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Modeling chemical reactions on the basis of probabilistic rules has been employed in 
Lagrangian schemes to simulate transport of solutes in porous media. Reactive random 
walk particle tracking allows reagents particle pairs to interact proportionally to their 
separation distance and the nature of the chemical process. However, most of the available 
algorithms result to be computationally prohibitive, since their efficiency depends on the 
number of pairs of particles interacting. In this work, a novel framework for modeling 
reactive solute transport is introduced, with the target of reducing the computational 
burden characteristic of existing approaches. Our method introduces an innovative optimal 
kernel function and permits the parallelization of a bimolecular reaction modeling scheme 
which leads to computational speedup. To test the performance of our method, we execute 
a computational speedup analysis with other approaches reported in the literature. The 
proposed method is successfully validated with exact analytical solutions. We illustrate the 
applicability of the method to simulate reactive transport in two-dimensional flow fields 
that are relevant for environmental applications. The computational time of the proposed 
methodology scales linearly with the number of particles employed in the simulation, 
feature that makes the algorithm suitable for simulating reactive transport with large 
number of particles.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Reactive solute transport plays a key role in numerous applications in geological media such as CO2 storage [1,2], aquifer 
remediation [3–5], groundwater contaminant risk analysis [6–8], enhanced oil recovery [9,10] and long-term performance 
of nuclear waste repositories [11,12]. The spatiotemporal dynamics of a solute body in a porous medium is controlled by 
the interplay between advection and local-scale dispersion mechanisms as well as chemical reactions. The prediction of the 
spatiotemporal dynamics of the solute concentration relies on the solution of the reactive advection-dispersion equation 
(rADE). However, predicting transport dynamics is a major challenge since the hydraulic properties characterizing natural 
porous formations are spatially heterogeneous over a multitude of scales and uncertain [13]. As an outcome of geological 
heterogeneity, transport is characterized by early breakthrough and long tailing behavior of the solute concentration at late 
times [14,15]. Heterogeneous flows in porous media also enhance dilution and reactive mixing [16–18].

Numerical solutions for the rADE can be classified into Eulerian, Lagrangian and hybrid methods. Typical grid-based 
methods are, for example, finite-element, finite-volume and finite difference schemes [19]. These grid based approaches 
suffer of numerical (non-physical) dispersion and artificial oscillations as a consequence of the discretization scheme [20]. 
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Hence, smaller time steps and higher grid resolution are necessary, implying longer execution times and cumbersome pro-
cesses to capture zones with high concentration gradients which are critical for quantifying solute mixing of heterogeneous 
flows [21–23]. Combinations of Eulerian and Lagrangian methods can alleviate these problems [24,25]. These hybrid ap-
proaches treat the advection part using a Lagrangian scheme, while the dispersion component is tackled through an Eulerian 
scheme [26,22]. Although these methods attempt to avoid drawbacks related to both Eulerian and Lagrangian schemes, they 
are not computationally efficient. The approximation of the advection term requires to sacrifice a great deal of computational 
efficiency since each solute particle has to carry information about concentration at each time step [26].

Differently from the Eulerian-based methods, Lagrangian approaches do not suffer from numerical dispersion and are 
well-suited for advection-dominated conditions. The Random Walk Particle Tracking (RWPT) method is a typical example of 
a Lagrangian framework and it treats the transport of solute mass M0 by considering a large number of moving particles 
N P . Each particle carries a fraction of the solute mass equal to M P = M0/N P . These mass particles are moved accordingly 
to the velocity field to simulate advection. To simulate diffusion and dispersion, a random displacement is added [27,22]. 
Not only numerical problems, typically associated with the direct solution of the transport equation, are avoided, but also 
the implementation of the transport problem becomes easier [26]. In addition, since each particle is seen as a discrete mass 
of solute, global mass conservation is always satisfied [22]. From a computer memory point of view, the absence of a grid 
structure makes Lagrangian methods computationally more appealing and suitable for simulations of transport in large and 
heterogeneous flow systems [27–30].

Since RWPT is based on particles’ motion, numerical difficulties can be encountered when there are high irregularities or 
many stagnation zones in the geological system [22,31]. Moreover, the main drawback of this method is the discrete nature 
of the concentration field. The concentration field, at each time step, is estimated from the masses carried by particles. 
Thus, the quality of the RWPT result is strictly related to the number of particles used during the simulation. Choosing the 
number of particles in any particle-based methodology is not a trivial task. The number of particles impacts the smoothness 
of the concentration field and the ability to model incomplete mixing [32–34]. In the context of reactive transport, the 
noise associated with particle number may reflect the actual physics of the system [35] or in some cases, it may represent a 
numerical artifact [32]. However, a high number of particles is required to accurately represent the concentration field of a 
solute plume in realistic hydrological applications (e.g. spatially heterogeneous hydrological systems, typically characterized 
by scales on the order of 102∼103 m) [23,36,22,37,4,38]. Handling a high number of particles is now possible due to 
the development of computationally efficient codes such as RW3D [39], SLIM-FAST [40,41] and PAR2 [42,43]. The work of 
Rizzo et al. [42] stands out for its low computational time. Rizzo et al. [42] developed the PAR2 platform which is a GPU-
accelerated RWPT code that takes advantage of the parallelizable structure of the RWPT method to compute the particles 
positions all at the same time. GPU-based computations for transport can also be found in Hansen et al. [44].

Reactive transport problems are even more sensible to the number of particles employed in simulations. In the context 
of reactive mixing, each particle usually represents a large group of potentially reactive molecules [32] and consequently 
a large number of particles is necessary to properly characterize the mixing process, responsible for reactants’ contact and 
thus reaction [45]. In addition, as already mentioned, the discrete nature of RWPT (i.e., particle based) methods makes it 
difficult to estimate macroscopic quantities, such as concentration and its spatiotemporal derivatives [37], leading to an 
inaccurate prediction of the reaction rate [see discussion in [32]]. Furthermore, the definition of reaction rules applicable to 
a finite number of particles that still properly represent the ones observed at the macroscale is a challenging task [32].

A large variety of methods have been proposed in the literature to incorporate multispecies chemical reactions into 
RWPT methods. Optimal reconstruction of concentrations has been developed through Kernel Density Estimators (KDE) by 
Fernandez-Garcia and Sanchez-Vila [37]. The KDE approach allows to reconstruct the probability density function (PDF) of 
a variable of interest (such as mass, concentration etc). Sole-Mari et al. [46] developed a grid-projected KDE methodology 
to compute local densities from particle positions. The KDE method in [46] is also locally adaptive to account for boundary 
effects. Schmidt et al. [34] used a Gaussian kernel to tackle problems associated with particle numbers in diffusion-driven 
bimolecular reactions. Tompson & Dougherty’s [47] introduced a particle-in-cell model, which consists of using RWPT to 
diffuse and/or advect solute particles; these particles are subsequently mapped on a grid, to determine the changes in mass 
due to the reaction process through numerical integration. This approach is computationally intensive given that it requires 
the computation of the concentration values at the grid points at every time step in order to calculate the reaction term 
[47]. Schmidt et al. [48] studied the accuracy of RWPT-based mass-transfer algorithms.

The challenge of defining reaction rules for particles that respect the macroscale behavior was addressed by Benson & 
Meerschaert [49]. In the approach proposed by Benson & Meerschaert [49], particle pairs react following a probabilistic rule 
that is a function of the reaction rate coefficient and the particles’ relative distance, avoiding the necessity of reconstructing 
concentration fields at each iteration. Here, reactions are simulated as a birth/death process of particles, leading to segrega-
tion problems and poor convergence of the particle tracking algorithm at late times. To circumvent this drawback, Bolster & 
Benson [33] modified this algorithm by preserving the number of particles through the whole simulation and accounting for 
the proceeding of the reaction by decreasing the mass of reactants carried by the particles. To facilitate the implementation 
of arbitrarily complex reactions, Benson & Bolster [50] extended the method by allowing each particle to carry more than a 
single constituent. Consequently, reactions take place over particles and not between particles. Engdahl et al. [51] simulated 
complex reactions by coupling the algorithm provided in [50] with the PhreeqcRM reaction module [52]. Slightly different 
is the method proposed and implemented by Perez et al. [53], where particle pairs still react following a probabilistic rule. 
The probabilistic rule provided in Perez et al. [53] is a function of the reaction rate coefficient, total number of particles, 
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and an interaction radius. Rahbaralam et al. [32] combined the ideas of using KDE [37] and probabilistic rules to simulate 
reactions through particle tracking methods. Kernels are used as the weighting function for particles interaction, following 
the probabilistic rule of Benson & Meerschaert [49]. Sole-Mari et al. [54] extended the methodology to account for complex 
kinetic bimolecular reactions.

Most of the applications of these algorithms are limited to one dimensional scenarios since the computational cost 
associated with multidimensional domains is high. The computational time complexity of some of the above mentioned 
approaches is O (N2

P ), meaning that in order to evaluate how a particle of mass evolves at a given time step, the algorithm 
requires to iterate over all the other particles in the domain. Higher computational efficiency is reached through the use of 
approaches such as radius of interaction, KD-tree or domain decomposition (DDC) [35,55,56]. Nevertheless, those method-
ologies require to compute the probabilities of reaction of all, or group of (as the case of DDC approach), particles in serial. 
That means that it is necessary to loop over large amount of particles at every time step of the simulation.

Conscious of the pros and cons of the aforementioned reactive RWPT methods, this paper aims to present PARxn2, a 
computationally efficient reactive particle tracking algorithm conceived on the re-organization of the simulated problem 
structure. In our work, high resolution performance of reactive RWPT is achieved due to the implementation of an innova-
tive computational framework and solution approach for solving problems involving bimolecular reactions. This framework 
permits the application of an O (N P ) time complexity parallelizable algorithm, and consequently the usage of a large num-
ber of particles that can aim to address multidimensional problems. Ideally, the algorithm framework is suitable for being 
fully parallelized, leading to the computation of each particle’s probability of reaction to be independent and thus avoiding 
the necessity to iterate over all the other particles in the domain. We verify our methodology with previous results from 
the literature and illustrate the applicability of our approach for different spatially variable flow fields.

2. Reactive random walk particle tracking: an overview

In this section we provide an overview of the reactive random walk particle tracking (RWPT) procedure. We start by 
considering the following bimolecular irreversible chemical reaction:

A + B → C . (1)

Here we consider a reactive system initially composed by the reagents A and B . For the purpose of illustrating of the 
algorithm, the reagents are characterized by the same diffusion coefficient. The two species, A and B , react kinetically and 
irreversibly with unitary stoichiometric coefficients. In order to predict the evolution of the reactive transport process, the 
system of reactive advection-dispersion equations (ADE) are employed [55]:

∂ck

∂t
= −∇ · (uck − D∇ck) − k f c A cB k = A, B, (2)

where ck is the concentration of the kth specie, namely k = A, B . The velocity field is denoted by u, D is the local-scale 
dispersion tensor (or diffusion), and k f is the reaction rate constant. Given the equivalence between the ADE and the 
Langevin equation [57], multiple works used Lagrangian particle tracking methods as an approximation to equation (2) [see 
[58,49,59] and references therein].

Let N A and NB denote the number of particles for species A and B respectively. All particles for species A have identical 
mass M A and all particles for species B have identical mass MB . The masses of reagents A and B initially present in the 
system are given by M∗

A = M A N A and M∗
B = MB NB . We denote P A

a and P B
b as the ath and the bth particles belonging to the 

species A and B . The particles are transported by two physical mechanisms, namely advection and local-scale dispersion, 
and the trajectory XP of a generic particle is given by the Itô-Taylor integration scheme [57]:

XP (t + �t) = XP (t) + [u(XP (t)) + ∇ · D(XP (t))]�t + B(XP (t)) · ξ(t)
√

�t, (3)

where �t is the simulation time step, u is the velocity field and D is the local-scale dispersion tensor. The tensor B
expresses the strength of dispersion and ξ is a vector of normally distributed random variables with zero mean and unit 
variance representing the random displacement associated with the dispersion mechanism [22,26,27].

Without loss of generality, we opt to work under the assumption of a constant local-scale dispersion tensor, i.e. D =
diag[D]. Therefore equation (3) can be simplified as follows:

XP (t + �t) = XP (t) + u(XP (t))�t + √
2D�tξ(t). (4)

At each time step, after the trajectories of the solute particles are computed, reactions between particles are implemented 
in the simulation procedure.

Benson and Meerschaert [49] proposed to quantify chemical reaction without regard to local concentrations but by 
considering probabilistic rules of particle interaction and association. Given the bimolecular irreversible reaction in equation 
(1), Benson and Meerschaert [49] defined the probability that the ath particle P A

a reacts with the bth particle P B
b as the 

combination of the probability that the two particles are collocated and the thermodynamic conditional probability that 
those two particles will react (for additional details see [49,51]):
3
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Fig. 1. Illustration of the kernel function representing a generic particle P A
a with a = 1, .., N A and N A denoting the total number of A particles in the 

computational domain covered by the grid G . The red grid shows the shape of the local support of the kernel function, the red dot represents P A
a and λg

is the size of the squared grid cell. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

P (reaction) = P (collocation)P (thermodynamic reaction|collocation), (5)

where P (·) denotes the probability of an event occurring. Here, the collocation probability is a function of the separation 
between the two considered particles, the diffusion and/or local dispersion coefficient and the simulation time step �t . The 
thermodynamic reaction probability depends on �t and on the reaction rate coefficient k f .

Traditionally, the simulation approach consists in considering a particle, calculating its probability of reaction with every
other particles (the ones carrying the mass of the other chemical species) and comparing this probability to a random 
number sampled from a uniform distribution [49,60]. If the random number is lower than the calculated probability, the 
two particles will react (generating a reaction product particle) and they will be both removed from the system (particle 
killing algorithm). Otherwise, the probability of reaction with the other next particle is evaluated. As a direct consequence 
of the application of the particle killing algorithm, numerical resolution issues (linked to low concentration zones) arise 
[54]. To overcome this problem, Rahbaralam et al. [32] equipped each particle with a time varying kernel function reflecting 
the probability density function (PDF) of the location of the carried mass at each time step. The kernel function shape 
changes not only accordingly to the diffusion and/or dispersion process (constant in time) [49], but also to the continuously 
diminishing amount of particles in the domain, preventing the formation of segregated areas as the simulation proceeds [32,
54]. Issues related to particle segregation (and therefore, incomplete mixing) can occur when the particle killing algorithm 
is employed. Further details about this problem can be found in literature [32]. In most of the cases, Gaussian kernels are 
preferred due to mathematical advantages [61,32], but a variety of different kernel functions can be adopted.

It is important to notice that a common feature of all the current algorithms for simulating reactions between solute 
particles is that the probabilities of reaction of all, or a group of, particles have to be computed in serial. This means 
that particles’ reaction probabilities have to be processed one after the other at every �t , i.e., the algorithms are serial 
implemented with O (N2

P ) or O (N2
P /Ngroups) computational time complexity, where Ngroups is the number of particles’ 

groups individually analyzed [56].

3. Methodology

Next we provide the details regarding the structure of the proposed reactive RWPT algorithm in a two dimensional (2D) 
computational domain.

3.1. An optimized kernel function

It is common to adopt a Gaussian kernel function with variance σ 2 = 2D�t to represent the particle’s position proba-
bility density function [49]. In our approach, we opt to employ a kernel that 1) approximates the Gaussian function and 2) 
its local support is a finite domain with dimensions proportional to the size λg of the squared cells within the grid G (see 
Fig. 1).

To fulfill these requirements we impose the kernel’s base length to be 2λg = 2
√

12D�t . To support the reasoning behind 
this choice, consider a 1D scenario and a tent (i.e. triangular) kernel function with a finite local support shown in Fig. 2. Fig. 2
shows that both tent and Gaussian functions (characterized by the same variance) evolve similarly. Thus, the local support 
is given by 2λg = 2

√
2πσ 2 = 2

√
4π D�t � 2

√
12D�t , leading to λg = √

12D�t . By the same token, this approximation is 
also adopted for the 2D scenario. For such reasons, we construct our kernel function with a local support with dimensions 
lx × l y = 2λg × 2λg , where λg denotes the dimension of the squared grid cell (i.e., resolution of the grid G) shown in Fig. 1. 
The dimension of the edge of the grid cell, λg , is computed as a combination of the variables characterizing the dynamics 
of the physical processes involved in the reaction simulation and is defined as
4
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Fig. 2. Graphical comparison between a Gaussian function and a tent function that share the same variance σ 2 = 2D�t .

Fig. 3. Schematic representation of one quarter of the kernel function of height H . The value of the kernel function at point Q, defined by the distance from 
the center of the kernel r , and the angle α, is h. Here d represents the length of the segment connecting the center of the kernel to the edge of its local 
support, passing through the point Q. The resolution of the grid is given by λg and corresponds to half the side of the kernel function’s local support.

λg = √
12D�t, (6)

where D is the local-dispersion coefficient and �t is the time step of the simulation. The functional shape of λg comes from 
the fact that, in general, the diffusion of a chemical species is modeled by a Brownian random walk motion with zero mean 
and variance σ 2 = 2D�t [32,57]. Therefore, the mass carried by a particle spreads while taking into account the simulated 
physical process (i.e., not-discrete nature of the solute mass), the simulation parameters (as already done by the Gaussian 
function), and proportionally to the cells of the grid G .

The remaining number of particles over which the reagents’ masses are assigned throughout the whole simulation does 
not influence the geometry of the kernel function. Note that issues related to the particle segregation, see [32,54], are not a 
limit in our approach since we are working with a considerable number of particles. Thus, the local support of our kernel 
function does not have to adjust accordingly to N P .

The functional formulation of the optimized kernel’s shape is the result of a modification of a squared pyramid. Fig. 3
shows one quarter of the optimized kernel function in which triangular shape sections are maintained along its local support 
midsections, while parabolic sections are employed elsewhere. The expression of a generic value of the kernel, at given r
and α, is (see Fig. 3):

h(r,α) = −
[

H

d(α)2
+ (q1 Hα2 + q2 Hα − H)

d(α)λg

]
r2 +

[
q1 Hα2 + q2 Hα − H

λg

]
r + H,

(7)

where h is the value of the kernel function at a given point Q defined by the distance from the center of the kernel, r, 
and the angle α (see Fig. 3). Here, d is the length of the segment connecting the center of the kernel to the edge of its 
local support with dimensions 2λg × 2λg , passing through the point Q, H is the height of the kernel and q1 and q2 are 
respectively 0.650239 and −1.03809. Details regarding the full derivation of the shape of the kernel function are provided 
in the Appendix A.

3.2. Particles mass’ re-allocation

In our approach, denoted here as PARxn2, the 2D computational domain is firstly covered by a squared grid G , as showed 
in Fig. 4c. With the purpose of illustration, the initial concentrations of the two reagents create a segregated field (Fig. 4a). 
5
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Fig. 4. A (red) and B (blue) reagents in a 2D domain. (a) A and B particles positions at the initial time denoted by t0, (b) A and B particles positions after 
moving at the first simulation time step t0 + �t , (c) representation of the grid G necessary for the reagents mass particles allocation.

Fig. 5. (a) Mass re-allocation process of three particles of A reagent P A
1 , P A

2 and P A
3 . Each particle is represented by the kernel and its mass M A,a (with 

a = 1, 2, 3) is distributed in each grid vertex accordingly to the value of the kernel on that grid vertex, centered where P A
a is located and having H = M A,a , 

such that: M A,a = � j∈C(i)ha
j , where i denotes the index of the cell where P A

a is located and j the indexes of the ith cell’s vertices. (b) New mass distribution 
configuration, after the mass re-allocation process. The mass of the reagent A located in a vertex of the grid is equal to the sum of the kernels’ values in 
that vertex. The A mass allocated to a generic vertex j is equal to M A

j = ∑N A
a=1 ha

j with a = 1, .., N A .

Subsequently, the chemical species are transported by advection and local-scale dispersion at each time step (Fig. 4b). At 
each time step, after the particles’ displacement, the reactant mass carried by each particle (M A,a or MB,b , with a=1, .., N A

and b=1, .., NB ) is re-allocated on the cells’ vertices of the grid G , where each grid cell has dimensions λg × λg .
To better illustrate the mass re-allocation process, let us focus on the species A. As shown in Fig. 5a, the amount of M A,a

carried by a generic particle P A
a , with a=1, .., N A , is assigned to each grid vertex of G accordingly to the value of the novel 

kernel function (see section 3.1) (centered where P A
a is located and having H = M A,a) at the vertex position. The kernel 

values at the vertices’ positions are denoted as ha
j and 

∑
j ∈C(i) ha

j = M A,a , where C(i) is a function that given the index i

of the cell where the particle P A
a is located, returns the associated j indices of the vertices of the cell. At this point, the 

masses on the vertices of G are treated as the “new” particles of the species A in the system, as depicted in Fig. 5b.
Given the kernel function, see equation (7), and the illustrations provided in Figs. 5-6, we highlight the following points:

1. Due to the shape of the local support of the kernel function, it is possible to state that for every possible position of a 
particle P A

a or P B
b (with a=1, .., N A and b=1, .., NB ) in the domain, the kernel function representative of M A,a or MB,b

will always intercept just the four vertices of the cell where P A
a or P B

b is positioned and not any other vertex of the 
grid (see Fig. 1). As an outcome of this feature, the particle mass allocation process is just limited to the allocation of 
the mass in the four vertices of the cell where the particle carrying the mass is located.
6
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Fig. 6. (a) Four optimized kernels centered on the vertices of the red grid cell. (b) Volume resulting from the sum of the values of the four kernels illustrated 
in a in each point of the red cell. (c) Graphical explanation of the equivalence between the sum of the values of a kernel, centered in the black dot, on the 
four intercepted grid vertices, h1, h2, h3 and h4, and the sum of the values that the kernels 1 2 3 and 4, respectively centered in the four grid vertices, 
assumes in the black dot position.

2. Due to the functional form of the kernel, conservation of mass is always guaranteed in the particle’s mass allocation 
process. Fig. 6b illustrates that the summation of four optimized kernel in Fig. 6a (coincident with the sum of four 
values of a single kernel over the intercepted vertices of a cell, as shown in Fig. 6c) is constant over the red cell, 
meaning that no matter where the particle is in the cell, the kernel re-allocates its mass respecting mass conservation, 
feature that with any other kernel form would have not been respected.

Other features of the proposed kernel function will be highlighted in the upcoming sections. In addition, all the above 
mentioned characteristics are fulfilled by a tent function with base length 2λg in a 1D setting (see Fig. 2). The tent shaped 
kernel function is adopted in the 1D scenarios explored in this work.

3.3. Evaluation of reaction probability

Next we provide details associated with the computation of the chemical reaction in the RWPT method. We implement 
our reaction by applying probabilistic rules of particles interaction and association, e.g., see Rahbaralam et al. [32]. The 
probability that a generic particle P B

b (in congruence with the previously explained methodological steps in Section 3.2) 
reacts in the simulation time step �t is [32,54]

P (Reaction of P B
b → P C

c ) = k f �t
V∑

j=1

M A
j h∗

j |P B
b
, (8)

where k f is the forward reaction coefficient, V is the total number of vertices associated with the used grid G , h∗
j |P B

b
is 

the value of kernel function (see eq. (7)) with unit volume (and consequently with H = 3/4λ2
g , based on the approximation 

that the volume of the kernel is V K = (4Hλ2
g)/3, as for a squared pyramid), centered on the jth vertex and evaluated at 

the position of the considered P B
b . M A

j is the amount of mass A located on the jth vertex. The product between h∗
j |P B

b

and M A
j can be physically interpreted as the effective amount of M A

j available to enable the particle P B
b to react (Fig. 7c), 

while the mass carried by the evaluated particle P B
b is considered localized in the position of the particle itself. However, 

given that the kernel function has a local support proportional to the cell’s dimensions of the grid G , equation (8) can be 
re-written as

P (Reaction of P B
b → P C

c ) = k f �t
∑

j∈C(i)

M A
j h∗

j |P B
b
, (9)

where the values of j correspond to the indices (returned by the function C(i)) of the vertices associated with the 
cell i where P B

b is located. Equation (9) is justified by the fact that, when computing the probability of reaction, 
the B particles located in a generic cell i will only perceive the mass associated with A particles located on the 
vertices of that cell. This is illustrated in Fig. 8. We remark that the h∗ value associated with any other A parti-
cle in the domain has zero value in the location of P B , since all the other A particles are located on grid vertices 
b

7
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Fig. 7. Graphical representation of the algorithm steps. (a) Shows how the mass of one species (in this case A, for illustrative reasons) is re-allocated on 
the vertices of the grid G over the domain. (b) Clarifies how the mass of A is distributed over the domain after the re-allocation step. (c) Represents 
the structure of the reactive step, where the B particles (in blue) react proportionally to the amount of A mass available, depicted by the product of the 
probability density function h∗

j and the masses of A in the vertices j of the grid, M A
j .

Fig. 8. Computation of the algorithm reactive step. Visualization of the other species influence (in this case A, the red one) on the probability of reaction 
of one species particles (B , the blue one). Given two B particles in a certain cell, only the masses allocated in the vertices of the cell where the two B
particles are located will affect their probability of reaction.

that are far. Note that the summation in equation (9) considers only the particles of species A located on the four 
vertices of the grid cell where P B

b is, therefore simplifying the computation of the probability of reaction. At this 
point, the value of P (Reaction of P B

b → P C
c ) is compared with a random number generated from a uniform distribu-

tion ζ ∼ U(0, 1). If the probability calculated in equation (9) is higher than ζ , the considered B particle will become 
a C particle. Here it is important to notice that no A particles are converted to C particles when a B particle re-
acts.

By choosing a small simulation time step and using a large number of particles, the same number of A and B particles 
react in the lapse of time �t (in an average sense). Thus, the reactive process can be considered balanced, meaning that 
a comparable number of A and B particles are going to react (in �t) without the need to consider the conversion of a 
particle of the other species, and consequently leading to a evenness condition. We would have an uneven condition if a 
larger amount of A particles react compared to the B ones, or vice versa. In average, the same particles of A and B react in 
a given time step, as shown in Section 5.1.

3.4. Computation of the reaction product C

Details regarding the structure of the proposed reactive RWPT algorithm are now presented. If we consider the irre-
versible bimolecular reaction A + B → C , the reaction product C can be computed through the PARxn2 algorithm, in a 
parallelized way, as follows:
8
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Algorithm PARxn2.
1: build the grid G(λg ) 	 (see section 3.1)
2: for each time step do
3: for each particle do 	 (see section 3.2)
4: reassign particle mass to G(λg) corners
5: end for
6: for each particle do 	 (see section 3.3)
7: if particle is A or B then
8: p ← compute probability of reaction using masses in G(λg )

9: ζ ← generate a uniform random number between 0 and 1
10: if ζ ≤ p then
11: particle becomes C
12: end if
13: end if
14: end for
15: end for

The first step of the algorithm define the grid G with resolution equal to λg (see eq. (6)). Subsequently, a for loop is 
employed to evaluate the reactive process in time. At each time step, all the masses carried by the particles are re-allocated 
on the vertices of the grid G using the kernel function h provided in equation (7), as explained in Section 3.2. Thus, each 
vertex of G is now characterized by a certain value of mass of A, equal to the sum of all A particles’ kernel functions values 
at the position of the vertex (and analogously by a certain value of mass of B). The next step of the iteration consists in 
computing (for all particles), the probability of reaction for the masses carried by the particles (prior to the re-allocation 
step) in the domain, using the re-allocated masses of the other species (see eq. (9)), as defined in Section 3.3. All the 
probabilities are concurrently compared to the randomly generated ζ values (obtained from a uniform distribution between 
0 and 1) and turned into the product C according to the if statement.

From the pseudo code it is possible to infer that the algorithm is linear with the number of particles. In fact, there are 
no for loops on the number of particles nested in other for loops. In addition, each for loop on particles can be parallelized, 
since there is no dependency among the computed steps. To conclude, it is important to highlight that when a particle 
reacts, it becomes a particle of species C , without the actual conversion of the other species particle. This is possible due to 
the usage of a small time step and a large number of particles, that guarantee conservation of mass at each time step. In 
this way, the algorithm can be computed in parallel.

We highlight that the algorithm has been written ad hoc for an irreversible bimolecular reaction. In this work, the 
proposed algorithm PARxn2 is computed on the CPU and solved with the support of the Python library NumPy that enables 
the implementation of numerical computations as vectorizing computations [62]. Due to vectorized computations, it is 
possible to pseudo-parallelize operations, avoiding the usage of loop structure, and thus leading to high computational 
efficiency (∼ O (N A + NB)). We point out that the structure of this algorithm is suited for GPU parallelization, where the 
hardware architecture is made with the purpose of parallel operations [42].

4. Performance assessment and comparison with other works

This section is divided in two main parts. The first part focuses on testing the performance of PARxn2 by comparing 
its accuracy and computational efficiency against other reactive RWPT algorithms. In the second part of this section, the 
proposed algorithm will be validated with existing analytical solutions.

4.1. Accuracy and speedup analysis

Here we evaluate the performance of the proposed methodology by comparing it to other reactive particle tracking 
approaches. Engdahl et al. [56] developed two algorithms, respectively based on sparse search (Looping Sparse Search, LSS) 
and domain decomposition (DDC) techniques, to speed up the computation of the reactive step. The authors showed how 
LSS and DCC schemes, both under serial execution, offer a significant computational time reduction with respect to the 
approach proposed by Benson and Bolster [50]. The two methodologies presented in Engdahl et al. [56] are based on the 
partitioning/division of the simulation domain to avoid that a single particle in an ensemble of N particles has N −1 possible 
pairs that have to be evaluated, at each time step, to compute its probability of reaction. Thus, particles are grouped into 
bins (DCC) or assigned to branches (LSS), such that the interaction among them is limited and ensembles of particles can be 
evaluated independently. For further details about these methodologies, we refer the reader to Engdahl et al. [56]. In order 
to investigate PARxn2’s accuracy and efficiency, the result and computational time of its serial execution are compared with 
the ones of the above mentioned DCC and LSS methodologies, also serially executed.

For this analysis, we consider a 1D domain of length L = 5 cm in which the reactant species are initially segregated, 
being A uniformly distributed on the left and B on the right half of the domain with identical concentration [A0] = [B0] =
1/5 g/cm. Since we are here simulating a 1D system, the kernel function used by PARxn2 is the tent function, shown 
in Fig. 2, having base length 2λg (see Section 3.1 for additional details). The considered scenario is inspired by the soil 
column laboratory experiment reported by Gramling et al. [63], characterized also by a constant flow velocity, here equal 
9
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Fig. 9. Methodologies’ accuracy comparison. PARxn2, LSS and DCC approaches’ mean absolute errors (M AE) are computed for increasing number of particles 
(N P ). The shaded areas represent the 95% confidence interval of the simulation ensemble.

to u = 0.65 cm/s. The diffusion coefficient is set to D = 1.75 × 10−3 cm2/s, the reaction rate constant is k f = 200M−1s−1

and the total simulation time is t = 10 s with a time step �t = 0.01 s. All the simulations are carried out using a desktop 
computer equipped with a Intel Core i7-9700K vPro CPU. The LSS and DCC algorithms are written in Matlab (version 
R2020a), recycling sections of the code reported by Engdahl et al. [56] in the open repository on GitHub (see http://doi .org /
10 .5281 /zenodo .1476680), while PARxn2 is written in Python (version 3.7.6).

Simulation scenarios with 1 × 103 to 9 × 103 particles (with N P = N A + NB ) are used to investigate the methodologies’ 
computational efficiencies, through the evaluation of the mean runtimes (Tm), and accuracy, through the computation of 
the mean absolute error (M AE) defined as:

M AE =
(

1

Nsteps

) Nsteps∑
s=1

∣∣∣mC (t)|t=s�t − m̂C (t)|t=s�t

∣∣∣, (10)

where Nsteps is the number of numerical simulation time steps, �t is the length of the time step and mC and m̂C are re-
spectively the numerical (given by the evaluated reactive RWPT algorithm) and the analytical values of the mass of reaction 
product C. For this model set-up, the exact analytical solution for the total product of mass C , i.e. m̂C (t), is available (see 
details in [63]) and expressed by:

m̂C (t) = 2c0

√
Dt

π
MC AT , (11)

where c0 is the initial concentration of one of the two reactants A or B (indifferently, since they are equal), MC is the 
molar mass of the reaction product C , in this case with unit value, and AT is the cross sectional area of the considered 
domain.

Both M AE and Tm are defined as mean values. Due to the randomness of the evaluated methodologies (e.g. Brownian 
motion) multiple realizations are computed for each scenario with the goal to reach average values of mC (consequently 
M AE) and run time Tm . Following Engdahl et al. [56], we define an ensemble of 75 realizations sufficient to reach conver-
gence of the above mentioned target parameters for each given scenario. In addition, the decomposition level used in the 
DCC approach is 17, the highest possible to maximize not only its speedup, but also its scaling efficiency (see details in 
[56]).

Fig. 9 shows that the M AE decreases with increasing N P , for all three approaches. As expected, for N P = 1 × 103, 
both LSS and DCC outperform PARxn2 in terms of accuracy. As stated in section 3, the proposed approach is based on 
the assumption that a large number of particles is needed to satisfy conservation of total mass. When this assumption is 
violated, the other methodologies achieve better accuracy when compared to PARxn2. When 4 × 103 � N P � 7 × 103, the 
M AE values are similar for all the considered algorithms, with a tendency of the LSS method to be less accurate and almost 
constant. When N P > 8 × 103, PARxn2 and DCC farther reduce the M AE values, reaching the best accuracy among the all 
the simulated scenarios (i.e. at different amount of N P ).

Fig. 10 depicts the values of the mean (over the ensemble) runtimes, Tm , as a function of N P . The Tm values obtained 
from the RWPT are represented by the markers while the solid line corresponds to the best fit curve (i.e., power law) of the 
computed Tm . The expression for the best fit curve is:

Tm(N P ) = So Nγ
, (12)
P

10
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Fig. 10. Methodologies runtime comparison. PARxn2, LSS and DCC approaches’ simulation ensembles mean runtimes Tm are computed for increasing 
number of particles (N P ). The markers represent the values of the measured Tm , while the solid line corresponds to the best fit.

where So and γ are the fitting coefficients. This fitting analysis is done in order to investigate the computational efficiency 
of the evaluated algorithms. By examining the value of the exponent γ , we can investigate how Tm scales as a function of 
problem size N P .

The values of γ associated with the three algorithms are respectively: γ = 2.8884 (for DCC), γ = 1.6163 (for LSS) and 
γ = 0.9847 (for PARxn2).

Contrary to the results for M AE (Fig. 9), Fig. 10 displays a significant difference in Tm among the evaluated approaches. 
As stated by Engdahl et al. [56], the LSS method tends to be faster than the DCC one (at the price of its accuracy) since its 
computational efficiency is less affected by the increment of N P (the γ value obtained in the LSS is lower than the γ for 
the DCC), while the speedup provided by PARxn2 results to be quite decisive. The value of γ obtained by PARxn2 is equal 
to 0.9847, meaning that the cost of running the algorithm scales linearly with N P (i.e., O (N P )), while the Tm values of the 
DDC and LSS result to be much impacted by N P , scaling respectively almost in a cubic and quadratic way. In addition, for 
PARxn2, each particle reaction probability can be computed separately from the other particles, leading to the possibility 
of using an N P number of processors. The other approaches have limits to the number of usable processors since each bin 
(DCC) or branch (LSS) has to contain a sufficient number of particles.

4.2. Validation

Next, we validate our approach by considering a forward bimolecular irreversible reaction A + B → C in both 1D and 2D 
systems. We report results for different values of the Dahmköhler number. The Dahmköhler number (Da) is defined as [55]:

Da = τD

τr
= [A0]k f l2c

D
; (13)

where τD = l2c /D is the characteristic diffusion time scale, expressed as a function of the diffusion coefficient D and the 
initial size of the concentration perturbation lc , and τr = 1/([A0]k f ) is the characteristic reaction time, with [A0] denoting 
the initial concentration of the reagent A and k f the reaction rate constant.

First, the algorithm is tested in a 1D domain with dimension Lx = 64 cm and uniform initial concentrations [A0] =
[B0] = 0.005 g/cm (well-mixed conditions). In the 2D illustrations, we simulate reactive transport in a plug flow and laminar 
viscous flow in a computational domain of size Lx × L y = {(x, y)| x ∈ Lx and y ∈ L y}. In both plug flow and laminar viscous 
flow cases, we set Lx = 5 cm and L y = 0.2 cm. The initial segregation of the reactant species is uniformly distributed on 
the left half of the domain (reactant A) and on the right half of the domain (reactant B) as illustrated in Fig. 4a. Initial 
concentrations are considered to be identical [A0] = [B0] = 1/(5 × 0.2) g/cm2.

4.2.1. Reactive transport in a well-mixed flow scenario
Similar to the analysis carried out by Benson & Meerschaert [49], we investigate the performance of the algorithm 

PARxn2 in a well-mixed flow scenario. The analytical expression of the temporal evolution for the normalized concentration 
for A is [see details in [49,32]]:

[A](t)
[A ] = 1

1 + k t
; (14)
0 f
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Fig. 11. Comparison between the numerical results for the normalized concentration of the reagent A obtained by the reactive RWPT algorithm PARxn2

for different Dahmköhler numbers. Results are compared with the analytical solution provided in equation (14). Results displayed for the well-mixed flow 
scenario.

where, in this specific example, k f is set equal to 50 M−1s−1. Using the exact same simulation variables employed in Benson 
& Meerschaert [49], we test our reactive particle tracking method for different values of Da, ranging from 10−5 to 101. The 
initial size of the concentration perturbation lc is here defined as the ratio between the length of the domain and the initial 
number of particles, i.e. Lx/N P . The variation of Da is performed by changing the diffusion coefficient D (10−2 cm2/s or 
10−5 cm2/s) and/or the initial number of employed particles (N P = 4 ×104, 4 ×103 or 4 ×102) [see [49] for further details].

As showed in Fig. 11 (see case for Da = 10−5), the reactive flow scenario is dominated by mixing, leading to a numerical 
solution that coincides with the analytical one (eq. (14)) for most of the simulation time. Increasing Da generates anomalies 
due to diffusion limited conditions, which implies segregation of particles and consequently a reduction in the system’s 
reactivity potential [32]. The temporal dynamics of the normalized concentration computed by our method matches quite 
well the trend of the results reported in Benson & Meerschaert [see fig. 2 of Ref. [49]] thus demonstrating the ability of our 
algorithm to simulate mixing driven reactive transport.

4.2.2. Reactive transport in a plug flow scenario
We consider here a plug flow scenario that is representative of the soil column laboratory experiment reported by 

Gramling et al. [63]. The exact analytical solution for this scenario (mass of reaction product C ) is known and reported in 
equation (11). The (constant) velocity characterizing the plug flow system is u0 = 0.60 cm/s and the diffusion coefficient 
is set to D = 1.75 × 10−3 cm2/s. As for the particle tracking simulation, the number of particles used is N P = 2 × 104

and the total simulation time is t = 100 s with a time step �t = 0.01 s. We report results for different values for Da
(i.e. by varying the reaction rate constant k f ). Note that the Gramling et al.’s [63] experiment is carried out with a k f

in the order of 104 M−1s−1, since the reaction is instantaneous. However, due to the proportionality of the probability of 
reaction with k f (see eq. (9)), this high value for the reaction rate constant would lead to probability values larger than 
unity. Sanchez-Vila et al. [64] stated that if the system is characterized by a Da > 100 (i.e., instantaneous reactions), the 
system reaches local equilibrium instantaneously and the reaction coefficient can be arbitrary chosen. Consequently, in the 
simulation characterized by a Da = 102, we adopt a k f = 200 M−1s−1. We also report simulation results for Da values 
ranging from 101 to 10−1. Here, we define lc , in eq. (13), as H/π [see [65]].

The results depicted in Fig. 12 indicate that Da values in the order of 102 are necessary to correctly simulate the 
variation of product’s mass in time for instantaneous/fast reactions (in agreement with Sanchez-Vila et al. [64]). As expected, 
a reduction in the Da number leads to a slow down of the initial system’s reactivity. However, when t > τD (see vertical 
green line Fig. 12), the system can be considered well mixed and all curves converge.

4.2.3. Reactive transport in a viscous flow scenario
For our next comparison, we investigate transport in a steady-state viscous flow field within a 2D channel (i.e. Hagen-

Poiseuille law) in the absence of gravity effects. Reactive transport in this flow field was subject of investigation in multiple 
works [65,53,66]. For this case, the laminar flow field is characterized by the well-known parabolic velocity profile,

u(y) = 3

2
um

(
1 − y2

�2
y

)
(15)

where �y = L y/2 and um is the cross-sectional mean velocity. For this computational illustration, we set um = 0.4 cm/s
whereas all the parameters are identical to the plug flow scenario investigated in section 4.2.2.
12
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Fig. 12. Comparison between the numerical results for mC , obtained by the reactive RWPT algorithm PARxn2 for different Dahmköhler numbers, and the 
analytical solution given by equation (11). The vertical light green line marks the diffusion time scale τD . Results shown for a plug flow scenario.

Fig. 13. Comparison between the numerical results for mC , obtained by the reactive RWPT algorithm PARxn2 for different Dahmköhler numbers, and the 
analytical solution given by equation (11). Results shown for the viscous laminar flow scenario. Theoretical results are shown for both early (t < τv ) and 
late (t > τD ) time regimes. The early and late times regimes are marked by the vertical dark and light green lines respectively.

Similar to the work of Perez et al. [53], we compare the results from our methodology with the analytical results 
for mC at early and late times. The diffusive and the advective times scales are defined as τD = l2c /(D) and τv = H/um

respectively [65]. Early times are defined by t < τv whereas late times are defined by t > τD . Initially, when t < τv , the 
species are transported mainly by diffusion and the product of mass mC generated by the reaction of the reagents A and B
for instantaneous reactions is given by equation (11). While for late times (i.e., t > τD , Taylor regime), the reagents’ transport 
can be characterized by an advection-dispersion equation parameterized by the mean velocity um and a Taylor (effective) 
dispersion coefficient Deff = D + 2v2

m�2
y/(105D) [67]. The generated product of mass C is expressed by equation (11), with 

the difference that the diffusion coefficient D is substituted by the effective dispersion coefficient Deff in the large time 
regime. Fig. 13 shows the agreement between the numerical solution for Da in the order of 102 as well as the analytical 
solution (11) at both early and late time regimes. Similar to the plug flow scenario previously discussed, the value of the Da
number impacts the agreement between the particle tracking method and the analytical solution. At late times (i.e. t > τD ), 
well mixed conditions are reached along the surface of contact of the two reagents and even small values of k f are sufficient 
to generate mC as predicted by the analytical solution. Finally, the results depicted in Fig. 13 confirm that the numerical 
solution provided by PARxn2 coincides with the analytical solutions at both early and late times for conditions where 
the reaction can be classified as instantaneous (i.e. Da ≥ 102). For completeness, we include in Appendix B a comparison 
between the solution obtained by PARxn2 and an Eulerian based solution. In Appendix B, we also show the effect of the 
number of particles used in the PARxn2 code on the mean absolute error of the solution with respect to the Eulerian results.
13



M. Morvillo, C.B. Rizzo and F.P.J. de Barros Journal of Computational Physics 446 (2021) 110664
Table 1
Input parameters used in the simulations. Left column reports the parameters’ values used 
for the Darcy flow past a permeable inclusion (DPC). Right column reports the parameters’ 
values for the Taylor-Green vortex (TGV) flow.

DPC TGV

Lx 0.0001 Lx π cm

L y 0.2 cm L y π cm

[A0] 1/(0.2 × 0.0001) g/cm2 [A0] 1/π2 g/cm2

[B0] 1/(0.2 × 0.0001) g/cm2 [B0] 1/π2 g/cm2

D 1.75 × 10−3 cm2/s D 1.75 × 10−3 cm2/s

ub 0.85 cm/s uo 1 cm/s

�t 0.01 s �t 0.01 s

N P 2 × 104 N P 8 × 104

k f 200 M−1s−1 k f 200 M−1s−1

ao 0.5 ν 10−2 cm2/s

κ 0.5 Lo π cm

5. Illustrative examples

In the following, we illustrate the reactive RWPT code in two distinct 2D flow fields. The first example consists of a Darcy 
flow field past a permeable inclusion and the second example relates to a vortical flow. In both cases, the flow field is at 
steady-state and is spatially variable.

5.1. Darcy flow past a permeable circular inclusion

This illustration consists of an unbounded Darcy flow past a permeable circular inclusion (DPC). The permeable circular 
inclusion is characterized by a radius ao . The ratio between the inclusion permeability to the permeability of the back-
ground porous matrix is given by κ and ub is the Darcy scale velocity in the background porous matrix. The flow field is 
mathematically described by the following velocity potential (see details in Eames and Bush [68]):

φ(r, θ) =

⎧⎪⎨
⎪⎩

ub

(
1 + do

r2

)
r cos θ, r > ao;

2ubκ

(1 + κ)
r cos θ, r < ao;

(16)

with do = a2
o(1 −κ)/(1 +κ). When κ > 1, the circular body is more permeable than the surrounding porous matrix whereas 

when κ < 1, we have the opposite. The velocity field for this system is given by u = ∇φ.
To analyze the transport behavior in this flow system, we consider an instantaneous injection of a line source covering a 

transverse direction L y . The line source is positioned at the beginning of the computational domain (x = 0) with a transverse 
dimension equal to L y . The top half of the line source contains A particles whereas the other half contains B particles. The 
parameters used in this simulation, as well as the specifications of the flow domain, are reported on the left column of 
Table 1. In our illustrative example, depicted in Fig. 14, we consider a circular inclusion characterized by a permeability 
value smaller than the permeability of the surrounding porous media (i.e. κ < 1, see Table 1). The top part of Fig. 14 shows 
six snapshots of the solute plume evaluated at different simulation time steps, respectively indicated on the horizontal axis 
of the plot at the snapshot position. The presence of the low permeability inclusion increases the contact surface between 
the two reagents, leading to enhanced mixing; this is confirmed by an increase in the slope of mC .

Fig. 16 illustrates the temporal evolution of masses A, B and C obtained in this test case and provides evidence that the 
same number of particles of A and B reacts in a given time step. Close inspection of Fig. 16 shows that the temporal evo-
lution of the masses A and B are in good agreement for the bimolecular reaction under consideration. The result reported 
in Fig. 16 shows that the conservation of mass is respected.

5.2. Vortical flow

For the second illustrative example, we consider a well-established flow model known as the Taylor-Green vortex (TGV) 
in an unbounded domain [69]. This 2D flow is characterized by the following velocity field [70]:

u(x) = uo

[
−e−2tν/(Louo) cos x sin y, e−2tν/(Louo) sin x cos y, 0

]
(17)

with Lo denoting the spacing between the vortices, ν represents the fluid’s kinematic viscosity and uo is a characteristic 
velocity. All parameters are listed in the right column of Table 1. For this illustration, we set Lo = Lx = L y . The flow field 
consists of counter-rotating vortices with maximum velocity at the center of the vortices. The two reagents A and B are 
initially distributed over an area Lx × L y , as illustrated in the first snapshot on the top of Fig. 15. As shown in Fig. 15, at 
14
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Fig. 14. Temporal evolution of the product mass mC in a Darcy flow past a permeable circular inclusion. Results obtained with PARxn2. The top row of 
figures shows six snapshot of the 2D plumes for reagents A (red) and B (blue) as well as the plume for the product C (purple). The flow domain is 
characterized by a permeability contrast of κ = 0.5. The streamlines for this flow system are illustrated in the inset on the bottom right vertex of the plot 
(see eq. (16)).

Fig. 15. Temporal evolution of the product mass mC in a Taylor-Green vortex flow. Results obtained with PARxn2. The top row of figures shows five snapshot 
of the 2D plumes for reagents A (red) and B (blue) as well as the plume for the product C (purple). An inset is included on the bottom right vertex of the 
plot to illustrate streamlines.

t = 0, the lower diagonal half of the source area is occupied by A particles and the upper diagonal half of it contains B
particles.

Similar to the first illustrative example, Fig. 15 shows five snapshots of the solute plumes at different simulation time 
steps, respectively indicated on the horizontal axis of the plot at the snapshot position. Due to the initial position of the 
reagents and the shape of the velocity field, the contact surface between A and B increases with time which controls the 
production rate of mC .

6. Summary

In this work we propose a new approach to quantify reactive transport in spatially heterogeneous flow fields through the 
use of the random walk particle tracking technique. These flow fields are typically encountered in many environmental ap-
plications such as subsurface hydrology, reservoir engineering and surface water flows. In our work, we focus on bimolecular 
reactions. In the following, we summarize the key advantages of our proposed approach.
15
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Fig. 16. Illustration of the temporal evolution of mA , mB and mC in the Darcy flow past a permeable circular inclusion.

1. PARxn2’s computational time scales linearly with the number of particles N P . This leads to a computational complexity 
of O (N P ) which makes the introduced algorithm suitable for simulations involving large number of particles.

2. We developed a new geometrical concept for the kernel function. The shape of this kernel function is optimized to fit 
the needs of the proposed algorithm implementation.

3. PARxn2 can be parallelized. Due to the algorithm framework, the probability of reaction of each particle can be 
computed independently. This eliminates restrictions related to the maximum number of processors usable in the par-
allelization process and simplifies its implementation by avoiding the definition of sub-domains, radius of influences 
etc.

4. PARxn2’s flexibility makes the algorithm suitable for simulating different scenarios, characterized by different domain 
geometry and velocity fields. We illustrate how the proposed method is applied to solve problems in 1D and 2D domains 
with diverse velocity fields.

In order to test the proposed algorithm, a computational speedup analysis was performed and a comparison with existing 
approaches was carried out. As shown in Fig. 10, the proposed algorithm is computationally efficient, between 73% and 
96% faster than the other methodologies used for benchmark. We also validated the particle tracking results with existing 
analytical solutions for reactive transport. Finally, future research is necessary in order to expand the algorithm to account 
for more complex chemical reactions and to address transport phenomena in 3D domains. Regarding the latter, a 4D kernel 
function will be required.
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Fig. 17. Graphical visualization of the summation values of four optimized kernel functions positioned on the corners of a cell (projected on the top of the 
figure in red for clarity) of dimensions λg ×λg . Over the area of interest, i.e. the central cell, the summation of the four kernel functions is uniformly equal 
to H with a maximum error equal to 0.15%.

Appendix A. An optimal kernel function

We provide details regarding the optimal kernel function reported in section 3.1. Our goal is to obtain an optimal shape 
of the kernel function such that the summation of four kernel distributions centered on the cell’s vertices is equal to a 
constant (arbitrary chosen) value of H over all the cell (see Fig. 17). In this way, as explained in section 3.1, we ensure 
that conservation of mass is always guarantee in the particle’s mass allocation process (see analogy depicted in Fig. 6c). 
The proposed kernel function originates from the modification of a squared pyramid, in which triangular shape sections are 
maintained along its local support midsections, while parabolic sections are employed elsewhere. To compute the value of 
the kernel function h at the point Q, defined by the distance from the center of the kernel, r, and the angle α (see Fig. 3), 
the following equation is used (see Section 3.1):

h(r,α) = −
[

H

d(α)2
+ (q1 Hα2 + q2 Hα − H)

d(α)λg

]
r2 +

[
q1 Hα2 + q2 Hα − H

λg

]
r + H, (18)

with q1 = 0.650239, q2 = −1.03809 and d(α) the length of the segment connecting the center of the kernel to the edge of 
the cell with dimensions λg × λg (see Fig. 3), passing through the point Q. We can re-write equation (18) in the following 
compact form

h(r,α) = a(α)r2 + b(α)r + c(α). (19)

From geometric considerations, it is clear that only two kernels intersect on the points belonging to the borders of the 
red cell (see Fig. 6) whereas the four kernels have the same value of h on the point at the center of the cell. Thus, it is 
straightforward to compute the coefficients of the parabolic section (namely a, b and c in eq. (19)), for the sections where 
the points belonging to cell’s borders (α = 0) and diagonals (α = π/4) are located:

when α = 0

⎧⎪⎨
⎪⎩

H = a(α = 0)0 + b(α = 0)0 + c(α = 0),
H
2 = a(α = 0)(

d(α=0)
2 )2 + b(α = 0)

d(α=0)
2 + c(α = 0),

0 = a(α = 0)(d(α = 0))2 + b(α = 0)d(α = 0) + c(α = 0),

(20)

when α = π

4

⎧⎪⎨
⎪⎩

H = a
(
α = π

4

)
0 + b

(
α = π

4

)
0 + c

(
α = π

4

)
,

H
4 = a

(
α = π

4

)
(

d(α= π
4 )

2 )2 + b
(
α = π

4

) d(α= π
4 )

2 + c
(
α = π

4

)
,

0 = a
(
α = π

4

)
(d(α = π

4 ))2 + b
(
α = π

4

)
d(α = π

4 ) + c
(
α = π

4

)
.

(21)

The values resulting from the solution of systems (20) and (21) are:

when α = 0 ⇒ a = 0; b = − H

d(α = 0)
; c = H; (22)

when α = π

4
⇒ a = H

d(α = π
4 )2

; b = − 2H

d(α = π
4 )

; c = H . (23)
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Fig. 18. Graphical representation of how the b parameter could vary with α. The blue line shows the linear behavior, while the green and the red ones 
illustrate the parabolic variation, respectively in a convex and concave way.

Using these coefficients, we can write:

S K∑
j=1

h j(r,α = 0) =
S K∑
j=1

h j (r,α = π/4) = H, (24)

where S K denotes the number of kernels centered on the vertices of the evaluated cell (S K = 4) and h j are the values of 
the kernels on the points belonging to the borders (α = 0) and on the points belonging to the diagonal (α = π/4) of the 
cell, defined by equation (19).

Our next step is to compute the coefficients a, b and c for other values of α (i.e., α �= 0 and α �= π/4). The coefficients 
are defined by varying their values from the ones that they assume at α = 0 to the ones computed at α = π/4. Here, we 
consider that b varies in a quadratic form with α, while c is kept constant since it does not vary between the two already 
calculated values (i.e., c = H for α = 0 and α = π/4). The coefficient a is determined by knowing b and c. In order to 
respect geometry constrains (i.e., the kernel has to reach a value of zero on the points belonging to the borders of its local 
support: h(r = d, α) = ad2 + bd + c ≡ 0 ∀α), a must be determined based on the values of b and c and it has the following 
analytical formulation:

a(α) = − c(α)

d(α)2
− b(α)

d(α)
for ∀α. (25)

Fig. 18 illustrates the dependence of b with α. This functional dependency is mathematically described by:

b(α) = b1α
2 + b2α + b3 for ∀α, (26)

where b1, b2 and b3 are determined as:

b(α = 0) = − H

d(α = 0)
= b3;

b(α = π/4) = − 2H

d(α = π/4)
= b1

(π

4

)2 + b2
π

4
+ b3;

b(α = π/8) = − 3H

2d(α = π/8)
ϑopt = b1

(π

8

)2 + b2
π

8
+ b3, (27)

where b(α = 0) and b(α = π/4) are values between which the parabolic variation of b is computed, while b(α = π/8)

is found though an optimization process. The multiplicative factor −3H/(2d(α = π/8)) present in the last line of (27) is 
the value assumed by b(α = π/8) if b varies linearly (see blue curve in Fig. 18), while ϑopt is the multiplicative optimized 
correction parameter that is found by minimizing the error between H and the sum of the four kernel functions over the 
considered cell:

ε =
∑

|H −
S K∑

h j(ϑ)|, (28)

cell j
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Fig. 19. Error ε estimates provided by eq. (28) versus the parameter ϑ . The inset displays the error within ϑ ∈ [0.8,1.2].

ϑopt = arg min
ϑ

[ε], (29)

where the sum over the cell (represented by 
∑

cell) is performed on every point of a finer sub-grid inside the cell itself. For 
example, if b varies in a linear or in a convex manner, as displayed by the blue and green lines in Fig. 18, the summation 
of the kernel functions over the cell is far from being constantly equal to H . The concave quadratic variation of b leads to a 
summation that is uniform over the cell and optimal for ϑopt = 0.9434. This value has been found numerically and Fig. 19
shows how ϑopt minimizes the value of the ε (equation (28)). Given that d(α) = λg/ cos(α) (due to geometrical reasons), 
the solution of the system of equations in (27) is:

b1 = q1 H

λg
; b2 = q2 H

λg
; b3 = − H

λg
, (30)

with q1 = 0.650239 and q2 = −1.03809. To summarize, the coefficients to determine the value of the kernel function 
expressed in equation (19) are:

a = −
[

H

d(α)2
+ (q1 Hα2 + q2 Hα − H)

d(α)λg

]
, (31)

b =
[

q1 Hα2 + q2 Hα − H

λg

]
, (32)

c = H . (33)

Appendix B. Comparison with an Eulerian solution for a 2-D non-well mixed reactive scenario

In this appendix we provide a comparison between the proposed, particle-based, method PARxn2 with an Eulerian so-
lution for the system of reactive advection-diffusion equations provided in Eq. (2). As in the previous cases, we consider 
a bimolecular reaction A + B → C in a 2-D, transient and non-well mixed scenario. The problem investigated is identical 
to the reactive transport problem reported in Kapoor et al. [65] and Benson et al. [66] and addressed in Section 4.2.3. The 
domain is a 2-D channel where the flow field is characterized by a parabolic velocity profile and as in the work by Kapoor 
et al. [65] the values for the input model parameters are: L y = 200 mm, Lx = 1 mm, [A0] = [B0] = 1 M , um = 1.0132 mm/s
(see Eq. (15)), k f = 0.0987 M−1s−1 and the diffusion coefficient is set to D = 1.0 × 10−3 mm2/s. The results are shown for 
t = 100 s.
The system of partial differential equations, see equation (2), was solved using Mathematica’s NDSolve which is based 
on the method of lines combined with a finite difference scheme [71]. The byproduct mass, mC is obtained by integrating 
the concentration obtained by the well-resolved Eulerian solution in the both the longitudinal and transverse directions. In 
Fig. 20, we compare both the Eulerian and Lagrangian (i.e. obtained through PARxn2) solutions for the temporal evolution of 
the mass C . The results displayed in Fig. 20 demonstrate the convergence of the PARxn2 solution to the Eulerian one with 
increasing number of particles N P .

Fig. 21 depicts the mean absolute error (MAE) between the PARxn2 and Eulerian solutions for different number of 
particles (N P ). Equation (10) provides details on the computation of the M AE , where, for this case, m̂C represents the mass 
of reaction product C computed through the Eulerian approach. The results show that the error reduces with increasing 
number of particles (see Fig. 21).
19
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Fig. 20. Comparison between the numerical results for mC , obtained by the reactive RWPT algorithm PARxn2 for different number of particles N P , and the 
Eulerian solution integrated over the space domain.

Fig. 21. The mean absolute errors (M AE) between PARxn2 and the Eulerian solution for different number of particles (N P ).
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