layer particles,
the emitted photon spectrum is, approximately, a power law with
index � = pKN + 1 (plus a logarithmic correction; see Blumenthal
& Gould 1970; Aharonian & Atoyan 1981). Since we expect the
scaling of the layer particle distribution in the Klein–Nishina regime
to be pKN = p − 0.5, which corresponds to an intrinsic particle
acceleration index p hardened due to Klein–Nishina IC losses, we
predict min (�) = min (p + 0.5). Now, according to (50), min (p) = 1,
and thus the distribution of first-generation injected pairs should be
no harder than min (�) = 1.5. This gives a maximum multiplication
factor of max(A(�)) = A(min(�)) = A(1.5) = 2, for which the
number of injected pairs doubles in each successive generation.

A shallow enough scaling � to bring A(�) above unity is only
achieved for p < 1.7−0.5 = 1.2. Using equation (50), this implies
a magnetization σ h > 80. Also, the theory we have presented thus
far ignores the possibility of a guide field, which tends to suppress
reconnection-powered NTPA (e.g. Werner & Uzdensky 2017). Thus,
a pair cascade is possible, but requires quite optimal combinations
of parameters (high-σ h and small guide field, for example).

4.3 The small number density of upstream pairs

In this section, we employ our tally of the upstream pair-creation
rate – given by the Q(n)

γ γ (γ ) distributions – to answer another impor-
tant question associated with Klein–Nishina radiative reconnection.

MNRAS 508, 4532–4572 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/3/4532/6375433 by U
niversity of C

olorado user on 01 June 2022



4552 J. M. Mehlhaff et al.

Namely, we calculate the pair-production multiplicity

η ≡ nγγ

n0
, (76)

the ratio of the number density nγ γ of newborn pairs entering the
reconnection layer to that n0 of pairs in the far upstream region.

Let us define the volumetric (per unit time per unit volume)
rate of pair production dn(n)

γ γ /dt into the nth generation. Assuming
that nth-generation pairs are deposited uniformly up to a transverse
distance ȳ(n) (e.g. ȳ(n) ∼ √

nλmfp) away from the layer across the full
width L of the system, we have

dn(n)
γ γ

dt
∼ 1

2ȳ(n)L

∫
dγ Q(n)

γ γ (γ ) . (77)

Noting that a parcel of plasma travels from |y| ∼ ȳ(n) to the layer
at |y| ∼ � � ȳ(n) over time ȳ(n)/βrecc, during which it accrues nth-
generation pairs at the rate dn(n)

γ γ /dt , we have

nγγ ∼ fnoesc

N∑
n=1

ȳ(n)

βrecc

dn(n)
γ γ

dt
∼ 1

2βreccL

∫
dγ

N∑
n=1

Q(n)
γ γ (γ ) . (78)

In the second step, we assume fnoesc = 1. Similar to the cancellation
of the readvection time in (44), ȳ(n) cancels in (78).

To evaluate (78), we normalize the Q(n)
γ γ (γ )’s by balancing the

particle-creation rate in the first generation with twice the number of
above-threshold photons emitted from the reconnection layer:∫

dγ Q(1)
γ γ (γ ) = 2�L′

∫
γpp

dγ RIC(γ )dN/dγ , (79)

where dN/dγ is the distribution of radiating particles as in equa-
tions (41) and (53). In turn, one may normalize the distribution dN/dγ

(to find A in equation 41 or 53) by setting the power radiated from
the layer to PPoynt/2 (as in equations 38 and 39):

1

2
PPoynt = Lβrecc

B2
0

4π
∼ jIC�L′

= �L′
∫

dγPIC(γ )dN/dγ . (80)

In keeping with the earlier parts of this study, we consider two
cases: one in which the radiation reaction force on layer particles
is ignored and one in which it is approximately included. In the
former case, we assume a single power-law form for dN/dγ , as in
equation (41), with index p(σh) = 1 + 2/

√
σh (equation 50). In the

latter, we adopt a broken power law, as in equation (53), with separate
indices pT = p(σ h) + 1 and pKN = p(σ h) − 0.5 in the Thomson (γ
< γ KN) and Klein–Nishina (γ > γ KN) regimes, respectively. To
save space, we simultaneously conduct both analyses by plugging in
equation (53) for dN/dγ and leaving pT and pKN unspecified until the
end of the calculation.

Proceeding in this manner, we find that

nγγ ∼ n0
σc,0

γKN
M̃(pT, pKN, z) , (81)

where z = γ 2/γ KN. The right-hand side does not depend on n0:
the n0 in the numerator cancels against that in the definition of σ c,0.
The multiplicity function M̃(pT, pKN, z) is derived, as discussed, by
evaluating (78) whilst enforcing (79) and (80). It reads

M̃(pT, pKN, z) ≡ 3
∫ z

8 dx gKN(x)x−pKN∫ 1
0 dx fKN(x)x−pT+2 + ∫ z

1 dx fKN(x)x−pKN+2

×
∫

dγ
∑N

n=1 Q(n)
γ γ (γ )∫

dγ Q
(1)
γ γ (γ )

. (82)

The factor on the second line encodes the possibility of a pair
cascade and is roughly equal to [1 − A(�)N ]/[1 − A(�)], as in
equation (74). However, here we evaluate this factor by maintaining
finite z-dependent cut-offs in each term, writing

∫
dγ Q(n)

γ γ (γ ) � [A(�)]n−1B1γ
−�+1
min

� − 1

⎡
⎣1 −

(
γmin

γ
(n)
2

)�−1
⎤
⎦ . (83)

We do not simplify the right-hand side toA(�)n−1B1γ
−�+1
min /(� − 1),

as done in Section 4.2 (equation 74). This ensures that contributions
from each generation turn on gradually (as they do in reality), thereby
keeping the multiplicity function continuous.

To denote the case where we ignore radiative feedback on the layer
particles, in which we put pT = pKN = p, we write

M(p, z) ≡ M̃(p, p, z) . (84)

We display the functions M(p, z) and M̃(p + 1, p − 0.5, z) in
Fig. 16. Similar to the case of F and F̃ , the separate impacts of
radiative cooling in the Thomson and deep Klein–Nishina limits
contract the range in p across which the multiplicity function varies.
Just as for the power fraction F , the steepening of the layer particle
distribution pT = p + 1 in the Thomson regime completely shuts
down pair production whenever pT > 3 (i.e. p > 2). However, unlike
the power fraction F , the multiplicity function exhibits a much
more complicated non-monotonic dependence on the underlying
parameters p and z. In addition to this, while the power fraction
attains order unity for a wide range of p and z, the multiplicity
function never does – it is never larger than � 0.1 for any parameter
combination, and is very often much smaller than this.

This last fact means that, even when a pair cascade truly does
develop in the upstream region – and the total newborn pair count is
exponential in the number of generations – the overall multiplicity
may still be small. In fact, because the multiplicity function obtains
a global maximum of order 10−1, we can map out precisely the
parameters for which η is guaranteed to be small: γ KN > σ c,0/10.
As we show in Section 5, this condition is roughly satisfied for
reconnection in both FSRQ jets and black hole ADCe.

This concludes our detailed discussion of pair-regulated Klein–
Nishina magnetic reconnection. Next, we examine the potential
astrophysical ramifications of reconnection in this regime.

5 ASTROPHYSI CAL I MPLI CATI ONS

In this section, we discuss observational aspects of pair-regulated
Klein–Nishina magnetic reconnection. Our approach has two stages.
First, we elaborate observable consequences of our model that are
generic, not requiring an explicit global astrophysical context. This
grounds our subsequent discussion where we estimate parameters
for concrete astrophysical systems – FSRQs and black hole ADCe –
and comment on observations that the model may help to explain.

5.1 General observable features

Here, we discuss the appearance of Klein–Nishina radiative re-
connection as viewed through a telescope. We assume that the
reconnection system is not spatially resolved.

5.1.1 Observed radiation comes mostly from the layer

In radiative reconnection without pair-production feedback, the ra-
diative output is dominated by high-energy particles in the layer (i.e.
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Klein–Nishina reconnection 4553

Figure 16. The analogue of Figs 10 and 14, which respectively display F and F̃ , for M and M̃. In all plots, dotted lines show the value of the multiplicity
function divided by the pair cascade factor on the second line of equation (82), demonstrating what the multiplicity function would be if only accounting
for pairs injected into the first upstream generation (i.e. ignoring a possible pair cascade). Top left: M(p, z) ≡ M̃(p, p, z) displayed as a function of z for
several p. Top right: M(p, z) displayed as a function of p for several z. Bottom left: M̃(p + 1, p − 0.5, z) displayed as a function of z for several p. Bottom
right: M̃(p + 1, p − 0.5, z) displayed as a function of p for several z. While the dependence of M and M̃ on p and z is more complicated (in particular,
non-monotonic) than that of F and F̃ , the former are always small – no larger than 0.1 – and therefore the multiplicity η is small whenever γ KN > σ c,0/10.
Pair cascades significantly influence the multiplicity for large z and small pKN, and, hence, have a more pronounced impact on M̃, where pKN = p − 0.5, than
on M, where pKN = p.

the downstream region permeated by reconnected magnetic flux).
However, with pair feedback, the upstream and downstream plasmas
are radiatively coupled: a substantial portion of the energy emitted
from the layer may be intercepted upstream and reprocessed into
high-energy newborn pairs. While en route to the layer, these pairs
emit potentially observable light (if fnocool < 1) that could, in princi-
ple, outshine the escaping (below-threshold) radiation from the layer.

Therefore, we wish to determine whether the light that an observer
sees comes predominantly from the upstream or downstream (layer)
plasmas. We denote the respective observable luminosities (i.e. only
of below-threshold and, hence, escaping radiation) of these two
regions per unit length in the out-of-plane direction by Lupstream

and Llayer. The first luminosity is the fraction of the layer’s above-
threshold radiated power that is captured by the upstream region and
reemitted below threshold before flowing back into the layer:

Lupstream ∼ (1 − fnocool)(2Lλmfp)
duγγ

dt

∼ (1 − fnocool)FβreccL
B2

0

4π
(85)

(cf. equation 43). Meanwhile, the fraction of the layer’s power
emitted below pair threshold is (cf. equation 39)

Llayer ∼ (1 − F )
1

2
PPoynt ∼ (1 − F )βreccL

B2
0

4π
. (86)

Note that one may substitute F̃ for F in these expressions provided
the same symbol is used in both. The luminosity ratio is

Lupstream

Llayer
∼ (1 − fnocool)

F
1 − F . (87)

For the upstream region to outshine the layer, both significant above-
threshold radiation (F > 1/2) and relatively low-energy recapture
efficiency (fnocool � 1) are required.

However, it is also possible that the system enters a two-state cycle,
swinging between a low and a high effective upstream magnetization
(see Section 4.1). Then, the upstream domain may appear brightest
in one magnetization state while the downstream region shines the
most in the other state. In this case, the relevant luminosities to
compare are probably the brightest luminosities achieved by each
region (even if in opposite states). This is certainly appropriate if the
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readvection time tra is not resolved by the observations. However,
even if the readvection time is resolved, different locations along
the layer’s surface (e.g. different areas in the horizontal direction
of Fig. 9) may be decorrelated from each other. One radiating zone
may be in a high-magnetization phase while a neighbouring zone
is in the corresponding low-magnetization state. Then, the observed
luminosities from each zone are averaged and (assuming, for sim-
plicity, a 50 per cent duty cycle) dominated by the brighter state of
the more luminous region (upstream or downstream) in that zone.

Thus, the luminosity ratio in equation (87) may not accurately
describe a reconnection layer prone to swing cycles. In fact, ac-
cording to equation (86), the layer is observationally brightest in its
low-magnetization state – this is when F is smallest and, hence,
when most of the incident Poynting flux is radiated at low enough
energies (below pair threshold) to escape the system. In contrast,
the upstream region becomes brightest when it receives an abundant
supply of above-threshold photons – when the layer is in its high
magnetization phase. These are processed into an energetic fresh
pair plasma component that subsequently radiates below threshold
[unless fnocool(σ h,>) � 1]. Thus, we expect that, in a two-state swing
cycle, the appropriate luminosity ratio is

Lupstream(σh,>)

Llayer(σh,<)
∼ [1 − fnocool(σh,>)]

F (σh,>)

1 − F (σh,<)

∼ [1 − fnocool(σh,>)] ≤ 1 , (88)

where, in the last step, we loosely approximated F (σh,>) ∼ (1 −
F (σh,<)) ∼ 1, which is often roughly correct in swing cycles (see
Section 4). In the above, we also consider fnocool to depend on the
magnetization. The detailed dependence (discussed in Appendix B)
is not important here beyond that, generally, fnocool(σ h,<) � 1
and fnocool(σ h,>) ∼ 1. Thus, in a swing cycle, the layer probably
dominates the observed radiation.

An exceptional case occurs if the swing cycle high state
has energy recapture efficiency ξ (σ h,>) � fnocool(σ h,>) close
enough to unity to render the upstream region brightest in the
low-magnetization state {i.e. if [1 − fnocool(σh,>)]F (σh,>) < [1 −
fnocool(σh,<)]F (σh,<)}. Then the relevant luminosity ratio, instead
of equation (88), is Lupstream(σ h,<)/Llayer(σ h,<), which evaluates
to [1 − fnocool(σh,<)]F (σh,<)/[1 − F (σh,<)] ∼ F (σh,<) � 1, and is
quite dominated by the layer.

Thus, the layer generally produces most of the observable radiation
from pair-regulated Klein–Nishina reconnection. The upstream lumi-
nosity only dominates in a steady state ifF > 1/2 and fnocool � 1, and
it may at most be comparable to the layer luminosity in an asymptotic
swing cycle. This seems to be corroborated by observations because
the expected spectrum produced from the upstream region has
spectral index α = 1/2 (calculated in Appendices B and E), but the
objects we discuss below have steeper scalings (as the layer might
produce in a low-magnetization state).

5.1.2 Klein–Nishina physics may promote rapid variability through
kinetic beaming

In our earlier work (Mehlhaff et al. 2020), we performed a detailed
study of the interplay between radiative physics (Thomson IC radia-
tion reaction) in reconnection and the kinetic beaming phenomenon
first discovered by Cerutti et al. (2012b). As detailed in both refer-
ences, in collisionless relativistic reconnection, the electromagnetic
fields near reconnection X-points tend to simultaneously accelerate
and collimate particles. The higher energy particles are focused
more tightly than the lower energy particles, making this beaming

inherently kinetic. A collimated beam of high-energy particles may
then sweep across an observer’s line of sight, and the synchrotron or
IC emission of the bunch – also emitted as a beam – may then create
a dramatic blip in the measured light curve: a ‘lighthouse effect’.

In Mehlhaff et al. (2020), we showed that efficient radiative losses
play a critical role in enabling the kinetic beaming mechanism to
impact observations. Without strong radiative cooling, collimated
beams of particles isotropize before dumping their reconnection-
acquired energy into energetic photons, and thus most of their radi-
ation is emitted quasi-isotropically. Only efficiently cooled beamed
particle bunches can radiate their energy before dispersing, leading
to sweeping beams of light that may manifest as rapid flares.

We here recall two specific criteria from our earlier work that may
be necessary for, or at least promote, observable signatures of kinetic
beaming:

(i) Particles may need to have cooling times within a certain
multiple of their gyroperiods in the reconnecting magnetic field B0.
(If this multiple is 1, then this is the saturated cooling condition from
Section 2.2.2 – particles are at their radiation-limited energy γ rad,IC.)
The number of gyroperiods before a collimated bunch of particles
isotropizes may be large but still finite. In fact, one main result from
Mehlhaff et al. (2020) is that kinetic beaming only manifests in the
emission from particles with energies within about a decade of the
radiative saturation Lorentz factor γ rad,T, corresponding to tcool,T �
100 gyroperiods.

(ii) Direct acceleration (by the reconnection electric field) near
reconnection X-points must deliver particles to higher energies than
secondary acceleration channels (in the language of Sections 2
and 3, γ sec � γ rad,IC, γ X – secondary channels must radiatively
stall before both the X-point radiative and intrinsic acceleration
limits). Otherwise, secondary – and presumably more isotropic –
energization processes may wash out signatures of kinetic beaming
in the reconnection-energized distribution of particles.

Our present work provides at least three reasons why pair-
regulated Klein–Nishina reconnection could meet these criteria,
perhaps leading to even more pronounced kinetic beaming than when
particles are subject to purely Thomson radiative cooling.

(1) The first reason pertains to point (i) above. Namely, Klein–
Nishina effects render a particle’s cooling ratio – the ratio of its
cooling length to its Larmor radius – very insensitive, when γ �
γ KN, to its Lorentz factor. To wit,

lim
γ�γKN

ctcool,IC(γ )

2πγρ0
= lim

γ�γKN

(
γrad,T

γ

)2 1

fKN(γ /γKN)

= 10

2π

2

9

(γrad,T/γKN)2

ln (γ /γKN) − 11/6

� 0.4
(γrad,T/γKN)2

ln (γ /γKN) − 11/6
, (89)

where we used approximation (16). Even when Lorentz factors as
high as γ rad,IC, for which ctcool,IC/2πγρ0 = 10/2π ∼ 1, are not
accessible, particles may still reach a high-energy (γ � γ KN) regime
where their cooling times come within some moderately large,
beaming-favouring multiple of their gyroperiods, and where their
cooling ratios become essentially γ -independent. In such a scenario,
a broad range (e.g. from γ KN to γ X) of energetic particles may
radiate efficiently enough to be kinetically beamed. This range could
possibly be broader than in the Thomson regime, for which tcool,T(γ )
declines as γ −1, making it increasingly difficult to accelerate particles
up to higher and higher energies. However, one should invoke
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Klein–Nishina reconnection 4555

this argument with some caution because the smallest accessible
cooling ratio in the Klein–Nishina regime may be quite large, scaling,
according to (89), as (γ rad,T/γ KN)2.

(2) A second way Klein–Nishina effects may promote kinetic
beaming pertains to item (ii) above. As argued in Section 3.2, Klein–
Nishina radiative cooling selectively suppresses secondary, slower
acceleration channels relative to rapid, impulsive acceleration near
reconnection X-points. In the Klein–Nishina regime, the IC cooling
time tcool,IC(γ ) grows as γ /ln (γ ) (equation 32), which effectively
removes the radiative cap on X-point acceleration (because tX is also
proportional to γ ; see equation 4). In contrast, secondary energization
mechanisms generally operate on time-scales that grow more quickly
with γ (e.g. as γ 2), and so maintain a finite cut-off, even for deeply
Klein–Nishina radiative cooling.

(3) Finally, and also relevant to point (ii) above, the energy distri-
bution of produced pairs is very broad and non-thermal (Section 4.2).
These particles serve precisely as the pre-accelerated upstream pop-
ulation that, as argued by Mehlhaff et al. (2020), may help overcome
the conventional γ X � 4σ c limit. Upon entering the reconnection
layer, newborn particles possess Larmor radii (≥ γ̃cool,1ρ0) that may
exceed those, ∼σ cρ0, of typical accelerated particles – most of which
come from the much colder and more numerous particle population
(Section 4.3) that was already present in the far upstream region.
If so, then newborn pairs sample larger field structures than the
elementary current layers and plasmoids, with size scale σ cρ0, at
the bottom of the plasmoid hierarchy (Werner et al. 2016; Uzdensky
2020). Unlike the vast majority of initially present cold upstream
particles, these pairs may surf across many elementary layers – that
together comprise a much larger acceleration region – becoming
energized well beyond 4σ c before finally becoming magnetized.
Thus, γ X is effectively raised. This is important because higher γ X

enables direct acceleration to energize and collimate higher energy
particles, potentially increasing the energy range of kinetically
beamed particles and photons.

Detailed predictions for kinetic beaming are outside the scope
of this paper; our analysis only traces the largest scale bulk flow
of energy and particles through the reconnection system. However,
these simple observations provide a target for future dedicated
simulations, which may study, in detail, the effects of Klein–Nishina
and pair-production physics on kinetic beaming.

5.1.3 Caution against detailed spectral predictions

While we believe that the basic qualitative features of our model
presented in Section 4 are fairly robust, the model is not presently
quantitatively accurate enough to warrant making specific spectral
predictions for various astrophysical sources. The specific power-law
scalings of the particle and photon spectra depend on a number of
uncertain details.

For one thing, the NTPA ‘equation of state’ p(σh) = 1 + 2/
√

σh

from equation (50) is quite crude and only intended for illustration.
The steady-state power-law scalings pT = p + 1 and (especially) pKN

= p − 0.5 are also just rough estimates. For example, the bursty nature
of reconnection is already known to modify pT when Thomson IC
cooling is quite strong (Werner et al. 2019).

As a related issue, the power-law index of the photon spectrum
radiated by particles above γ KN (in the pKN portion of the particle
distribution) is only very loosely given by � = pKN + 1 = p + 0.5. In
fact, Moderski et al. (2005) estimate a harder power-law � = p and
predict little change between the power-law scaling of the emitted
photon spectrum from the Thomson to Klein–Nishina regimes. Thus,

given the level of quantitative uncertainty in our model, one should
avoid inferring numerical values of plasma parameters (like σ h and z

= γ 2/γ KN) from observed photon spectra, especially at the highest
energies (above γ KNmec2). It is also probably not warranted to test the
model by searching for a prominent Klein–Nishina spectral break.

Having discussed now some generic observational features of our
model as well as some of its quantitative limitations (with respect to
interpreting power-law scalings of photon spectra), we now turn to
some concrete classes of astrophysical systems.

5.2 Consequences for specific astrophysical systems

In this section, we explicitly estimate reconnection energy
scales (γ max, σ c,0, γ rad,T, γ KN, etc.) for two types of astrophysical
systems – FSRQ jets and black hole ADCe. We also comment on
the prospects for our model either to explain certain observational
phenomena or to help constrain astrophysical details that are difficult
to pin down from observations alone.

5.2.1 The radiative environments of FSRQs

FSRQs form a subclass of blazars, which are active galactic nuclei
that launch counterpropagating relativistic jets, one of which is
directed towards the observer. Blazar spectra generally feature a
characteristic double-humped structure (Fossati et al. 1998; Ghis-
ellini 2011). The low-energy component is usually understood as
synchrotron radiation by electrons and positrons in the jet. The high-
energy peak is also commonly associated with jet leptons but via
a different process: IC scattering of soft seed photons (Begelman,
Fabian & Rees 2008; Böttcher et al. 2013; Madejski & Sikora 2016).
Leptonic models differ on whether the particles producing both
spectral components are cospatial and on the source of Compton seed
photons. In BL Lacs, lower luminosity blazars with low- and high-
energy humps peaked at relatively high frequencies (UV/X-ray and
hundreds of GeV gamma-rays, respectively; Ghisellini 2011; Made-
jski & Sikora 2016), the seed photons are generally thought to be fur-
nished by synchrotron emission within the jet itself (synchrotron self-
Compton models; e.g. Maraschi, Ghisellini & Celotti 1992; Bloom &
Marscher 1996). For the higher luminosity sources with lower energy
spectral peaks (often falling in the IR at low energies and a few hun-
dred MeV in the gamma-rays; Ghisellini 2011; Madejski & Sikora
2016), the FSRQs, typical models envision Compton seed photons
impinging from the circumnuclear environment (Begelman & Sikora
1987; Melia & Königl 1989; Sikora, Begelman & Rees 1994).

We focus on FSRQs. In addition to their higher luminosities and
lower energy spectra (relative to BL Lacs), FSRQs possess strong
emission lines attributed to an accretion disc. The disc illuminates
the jet directly and also shines on to clouds of circumnuclear material
– the broad emission line region (also ‘broad-line region’; BLR) and
dusty torus (also ‘hot dust region’; HDR). These structures reprocess
the accretion disc light and redirect some of its energy back on to the
jet, thereby providing strong sources of external radiation situated
relatively far from the central engine (e.g. Nalewajko, Begelman &
Sikora 2014; Madejski & Sikora 2016).

The smaller of the two circumnuclear regions is the BLR, which is
made of gas that is partially ionized by the accretion disc radiation and
hence illuminates the jet with UV line emission (most prominently
Lyα; Tavecchio & Ghisellini 2008). Thus, the characteristic BLR
photon energy is

εBLR ∼ 10 eV . (90)
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The BLR extends out to a radius

rBLR ∼ 0.1L
1/2
d,46 pc (91)

where Ld,46 is the luminosity of the accretion disc, Ld, in units
of 1046 erg s−1 (Tavecchio & Ghisellini 2008; Sikora et al. 2009;
Nalewajko et al. 2012). At jet propagation distances r < rBLR from the
central engine, the jet traverses roughly isotropic ambient radiation,
sourced by the BLR, of galaxy-frame energy density

UBLR ∼ LBLR

4πr2
BLRc

∼ 6 × 10−3 erg cm−3 (92)

(Tavecchio & Ghisellini 2008; Sikora et al. 2009; Nalewajko et al.
2012). Here we assume that the BLR intercepts and reprocesses a
certain fraction (2 per cent; Tavecchio et al. 2011) of the accretion
disc light, and, therefore, that LBLR ∝ Ld. Thus, UBLR is insensitive
to Ld.

Farther removed from the nucleus than the BLR is the HDR,
which, radiatively heated by the accretion disc, shines a quasi-thermal
spectrum of temperature THDR � 1200 K on to the jet. Thus (see
Nenkova et al. 2008a, b; Nalewajko et al. 2012),

εHDR ∼ 3kBTHDR = 0.3 eV . (93)

The HDR extends out to a distance from the central engine of

rHDR ∼ 4 L
1/2
d,46T

−2.6
HDR,3 pc , (94)

where THDR,3 ≡ THDR/1000 K = 1.2 (Nenkova et al. 2008a, b; Sikora
et al. 2009). Thus, when r < rHDR, the HDR radiation energy density
traversed by the jet is roughly isotropic and approximately

UHDR ∼ LHDR

4πr2
HDRc

∼ 9 × 10−5 erg cm−3 . (95)

Here, we again take a fixed fraction (in this case 10 per cent;
Malmrose et al. 2011) of the disc radiation to be reprocessed
by the circumnuclear structure. Thus UHDR, like UBLR, lacks Ld-
dependence.

We posit that at least some quiescent and flaring blazar gamma-
ray observations are powered by magnetic reconnection (Giannios,
Uzdensky & Begelman 2009; Nalewajko et al. 2011; Giannios 2013;
Sironi et al. 2015; Petropoulou, Giannios & Sironi 2016; Nalewajko
et al. 2018; Werner et al. 2018; Christie et al. 2019; Ortuño-Macı́as
& Nalewajko 2020; Sobacchi, Nättilä & Sironi 2021), either induced
by macroscopic field polarity reversals (e.g. Giannios & Uzdensky
2019; Sironi, Rowan & Narayan 2021) or taking place at the small-
scale terminus of a turbulent cascade (e.g. Zhdankin et al. 2013,
2020; Comisso & Sironi 2018, 2019; Boldyrev & Loureiro 2020;
Loureiro & Boldyrev 2020; Nättilä & Beloborodov 2020; Sobacchi
et al. 2021).

The blazar emission zone – the distance r where most of the
emission is produced – is an important but difficult-to-constrain
quantity in blazar research: by nature of being collimated along
the observing line of sight, blazar jets appear point-like on the sky,
and so it is not possible to deduce r directly from observations. We
therefore allow r to vary over an appreciable range. If r < rBLR,
the BLR dominates the ambient radiation bathing the jet and the
emission-powering reconnection zone; if rBLR < r < rHDR, the HDR
dominates.5 We consider only blazar zones far enough from the cen-
tral engine (r � 0.01 pc; Dermer & Schlickeiser 2002; Sikora et al.

5In reality, the BLR intensity falls off smoothly with r and thus dominates
to distances slightly exceeding rBLR (but still much less than rHDR; e.g.
Nalewajko et al. 2014).

2009; Nalewajko et al. 2014) that the direct accretion disc light, which
illuminates the jet from behind, is redshifted in the jet rest frame to a
lower energy density than the BLR and HDR radiation fields. (Unlike
the accretion disc light, the BLR and HDR photons impinge quasi-
isotropically on the jet in the galaxy frame and are thus blueshifted
when boosted to the jet frame). We do not consider r � rHDR.

The BLR and HDR choke gamma-rays above the energies

εc,BLR = (mec
2)2

εBLR
∼ 30 GeV (96)

and

εc,HDR = (mec
2)2

εHDR
∼ 0.9 TeV , (97)

respectively, since the pair-production optical depths suffered by a
photon traversing these regions are

τBLR = UBLRσTrBLR

5εBLR
∼ 15 (98)

and

τHDR = UHDRσTrHDR

5εHDR
∼ 300 . (99)

Note that these optical depths are not equal to those, τγ γ,BLR

and τγ γ,HDR, of the corresponding reconnection sites where the
emission is sourced. Those optical depths are evaluated later using
the smaller size of the emission region and with the seed photon
number density Ui/εi (i = BLR or HDR) boosted to the jet frame.
Since quiescent FSRQs are generally not observed at very high
energies (� 0.1 TeV), the most relevant model for them may be
irradiation by the BLR. However, FSRQ flares are sometimes
observed at up to several hundred GeV (MAGIC Collaboration 2008;
Aleksić et al. 2011; H. E. S. S. Collaboration 2013; Abeysekara et al.
2015; Ahnen et al. 2015; Sitarek et al. 2015) – still below εc, HDR.
In these cases, emission between rBLR and rHDR, where the external
photons come from the HDR, is most likely.

5.2.2 FSRQ jet parameters

In order to estimate reconnection parameters, we must now make a
number of further assumptions about the nature of the jet: including
its speed, shape, and magnetic field strength.

We assume that reconnection occurs in the rest frame of the jet
and that the jet travels with relativistic bulk Lorentz factor �j �
1 with respect to the host galaxy. We denote jet-frame quantities
with primes. However, we exclude individual particle Lorentz factors
(including cold magnetizations σ c,0) from this convention, writing
them exclusively in the jet frame and without primes. We adopt a
relatively high jet Lorentz factor �j = 40. This is the same as in our
earlier model (Mehlhaff et al. 2020) of the rapidly variable very high-
energy (� 0.1 TeV) flare from PKS 1222+21 (Aleksić et al. 2011).
A large �j may be reconciled with more typical Lorentz factors
(e.g. �j � 10) by invoking a structured jet (e.g. Ghisellini, Tavecchio
& Chiaberge 2005; Begelman et al. 2008; Sikora, Rutkowski &
Begelman 2016; Tavecchio & Ghisellini 2016; Tavecchio 2017;
Sironi et al. 2021) in which an inner spine region, moving quickly (�j

� 40) and carrying the reconnection current sheet, is surrounded by
a slower moving sheath. This explicit structure is not necessary to
our ensuing discussion, however.6

6Unlike in our earlier model (Mehlhaff et al. 2020), we do not entertain the
sheath as a potential source of Compton seed photons here.
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Figure 17. Radiative reconnection phase diagrams for the case γ max = 9 × 1010 (equation 101) and two different values of σ c,0 (abbreviated as σ in the
plot): σ c,0 = 104 (left) and σ c,0 = 103 (right). Region colourings have the same meaning as in Fig. 8. In each diagram, white points indicate the parameters of
equations (102)–(105) and (109)–(112), where gamma-ray emission comes primarily through Comptonization of BLR photons [IC(BLR)] and HDR photons
[IC(HDR)], respectively. Larger shaded white ellipsoids indicate one order-of-magnitude uncertainties in each direction. The IC(HDR) parameters are particularly
relevant to the rapid very high-energy flare from PKS 1222+21 (Aleksić et al. 2011) discussed in our earlier work (Mehlhaff et al. 2020). Because the three
parameters γ rad,T, γ KN, and γ max are all proportional to �−1

j , changing �j is equivalent to changing σ c,0 by the same factor.

We imagine that the jet is conical with opening angle θ j ∼ 1/5�j

(Pushkarev et al. 2009) and model the comoving magnetic field
strength by assuming

B ′
0(r) ∼ 0.1

(
r

1 pc

)−1

G (100)

(Nalewajko et al. 2012; Mehlhaff et al. 2020), corresponding to a total
jet Poynting flux luminosity of (θjr)2(�2

j B
′2
0 )c ∼ 1 × 1043 erg s−1

that is conserved in r and independent of �j. If the Poynting flux
is instead dissipated (as indeed a reconnection scenario suggests),
then the scaling of B ′

0 with r should be steeper, but perhaps not
by much. For example, the fiducial striped jet model of Giannios
& Uzdensky (2019), which includes magnetic dissipation through
reconnection, gives a power law close to B ′

0 ∝ r−5/4.
We note that the typical isotropic FSRQ luminosities Liso ∼

1048 erg s−1 require minimum intrinsic jet power, presumably carried
by magnetic fields in a reconnection scenario, of Liso/�2

j ∼ 6 ×
1044 erg s−1. We have checked that increasing our fiducial magnetic
field strength [e.g. B ′

0(1 pc) ∼ 1 G] to supply such jet power does not
affect our conclusions in this section, but we adopt (100) to maintain
continuity with our previous work (Mehlhaff et al. 2020).

5.2.3 Reconnection parameters in FSRQs

We now explicitly estimate parameters for reconnection in an FSRQ
jet illuminated by either the BLR or the dusty torus.

First, the maximum (system-size-limited) Lorentz factor is

γmax ≡ 0.1L

ρ0
∼ 0.1eB ′

0(r)rθj

mec2

∼ 9 × 1010

(
�j

40

)−1

. (101)

Note that this is independent of r because we take the reconnection
layer length L to be comparable to the transverse width rθ j of the
jet, and thus the dependence of L on r cancels against that of the
magnetic field strength in equation (100).

Next we discuss the jet magnetization. In lieu of estimating a fidu-
cial jet electron number density (which is needed to estimate σ c,0), we
take inspiration from previous studies in which the jet is moderately
magnetized at the parsec scale (e.g. Giannios 2013; Giannios &
Uzdensky 2019). If the jet is mass-dominated by protons, this still
allows individual electrons/positrons to attain high Lorentz factors.
Assuming an electron–proton jet – and that our main results from
earlier sections carry over to electron–proton plasmas containing
ultrarelativistic initial magnetic energy per electron – we adopt a
cold ion magnetization (in the jet frame) of 5, which corresponds
to a fiducial jet-frame cold electron magnetization σ c,0 ∼ 104. To
illustrate our high degree of uncertainty in this quantity, in Fig. 17,
we also present the case σ c,0 ∼ 103, which corresponds to a cold
ion magnetization of 0.5 (or of 5 but with 10 positrons per proton
in the presence of mixed composition). In addition, we crudely
assume that the cold magnetization does not change in r, which
is consistent with Poynting flux conservation if one also has particle
flux conservation [π(rθj)2n0(r) = constant].

Now we estimate the key radiative parameters. For reconnection
illuminated by the BLR (r < rBLR), we have, plugging the jet-
frame seed photon energy ε′

BLR ∼ �jεBLR and energy density U ′
BLR ∼

�2
j UBLR (with εBLR and UBLR given in equations 90 and 92) into

definitions (8), (9), (12), and (36):

γ
(BLR)
rad,T ∼ 2 × 106

(
r

0.1 pc

)−1/2(
�j

40

)−1

, (102)

γcool,BLR ∼ 60

(
r

0.1 pc

)−1(
�j

40

)−1

, (103)

γKN,BLR ∼ 300

(
�j

40

)−1

, and (104)

τγ γ,BLR ∼ 3

(
r

0.1 pc

)
. (105)

The observed photon energies emitted by particles with these
radiative Lorentz factors are

ε
(BLR)
obs

(
γ

(BLR)
rad,T

)
∼ 1

2
�jγ

(BLR)
rad,T mec

2 ∼ 20

(
r

0.1 pc

)−1

TeV , (106)
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ε
(BLR)
obs

(
γcool,BLR

) ∼ 4

3
�2

j γ
2
cool,BLRεBLR

∼ 80

(
r

0.1 pc

)−2

MeV, and (107)

ε
(BLR)
obs

(
γKN,BLR

) ∼ 4

3
�2

j γ
2
KN,BLRεBLR ∼ 2 GeV . (108)

These photon energies are independent of the jet Lorentz factor �j.
One of them, ε(BLR)

obs (γKN,BLR) ∼ 2 GeV, depends on no unknowns and
implies that virtually all the > 1 GeV emission, routinely observed
by Fermi (Ghisellini 2011), is emitted in the Klein–Nishina regime
(if Comptonized from BLR photons). Note that, in evaluating the
photon energies emitted by γ = γ KN particles, one may use either
the Thomson scaling 4�2

j γ
2
KNεph/3 (as we have done) or the Klein–

Nishina scaling �jγ KNmec2/2; this choice modifies the estimate by
less than a factor of 2.

If, instead, rBLR < r < rHDR, the radiation from the dusty torus is
strongest, yielding, from the HDR estimates (93) and (95),

γ
(HDR)
rad,T ∼ 6 × 106

(
r

1 pc

)−1/2(
�j

40

)−1

, (109)

γcool,HDR ∼ 400

(
r

1 pc

)−1(
�j

40

)−1

, (110)

γKN,HDR ∼ 1 × 104

(
�j

40

)−1

, and (111)

τγ γ,HDR ∼ 20

(
r

1 pc

)
. (112)

The corresponding observed photon energies are

ε
(HDR)
obs

(
γ

(HDR)
rad,T

)
∼ 1

2
�jγ

(HDR)
rad,T mec

2 ∼ 60

(
r

1 pc

)−1

TeV , (113)

ε
(HDR)
obs

(
γcool,HDR

) ∼ 4

3
�2

j γ
2
cool,HDRεHDR

∼ 100

(
r

1 pc

)−2

MeV, and (114)

ε
(HDR)
obs

(
γKN,HDR

) ∼ 4

3
�2

j γ
2
KN,HDRεHDR ∼ 70 GeV . (115)

The photon energy ε
(HDR)
obs (γKN,HDR) ∼ 70 GeV [like the correspond-

ing energy ε
(BLR)
obs (γKN,BLR) for Comptonization within the BLR]

does not depend on any unknowns and implies that IC(HDR)
TeV emission from FSRQs is produced almost entirely in the
Klein–Nishina regime. Irrespective of the dominant radiation field
(BLR or HDR), the overall IC radiative cut-off energy, γ rad,IC, is
effectively infinite, scaling according to equation (30) as γ rad,IC ∝
γ KNexp [(2/9)(γ rad,T/γ KN)2].

Fig. 17 displays the BLR (102–105) and HDR (109–112) energy
scales by plotting them as points in a radiative reconnection ‘phase
diagram’ in the style of Fig. 8. This clearly illustrates the main result
of this section: reconnection in FSRQ jets proceeds in the regime
governed by Klein–Nishina and pair-production physics. This does
not depend on whether the dominant seed photons stem from the BLR
or the HDR. Broadly speaking (we discuss caveats and technical
points below), reconnection proceeds in the red region. Here, X-
point acceleration is not inhibited by radiative losses (γ rad,IC � γ max

� γ X), but subsequently most, if not all, particles cool strongly –
on time-scales shorter than L/c – rendering reconnection efficiently
radiative. Furthermore, because γ X > γ KN, many particles become
impulsively energized up to energies where they radiate in the Klein–
Nishina limit, producing above-threshold radiation that may activate
pair feedback (Section 4).

Before moving to additional observational implications, we dis-
cuss a few secondary technical details to flesh out this basic
picture. First, though one might worry that the IC(HDR) model,
depending on σ c,0, crosses into the purple region of Fig. 17 where the
nominal intrinsic X-point acceleration cut-off energy, γ X � 4σ c,0,
falls below γ KN, this is not a huge concern. The observed photon
energies ε

(BLR)
obs (γKN,BLR) ∼ 2 GeV and ε

(HDR)
obs (γKN,HDR) ∼ 70 GeV

are routinely observed in quiescent FSRQ spectra (for the former;
Ghisellini 2011; Madejski & Sikora 2016) and in TeV outbursts
(for the latter; MAGIC Collaboration 2008; Aleksić et al. 2011;
H. E. S. S. Collaboration 2013; Abeysekara et al. 2015; Ahnen
et al. 2015; Sitarek et al. 2015). Thus, in a reconnection scenario,
observations, in fact, suggest that γ X, whether through high-σ c,0 or
through circumventing the conventional 4σ c,0-limit (as discussed in
Section 5.1.2), is high enough to accelerate particles beyond γ KN,
pushing reconnection into the Klein–Nishina radiative regime.

Next, one should note that the pair-production optical depth of the
BLR-illuminated reconnection layer is not very large: τγ γ,BLR ∼ 3.
According to equation (33), this means that even the most strongly
radiative particles possess cooling times tcool,IC(γ ) ∼ L/cτ γ γ only
marginally faster than a dynamical time. This somewhat limits the
overall radiative efficiency of reconnection, as signalled by one of
the IC(BLR) points in Fig. 17 bordering on the green region where
Klein–Nishina suppression of the IC cross-section begins to shut
down radiative cooling for the highest energy (γ > γ cool,2) particles.
Plus, since τ γ γ < 10, some newborn pairs may escape the system
before being swept into the layer (fnoesc drops below unity; see
Section 4.1), which diminishes the likelihood of swing cycles for
the IC(BLR) scenario.

Regarding the multiplicity of produced pairs (Section 4.3), the
estimates of this section yield γ KN, BLR/σ c,0 ≥ 0.03 and γ KN, HDR/σ c,0

≥ 1 for σ c,0 ≤ 104 and �j ≤ 40. Thus, the requirement γ KN >

σ c,0/10 to ensure a pair multiplicity (the ratio of number densities of
newborn pairs to originally present pairs), η, less than unity is roughly
satisfied. The BLR may marginally support η � 1 because max (η)
� σ c,0/10γ KN (Section 4.3). However this is doubtful for several
reasons: (i) γ KN, BLR/σ c,0 = 0.03 is a lower bound (increasing for
smaller σ c,0 or �j); (ii) η may never attain its global maximum;
and (iii) the result max (η) � σ c,0/10γ KN ignores particle escape,
which may be an issue for reconnection inside the BLR, as mentioned
in the previous paragraph. Thus, our estimates support the picture of
tenuous newborn pairs that control the energy density of the inflow
plasma but not the inflowing particle count.

5.2.4 Relevance to FSRQ observations

Next, we comment on a few observational issues that our model
of pair-regulated Klein–Nishina reconnection may help to address.
First, and as discussed in Section 5.1.2, Klein–Nishina reconnection
may enhance the range of photon energies that are kinetically
beamed. This provides an attractive explanation for rapid very high-
energy FSRQ flares (of the kind first observed by Aleksić et al. 2011).
A kinetic beaming scenario has already been advocated on energy-
budget grounds by Nalewajko et al. (2012), and has recently been
explored by us in the context of Thomson radiative reconnection
(Mehlhaff et al. 2020). However, our earlier work requires a dense
population of seed photons – much denser than those supplied
by the BLR and HDR – in order to facilitate the high degree of
radiative efficiency needed by kinetic beaming. Therefore, Mehlhaff
et al. (2020) disfavour a single-zone external IC(HDR) scenario and
suggest a two-zone (e.g. spine-sheath) configuration where the seed
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photons are supplied by the jet itself. However, if Klein–Nishina
effects ease the radiative efficiency requirement, an IC(HDR) model
may still be compatible with kinetic beaming.

Next, although we would like to refrain from trying to make
detailed spectral interpretations, we note that the spectra of flaring
FSRQs in the very high energy (VHE; � 0.1 TeV) band are generally
quite steep, with intrinsic (deabsorbed) photon number index �VHE

� 2.5 (MAGIC Collaboration 2008; Aleksić et al. 2011; Ahnen et al.
2015). If one assumes that there is no significant spectral break
between the Thomson and deep Klein–Nishina regimes (Moderski
et al. 2005), then �VHE � (pT + 1)/2 � (p + 2)/2. This suggests a steep
injected index p � 3, which is realized in our reconnection ‘equation
of state’ p(σh) = 1 + 2/

√
σh, equation (50), if σ h,0 � 1. This may

occur when the ions are moderately magnetized and dominate the
initial hot magnetization (e.g. Werner et al. 2018). In this situation,
pair feedback, because it cannot reduce σ h to below order unity
(equation 49), would probably not strongly modify the spectrum.

However, if σ h,0 � 1, pair feedback may produce the observed
steep spectral indices during dramatic swing cycles (e.g. Fig. 15),
wherein the observable emission is dominated by the layer (Sec-
tion 5.1.1) in the low magnetization σ h,< ∼ 1 part of the cycle.
The requirement σ h,0 � 1 could be realized if either: (i) the initial
hot magnetization governing the distribution of accelerated elec-
trons/positrons decouples from the (order unity) ion magnetization,
or (ii) a highly magnetized pair-dominated jet region furnishes the
upstream material for reconnection.

In addition, to support swing cycles, the layer generally requires
high energy recapture efficiency ξ � fnocool ∼ 1 (e.g. Fig. 15). In
Appendix B, we show that order-unity energy retention factors fnocool

require a large cut-off z = γ 2/γ KN (e.g. z � 1000 in Fig. B3). Such
high cut-offs might not be realized because the observed Compton
dominance in FSRQs is often Uph/UB ∼ 100, suggesting that the
particle energy, γ s, beyond which synchrotron losses outcompete IC
losses and may hence limit further particle acceleration, is about γ s

∼ 30γ KN (equation 28).7

However, there are a few effects that may serve to promote swing
cycles in spite of non-zero synchrotron losses. First, the most ener-
getic particles responsible for emitting pair-producing photons are
likely accelerated near reconnection X-points deep inside the current
layer. There, the magnetic field is weaker (Uzdensky et al. 2011;
Cerutti et al. 2012a), which reduces synchrotron radiation relative to
IC losses, potentially allowing the latter to remain dominant to higher
energies than γ s. A second possibility is that swing cycles actually
set in at lower values of z than we predict. This is because we con-
servatively estimate a steep distribution of pair-producing photons
penetrating the upstream plasma � = p + 0.5 in Section 4.2 (rather
than, e.g. � = p as in Moderski et al. 2005), and therefore may artifi-
cially underestimate fnocool. Finally, and related to the previous point,
we find (not presented here) that the threshold on z for swing cycles
to kick in is quite sensitive to the precise dependence of fnocool on z.
These considerations demonstrate the need for radiative kinetic sim-
ulations to examine in detail whether swing cycles are possible, when
they occur, and how they impact the spectrum of observed radiation.

As a completely separate prospect, our model may connect to
the matter-antimatter balance in FSRQ jets, which is difficult to

7Generally, Uph/UB is equated to the observed ratio of IC-to-synchrotron
luminosities. This is sound in one-zone emission scenarios where Klein–
Nishina effects do not suppress IC emission near the IC spectral peak.
The latter requirement is generally satisfied because Compton FSRQ peaks
typically fall at lower energies than ε

(BLR)
obs (γKN,BLR) and ε

(HDR)
obs (γKN,HDR).

constrain from observations alone (Madejski & Sikora 2016). This
ratio may be initially imprinted at the base of the jet – for example,
by magnetospheric spark-gap discharges (e.g. Blandford & Znajek
1977; Beskin, Istomin & Parev 1992; Chen, Yuan & Yang 2018;
Ford, Keenan & Medvedev 2018; Crinquand et al. 2020) or by
interaction between the nascent jet and the accretion flow (e.g.
Ripperda, Bacchini & Philippov 2020; Wong, Ryan & Gammie
2021) – but it may also be modified in situ as the jet propagates.
Although we expect relatively few newborn pairs compared to the
initial number of upstream particles in each reconnection episode
(Section 4.3), continuous, repeated reconnection occurring as the jet
ploughs through ambient radiation fields could still lead to secular
growth in the number of pairs present in the plasma. This may be
relevant to FSRQs in their quiescent states, where their spectral cut-
offs are broadly consistent with gamma-ray absorption in the BLR.
Furthermore, because τBLR > 1, even if the reconnection region itself
is optically thin (τγ γ,BLR < 1), emitted gamma-rays may still produce
pairs in the jet before exiting the BLR (though they do not strongly
impact the reconnection dynamics).

In summary, reconnection in FSRQ jets illuminated by either
the BLR or the dusty torus is expected to occur in the radiative
regime governed by pair-production and Klein–Nishina physics.
Here, kinetic beaming and pair-feedback-initiated swing cycles
may explain the time-scales of rapid TeV flares and typical FSRQ
VHE spectral indices, respectively. However, confirming whether
these mechanisms are active in Klein–Nishina radiative reconnection
depends on several unknowns and remains a key open question for
future simulations to address. In addition, in situ pair production
driven by reconnection could contribute to the pair content of
quiescent FSRQ jets.

5.2.5 Reconnection parameters in black hole ADCe

Magnetic reconnection may also power emission from a highly
magnetized corona sandwiching a black hole accretion disc (Liang
& Price 1977; Galeev, Rosner & Vaiana 1979; Di Matteo 1998;
Goodman & Uzdensky 2008; Uzdensky & Goodman 2008; Uz-
densky 2016; Beloborodov 2017; Werner et al. 2019; Sironi &
Beloborodov 2020). Here, we focus on the high/soft states of black
hole X-ray binaries, showing that coronal reconnection in this context
likely proceeds in a highly radiative Klein–Nishina regime. We term
as high/soft any state where the quasi-thermal (∼ 1 keV) spectral
component – which is attributed to an optically thick, geometrically
thin accretion disc (Shakura & Sunyaev 1973) – strongly dominates
over the non-thermal component, which extends to much higher,
hard X- and gamma-ray energies (e.g. Remillard & McClintock
2006). Because reconnection intrinsically gives rise to a non-thermal
distribution of particle energies, a reconnection scenario does not
rely on repeated scatterings by an isothermal plasma of moderate
optical depth (e.g. Eardley & Lightman 1976; Shapiro, Lightman &
Eardley 1976; Rybicki & Lightman 1979) to explain the observed
non-thermal spectrum.

The bright quasi-thermal disc emission in the high/soft state
provides an intense soft photon bath to the coronal reconnection
region, and we assume that Comptonization of disc photons is
responsible for the observed non-thermal spectrum. We now estimate
the energy scales γ KN, disc and γ

(disc)
rad,T associated with the disc seed

photons, as well as the energy scales σ c,0 and γ max. Determining
these then allows us to accomplish our main goal for this section:
characterizing the radiative regime of reconnection.
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Beginning with γ KN, disc, the characteristic seed photon energy
emitted from the disc is

εdisc ∼ 1 keV , (116)

as both theorized (Shakura & Sunyaev 1973) and observed (e.g. in
Cyg X-1; McConnell et al. 2002; Remillard & McClintock 2006).
Through equation (19), the Klein–Nishina Lorentz factor is then

γKN,disc ≡ mec
2

4εdisc
∼ 100 . (117)

The corresponding energy to which photons encountering γ KN,disc

particles are upscattered is

ε
(disc)
obs

(
γKN,disc

) ∼ 20 MeV . (118)

Emission at these energies has been observed by the Fermi Large
Area Telescope (LAT) from Cyg X-1 (Zdziarski et al. 2017).

We now move on to estimate γ
(disc)
rad,T . This requires (equation 8)

the energy density of the emission intercepted by the corona at a
distance r from the black hole, which is roughly

Udisc ∼ Ldisc

4πr2c
. (119)

Here, Ldisc is the luminosity of the disc (emitted mostly near its inner
edge) and r is assumed to exceed the innermost disc orbit.

In the high/soft state Ldisc can be quite high – up to sev-
eral per cent of the Eddington limit, LEdd = 4πGMBHmpc/σT =
4πrgmpc3/σT � 1 × 1039(MBH/10 M�) erg s−1 (e.g. 4 per cent for
Cyg X-1; McConnell et al. 2002). Furthermore, r is at least sev-
eral gravitational radii, rg ≡ GMBH/c2 � 1 × 106(MBH/10 M�) cm.
Thus, an upper bound and fiducial scale for the energy density
of ambient radiation shining on to the reconnection layer is (cf.
Beloborodov 2017)

U� ≡ LEdd

4πr2
g c

= mpc2

rgσT
� 2 × 1015

(
MBH

10 M�

)−1

erg cm−3 . (120)

Here, the fiducial black hole mass is 10 M�. In the following, we
estimate r ∼ rg and Udisc ∼ 0.04U�, corresponding to Ldisc � 0.04LEdd

observed from Cyg X-1 (McConnell et al. 2002). The parameter U�

also provides a fiducial scale for the magnetic field energy density in
the disc required to transport angular momentum outward (Shakura
& Sunyaev 1973; Begelman, Blandford & Rees 1984; Goodman &
Uzdensky 2008; Beloborodov 2017).

Beyond the fiducial scale U�, there are a number of uncertain
geometric factors that control how the radiation and magnetic field
energy densities decay as one moves from the vicinity of the black
hole in the disc to the reconnection region in the corona. This
leads to uncertainty in γ

(disc)
rad,T , which depends on both Udisc and the

coronal magnetic field energy density, UB,cor. We parametrize these
uncertainties by exhibiting, in the expressions to follow, Udisc as a
multiple of U� and UB,cor as Udisc/Cd, where Cd ≡ Udisc/UB,cor is
the nominal Compton dominance. Without knowing the geometric
factors governing how the seed photon and magnetic energy densities
decay from the disc to the coronal reconnection region, we assume for
simplicity that they fall off in the same way relative to U�, adopting
a fiducial value Cd = 1. We discuss consequences on Klein–Nishina
radiative reconnection if Cd is truly ∼1 at the end of this section.

Following these conventions, one may write the fiducial upstream
magnetic field strength as (e.g. Goodman & Uzdensky 2008; Uzden-

sky 2016; Beloborodov 2017)

B0 ≡ √
8πUB,cor =

√
8πUdisc/Cd

∼ 4 × 107

(
Udisc

0.04U�(MBH)

)1/2 (
MBH

10 M�

)−1/2 (
Cd

1

)−1/2

G (121)

and then use equation (8) to write

γ
(disc)
rad,T =

√
0.3eB0,cor

4σTUdisc
=

(
0.3e

4σT

√
8π

CdUdisc

)1/2

∼ 6 × 103

(
Udisc

0.04U�(MBH)

)−1/4 (
Cd

1

)−1/4 (
MBH

10 M�

)1/4

. (122)

Though the complicated geometry precludes determining Udisc

and UB,cor precisely, the actual value of γ
(disc)
rad,T depends only weakly

on these quantities.
From equations (117) and (122), one sees that γ (disc)

rad,T is much higher
than γ KN, disc. This opens up the possibility that radiative reconnection
operates in the Klein–Nishina regime, since particles are not radia-
tively inhibited from becoming accelerated beyond γ KN, disc. Addi-
tionally, the radiative particle acceleration limit is not equal to γ

(disc)
rad,T ,

but is strongly modified by Klein–Nishina effects to γ
(disc)
rad,IC � γ

(disc)
rad,T

(equation 30). For reference, particles at γ
(disc)
rad,T Comptonize disc

photons to energy

ε
(disc)
obs

(
γ

(disc)
rad,T

)
∼ 1

2
γ

(disc)
rad,T mec

2

∼ 2

(
Udisc

0.04U�(MBH)

)−1/4(
Cd

1

)−1/4(
MBH

10 M�

)1/4

GeV . (123)

Next, to fully specify the radiative reconnection regime, we
estimate the remaining parameters γ max and σ c,0. We assume that
the characteristic current sheet length is

rg � 1 × 106

(
MBH

10 M�

)
cm . (124)

This gives an extremely large system-size-limited Lorentz factor

γmax ≡ 0.1rgeB0

mec2
= 0.1rge

mec2

√
8πUdisc

Cd

� 3 × 109

(
Udisc

0.04U�(MBH)

)1/2 (
Cd

1

)−1/2 (
MBH

10 M�

)1/2

. (125)

With γ KN, disc, γ
(disc)
rad,T , and γ max estimated, γ cool, disc (equation 9)

and τγ γ,disc (equation 36) follow. Respectively, they are

γcool,disc ≡ 3mec
2

4UdiscσTrg

∼ 3

4

U�

Udisc

me

mp

� 0.01

(
Udisc

0.04U�(MBH)

)−1

(126)

and

τγ γ,disc ≡ 3γKN,disc

5γcool,disc
∼ 8 × 103

(
Udisc

0.04U�(MBH)

)
. (127)

Neither γ cool,disc nor τγ γ,disc depend on any unknowns besides the
ratio Udisc/U�. Unlike in FSRQ jets, the formal γ cool is now small.
Thus, it is not a physical Lorentz factor, but just signals that all
particles cool to non-relativistic energies faster than L/c. In other
words, the system is highly compact: �cor ∼ 1/γ cool,cor � 1. For
particles that have cooled to non-relativistic energies, IC scattering
reduces to Thomson scattering and the observed photon energy is
just ε

(cor)
obs (1) = εcor.
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Klein–Nishina reconnection 4561

Figure 18. Radiative reconnection phase diagrams for parameters relevant to accreting black holes in their high/soft states (particularly Cyg X-1). Colour-coding
is the same as in Figs 8 and 17. As in those figures, σ c,0 is abbreviated as σ . White points indicate the parameters γ

(disc)
rad,T and γ KN, disc estimated in this section;

they are surrounded by ellipses that show an arbitrarily chosen uncertainty of one decade in each direction. We display two diagrams corresponding to a
range (131) of the cold magnetization σ c,0 (based on typical Thomson optical depths τT). These are σ c,0 = 102 (τT = 1; left) and σ c,0 = 104 (τT = 10−2; right).
Throughout the σ c,0 range, reconnection operates in a domain strongly impacted by Klein–Nishina effects and pair production.

We move now to our final estimate: the cold electron magneti-
zation. As in the case of FSRQ jets, we are fairly uncertain of this
parameter because we do not know the background coronal electron
density n0. To proceed, let us recast n0 in terms of the Thomson optical
depth τT = n0σ Trg along the reconnection layer (equation 124). This
coincides with the optical depth of the corona itself assuming the
coronal scale height is ∼rg. The cold electron magnetization can then
be compactly written in terms of τT and the magnetic compactness,

�B ≡ UB,corσTrg

mec2
= UdiscσTrg

Cdmec2
= Udiscmp

CdU�me

∼ 70

(
Udisc

U�(MBH)

)(
Cd

1

)−1

, (128)

as

σc,0 ≡ 2UB,cor

n0mec2
≡ 2

�B

τT
. (129)

Thus, our uncertainty of n0 is shifted on to τT. We consider a range
of typical values 10−2 ≤ τT ≤ 1 commonly inferred for coronae of
accreting black holes, including in the high/soft state (e.g. Eardley
& Lightman 1976; Poutanen, Krolik & Ryde 1997; Gierliński
et al. 1999; McConnell et al. 2002; Goodman & Uzdensky 2008;
Beloborodov 2017). Then, rewriting the right-hand side of (129) as

σc,0 ≡ 2
�B

τT
= 2Udiscmp

CdU�τTme

(130)

and plugging in 10−2 ≤ τT ≤ 1 gives

1 × 102 ≤ σc,0

(
Cd

1

)(
Udisc

0.04U�(MBH)

)−1

� 1 × 104 . (131)

The corresponding range in the number density is n0 = τT/σTrg ∈
[1016 cm−3, 1018 cm−3] (cf. Goodman & Uzdensky 2008).

We display the estimates in this section in a radiative reconnection
phase diagram, as done for FSRQs earlier, in Fig. 18. This illustrates
the main point of all these estimates: coronal reconnection in the
high/soft states of accreting black holes is likely strongly impacted
by Klein–Nishina and pair-production physics. For τT ∈ [10−2,
1], reconnection occurs in the red region of the phase diagram,
where γ rad,IC > γ max > γ cool,2 > 4σ c,0 > γ KN > γ cool,1. Thus, ra-

diative losses do not hinder acceleration near reconnection X-points,
but virtually all particles are still cooled strongly (on time-scales
much shorter than L/c). In addition, a broad distribution of particles
develops at energies �γ KN. These particles emit above-threshold
photons that then produce pairs which may feedback on reconnection.

We now mention a few subtler details associated with this
picture. First, we note that our model of pair-regulated Klein–
Nishina reconnection in black hole ADCe is complimentary to the
reconnection scenario laid out in the context of the low/hard states of
black hole X-ray binaries by Beloborodov (2017). Pair production
also features in that earlier work, but, there, it occurs when two
layer-Comptonized photons, both carrying energy < m2

ec
4/εph,

collide. In contrast, in this study, a pair is produced when a single
Comptonized photon with even higher energy, > m2

ec
4/εph, is

absorbed by the seed radiation field.
Next, we mention the implications of our estimates for the pair

multiplicity, η. Equations (117) and (131) show that the require-
ment γ KN,cor/σ c,0 ≥ 0.1 for η to be less than unity (Section 4.3)
is not always satisfied. Thus, the pairs sourced from gamma-ray
absorption by the disc seed photons may sometimes reach a number
density comparable to the background upstream plasma. However,
a stronger nominal Compton dominance Cd ≡ Udisc/UB,cor drives
down σ c,0 (equation 131) and pushes reconnection into the regime
where the produced pairs are tenuous.

Lastly, we discuss the implications of the assumption Cd ∼ 1. As
mentioned earlier, Udisc and UB,cor are both set, modulo complicated
geometric factors, by the scale U� (or, in our specific estimates,
by 0.04U�). Thus, it is possible that Cd may be close to unity.
However, our model of pair-regulated Klein–Nishina reconnection
(Section 4) ignores synchrotron losses, and so, in the presence of such
modest Cd, synchrotron cooling may need to be suppressed in order
for the picture of Compton cooling and pair regulation to remain
valid. There are several ways for this to occur. Near reconnection
X-points, the magnetic field is weaker, and so synchrotron cooling is
reduced there (Uzdensky 2011; Cerutti et al. 2012a; see discussion
of FSRQs). In addition, as discussed in Appendix C, the angular
distribution of particles radiating above-threshold photons from the
layer may cause the birth velocities of newborn upstream pairs
to be nearly parallel to the reconnection mid-plane. Because the
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upstream magnetic field is also parallel to this plane, the pitch
angles of such newborn pairs may be small, allowing their cooling
to be IC dominated. Finally, synchrotron self-absorption may inhibit
synchrotron cooling among the lower energy particles (e.g. with γ

� 10; Beloborodov 2017).
However, if Cd > 1, then our estimates numerically change, but the

ordering of scales (region of the radiative phase diagram occupied by
reconnection) remains essentially the same. For reference, γ KN/σ c,0

∝ Cd; γrad,T/σc,0 ∝ C
3/4
d ; and γmax/σc,0 ∝ C

1/2
d . If, for illustration,

one scales up Cd to 10, the ordering γ rad,IC > γ max > γ cool,2 > γ rad,T

> 4σ c,0 > γ KN is preserved except at the high-σ c,0 (low-τT) end
of the interval (131). There, γ KN switches places with 4σ c,0, which
brings reconnection into the magenta region (e.g. Fig. 18) of the
phase diagrams where the nominal impulsive X-point acceleration
limit, 4σ c,0, falls below the minimum energy, γ KN, for Klein–Nishina
effects kick in. However, like for FSRQs (Section 5.2.3), we may
infer from observations (equation 118) that particles are accelerated
at least up to γ KN, suggesting that, if 4σ c,0 < γ KN, the nomi-
nal 4σ c,0 X-point acceleration limit is circumvented and that recon-
nection may still be strongly influenced by Klein–Nishina radiative
physics.

5.2.6 Relevance to observations of black hole X-ray binaries

We now describe the implications of our reconnection model for
high/soft states of black hole ADCe in accretion-powered X-ray
binaries. We are aware of two such systems for which gamma-ray
observations have been reported: Cyg X-1 (detected by the Fermi
LAT, Zdziarski et al. 2017) and Cyg X-3 (detected by AGILE, Tavani
et al. 2009, and by the Fermi LAT, Fermi LAT Collaboration 2009;
Zdziarski et al. 2018; we adopt the hypothesis that the Cyg X-3
compact object is a black hole).

For Cyg X-1, gamma-ray observations place the high/soft-state
photon energy cut-off at 40–80 MeV (Zdziarski et al. 2017). This
is fairly consistent with absorption of gamma-rays propagating
through the quasi-thermal radiation field of the disc. Naively, one
expects absorption to kick in at around ∼ (mec

2)2/εdisc ∼ 300 MeV.
However, the quasi-thermal spectrum is not monochromatic, but
falls off smoothly at energies beyond its 1-keV peak. In fact, the
disc dominates the observed spectrum at up to 3 or 4 keV (e.g.
McConnell et al. 2002), which brings the absorption cut-off into
the observed range of 40–80 MeV. Note that the pair-production
optical depth τγ γ,disc (equation 127) decreases from ∼104 at photon
energies beyond the spectral peak, but is still much larger than
unity at 3−4 keV. Alternatively, the photon energy cut-off could
correspond to the cut-off in the distribution of radiating particles.

Unlike Cyg X-1, Cyg X-3 exhibits gamma-ray emission far above
its expected absorption cut-off. However, these high-energy gamma-
rays are thought to come from Comptonization of the companion
star’s radiation by jet electrons at much larger distances (Dubus,
Cerutti & Henri 2010; Zdziarski et al. 2018). Thus, gamma-ray
observations of Cyg X-3 do not provide a strong constraint on the
cut-off in the coronal emission, which may be similar to Cyg X-1
and also consistent with pair absorption.

As for their hard X-ray spectra, Cyg X-1 and Cyg X-3 both
display high/soft states with power-law hard X-ray photon number
indices �X,HS � 2.5 (McConnell et al. 2002; Zdziarski & Gierliński
2004; Szostek, Zdziarski & McCollough 2008; here ‘HS’ stands for
‘high/soft’). In addition, as detailed by Remillard & McClintock
(2006), many black hole X-ray binaries are observed with photon
indices clustered around this value in their high/soft states (and also

in ‘steep power-law’ states where the observed thermal and non-
thermal luminosities are comparable). As discussed for FSRQ jets
(Section 5.2.4), the relatively steep index �X,HS � 2.5 (corresponding
to a reconnection-powered injected electron energy distribution
power-law index p � 3; Section 5.2.4) could be associated with
swing cycles in pair-regulated Klein–Nishina reconnection.

Like FSRQs, accreting black holes also exhibit rapid flares. These
are observed in the X-rays and have been witnessed on time-scales
as short as milliseconds (Gierliński & Zdziarski 2003) – close to the
light crossing time of an orbit at r = 10rg from a black hole with
mass MBH = 10 M�. Kinetic beaming in the context of Klein–Nishina
reconnection may help explain such rapid variability by delivering
observed time-scales as short as 0.1L/c (Cerutti et al. 2013, 2014a,
b). However, this has not been explored in detail as in the case of
rapid TeV FSRQ flares and requires further attention.

In summary, pair-regulated Klein–Nishina reconnection in the
ADCe of black hole X-ray binaries may explain the observed
steep spectra from these objects, including the gamma-ray cut-off
(observed in Cyg X-1, Zdziarski et al. 2017, though this may also
result from the cut-off in the distribution of radiating particles).
Kinetic beaming facilitated by Klein–Nishina reconnection may
additionally explain short flaring time-scales, but this requires much
more thorough investigation.

6 C O N C L U S I O N S

Collisionless astrophysical reconnection is often radiative, with
radiative processes not only producing the observed light, but also
coupling to the reconnection dynamics. Many interesting systems
realize such a regime where an intense but soft radiation field
bathes the reconnection region, and reconnection-energized particles
Comptonize the ambient photons to observed X-ray and gamma-ray
energies.

Sometimes, IC losses proceed purely in the Thomson limit and
the Comptonized photons freely stream out of the system – a regime
we discuss in Section 2. Even then, however, radiation is far from
passive. The emitting particles may still lose a significant amount of
their energy on sub-dynamical time-scales, and this has the potential
to modify both reconnection itself and the qualitative features of the
received light (e.g. Uzdensky 2016; Beloborodov 2017; Werner et al.
2019; Mehlhaff et al. 2020; Sironi & Beloborodov 2020).

However, there are some astrophysical systems – such as FSRQ
blazar jets and the coronae of accreting black holes – where the
physical picture is even richer. In these cases, Comptonization
of ambient photons can enter the Klein–Nishina regime, and this
both qualitatively changes the physics of radiative cooling and
opens up an entirely new channel for radiative feedback on re-
connection: pair production. By incorporating Klein–Nishina and
pair-production physics into the basic conceptual framework of
radiative reconnection (Section 3), we find a fundamentally new,
self-regulated, Klein–Nishina reconnection regime (Section 4) that
stems from a negative feedback loop (Fig. 1). In this loop, gamma-
ray photons Comptonized in the reconnection layer propagate into
the upstream plasma where they produce hot pairs by colliding
with soft (unscattered) ambient photons, thus lowering the effective
upstream magnetization. This inhibits further particle acceleration in
the reconnection layer, closing the feedback loop.

The pair-regulation mechanism gives rise to an effective fixed-
point upstream magnetization σ h that is universal – independent
of the initial value σ h,0. However, the fixed point is not necessarily
reached by the system. If pair feedback is efficient enough, the system
overshoots its natural solution, σ h, by a wide margin and enters a
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limit (or ‘swing’) cycle, constantly oscillating between a high- and a
low-magnetization state.

In Section 4, we also analyse the number of particles produced
in the upstream region. A pair cascade, in which the population
in each subsequent newborn generation grows exponentially, is not
generally expected (except for unrealistically optimal reconnection-
driven NTPA). Even in the presence of a cascade, there is a wide
parameter range where the total created pair count is dwarfed by
that of the pairs originally present. Thus, remarkably, though the
newborn pairs are so hot that they can dominate the upstream
energy budget, they are often also so tenuous that they contribute
negligibly to the upstream lepton density. This feature, in particular,
distinguishes Klein–Nishina radiative reconnection from other pair-
regulated regimes (Lyubarskii 1996; Hakobyan et al. 2019).

Finally, in Section 5, we discuss the observable aspects of pair-
regulated Klein–Nishina reconnection. We expect that emission from
the layer (i.e. the region threaded with reconnected flux) dominates
that from the newborn component of the upstream plasma (Sec-
tion 5.1.1). We also (Section 5.1.2) identify several reasons to expect
that Klein–Nishina physics may promote kinetic beaming, which is
an important mechanism for facilitating rapid flaring variability in
reconnection (Cerutti et al. 2012b, 2013, 2014a, b; Nalewajko et al.
2012; Mehlhaff et al. 2020). Furthermore, we explicitly estimate the
parameters (i.e. the energy scales introduced in Sections 2 and 3)
governing the radiative regime of reconnection in FSRQ blazar jets
(Sections 5.2.1–5.2.4) and ADCe of black hole X-ray binaries (Sec-
tions 5.2.5 and 5.2.6). Reconnection in both types of objects is very
likely to be strongly impacted by Klein–Nishina physics, and may
even enter the pair-regulated regime modelled in this paper. In fact,
the generally steep non-thermal spectra produced by FSRQ jets and
black hole ADCe appear consistent with strong pair loading in our
model, and the observed instances of rapid variability could be caused
by the kinetic beaming mechanism. Pair-regulated reconnection may
further provide a source for in situ pair production in FSRQ jets,
where the lepton content is difficult to constrain observationally.

However, many of our observational remarks, as well as the basic
physical features of our model, require additional testing through
first-principles radiative PIC simulations, which can address some of
the following key physical and observational questions:

(i) How robust is the pair feedback mechanism? In particular,

(a) Is the universal magnetization solution ever realized?
(b) Can an order-unity energy recapture efficiency ξ be

achieved?
(c) Is the feedback strong enough to induce late-time limit

cycles that jump between high- and low-magnetization states?

(ii) How many pairs are produced? Are they indeed few compared
to the number of background particles, and does their number density
scale with the reconnection parameters as predicted by our model?

(iii) Are the emitted spectra produced by reconnection in the
steady state (or in a limit cycle) consistent with our predictions?
Are they consistent with observations?

(iv) Can kinetic beaming operate in Klein–Nishina reconnection
as we argue? If so, is beaming more or less prominent than in
Thomson radiative reconnection (as diagnosed by Mehlhaff et al.
2020)?

(v) To what extent does the physical picture change in 3D, in the
presence of ions, with a finite guide field, and (especially) with finite
synchrotron losses?

In addition to addressing these immediate follow-up questions, it
would be interesting to generalize our theory in several additional

ways. For example, one might consider a broader (e.g. power-
law) ambient photon spectrum (here we only treat monochromatic
ambient seed photons). Beyond shedding light on a broader class
of astrophysical systems, such an exercise steps towards a theory
of synchrotron self-Compton reconnection, where the dominant
population of seed photons for Comptonization is the synchrotron
photons produced inside the reconnection system. This, in turn,
would be very important for understanding reconnection-powered
emission from BL Lac blazars (Madejski & Sikora 2016). As a
completely separate extension of this work, kinetic simulations
mimicking global jet-like geometries (e.g. Alves, Zrake & Fiuza
2018; Sironi et al. 2021) and also incorporating Klein–Nishina and
pair-production physics would determine whether and how this type
of reconnection occurs in an explicitly global context. The same
could be said for accretion-like numerical set-ups (e.g. Crinquand
et al. 2021).

Overall, this study poses a rich set of important questions for
future inquiry. In the short term, direct numerical tests of our model
will facilitate more straightforward translation to observations. More
remotely, global simulations may reveal explicitly how reconnection
as modelled here might occur in nature. Finally, the novel radia-
tive physics treated in this work (but see also Lyubarskii 1996;
Beloborodov 2017; Hakobyan et al. 2019; Schoeffler et al. 2019;
Werner et al. 2019; Sironi & Beloborodov 2020) may help to pave
the way to theories of increasingly realistic reconnection regimes
with applications to the high-energy Universe.

AC K N OW L E D G E M E N T S

The authors express their gratitude to Benoı̂t Cerutti for fruitful dis-
cussions. This work was supported by NASA (ATP NNX16AB28G,
ATP NNX17AK57G, and ATP 80NSSC20K0545) and NSF (AST
1411879 and AST 1903335) grants.

DATA AVAI LABI LI TY

No new data were generated or analysed in support of this research.

REFERENCES

Abeysekara A. U. et al., 2015, ApJ, 815, L22
Aharonian F. A., Atoyan A. M., 1981, Ap&SS, 79, 321
Aharonian F. A., Belyanin A. A., Derishev E. V., Kocharovsky V. V.,

Kocharovsky V. V., 2002, Phys. Rev. D, 66, 023005
Ahnen M. L. et al., 2015, ApJ, 815, L23
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A P P E N D I X A : T H E K L E I N – N I S H I NA
SCATTERIN G P OWER AND RATE

Here, we sketch the derivations of the functions fKN(q) and gKN(q)
as defined in equations (15) and (19). Jones (1968) and Blumenthal
& Gould (1970) report the Klein–Nishina scattering kernel

dN

dtdr
dr = cσT

Uph

εph

× 3

(1 + qr)2

[
2r ln r + (1 + 2r)(1 − r) + 1

2

(qr)2

1 + qr
(1 − r)

]
dr

≡ cσT
Uph

εph
K(r, q)dr . (A1)

This is the number of photons scattered per unit time by a particle with
Klein–Nishina parameter q = γ /γ KN = 4γ εph/mec2 to final photon
energies between r and r + dr. The parameter r is not actually equal
to the scattered photon energy ε1 but is defined in terms of it through

r ≡ ε1/γmec
2

q
(
1 − ε1/γmec2

) . (A2)

Equivalently,

ε1 = γmec
2 qr

1 + qr
. (A3)

It is convenient to take integrals over r as a proxy for ε1 because,
as ε1 spans its kinematically allowed range [εph, γ mec2q/(1 + q)], r
runs approximately from 0 to 1 (Jones 1968; Blumenthal & Gould
1970).

For completeness, we mention the validity conditions for the
kernel (A1): γ mec2/εph = 4γ KNγ � 1 and γ � 1 (Jones 1968).
The first condition is always satisfied for γ KN � 1, which is true of
every astrophysical system to which we apply our results (and also of
many others). The relativistic requirement γ � 1 is then taken care
of because the general Klein–Nishina expressions are only needed
for γ � γ KN � 1. At non-relativistic energies γ � 1, the Thomson
prefactors in equations (14) and (18) are all that remain [fKN(q � 1)
→ 1 and gKN(q � 1) → 1], and these are non-relativistically correct.
Thus, for γ KN � 1, equations (14) and (18) are correct even in the
non-relativistic case.

To obtain the rates at which a scattering particle loses energy
(equation 14) and encounters soft seed photons (equation 18) requires

integrating over ε1 – or, equivalently, over r – while keeping γ , εph,
and, hence, q = γ /γ KN fixed. One obtains

[
RIC(γ )
PIC(γ )

]
= cσT

Uph

εph

∫ 1

0
dr K(r, q)

[
1

ε1(r)

]

=
[

cσTUph/εph

(4/3)cσTγ 2Uph

]∫ 1

0
dr K(r, q)

[
1

3r/(1 + qr)

]
. (A4)

Then, using β2 = 1 − 1/γ 2 � 1 to write PT(γ ) � (4/3)cσ Tγ 2Uph,
one can read off gKN(q) and fKN(q) from equation (A4):

gKN(q) =
∫ 1

0
dr K(r, q) (A5)

and

fKN(q) = 3
∫ 1

0
dr K(r, q)

r

1 + qr
. (A6)

The integrals can be evaluated to yield equations (15) and (19).
Should the reader wish to verify by explicit computation, we find
that the identity

Li2

(
1

1 + q

)
= Li2(−q) + π2

6
+ 1

2
log2(q) − 1

2
log2

(
q

1 + q

)
(A7)

is useful.

A P P E N D I X B : T H E E N E R G Y R E T E N T I O N
FAC TO R fN O C O O L

Recall that in Section 4.1, we left ξ as a free parameter. This stemmed
chiefly from our uncertainty regarding the fraction of energy fnocool

retained by the fresh pair plasma as it travels towards the reconnection
layer. In order to demonstrate the effect of this parameter without
knowing it precisely, we entertained a class of models where ξ

(specifically fnocool) was constant: independent of NTPA in the layer
[i.e. of p(σ h) and z]. However, in principle, we can explicitly compute
the distributions N (n)

γ γ (γ ) of newborn pairs (by straightforwardly
extending the analysis of Section 4.2), and, from them, calculate
the energy carried by fresh plasma reaching the layer. This can then
be compared to the energy deposited into the upstream region to
yield fnocool.

In this section, we adopt this strategy to calculate ξ = fnocool.
We find that, like F , ξ is a function of p(σ h) and z: ξ = �[p(σ h),
z]. Furthermore, the basic intuition gleaned in Section 4.1 remains
intact: extremely efficient energy delivery to the layer, ξ ∼ 1, may still
push the system into a two-state swing cycle, and radiative feedback
on NTPA still makes the system more prone to these oscillations.
Through the present analysis, we merely gain a more precise notion
of the values of physical parameters – particularly the cut-off z in
the distribution of layer particles – required to initiate swing cycles
versus those that cause rapid progression towards the fixed point σ h.

Our first step is to write down a quantitative expression for fnocool.
In order to do this, we define several auxiliary quantities: the nth-
generation steady-state particle count

N (n)
γ γ ≡

∫
N (n)

γ γ (γ )dγ , (B1)

which we distinguish from N (n)
γ γ (γ ) by omitting the functional

argument; the nth-generation particle injection rate

Q(n)
γ γ ≡

∫
Q(n)

γ γ (γ )dγ , (B2)
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also distinguished from Q(n)
γ γ (γ ) by argument omission; the average

particle energy injected into the nth generation

γ̄
(n)
Q ≡

∫
γQ(n)

γ γ (γ )dγ

Q
(n)
γ γ

; (B3)

and the average particle energy carried by the nth generation in its
steady state

γ̄
(n)
N ≡

∫
γN (n)

γ γ (γ )dγ

N
(n)
γ γ

. (B4)

In terms of these quantities, one has

fnocool ≡ newborn pair energy carried into layer

energy injected upstream

=
∑N

n=1 N (n)
γ γ γ̄

(n)
N∑N

n=1 N
(n)
γ γ γ̄

(n)
Q

=
∑N

n=1 N (n)
γ γ γ̄

(n)
Q f

(n)
nocool∑N

n=1 N
(n)
γ γ γ̄

(n)
Q

, (B5)

where

f
(n)
nocool ≡ N (n)

γ γ γ̄
(n)
N

N
(n)
γ γ γ̄

(n)
Q

= γ̄
(n)
N

γ̄
(n)
Q

(B6)

is the average fractional energy retained by the nth generation.
Before we calculate fnocool in detail using equation (B5), let us

briefly argue why, as claimed in Section 4.1, fnocool should be
physically confined to the range [3/400, 1]. The upper bound is
trivial: fnocool cannot exceed one by definition. Let us now see how
the lower bound arises.

In the case where fnocool is as small as possible, all particles born
into the upstream region are quite energetic, with γKN � γ̄

(n)
Q ≤

γ̃cool,2, but they cool quickly – until their cooling times match
their readvection time tra, and hence until their Lorentz factors
equal γ̃cool,1 (equation 59). However, when these particles’ energies
exceed γ pp, none of their emitted photons escape the system. Rather,
the power Q(1)

γ γ γ̄
(1)
Q mec

2 injected into the upstream region losslessly
converts to secondary pairs, and therefore matches the steady-state
energy flux Q

′
γ ppmec2 into the particle energy bin γ < γ pp <γ + dγ .

Here, Q
′

is the (generationally summed) particle flux into the same
bin. Only once particles cool past γ pp does their emission leak out of
the system. Thus, if the injected particles have high initial energies
but all cool down to γ̃cool,1, fnocool reaches the (lowest possible) value

fnocool,min ≡ 1 − power radiated by upstream particles

power injected upstream

= 1 − Q′(γpp − γ̃cool,1)

Q
(1)
γ γ γ̄

(n)
Q

= 1 − γpp − γ̃cool,1

γpp

= γ̃cool,1

γpp
= 1

8

3

50
= 3

400
. (B7)

The reason that (as we show quantitatively in this section) fnocool, min

= 3/400 is an overly pessimistic estimate for fnocool is that, in reality,
upstream particles are constantly being replenished at high energies
even as they rapidly cool towards γ̃cool,1. This results in a pronounced
high-energy tail of hot upstream particles entering the reconnection
layer, greatly enhancing fnocool, even, in some cases, to order unity.

B1 The steady-state pair distributions N (n)
γ γ (γ )

Evaluating equation (B5) for fnocool explicitly requires the steady-
state pair distributions N (n)

γ γ (γ ). We now retrieve these distributions
by extending the analysis of Section 4.2. Rearranging equation (66),
one may write

N (n)
γ γ (γ ) = 1

8
tcool,IC(γ )Q(n+1)

γ γ (γ /4) . (B8)

Plugging in tcool,IC(γ ) ∝ [γ fKN(γ /γ KN)]−1 and using the approximate
expression fKN(q) � (1 + q)−1.5 from equation (17), one sees
that N (n)

γ γ (γ ) ∝ γ −�+0.5 provided Q(n)
γ γ ∝ γ −� (i.e. as in 57) and γ

� γ KN. The latter condition is satisfied because the deep Klein–
Nishina regime is assumed in writing equations (63) and (64), from
which (B8) follows.

However, this is not the full story for N (n)
γ γ (γ ). Even though Q(n)

γ γ (γ )
is zero when γ < γ min ≡ 2γ KN, which comes from the fact that no
pairs are injected at energies below γ min, N (n)

γ γ (γ ) is not zero at these
low energies. Instead, particles in every generation cool continuously
– in the Thomson regime – once they reach energies ∼γ KN = γ min/2,
populating a low-energy component of each distribution N (n)

γ γ (γ ).
To model this situation, we assume that, in each generation, a con-

stant flux of particles leaks from above to below γ KN in energy space
[through the advective term in equation (63), which remains non-
zero in the Thomson regime even though Q(n)

γ γ (γ ) vanishes]. Once
there, the rate of change of each particle’s energy is approximately
Thomson: −γ̇ � −γ̇T ≡ γ /tcool,T(γ ). To determine N (n)

γ γ (γ ) in the
Thomson limit γ < γ KN then requires solving a simplified version
of equation (63),

∂

∂t
N (n)

γ γ (γ, t) + ∂

∂γ

(
γ̇TN (n)

γ γ (γ, t)
) = Q(n)

γ γ δ(γ − γKN) , (B9)

where the source term Q(n)
γ γ δ(γ − γKN) = δ(γ − γKN)

∫
Q(n)

γ γ (γ )dγ

gives the flux into γ KN of particles from higher energies.8The
solution to (B9) can be obtained exactly, and the steps are detailed
in Appendix E. The result is a low-energy distribution of particles
arriving at the layer in each generation of

N (n)
γ γ (γ � γKN) = Q(n)

γ γ γcool
L

c

{
γ −2 γ ≥ γ̃cool,1

0 γ < γ̃cool,1
. (B10)

Equivalently, one can use γcool = (10/τγγ )γ̃cool,1 =
(10/τγγ )(3/50)γKN to express this as

N (n)
γ γ (γ � γKN) = Q(n)

γ γ

3

50

10L

τγγ c

{
γKN/γ 2 γ ≥ γ̃cool,1

0 γ < γ̃cool,1
, (B11)

which will be a slightly more useful form later. For reference, the
average energy of this distribution is∫ γmin

1 γN (n)
γ γ (γ )dγ∫ γmin

1 N
(n)
γ γ (γ )dγ

= γ̃cool,1 ln

(
2γKN

γ̃cool,1

)
� 3.5γ̃cool,1 , (B12)

where the integrals are taken through γ min = 2γ KN because, as
detailed below, this is where we match the Thomson solution (B11)
to the one we will obtain in the deep Klein–Nishina regime.

Next, we determine the high-energy (γ > γ KN) part of the steady-

8Strictly speaking, the first generation of pairs Q
(1)
γ γ (γ ) may have particles

at energies between γ̃cool,2 and γ
(1)
2 = γ2/4 if γ2 > 4γ̃cool,2. In that case,

taking Q
(n)
γ γ = ∫

Q
(n)
γ γ (γ )dγ , and not cutting off the integral at γ̃cool,2,

overestimates the number of particles in the low-energy Thomson regime,
artificially reducing our estimate of γ̄

(n)
N and, hence, of f

(n)
nocool.
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Figure B1. Top subpanels: On the left (right), the function H(σ h) [H̃ (σh)], which includes a calculation of ξ including (excluding) the effect of radiation
reaction on the distribution of radiating particles in the reconnection layer, for the case z = γ 2/γ KN = 1100. This function is overlaid on several constant-ξ
contours of h(σ h) [h̃(σh)], which are taken from Fig. 12 (Fig. 15, left-hand panel). When a contour is crossed, it means that the value of ξ = � (ξ = �̃) equals
the corresponding contour value. Bottom subpanels: The function � (�̃) plotted explicitly, alongside the minimum and maximum allowed values, 3/400 ∼ 0.01
and 1, respectively. The energy recapture efficiency ξ is always much higher than the minimum, regardless of the assumptions made about radiation reaction,
and, if radiation reaction is accounted for, may even approach order unity.

state distributions N (n)
γ γ (γ ). We note that Q(n)

γ γ can be written (cf.
equation 74) as

Q(n)
γ γ � Bn

γ −�+1
min

� − 1

⎡
⎣1 −

(
γmin

γ
(n)
2

)�−1
⎤
⎦ � Bn

γ −�+1
min

� − 1
. (B13)

Plugging this into the right-hand side of (B8) gives

N (n)
γ γ (γ � γKN) = 1

8

[
tcool,IC(γ )

] [
Q(n+1)

γ γ (γ /4)
]

= 1

8

[
3

50

10L

τγγ c

1

qfKN(q)

][
Bn+1

( γ

4

)−�
]

= 1

8

[
3

50

10L

τγγ c

1

qfKN(q)

] [
A(�)Bn4�γ −�

]

� 1

8

[
3

50

10L

τγγ c

1

qfKN(q)

][
A(�)Q(n)

γ γ 4� (� − 1)γ −1
min

(
γ

γmin

)−�
]

= 1

2γKN
Q(n)

γ γ

[
3

50

10L

τγγ c

1

qfKN(q)

](
γ

γmin

)−�

. (B14)

The third line follows from (72), the fourth line from (B13), and the
last line from (73) along with γ min = 2γ KN. Rigorously matching
the low-energy Thomson solution (B11) to the high-energy Klein–
Nishina result (B14) requires a detailed analysis of the radiative
physics near γ ∼ γ KN. We expect this, at most, to modify (B11)
and (B14) by order-unity factors near γ ∼ γ KN, since the assumptions
from which these solutions are derived are fairly robust in their
respective limits (far from γ KN). Moreover, the solutions are already
of similar scale at a natural matching point, γ = γ min = 2γ KN, with
equation (B14) a factor of about 1/fKN(2) ∼ 5 larger than (B11)
when both are evaluated at γ min. This is independent of �. Thus, as
a rough estimate, we take the overall distribution of nth-generation

pairs (including both γ > γ KN and γ < γ KN) to be

N (n)
γ γ (γ ) � Q(n)

γ γ

3

50

10L

τγγ c

×
⎧⎨
⎩

γmin/2γ 2 γ̃cool,1 ≤ γ < γmin

[γminqfKN(q)]−1(γ /γmin)−� γmin ≤ γ < γ
(n)
2

0 otherwise
. (B15)

If one leverages the fact that q > 2 when γ > γ min to approxi-
mate qfKN(q) � q−0.5, equation (B15) becomes

N (n)
γ γ (γ ) � Q(n)

γ γ

3

50

10L

τγγ c

×
⎧⎨
⎩

γmin/2γ 2 γ̃cool,1 ≤ γ < γmin

(
√

2/γmin)(γ /γmin)−�+0.5 γmin ≤ γ < γ
(n)
2

0 otherwise
. (B16)

B2 Evaluating fnocool

Armed with the pair distributions N (n)
γ γ (γ ), and knowing, from

Section 4.2, the injected distributions Q(n)
γ γ (γ ), we can now explicitly

evaluate equation (B5) to obtain fnocool. Assembling all of the
ingredients – equations (57), (B1)–(B4), (B13), and (B16) – we
have

γ̄
(n)
Q

γpp
= 1

4

� − 1

� − 2

[
1 − (z/4n+1/2

)2−�

1 − (z/4n+1/2
)1−�

]
, (B17)

N (n)
γ γ = Q(n)

γ γ

10L

τγγ c

{
1 +

√
2

3/50

� − 1.5

[
1 −

( z

4n+1/2

)1.5−�
]}

,

(B18)
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and

γ̄
(n)
N

γpp
= 3

400

{
3.5 + 2

√
2

2.5 − �

[( z

4n+1/2

)2.5−�

− 1

]}

×
{

1 +
√

2
3/50

� − 1.5

[
1 −

( z

4n+1/2

)1.5−�
]}−1

. (B19)

Some special numbers that appear in these expressions are: 3.5 �
ln(2 × 3/50) = ln(γmin/γ̃cool,1) in the numerator of (B19) (cf. equa-
tion B12); 1/4 ≡ γ min/γ pp, the prefactor of (B17); and 3/400 ≡
γ̃cool,1/γpp ≡ fnocool,min, the prefactor of (B19). In writing these
expressions, we assume that the layer particle distribution cuts
off at γ2 ≤ 4γ̃cool,2 and, therefore, that we are justified to re-
place γ

(n)
2 /γmin with γ 2/2γ KN4n = z/4n+1/2, as we have done.

Some important features and limits of these formulae are as
follows. First, noting that � � pKN + 1 � p + 0.5, we see that �

∈ [1.5, 3.5]. Thus, the second term in the braces of equation (B18)
is almost always small, and, generally, N (n)

γ γ ∼ Q(n)
γ γ 10L/τγγ c: the

number of particles in the steady state is dominated by those in
the Thomson regime. Next, when � is on the softer side (� �
2.5), all expressions become virtually z-independent (unless z ∼
4n+1/2). This is because the distributions of pairs are so steep that
all quantities are dominated by the low energies [near γ min for
the Q(n)

γ γ (γ )’s and near γ̃cool,1 for the N (n)
γ γ (γ )’s]. In this limit, the

weights γ̄
(n)
Q N (n)

γ γ /
∑

k γ̄
(k)
Q N (k)

γ γ used to average the f
(n)
nocool’s in (B5)

exhibit a very simple n-dependence: γ̄
(n)
Q N (n)

γ γ ∝ Q(n)
γ γ ∝ A(�)n � 1.

Thus, fnocool is dominated by the first generation, tending to

lim
�→3.5

fnocool = lim
�→3.5

f
(1)
nocool = lim

�→3.5

γ̄
(n)
N

γ̄
(n)
Q

= 3

400

3.5 + 2
√

2

(3.5 − 1)/4(3.5 − 2)
� 0.1 . (B20)

This is much higher than our pessimistic estimate fnocool, min = 3/400,
and owes to the extended nature of the power-law distribution of
particles. Though dominated by the low energies, this distribution
still carries an average particle energy that is a factor of several
higher than γ̃cool,1.

Finally, we note that γ̄
(n)
N becomes highly z-dependent when � <

2.5, and so does γ̄
(n)
Q when � < 2. As the result of this, the highest

values of z that we study – all the way up to z = 4γ̃cool,2/γKN � 1100
– produce fnocool of order unity (between 0.4 and 0.5). Thus, in our
quantitative framework, fnocool is rather weakly dependent on the
physical parameters z and p, only varying between about 0.1 and 0.5
over the broad parameter space, (p, z) ∈ [1, 3] × [8, 1100]. However,
one should bear in mind that we have made many simplifying
assumptions in our model, and so a wider range of fnocool may be
possible in reality. Thus we would like to stress the overall qualitative
insight – that fnocool is never really too small (always at least several
per cent) and may potentially reach order unity – more than our exact
quantitative values. So, even though we now repeat our analysis from
Section 4.1 using our functional form for fnocool (via those for γ̄

(n)
N , γ̄ (n)

Q

and N (n)
γ γ ), we aim to stress general features, showing how the (now

somewhat more self-consistent) dynamics predicted by our model
depend in a very qualitative sense on z and p.

B3 Reconnection dynamics with self-consistent fnocool

Putting fnoesc = 1 as in Section 4.1 (see also Appendix C), the energy
recapture efficiency is just ξ = fnoescfnocool = fnocool. We denote the
(new in this appendix) self-consistent functional dependence of ξ ,

through fnocool, on pKN and z by writing

ξ = �(pKN, z) = fnocool , (B21)

where fnocool is evaluating according to equation (B5) using equa-
tions (B13) and (B17)-(B19). Note that � is a function of p only
through pKN. This is because the power-law scaling of the upstream
particle distributions � is inherited strictly from the deep Klein–
Nishina-regime layer particles: � � pKN + 1. Equation (B21)
eliminates ξ as a free parameter from the problem – just like F , it is
entirely determined in terms of pKN (and, hence, in terms of σ h) and z

= γ 2/γ KN. This allows us to repeat our analysis from Section 4.1,
except using our expression for ξ in (B21) instead of scanning across
it as a free parameter. This we do in Figs B1–B3.

Each of these figures presents results from two cases, one where
radiation back reaction on the layer distribution of emitting particles
is ignored [i.e. where pT = pKN = p(σ h)] and one where it is crudely
taken into account [i.e. where pT = p(σ h) + 1 and pKN = p(σ h) −
0.5]. In the former case, we generalize equation (51) to

σh,n+1 = H (σh,n) ≡ σh,0

1 + 2 �[p(σh,n), z]F [p(σh,n), z]σh,0/3
, (B22)

whereas in the latter we generalize equation (55) to

σh,n+1 = H̃ (σh,n) ≡ σh,0

1 + 2 �̃[p(σh,n), z]F̃ [p(σh,n), z]σh,0/3
. (B23)

Here, we have defined

�̃(p, z) ≡ �(p − 0.5, z) . (B24)

We note that, when evaluating � and �̃ through equation (B5), we
replace the symbol Q(n)

γ γ in the expression for N (n)
γ γ (equation B18)

with Bnγ
−�+1
min [1 − (4n+1/2/z)�−1]/(� − 1) rather than adopt the

cruder approximation Q(n)
γ γ � Bnγ

−�+1
min /(� − 1) (see equation B13).

This maintains continuity of fnocool, ensuring that contributions from
each successive generation turn on gradually with z (as they do in
reality) rather than discretely. We have checked that this does not
introduce significant error into our calculation, even though it is
slightly inconsistent with the derivations of equations (B17)–(B19)
(particularly one of the steps in equation B14), which assume Q(n)

γ γ �
Bnγ

−�+1
min /(� − 1).

In Figs B1–B3, we analyse more thoroughly the dependence of
the solution σ h on z than in Section 4.1. There are two reasons
for this. First, eliminating ξ as a free parameter renders z the
only independent variable in the problem, and so examining z-
dependence is now easier. Secondly, unlike when we treated ξ as
a free parameter, � and �̃ both depend on z, so examining z-
dependence is now more necessary. We conduct our analysis in the
broad range of z = γ 2/γ KN spanning from the minimum for pair
production to occur in the upstream region, z = 8, to the maximum
such that all newborn particles are injected with Lorentz factors less
than γ̃cool,2. In the latter case, z is determined by setting the cut-off in
the first generation’s injected distribution γ

(1)
2 to γ̃cool,2, yielding z =

γ2/γKN = (4γ
(1)
2 )/γKN = 4γ̃cool,2/γKN � 1100 (equation 60).

Fig. B1 shows how the solutions σ h = H(σ h) and σh = H̃ (σh),
where ξ is determined self-consistently, differ from the correspond-
ing solutions σ h = h(σ h) and σh = h̃(σh), when ξ is taken to be
constant. This is done for the extreme case z = 1100, which is
most suitable for comparing with Section 4.1, where z is infinite.
Additionally, Fig. B1 also displays the functions � and �̃. One
can see that, at small σ h, � and �̃ are small (∼0.1, as predicted
by equation B20). Furthermore, � and �̃ both increase with σ h.
This results from the power-law index p(σ h) of radiating layer
particles becoming harder, which causes fnocool to be dominated
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Klein–Nishina reconnection 4569

Figure B2. The same as Fig. B1, but without constant-ξ contours of the functions h and h̃. Instead, on the left (right), the functions H (H̃ ) and � (�̃) are plotted
for several different values of z. On both sides, the maximum ξ -value occurs at high-σ h and is sensitive to z. Both radiation reaction and high-z are required
for ξ to reach order unity. In contrast, the low value of ξ , occurring at low-σ h, is virtually independent of z and is always around ξ = 0.1 � fnocool,min. Thus,
order-unity efficiency requires both high-z and high-σ h, but extremely low efficiency (ξ ∼ 10−2) is averted across the domains of all models.

Figure B3. On the left (right), a stability analysis of the function H(σ h) [H̃ (σh)] for all z between 8 and 1100. For visual clarity on the right plot, the horizontal
axis scale beyond z = 800 is highly zoomed (and thus the kinks in curves crossing z = 800 are not real). The model without radiation back reaction on the layer
particles does not possess high enough efficiency for its fixed point σ h(z) to go unstable, or to develop a two-state swing cycle. In contrast, the model with radiation
reaction displays limit-cycle behaviour. There, pair feedback is so efficient that the system immediately starts, from the first readvection time, in a swing cycle
whenever z > zc∗ = 880. This is true even though the fixed point σ h(z) does not become locally unstable for any z < 1100. Instead, an unstable cycle appears
and intercepts the flow on the iterated map, blocking all states that start from σ h,0 from ever reaching the fixed point. Thus, the model on the right illustrates our
argument in Appendix D that a locally unstable fixed point is a sufficient but not necessary condition for the system to globally asymptote to a limit cycle.

by the high-energy particles. These particles have their radiative
cooling somewhat suppressed by Klein–Nishina effects and, for high
enough z, may retain a large portion of the initially injected energy,
substantially increasing fnocool. Thus, as σ h grows, one observes
the solution H(σ h) [H̃ (σh)] cross progressively larger constant-ξ
contours of h(σ h) [h̃(σh)]. In fact, when radiation reaction on the
layer particles is taken into account, �̃ grows large enough at high z

to initiate a dramatic two-state swing cycle – a very stark difference
from when ξ is pessimistically estimated as fnocool, min ∼ 0.01.

In Fig. B2, we illustrate how the picture changes at smaller z. Here,
the monotonic dependence of ξ on σ h from Fig. B1 remains but is
weaker. In particular, the largest value that ξ reaches, which occurs
at high-σ h, diminishes as one reduces z. Thus, a high cut-off in the
layer particle energy distribution is needed to achieve order-unity
efficiency. However, it is not the case that a lower cut-off causes ξ to
plummet. As long as z ≥ 8, and consistent with equation (B20), all
models have appreciable efficiency, with ξ ∼ 0.1 � fnocool,min. This
implies an important conclusion: even for a radiating layer particle
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distribution that cuts off barely beyond z = 8, establishing a universal
steady state is still possible for finite σ h,0. The initial magnetization
must only be greater than ∼1/min (ξ ) ∼ 10.

Finally, in Fig. B3, we present a complete stability analysis in z

between 8 and 1100. This includes both how the fixed point solu-
tion σ h(z) varies with z, and whether a two-state swing cycle appears,
with respective high and low magnetizations σ h,>(z) and σ h,<(z). The
model that neglects radiation reaction on the layer particles never
develops oscillatory behaviour, but always converges towards the
fixed points σ h(z). (However, this could change if z is made even
larger. In that case, layer particles with energies > 4γ̃cool,2 spawn up-
stream pairs that retain nearly all of their energy while travelling back
towards the layer, increasing ξ , and likely raising |H ′(σh)| above 1
in Fig. B3.) However, in the more radiatively self-consistent model,
a swing cycle develops at a critical z = z∗

c � 880. Intriguingly, this
is before the fixed point σ h(z) becomes unstable, which does not
happen for any z < 1100. Instead, an unstable two-cycle appears and
intercepts the flow of the iterated map σh,n+1 = H̃ (σh,n), blocking
states that start at σ h,0 from reaching the fixed point.

While swing cycles appear to require quite extended particle
distributions in our model (zc∗ = 880 is close to the upper limit z =
1100 that we study), we do not think that this necessarily precludes
their operation in all but the most extreme systems. Instead, we have
found that the particular value of z where swing cycles set in is highly
sensitive to order-unity changes in ξ , and, thus, this value could be
either much higher (in which case swing cycles would be unlikely in
reality) or much lower (in which case they may be quite common).

B4 Summary of self-consistent fnocool

In this discussion, we have seen how, by self-consistently deter-
mining ξ = fnocool (through the functions � and �̃), one may
achieve significantly higher efficiencies than a simple and pessimistic
estimate, ξ = fnocool, min = 3/400, would predict. Rather than radiating
away most of the energy it receives from the reconnection layer, the
newly created upstream plasma may catch and hold on to this energy,
delivering an appreciable portion of it back to the layer. The reason
is not that the fresh pairs radiate inefficiently. On the contrary, given
a full readvection time, all of them would cool to energies ∼ γ̃cool,1.
Rather, the broad distribution of newborn pairs is constantly being
replenished, due to injection from photon annihilation, at high
energies, and this allows the typical energy of radiating particles,
as they enter the layer, to be quite high.

Thus, at some finite large (but not excessively large) initial magne-
tization σ h,0 � 1/min (ξ ) ∼ 10, the layer always has a universal fixed
point solution. Furthermore – and depending on how significantly
radiation back reaction modifies the distribution of layer particles
– energy recapture by the layer may reach order-unity efficiency
when a long high-energy tail of layer particles extends beyond γ KN.
In this case, the reconnection layer may overshoot its fixed point
steady state, and undergo late-time limit-cycle oscillations about this
solution rather than converge towards it.

APPENDIX C : THE PARTICLE ESCAPE
FAC TO R fN O E S C

In this appendix, we discuss a complementary channel, besides
radiative cooling, through which newly created upstream matter
may lose energy: particle escape. Escape occurs when newborn
pairs stream a distance ∼L along the unreconnected magnetic field,
vacating the system. Pairs can be born with essentially any pitch
angle, so the typical escape time is ∼L/c (except for a few particles

with very small pitch angles). Therefore, the escape factor fnoesc is
close to unity if the readvection time, tra, satisfies tra � 10L/τ γ γ c <

L/c, which requires τ γ γ > 10.
Beyond this simple consideration, there are also other, more

complicated kinetic effects that may influence the value of fnoesc.
Many of these effects, at the same time, also help to decide whether
above-threshold photons radiated from the layer ever reach the
upstream region in the first place, as assumed throughout this
work [e.g. assumption (iii)(b)]. These are, in principle, independent
concepts: fnoesc pertains to pairs that have already been born into the
upstream region; photon escape from the layer to the upstream region
concerns the emission and propagation of radiation before pairs are
ever produced. However, the same processes dictate both, and we
discuss these parallel influences simultaneously.

Consider first the shape of the unreconnected magnetic field lines
at a transverse distance |y| < 0.1L from the layer. In this region, the
unreconnected field is perturbed by the presence of large plasmoids,
the largest of which may extend a distance ∼0.1L into the upstream
region (Uzdensky et al. 2010; Sironi et al. 2016). Because the field is
asymptotically uniform as |y| → ∞, it is necessarily stronger (i.e.
compressed), when |y| � 0.1L, in regions above plasmoids. This
may lead to a magnetic bottling effect, where particles produced
at |y| < 0.1L tend to be mirror-confined between large plasmoids
(even when they might otherwise escape), pushing fnoesc closer to
unity. Unlike the effects discussed below, this confinement mech-
anism only pertains to particles already born and, therefore, does
not affect what fraction of photons escape the layer to the upstream
region.

We move now to a separate issue: anisotropy in the distribution
of radiating layer particles. The layer tends to drive bulk plasma
motion and, through the kinetic beaming mechanism (e.g. Cerutti
et al. 2012b, 2013; Mehlhaff et al. 2020), collimated bunches of
high-energy particles, into the ±x-directions (either to the left or to
the right in Figs 1 and 9). This biases the emitted photons (which
are relativistically beamed along the directions of their emitters) into
these same directions, and may, in turn, increase fnoesc. Suppose, for
example, that a given above-threshold photon travels at an angle θ

from the reconnection mid-plane. This reduces the total distance it
propagates into the upstream region from |y| ∼λmfp to |y| ∼λmfpsin θ .
The readvection time for the produced pair is therefore reduced by the
same factor: sin θ . Meanwhile, the escape time is still ∼L/c. Thus, the
readvection time decreases relative to the escape time. This increases
the fraction fnoesc of particles captured by the reconnection layer.

On the other hand, if the beaming of plasma motion (both on bulk
and kinetic levels) is strong enough, the angle θ discussed above
could be so small that most photons do not cross the separatrices
into the upstream plasma before annihilating. This would occur if
the transverse propagation distance |y| ∼ λmfp sin θ is smaller than
the thickness � of the layer radiation zone (discussed in more detail
below). In such a scenario, the created pairs would not load the inflow
plasma and thus the pair-regulation mechanism would be somewhat
suppressed.

We next discuss how the thickness, �, of radiation zones, where
most pair-producing photons are emitted (discussed in Section 4
and Fig. 9), influences the escape of photons to the upstream region
and fnoesc. If most photons are radiated from inside large plasmoids,
instead of from thin strip-like radiation zones (of the kind argued for
in Section 4), then the condition τ γ γ > 10, although it maintains tra

< L/c and helps keep fnoesc near unity, also confines most of the
above-threshold photons to within the separatrices: inside plasmoids
exceeding λmfp in size. This inhibits pair feedback. If, instead, the
primary radiation sites are thin, even kinetic-scale, current sheets (e.g.
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with � � λmfp, as we argue in Section 4) most photons travel to the
upstream region and effectively load its plasma when they annihilate
(modulo potential extreme beaming effects described above).9

Finally, let us consider how reconnection current sheets between
merging plasmoids play into this picture. These miniature recon-
nection layers are oriented perpendicularly with respect to the main
reconnection current sheet and therefore bias the motion of particles
and emitted photons in the transverse ±y-directions. The produced
upstream pairs then have suppressed pitch angles (the ±y direction
is perpendicular to the unreconnected magnetic field), which inhibits
particle escape. However, if τ γ γ > 10, then not all radiation produced
at merging-plasmoid current sheets escapes back into the inflow
plasma: there will at least be some photon-confining plasmoids larger
than λmfp < L/10. Mergers between such plasmoids would not source
significant self-regulating pair production. This, however, does not
preclude merging-plasmoid reconnection from regulating itself (just
on a smaller scale) in the same way that the main reconnection layer
does as a whole.

In light of this discussion, there are clearly several details,
influencing both fnoesc and the delivery of photons to the upstream
region, that are beyond the scope of our present work to calculate
quantitatively. These will require a future computational study in
order to properly diagnose. Nevertheless, many of these effects
(especially when τ γ γ > 10) promote order-unity fnoesc, and – modulo
extreme beaming near reconnection X-points – allow photon escape
to the upstream region from the primary large-scale current sheet.

APP ENDIX D: GLOBAL STABILITY OF THE
IT ERATED M A P xn+1 = h(xn)

In this section, the phrase ‘late time’ or ‘late times’ refers to the
limit limn → ∞tn where tn ≡ nλmfp/β recc. Late times defined in this
sense are not necessarily reached by the reconnection system before
reconnection terminates.

Here, we argue that the condition deciding the local stability of
the iterated magnetization map σ h,n+1 = h(σ h,n) from Section 4.1
also reveals, in some cases, its global stability. In particular, we
argue that local instability |h′(σh)| > 1 implies that a system starting
at magnetization σ h,0 asymptotically approaches a two-state swing
cycle. If, on the other hand, the fixed point is stable, |h′(σh)| < 1,
then the system may or may not converge towards it. Thus, local
instability is sufficient, but not necessary, for global instability.

We focus here only on strictly decreasing functions h(x) [such
that h(y) < h(x) if y > x] that map into their own domain [1, σ h,0] (i.e.
h: [1, σ h,0] → [1, σ h,0]). Here, the upper end of the domain happens
to coincide with the starting point of the map σ h,0. The particular
functions h(x) and H(x) specified in equations (51) and (B22) fall
into this class. [Note here that we are overloading the symbol h(x),
designating with it a general class of functions and not necessarily
the particular form in equation 51.] The arguments in this section can
be generalized to non-increasing functions h∗(x) such that h∗(y) ≤
h∗(x) if y > x [into which category fall the functions h̃(x) and H̃ (x)
in equations 55 and B23) without difficulty, but require additional
edge cases (saturation of the inequalities) to be considered, and so
we do not formally treat them here.

We begin with a few basic observations. First, if the map does not
start on the unique fixed point σ h, then each successive iteration lands

9Note that, if λmfp > 0.1L, it is irrelevant whether most of the pair-producing
photons come from thin structures or from large round plasmoids. Either way,
the photons escape to the upstream region.

on the opposite side of the fixed point from the preceding iteration.
That is, if σ h,n < σ h, then σ h,n+1 > σ h, and if σ h,n > σ h, then σ h,n +1

< σ h. This is because

σh,n+1 = h(σh,n) < h(σh) = σh , (D1)

where the ‘<’ follows when σ h,n > σ h by the strictly decreasing
hypothesis. The same proof, but with a ‘>’ sign, follows when σ h,n

< σ h. This precludes all non-fixed-point odd-period orbits. Hence,
one cannot automatically infer the presence of chaos in the system
using the three-period theorem (Li & Yorke 2004). As we now show,
the dynamics are even more constrained: chaotic behaviour is, in
fact, completely precluded.

For our second observation, we note that if, for any starting
index m, one discovers that σ h,m+2 < σ h,m, then for all integers n
≥ 1, it is necessarily the case that σ h,m+2n < σ h,m+2(n−1). That is, even
though each successive iteration bounces to the opposite side of the
fixed point, every consecutive even (or odd) iteration moves strictly
in one direction. This follows inductively because

σh,m+3 = h(σh,m+2) > h(σh,m) = σh,m+1

⇒ σh,m+4 = h(σh,m+3) < h(σh,m+1) = σh,m+2. (D2)

The first line follows from the strictly decreasing hypothesis and the
starting assumption that σ h,m+2 < σ h,m. The second line follows from
the strictly decreasing hypothesis and the first line.

This is a very powerful constraint because it severely limits the
potential late-time dynamics of the system. In effect, the system can
only either approach the fixed point σ h = h(σ h) or a two-state swing
cycle. To see this, let us suppose that σ h,2 <σ h,0. [Note that σ h,2 =σ h,0

implies that the system begins in a two-cycle, and the condition σ h,2

> σ h,0 is impossible because h(x) maps on to its own domain.] Then
each successive σ h,2n marches resolutely towards smaller values. This
continuing reduction in σ h,2n can only be terminated in one way. It
must be the case that there exists some σ h,∞ such that σ h ≤ σ h,∞ =
limn → ∞σ h,2n. If σ h,∞ = σ h, then the system approaches the fixed
point σ h in a late-time steady state. If σ h,∞ > σ h, then the system
approaches a two-cycle. Note that it is not possible for the system to
approach any 2n-cycle for n > 1 that is not also a two-cycle. If that
were the case, then one of the σ h,n’s on the cycle would be on the
same side of the fixed point as another σ h,n of the same parity (even
or odd), and the two would not be equal. This would contradict our
result that σ h,2n+2 < σ h,2n.

Thus, there are only two possible asymptotic behaviours of the
map σ h,n+1 = h(σ h,n): either σ h,n approaches the fixed point σ h or
the map converges to a two-state cycle, and one of the states has
magnetization σ h,> > σ h. It follows that the flow of the iterated map
from σ h,0 to σ h is always intercepted by a two-cycle when the local
instability criterion |h′

(σ h)| > 1 is met. Otherwise, there would not
be a suitable attractor (i.e. one consistent with both equations D1
and D2) to catch the strictly decreasing flow of the map σ h,n+2 =
h(h(σ h,n)). Let us illustrate these remarks with an example.

We display the particular map σ h,n+2 = h(h(σ h,n)), where h is
defined as in equation (51), in Fig. D1. For low ξ (in this case, lower
than ξ c = 0.84), all of the h(h(σ h,n)) curves intersect the diagonal
line only once and with a gentle slope |dh(h(σ h,n))/dσ h,n| < 1. These
intersection points coincide with the stable fixed points σ h illustrated
in Fig. 12. The fixed point becomes unstable when the slope of
the twice-iterated map becomes tangent to the diagonal at a critical
value ξ c � 0.84. For ξ higher than this value, the map must intercept
the diagonal in at least two other locations – the values σ h,< and σ h,>

corresponding to a two-cycle. This is demanded in order for h(h(x))
to be at or below the diagonal as σ h,n approaches σ h,0 and to be at or
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Figure D1. The twice-iterated map σ h,n+2 = h(h(σ h,n)) with h(x) as defined
in equation (51). The appearance of a stable two-cycle coincides with the
critical value ξ c � 0.84 where the fixed point at σ h becomes unstable. This
is consistent with the fact that there must be an attractor on the map σ h,n+1 =
h(σ h,n) to intercept the flow σ h,2n+2 < σ h,2n ≤ σ h,0 when the local instability
criterion |h′(σ h)| > 1 is met. If locally unstable, the fixed point cannot be
naked: it must be blocked from the initial state σ h,0 by a two-state cycle.

above the diagonal as σ h,n approaches 1 (which itself is required by
the fact that h maps into its own domain).

We stress that this general behaviour – where a naked fixed point σ h

is immediately concealed behind a two-cycle as soon as it goes
unstable – is demanded by equations (D1) and (D2). However, the
inverse – that all stable fixed points occur in isolation from two-
cycles – does not hold in general. The topological argument of the
preceding paragraph, which was based on the fact that h(h(σ h,0))
≤ σ h,0 and h(h(1)) ≥ 1, does not preclude the possibility that a
stable fixed point could spontaneously become enshrouded by an
even number of two-cycles with alternating stabilities. In this case,
the function h(h(σ h,n)) would simply intersect the diagonal an even
number of times on either side of the fixed point. The first of these
intersections, counted as one moves outward from the fixed point
to the boundaries of the domain (1 and σ h,0) would be necessarily
unstable (since |dh(h(σh))/dσh| > 1), the next would be stable, the
one after unstable, and so on until the outermost stable two-cycle.
This would furthermore be consistent with equations (D1) and (D2),
ensuring that a stable two-cycle attracts the late-time dynamics.
Although such a state of affairs may seem at first rather unlikely,
this is actually precisely what occurs for the map H̃ defined in
equation (B23). As shown in Fig. B3, the fixed point on that map
becomes enclosed inside two 2-cycles without ever becoming locally
unstable.

All in all, if the fixed point σ h is unstable ( |h′(σh)| > 1) then
the system necessarily asymptotes to a two-cycle. On the other
hand, if σ h is stable, then whether the system approaches it at late
times depends on whether a two-cycle is present to intercept the
flow on the iterated map. If a stable two-cycle exists, σ h is never
reached; otherwise, the system converges to σ h. Fixed points and two-
cycles are the only allowed late-time behaviours for monotonically
decreasing maps.

A P P E N D I X E : E X AC T S O L U T I O N TO T H E
T H O M S O N - L I M I T E N E R G Y- A DV E C T I O N
EQUATI ON

In this section, we solve equation (B9) exactly subject to the initial
condition N (n)

γ γ (γ, 0) = 0. We evolve the solution for one readvection
time tra = λmfp/β recc, which simulates the continual injection of
particles as a parcel of plasma moves from |y| ∼ λmfp to the layer.
The solution follows identically for all generations, so we simplify
our notation to

∂

∂t
N (γ, t) + ∂

∂γ
[γ̇TN (γ, t)] = Qδ(γ − γKN) , (E1)

and write −γ̇T = γ /tcool,T(γ ) = cγ 2/Lγcool ≡ γ 2/τ , abbreviating τ

≡ Lγ cool/c. (Note that τ is a time and not an optical depth.)
We denote the Laplace transform in time with a tilde:

Ñ (γ, s) ≡
∫ ∞

0
N (γ, t)e−stdt . (E2)

Laplace-transforming equation (E1) gives

sÑ − 1

τ

∂

∂γ

(
γ 2Ñ

) = Q

s
δ(γ − γKN) , (E3)

where we used the initial condition N(γ , 0) = 0. Expanding the γ -
derivative, rearranging, and multiplying through by the integrating
factor

μ(γ ) = γ 2e−sτ (1−1/γ ) (E4)

gives

∂

∂γ

[
μ(γ )Ñ (γ, s)

] = − Qτ

sγ 2
μ(γ )δ(γ − γKN) . (E5)

Next, we integrate (E5) from γ to some arbitrary γ hi > γ KN, γ .
Using Ñ (γhi, s) = 0 (radiative cooling only populates energies lower
than γ KN) yields

Ñ (γ, s) = Qτ

sγ 2
KN

μ(γKN)

μ(γ )
�(γKN − γ )

= Qτ

sγ 2
KN

e−sτ (1/γ−1/γKN)�(γKN − γ ) , (E6)

where �(x) is the Heaviside step function. Equation (E6) is the
Laplace transform of our sought solution:

N (γ, t) = Qτ

γ 2
�

[
t − τ

(
1

γ
− 1

γKN

)]
�(γKN − γ ) . (E7)

Thus, constant injection at γ = γ KN develops into a power-law γ −2

extending into lower and lower energies with time. Putting t =
λmfp/β recc � 10L/τ γ γ c allows the power law to extend from γ KN

all the way down to(
1

γKN
+ 1

γ̃cool,1

)−1

� γ̃cool,1 ≡ 3

50
γKN . (E8)

Hence (cf. equation B10),

N (γ, tra) = Qγcool
L

c

{
γ −2 γ̃cool,1 ≤ γ < γKN

0 otherwise
. (E9)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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