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ABSTRACT

Knowledge discovery from spatial data is essential for many impor-
tant societal applications including crop monitoring, solar energy
estimation, traffic prediction and public health. This paper aims to
tackle a key challenge posed by spatial data — the intrinsic spatial
heterogeneity commonly embedded in their generation processes —
in the context of deep learning. In related work, the early rise of con-
volutional neural networks showed the promising value of explicit
spatial-awareness in deep architectures (i.e., preservation of spatial
structure among input cells and the use of local connection). How-
ever, the issue of spatial heterogeneity has not been sufficiently
explored. While recent developments have tried to incorporate
awareness of spatial variability (e.g., SVANN), these methods either
rely on manually-defined space partitioning or only support very
limited partitions (e.g., two) due to reduction of training data. To ad-
dress these limitations, we propose a Spatial-Net to simultaneously
learn a space-partitioning scheme and a deep network architecture
with a Significance-based Grow-and-Collapse (SIG-GAC) frame-
work. SIG-GAC allows collaborative training between partitions
and uses an exponential reduction tree to control the network size.
Experiments using real-world datasets show that Spatial-Net can
automatically learn the pattern underlying heterogeneous spatial
process and greatly improve model performance.
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1 INTRODUCTION

Spatial data are geo-located datasets where the spatial coordinates
of each sample is explicitly recorded (e.g., census tracks, COVID-
19 cases, trajectories) or can be implicitly inferred (e.g., pixels in
satellite or UAV imagery). Spatial datasets are of high value and
commonly used across various important societal domains [1]. In
agriculture, for example, crop monitoring heavily relies on remote
sensing imagery (e.g., GEOGLAM [8]) to generate timely statistics
of crop types and growing conditions to ensure global food security.
Such imagery is also widely utilized in forest fire surveillance, flood
mapping, solar energy estimation, and many others to support pol-
icy making. In addition, many other types of spatial data, including
points (e.g., crime or disease cases), road networks and trajectories
and geo-tagged tweets, are also critical assets to various domain
applications in public health, public safety, transportation, etc.

While spatial data are both important and widely used, they pose
two key challenges to traditional learning approaches due to two
intrinsic properties violating the typical independent and identical
distribution (i.i.d.) assumption [1, 22]. First, spatial data are auto-
correlated (e.g., temperature and soil compositions) and the spatial
dependency among samples violates the independence assumption.
Second, spatial heterogeneity are naturally embedded in spatial
datasets, which means the underlying process generating datasets
varies across different regions. In addition, such variability may not
be reflected by variations in observed features. As an example, in
agriculture, farmers often use different land management practices
(e.g., conservation tillage, low phosphorous) based on their own
experience, future crop rotation plan, and local social exchanges,
which barely exist in current agricultural data and are extremely
difficult to collect. Such spatially heterogeneous processes pose a
significant challenge for analyses beyond local scales.

In related work (more in Sec. 5), the earlier rise of convolutional
neural networks (CNNs) incorporated the awareness of spatial au-
tocorrelation and greatly outperformed traditional fully-connected
architectures [14]. Specifically, the spatial structure of cells or pix-
els in an input is preserved without the cells being broken and
concatenated into a vector (e.g., non-fully-connected layers in orig-
inal CNNs [14], region-layer in YOLO [18], etc.). The use of local
connections (i.e., convolutional kernels) also provides a mechanism
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to favor spatially-nearby samples than distant ones. While this ad-
dresses the first challenge on spatial sample dependency, the other
key issue of spatial heterogeneity has not been sufficiently studied.
Recently, a spatial-variability-aware neural network (SVANN) was
proposed to explicitly consider spatial variability [9, 10]. However,
this work mainly stayed at a conceptual level. It only explored
a manual partitioning of data at geographically distant locations,
and showed that separately trained networks outperform a sin-
gle one-size-fits-all model. Spatial ensemble approaches were also
developed [12] to adaptively partition a dataset. However, these
approaches rely on assumptions that only allow two partitions and
can only work for two-class classification problems. Outside recent
deep learning related literature, geographically weighted regression
(GWR) is a traditional non-parametric model that learns a detailed
map of weights at different locations [3]. A major limitation of
GWR is that it can only perform linear regression and cannot learn
complex phenomenons. In addition, these methods (GWR, SVANN,
and spatial ensemble methods) require very dense training data
across space to train individual models after space-partitioning.

To address these limitations, we propose a Spatial-Net — a general
deep learning framework that can be used with various models - to
explicitly incorporate awareness of spatial heterogeneity. Spatial-
Net is a self-adaptive architecture that simultaneously learns a
space-partitioning scheme and a corresponding deep network ar-
chitecture, which is a spatial extension for a user-selected deep
learning model. Specifically, our contributions are:

e We propose a two-phase framework, namely Statistical Sign-
ificance based Grow-and-Collapse framework (SIG-GAC), which
automatically learns the space-partitioning and layer architec-
tures using dependent statistical tests.

e We present an exponential-reduction-based network style for
SIG-GAC to control the network size of Spatial-Net.

e We formulate the Spatial-Net learned by SIG-GAC as a hierar-
chical structure to enable weight-sharing across partitions at
different spatial scales and training via multi-task learning.
Through experiments using real-world and synthetic datasets,

we show that Spatial-Net can effectively capture the underlying

spatial heterogeneity in data generation processes and can greatly
improve solution quality using the SIG-GAC framework.

2 PROBLEM DEFINITION
The general problem is formulated as follows:
Inputs:
- Geo-located feature X and label y in a spatial domain D;
- A deep learning model ¥ of interest;
- A significance level a;
- Maximum parameter increase ratio A where A > 1;
Outputs:
- A space-partitioning scheme Dpqrs of D;
- A spatial-heterogeneity-aware F: Fpariqr 00 Dpart;
Objective: Solution quality (e.g., F1-score);
Constraint: The size of the resulting network (e.g., number of
layers or parameters) |Fspariarl < AF.
The goal of this work is to convert an input deep learning model
into a spatial-heterogeneity-aware version using input spatial data.
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Figure 1: Spatial processes at multiple scales.

The significance level « (threshold for p-value, e.g., 0.05) is used to
control the network architecture, and a higher level corresponds to
lower sensitivity to spatial heterogeneity. The maximum parameter
increase ratio A (e.g., 2) guarantees that the size of resulting network
Fspatial (-8, measured by the number of layers or parameters) is
within a scalar proportion of the original network 7.

3 METHOD: A SPATIAL-NET

Spatial-Net aims to simultaneously learns a spatial-partition of a
input dataset in a spatial domain and a corresponding network archi-
tecture to explicitly model spatial heterogeneity reflected by the par-
tition. The learning of spatial-partition and network-architecture
can be considered as a coupled process, where the two highly-
dependent sub-tasks work together to converge to a final solution.

Fig. 1 shows an illustrative example to describe the high-level
ideas of Spatial-Net. In Fig. 1, spatial heterogeneity are presented
at two spatial scales, where A! and B! are two higher level (level
1) spatial processes; {Az,Ag,A?,AZ} and {BZ, Bg, B?, Bg} are more
fine-grained local processes (levels 2 and 3) within A! and B!, re-
spectively. For example, large-scale heterogeneity may be caused
by state-level policies, climate zones, or major geographical barriers
(e.g., mountains, rivers), whereas fine-scale processes may vary by
local policies, social and cultural contexts, and personal decisions
(e.g., farmers’ experience in agriculture).

Spatial-Net provides a framework to automatically learn an ap-
proximation of the footprints of spatially heterogeneous processes,
and uses the learned spatial knowledge to transform a given deep
network architecture (e.g., ANN, CNN, YOLO, UNet) into a spatially-
explicit version. To improve the robustness of the solution, statisti-
cal tests are used to guide the learning process.

In the following, we introduce the three key components of
Spatial-Net: a hierarchical multi-task learning structure for weight-
sharing; a significance based grow-and-collapse framework (SIG-
GAC) for space-partitioning and network architecture learning; and
finally an exponential reduction tree for network size control.

3.1 Hierarchical multi-task learning

Here we will introduce the overall structure of Spatial-Net, which is
independent from the choice of deep network for the target problem.
To avoid redundancy, here we temporarily assume the patterns of
spatial heterogeneity is known (e.g., spatial partitions in Fig. 1), and
the partitioning approach will be discussed in Sec. 3.2.

A common approach in handling spatial heterogeneity is to train
a model for each local process (e.g., SVANN [9, 10], GWR [3], SE
[12]). However, a major issue in these methods is the greatly reduced
amount of training data in each partition or at each location, which
is especially problematic for data-hungry deep learning techniques.

To mitigate this problem, we use a hierarchical multi-task learn-
ing structure to leverage the natural spatial hierarchy embedded in
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Figure 2: Hierarchical multi-task learning with 7.

the heterogeneous processes across multiple scales (e.g., scales of
A1, A1, A3zp) using the following two definitions:

Definition 3.1. Spatial process ® : X — y: A function govern-
ing data generation in a spatial region, which may include observed
and unobserved features as variables.

Definition 3.2. Spatial hierarchy H: A multi-scale represen-
tation of spatial heterogeneity. H can be considered as a tree-
structured representation of the input spatial domain 9; each node
‘Hj’ € H is a partition of D, where i denote the level in the hierar-
chy, and j is a unique ID for each partition at level i. Children of a
partition ! share the same lower-level processes (i.e., processes
at levels i’ < i), and heterogeneity at smaller scales is a mixture of
processes at larger scales. Processes {®} are homogeneous within
each leaf-node and heterogeneous across leaf-nodes.

Based on Def. 3.1 and 3.2, the hierarchical multi-task learning
structure considers the learning for the process CD;. at each leaf-node

H' as a task. However, this task modeling itself does not fully utilize
the hierarchical spatial relationships across scales represented by
H. Denote ‘HliJrl and ‘712”1 as two nodes that are children of ‘Hl’
and HI*! and H}*! as two nodes belonging to H;. Intuitively, we
would desire children of the same parent (e.g., 7‘{1”1 and ‘H2i+1)
to share more common weights than children across parents (e.g.,
7’({“ and ‘7-(3i+1). More generally, we would desire leaf-nodes that
are closer to each other in the spatial hierarchy H to share more
common weights, where node-distance is defined as:

Definition 3.3. Spatial hierarchy distance d¢;. The minimum
number of links needed to connect two nodes in H.

In order to realize this weight-sharing structure in multi-task
learning, we enforce Spatial-Net to share the same structure as
H. Specifically, a layer is split into branches whenever a node
in H is split into children. Fig. 2 shows an illustrative example
where the spatial hierarchy H in Fig. 2 (a) is integrated into Spatial-
Net’s hierarchical multi-task learning structure in Fig. 2 (b). This
guarantees that two leaf-nodes at levels i and i’ (i may be equal to
i’) share more common weights if their distance dg¢; in the spatial
hierarchy is smaller.

3.2 A SIG-GAC framework

The hierarchical multi-task learning structure effectively models
the relationships among tasks over space and reflects the mixtures
of processes across scales (Def. 3.2). However, it requires a spa-
tial hierarchy H of heterogeneity as an input. In this section, we
introduce a Significance based Grow-and-Collapse framework (SIG-
GAC) to auﬁnatically learn the hierarchical structure of spatial
heterogeneity from data.

SIGSPATIAL ’21, November 2-5, 2021, Beijing, China

3 2 3
H} T i | & | .
row 2row H3 collapse Hj
2
HO
H; Hf | Hi HE | HE || HP | HE

Figure 3: An illustrative example of grow-and-collapse.

SIG-GAC is a coupled process between the learning of hierar-
chical space-partitioning and the network architecture, which is a
natural reflection of the twin-structure of H and network layers
shown in Fig. 2. Specifically, space-partitioning is used to gener-
ate scenarios of network architectures and, in turn, local learning
profile from the scenarios will be used to decide the final splits in
the hierarchy H. This coupled process is supervised by dependent
statistical tests for robust and automated decision making. In the
following, we will introduce SIG-GAC through its two key phases,
i.e., significance-based growth and collapse.

3.2.1 Significance-based growth.
The growth phase has a Grower (G) that aims to gradually par-
tition the original spatial domain 9 into smaller sub-regions (or
segments), in an hierarchical manner, with each sub-region in the
final partitioning having a homogeneous spatial process @ (Def. 3.1).
Note that this phase only intends to monotonically increase the
number of partitions, so potentially some adjacent sub-regions
sharing the same ® may be left as different nodes in the hierarchy,
which will be handled by the collapse phase.

The grower G involves two collaborative players — a recom-
mender Gg and a verifier Gy. The recommender Gg propagates via
a hierarchical bi-partitioning of the space. In each growth step:

- Step-1: The recommender Gg dequeues a current level-i node
7{]’ (H° = D) and returns two equal-size level-(i+1) nodes 7‘(;?1
and 7—[;;1 as a hypothesis of potential spatial heterogeneity. The
split direction is vertical for nodes at even levels (e.g., 0,2,...) and
horizontal for odd levels (e.g., 1,3....), as shown in Fig. 3.

— Step-2: The verifier Gy verifies if the split is plausible and returns
the decision, either "accept” or "reject” to Gg;

- Step-3: If the split is accepted, Gg adds the two nodes 7—(]’;’1 and

‘Hj’;l to the node-queue (FIFO) as candidates for next recommen-
dations; otherwise, Gg drops (HJ’;’I and ‘Hj’;l and moves their

parent node 7—(; to a stable set H,qr containing all the leaf-nodes
of the final hierarchy H;

— Step-4: If the queue in G is not empty, return to Step-1; other-
wise, return the stable set of leaf-nodes #, and the synchro-
nized network architecture.

A critical step in the collaborative growing G = {Ggr O Gy } is
for Gy to verify the plausibility of the hypothesis (i.e., the node split
71}1 — {‘7'{]’;“1‘7-{]’;1}) suggested by Gg. Spatial-Net incorporates
dependent statistical tests into the training process of the network
to determine if the hypothesis should be accepted or rejected:

Definition 3.4. Denote ®; and ®; as the data generation processes
(Def. 3.1) at the two higher-level nodes ‘HJ’IA and H ;;1, respectively;
and 67 and 0, as the parameters of an input network ¥ to capture
the two processes, respectively. The null hypothesis Hy states that
01 = 0, whereas the alternative hypothesis states 6 # 05.
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Figure 4: Network synchronization and test.

In order to determine if the null hypothesis Hy should be rejected,
we formulate the problem as an upper-tailed dependent T-test,
where the node-split as well as its corresponding new network
branches can be considered as a "treatment” (i.e., whether the split
is effective in improving the performance).

Denote Xj. as the set of training data samples in partition (node)
H ]’ where j is the ID of the partition at level i; and Xi“, X;El c Xj.
as the data samples in the split nodes 7{]’?1 7{;;1 respectively.
Similarly, denote T;. as the set of validation data samples in the
nodes. Finally, denote # and " as the network architecture before
and after the split, respectively, where ¥ synchronizes the split
with a newly formed branch (Fig. 4). Note that the new branches in
¥ are separately trained with Xﬁl, X;;l to reflect the space parti-
tioning (i.e., parameters are separated into 6; and 6, as described
in Def. 3.4). This test is then formally defined as:

Definition 3.5. Spatial heterogeneity test. Considering the node-
split and corresponding network architecture changes as a "treat-
ment" to spatial heterogeneity described in Def. 3.4 (i.e., 61 # 62),
and samples in T% as the group of participants. Using the test statis-
tic defined by a loss function L, the test is then an upper-tailed
dependent T-test, because: (1) participants are essentially from
the same group T; so there are dependency between L(G"'(T;.))
and L(?‘_'(T;)) (i.e., same group of participants before and af-
ter the "treatment"); and (2) we are only interested in an effec-
tive "treatment" that reduces L by separating the processes, i.e.,
L(?"’(Tj.)) < L(‘F(Tj.)), so only the upper-tail (one-side of the
distribution) can be used to reject Hy. Since the test is a dependent
T-test, the test statistic needs to be first formulated as the difference
between the two losses (before and after):

Laiff = L(F(T})) = L(F'(T})) (1)

Further, in order to standardize the distribution into a T-test for
finding critical values, the final form of the test statistic is:

Laiff
U(Ldiff) . (DF+ 1)_%

@

Ltest =
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where Lg;¢f and o(Lg;fy) are the mean and standard deviation of
Lgify over the set of samples in Tj.; DF is the degree of freedom,

which is equal to the sample cardinality |T§| -1

Since the normalized test statistic follows the standard T-test, the
critical value CV(DF, @) associated with the degree of freedom DF
and the input significance level a (e.g., 0.01, 0.05) is then retrieved
in the one-sided (upper-tailed) T-distribution table (note that the
critical values cannot be computed in closed-form so pre-computed
T-distribution tables are typically used for look-ups). Finally, the
test result is given by:

1 (reject Hy), if Lyest > CV(DF, a)

0, otherwise

Significance = { ®3)

Using Def. 3.5, the verifier Gy accepts the suggested node-split
and corresponding network architecture change if the test is sig-
nificant (i.e., rejecting the null hypothesis Hy). One minor issue
left is that it is impossible for the T-distribution table to include
all possible values of degrees of freedom DF (i.e., number of sam-
ples - 1). Since in the case for Spatial-Net the number of samples
in each partition is not fixed and highly variable, it is very likely
that the actual DF is not present in the T-distribution table. Thus,
we employ mathematical approximations of critical values to esti-
mate CV (DF, «). Specifically, we approximate the CV(DF, ) using
the linear interpolation with reciprocals of DF as it is known that
critical values are linearly well proportional to the reciprocals:

DF'-DF 1
CVapx(DFa a) = e -(CV(DFmax, @)~CV (DFpin, @))
DFpax — DF,;,

where DFpin = arg maxpg, e1—saple.pF; <pF DFi (ie., lower bound
of DF in T-table), and DFp,4x = arg MiNp g e1—table,DF; >DF DFi-

Finally, we define two additional constraints to improve its flexi-
bility and practicality:

e Minimum level for statistical tests lv,,in: Since in real-world
applications the spatial extents represented by true leaf nodes
may be small compared to the entire input spatial domain D, the
signal of such local heterogeneity may be diluted at larger scales,
making it difficult to confirm it statistically. Thus, [, requires
that the recommender G directly accepts the node split (without
sending to the verifier Gy ) if the parent node H* is at a level i <
lomin. This helps the grower to zoom into smaller scales during
the search, which may otherwise be terminated prematurely due
to insignificant test results at larger scales. Unnecessary splits
will be collapsed back in the next phase (Sec. 3.2.2).

e Maximum level [0y, 4x: This is the maximum level H may have
after the growth. [v;,45 is mainly used to constrain the size of the
final network, and can also be interpreted as the smallest spatial
extent of heterogeneity that domain users are interested in.

3.2.2  Significance-based collapse.

The role of this collapse phase finalizes the hierarchy H and the
network architecture of Spatial-Net by collapsing spatially-adjacent
partitions (not necessarily adjacent nodes in H, e.g., children of dif-
ferent parent nodes) that share the same spatial process ® (Def. 3.1).
Opposite to the growth phase, this collapse phase only monotoni-
cally reduces the number of partitions (nodes) in H.
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In the growth phase, there are two scenarios where spatially
adjacent partitions sharing the same spatial process ® may be split
into separate nodes: (1) The flexibility constraint imposed by lvpin
forces node-splits at levels i < lvpin, regardless of whether hetero-
geneity exists; and (2) Partitions belonging to different parent nodes
may be spatially adjacent, and they may share the same process
® after being separated out from other siblings (with a different
process) at finer-scale partitions (e.g, 7-{14 and ?{15 in Fig. 5 (a)).

The collapse phase identifies these unnecessary splits and merges
them back to generate the final Spatial-Net. Fig. 5 shows illustrative
examples for collapse operations. In the following we will describe
the details of the process via Def. 3.6 and the examples in Fig. 5.

Definition 3.6. Active collapsing node (AC-node). The node
whose leaf decedents (nodes/partitions in the current H) will be
enumerated as candidate for collapsing.

The collapse phase performs node-collapse gradually from finer
spatial scales towards larger scales. For an AC-node, there are three
requirements for selecting pairs of candidate nodes for collapse:

e Denote Hi and Hé as two original leaf-nodes of the same parent
in the output H from the grower. The pair of candidate nodes
are invalid if one of them contains (or equals) H{ and the other
contains (or equals) Hé (i.e., known to contain heterogeneous
leaf regions); unless i < lv,,;, which means the split of H{ and
Hé was not a decision by significance testing (Def. 3.5).

The pair of candidate nodes for collapse are spatially adjacent
in order to maintain the spatial contiguity of each node in the
spatial hierarchy H.

The level difference between a candidate node and the current
AC-node is at most 2 (node levels will be reduced in the new H as
they collapse). This requirement is mainly due to computational
consideration and may be relaxed in future work.

In Fig. 5 (b), if H 13 is the AC-node, then the valid pair of candidate
nodes to be enumerated is (H%, Hf) (H5,H§) is invalid due to
violation of the first requirement above, and (H 4 Hg) is invalid as
the candidates are spatially disjoint (the second requirement).

If a pair of nodes is collapsed, both the hierarchy H and the
network architecture will be simplified to remove unnecessary
branches as shown in Fig. 5 (c) and (d). Specifically, if a parent only
has one child (i.e., identical after the exclusion of the other child
node), they will be reduced to only the parent node.
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Similar to the growth phase, we use statistical test to determine
if a pair of candidates should be collapsed. The difference is that
here we perform a reversed version of the spatial heterogeneity test
(Def. 3.5). In the growth phase, a node-split is accepted if the test
is significant, i.e., the loss after the split L(F”’ (T;)) is significantly
reduced compared to the loss before L(T(Tj)). The key difference
here is that, in the collapse phase, we are no longer interested
in identifying heterogeneous processes; rather the objective is to
identify splits that are unnecessary, i.e., insignificant.

To implement the change, in the reversed spatial heterogene-
ity test, we still perform the spatial heterogeneity test using the
pairs of candidate nodes. However, the criterion for accepting the
collapse is reversed. Instead of requiring the differences before
and after the collapse to be significant (Eq. (3)), we accept the col-
lapse only if the difference is insignificant. This is intuitive because
such a result indicates there is no significant difference in the two
data-generation processes ® of the candidate nodes.

3.2.3 Note on multiple testing. Finally, we would like to note that
Spatial-Net performs multiple tests as there are potentially many
branching decisions to be verified during both the growing and
collapse phases. As a result, for a given significance level a (e.g.,
0.01), the actual rate of false positives may be higher than a. How-
ever, since the cost of false positives (e.g., an unnecessary split of
a node) is not as high as those in typical statistical applications
(e.g., effectiveness of a drug to a disease), Spatial-Net currently
uses the tests in a relaxed manner and does not intend to enforce
strict constraint the overall false positive rate (e.g., 0.01). However,
if in certain applications strict constraints are needed, a revised
significance level a’ can be conveniently calculated and used for
individual tests based on the estimated total number of candidate

splits Egpy;z (e-g Esplir = 2ltmax _olomin) with a’ = 1—(1—a) Fsplit
(or the Bonferroni adjustment &’ = a/E,j;; ) [16].

3.3 Exponential reduction tree

Since the growth phase of the spatial hierarchy propagates with
exponential growth, i.e., number of leaf nodes can be at most 2l0max
where [vp,4x is the upper-bound on the level, we use an exponen-
tial reduction tree style to constrain the size of the corresponding
network architecture in Spatial-Net.

Denote the input deep learning model (Sec. 2) as ¥, and the
corresponding Spatial-Net as . In this paper, we will use the
number of network layers, instead of the number of parameters,
to represent the relative size of networks || and || because the
current version of Spatial-Net uses a network layer (Fig. 4) as the
minimum unit for branching (i.e., no split within a layer). Here we
will use an exponential reduction tree as the style of Spatial-Net to
explicitly control the total number of layers |7”|:

Definition 3.7. An exponential reduction tree (ERT) has the
form of a binary tree where the roles of nodes and edges are re-
versed. Specifically, attributes (e.g., edge length) are stored on edges
rather than nodes, and nodes mainly serve as conjunction points
to topologically connect the edges (i.e., roles of edges in an ordi-
nary binary tree). Denote f (f > 1) as the base for the exponen-
tial reduction (e.g., § = 2). In an ERT, whenever a parent edge e
is split into two children e; and ey, each child will have length
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Figure 6: Exponential reduction tree style and tail lengths.

ej.len = ey.len = e.len/f, and the parent edge’s new length e.len’
will be reduced to e.len - (1 — 1/f). The sum of edge lengths of the
updated parent and any of the two children (e.g., e.len’ + e1.len) is
identical to the parent’s edge length before the split e.len.

The ERT style (Fig. 6) can be directly applied during the growth
phase of Spatial-Net, where the expansion of network branches
follows a binary tree style and the number of layers within a branch
segment (i.e., layers between two consecutive splits) can be repre-
sented by ERT’s edge length. As an example, using f as the base
for exponential reduction, the first split (from H° to H;, Hy) will
keep the first [(1 — 1/f) - |F|] layers unchanged, and create a new
branch starting from the next layer. Following the same rule, the
number of layers in each tail branch after the ith split is:

L1/B - Lo L1/ B IF N ) ] < (1) B)" - |F]
— T @
i times of "[1/6-" ix"]"

Thus, the total number of layers in Spatial-Net |F’| after the

growth phase is:

I
17| < |F] +Z 271 (1/) - |7
|¢1‘| ! ©
2.
<IFl+ = ;(3)

where [ is the actual maximum level in the resulting hierarchy.
Based on Eq. (5), with f§ = 2 the size of Spatial-Net is bounded by
“TZ |#; with f > 2, the sequence is convergent as 2 < 1.

In the current version of Spatial-Net, we set f# = 2. Using Eq. (5),
for I = 6, we have the maximum number of leaf-nodes (each leaf-
node can form a unique path in ') as 2° = 64 and the actual
network size |¥’| < 4|F] (i.e., suitable for an input A = 4 in Sec. 2).
As we can see, the use of the exponential reduction tree is effective
in controlling the number of layers in Spatial-Net. Intuitively, spatial
processes at finer resolutions tend to have smaller differences, and
thus require less "private" parameters to capture such differences.

In practice, the size of Spatial-Net is often smaller than “72 Val
because many of the candidates for node-split may not pass the
spatial heterogeneity test (Def. 3.5), and many of the unnecessary
splits will be reduced during the collapse phase.

In the final Spatial-Net ¥, each branch is formed by a unique
path from the input to the output layer, and each unique path has
the same architecture as the input deep learning model ¥.

3.4 Training and prediction models

Our proposed Spatial-Net can be easily combined with a variety of
predictive models. In our tests, we consider two types of models,
standard artificial neural networks (ANN) and segmentation net-
works. Both of these models aim to learn a mapping relationship
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from input X to the target label of each location. We represent such
models using 7 (X; 0), where 6 represents the weight parameters
in neural networks.

For the segmentation model, one of the most fundamental tech-
niques is the Fully Convoluted Network (FCN) [15] which uses de-
convolutional layers to convert the compact representation learned
from input data to pixel-wise class labels. Researchers have also de-
veloped several variants of FCN such as SegNet [2], DeconvNet [17]
and UNet [19]. As Spatial-Net is a model-agnostic framework, in
this test we use UNet as an example without loss of generality. UNet
is a widely used structure consisting of a multi-layer encoder and a
multi-layer decoder. The encoder extracts representative feature
representation while reducing the data resolution over layers. The
decoder then transforms the representation to the original resolu-
tion and predict class labels. Moreover, it supplements the output
of the decoder layers with the representation extracted by encoder
layers with the same resolution.

For both ANN and UNet, their parameters 6 can be estimated
through a training process on a labeled dataset by minimizing an
objective function of empirical risk, such as the pixel-wise cross
entropy for classification, as follows:

Ler(@1Xy) == 3 3 (v, log F(Xi: O ©)
i k

where F (X;; 0)y. is the predicted score of the i’ h sample belonging
to the class k and (y;); = 1if the ith sample belongs to the class k.

(a) Almonds
Figure 7: Distributions of land cover examples (yellow).

(b) Tomatoes (c) Walnut (d) Grasslands

4 VALIDATION
4.1 Datasets

We use satellite imagery observed by the multi-spectral instrument
on Sentinel-2 Constellation as features, which has 13 spectral bands
at three different spatial resolutions of 10, 20 and 60 meters [21].
We leave out the atmospheric bands (Band 1, 9 and 10) of 60 metres
resolution and re-sample all the bands to 20 metres (by majority
voting for 10m bands). For our experiment, we aim to classify each
pixel to a class label, where the labels for this data set are taken
from the USDA Crop Data Layer (CDL) [4].

Minnesota agriculture dataset D1: We consider an agriculture-
intensive region with 4096-by-4096 pixels (~80km by 80km extent
in 20m resolution) in southwestern Minnesota, US. While this area
is dominated by farm patches such as corn and soybean, different
farmers have different preferences in land management practices
and thus even the same crop patches can appear different over
space. Specifically, we use the composite multi-spectral data taken
on August, 2019 to classify each pixel to a class label in {Corn, Soy-
bean, Sugarbeats, Water and Wetlands, Urban}. We consider other
classes as background, which will not be used for evaluation.
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Table 1: F1-scores for land-cover classification in Minnesota (Dataset D1).

Class [ ANN Cluster-ANN SVANN  UNet  AE-UNet || Spatial-Net"NN Spatial-Net"Net
Corn 0.915 0.831 0.890  0.930°  0.882 0.917 0.933
Soybeans 0.900 0.755 0.851 0.928 0.931** 0.900 0.938*
Sugarbeets 0.846** 0.537 0.704  0.000  0.000 0.854" 0.485
Water and Wetlands || 0.892 0.888 0.777 0914  0.918" 0.898 0.928"
Developed Area 0.000 0.000 0.000 0.000 0.000 0.363*" 0.667"
MEAN 0.889 0.773 0.847  0.857  0.832 0.897** 0.903*

Note: * for best results; ** for runner-ups.

Table 2: F1-scores for land-cover classification in California (Dataset D2).

Class || ANN Cluster-ANN SVANN  UNet  AE-UNet || Spatial-Net"NN  Spatial-NetUNet
Corn 0.573 0.433 0.403 0583  0.626™ 0.616 0.772*
Cotton 0.593 0.591 0529  0.731*  0.707 0.699 0.840*
Sorghum 0.021 0.000 0.000 0311  0.371* 0.386" 0.350
Wheat 0.000 0.000 0.000  0.263**  0.000 0.233 0.628"
Alfalfa 0.014 0.000 0.000  0.598**  0.589 0.383 0.777*
Grapes 0.605 0.534 0.477 0703  0.720* 0.718 0.846*
Citrus 0.000 0.000 0.000 0.000  0.364** 0.381 0.000
Almonds 0.496 0.487 0.472 0.606  0.652** 0.632 0.812*
Walnut 0.000 0.000 0.315 0.000 0.000 0.381** 0.733*
Pistachio 0.216 0.056 0.283 0.000 0.649 0.656** 0.891*
Tomatoes 0.000 0.249 0.000  0.599**  0.000 0.530 0.847*
Garlic 0.000 0.340 0.000 0.000 0.000 0.349** 0.797*
Tree crops 0.000 0.000 0.000 0.000 0.210 0.328** 0.464*
Grasslands || 0.763 0.685 0.721 0.765 0.770 0.799** 0.840*
Barren land || 0.482 0.441 0474 0534 0.540 0.560** 0.676*
Water 0.442 0.584 0.000 0.673  0.683** 0.644 0.763*
Urban 0.538 0.481 0.596 0.676  0.699** 0.692 0.762*
MEAN 0.461 0.421 0.431 0.558 0.599 0.627*" 0.766*

Note: * for best results; ** for runner-ups.

California land cover dataset D2: This area is in Central Val-
ley, California, and has 4096-by-4096 pixels (~80km by 80km extent
in 20m resolution). The multi-spectral data is taken in August, 2018.
It contains a wide variety of crops with heterogeneous patterns,
where the land cover distribution changes over space (Fig. 7). We
consider major classes in the data (~ 95%) as listed in Table 2. Low-
sample classes (e.g., <1% of data) and an unidentified miscellaneous
class, where all baseline methods struggle, are not included.

4.2 Experiment Setup

In our tests, we implement ANN as a seven-layer network where
the first six layers use the sigmoid activation function and the out-
put layer uses the softmax function to generate class probabilities.
The dimension of each hidden layer is set to 10. The ANN model
is trained with the Adam’s optimizer with a learning rate of 0.01.
The UNet encoder consists of two encoding blocks followed by two
convolutional layers; and each block contains two convolutional
layers and a max-pooling layer. The UNet decoder uses two decod-
ing blocks where each block contains an deconvolutional layer, a
residual layer and two convolutional layers. The hidden represen-
tation extracted by the encoder has a dimension of 128. UNet is
trained by the Adam’s optimizer using a 10~3 learning rate. Using

the fully-connected ANN and convolutional UNet as examples, we
implement the model-agnostic Spatial-Net for these two types of
common architectures to demonstrate the improvements.

4.3 Results

Here we evaluate the performance of our proposed Spatial-Net on
the real-world datasets D1 and D2. We compare to the standard
ANN and UNet which are trained on the entire dataset. We also
include three other baselines: Cluster-ANN, SVANN, and AE-UNet.
The Cluster-ANN method first uses K-means++ to cluster the entire
dataset into 64 clusters and then trains individual ANN models
for different clusters. Similarly, SVANN trains separate models for
different data partitions but it requires the partitions to be known
as an input, which is unavailable here. Thus, we equally divide the
whole region into 4 smaller squared regions (similar to the example
used in [10]). Also, SVANN is sensitive to training data reduction
(no parameter-sharing). Additionally, we compare with the AE-
UNet, which is a semi-supervised learning method. This model is
first pre-trained on all the locations in the region (including labeled
and unlabeled) by minimizing the reconstruction loss (as an auto-
encoder (AE)) and then gets fine-tuned using training data. For all
these approaches, we sample 25% data for training and another
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Figure 8: Visualization of the results for candidate methods and CDL in D1 (Minnesota) and D2 (California).

25% data for validation, and use the remaining 50% data for testing
(in many real-world applications, ground truth samples are also
typically sampled by land surveyors at random locations).

Predictive performance: In Tables 1 and 2, we report the clas-
sification performance (in F1-score) of different methods on each
land cover as well as the weighted average F1-score (weighted based
on proportion of each land cover). We can see that the F1-score
of all the methods drop from D1 to D2 due to the increased data
heterogeneity. However, in the experiments our proposed meth-
ods - Spatial-Net*™N and Spatial-NetUNet — outperform the other
methods by a considerable margin for most land cover classes. In
particular, Spatial-Net*NN and Spatial-Net"Net performs much bet-
ter than their counterpart, i.e., ANN and UNet, since these standard
classification methods cannot fully capture the spatial heterogene-
ity. This can be confirmed by the lower F1-score achieved by ANN
and UNet for minority classes, e.g., developed area in D1, and wheat,
walnut, garlic, and other tree crops in D2. Cluster-ANN performs
poorly because the clustering-based partitioning relies solely on
observed features and cannot effectively capture the heterogeneity
in spatial processes. Similarly, SVANN uses a pre-defined space-
partitioning which is not data-adaptive or data-aware. Moreover,
both Cluster-ANN and SVANN significantly reduce the available
training data for each small region. Finally, AE-UNet does not per-
form well as the pre-training driven by the reconstruction loss is
not sufficient for capturing the spatial heterogeneity.

Case study: Fig. 8 shows several example regions with the CDL
labels and the classification results made by ANN, UNet, Spatial-
NetANN and Spatial—NetUNet. Here we can see that the ANN and
Spatial-Net*N commonly disturbed by noise in remote sensing
data at individual pixels and thus their generated maps are less con-
tiguous over space. These are much improved by the UNet versions
with the modeling of spatial autocorrelation (e.g., convolutional
layers). However, both ANN and UNet suffer from spatial hetero-
geneity and tend to misclassify smaller classes as dominating classes
(sample-size-wise over the entire data). For example, sugarbeets
are misclassified as corn by UNet in Example 2 of D1 (Fig. 8). These
errors are reduced in the Spatial-Net versions. Additionally, we can
see that Spatial-NetUNet generally has a much better performance
in detecting roads across farm patches (yellow lines in Fig. 8).

4.4 Model Sensitivity

Performance change during the growth phase: Fig. 9 shows
the classification performance as we partition the spatial data dur-
ing the growth phase. It can be seen that both Spatial-Net*NN and
Spatial-NetUNet achieve better performance as we learn the hierar-
chy, guided by statistical tests. As the search propagates, the growth
phase of Spatial-Net gradually generates more significant branches
to capture heterogeneous data distributions across the space. We
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Figure 9: Performance improvement during the growth
phase. Each split passing the statistical test doubles the parti-
tions. ’Clps’ in x-axis indicates the final result after collapse.
can also observe that Spatial-NetUNet has a sudden increase of per-
formance in the initial stage of the growth phase while the F-1 score
of Spatial-NetUNet increases gradually as we create more partitions.

Sensitivity to parameters: Fig. 10 shows the performance of
Spatial-NetUNet as the data size and significance level & change. As
the amount of training data grows (test data remain the same), the
performance increases slightly. We can see that Spatial-NetUNet
can reach good performance even with 6.25% training data (better
than other methods in Tables 1 and 2 using 25% data). On the other
hand, we can see the model has slightly decreased performance
when we set a very small significance level a. This is because the
significance test becomes more strict for partitioning, making it
less sensitive to the heterogeneity across regions. As we increase
the significance value to 0.1, we find the performance is similar to
the performance we get using 0.05. The performance in D2 drops
(but marginally) for large @=0.1 because Spatial-Net creates very
small regions where the chance for overfitting increases.

4.5 Capturing underlying spatial heterogeneity

We also generated an illustrative synthetic dataset to demonstrate
Spatial-Net’s automatic capturing of underlying (unobserved) het-
erogeneous spatial processes. As shown in Fig. 11 (a), the data
contains four different spatial processes (@1 to ®4).

In the dataset, y;rye has continuous values, making this a re-
gression problem. The ground truth (Fig. 11 (c)) is generated using
a function of four features (one unobserved), where each feature
is randomly simulated (details of the function and features are
provided in Appendix A.2). To simulate heterogeneity, function pa-
rameters are different for each spatial process ®. The base network
we use here is a seven-layer ANN with Mean-Squared-Error (MSE)
as the loss function. Fig. 11 shows the space-partitioning automati-
cally learned by Spatial-Net with 25% data as training and validation
(significance level @ = 0.01); RMSE for test samples is ~1.705. As we
can see, SIG-GAC is able to automatically terminate growing if no
significant split is found (e.g., ‘7—(13 ) and unnecessary partitions can
be merged back during collapse (e.g., 7—(23 and 7'{22) The resulting
Spatial-Net has four branches to capture the processes.

5 OTHER RELATED WORK

Here we discuss some other related work in addition to those de-
scribed in Sec. 1. Recent advances in deep learning models, e.g.,
CNNs [14], segmentation networks [5, 19], and object detection
networks [18, 25] have provided unrealized potential for modeling
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Figure 11: Capturing synthetic spatially heterogeneous pro-
cesses. Partition in (a) is unseen to the Spatial-Net.

spatial data. These models are capable of automatically extracting
complex features from spatial data while also modeling the spatial
autocorrelation. Note that the multi-resolution convolution used
in CNNss is used within an input sample (i.e., an image), which is
not the same as the multi-scale heterogeneity hierarchy here (cross
samples). More importantly, these methods commonly produce a
single model of the target variable over the entire population of
training and test instances and do not to account for data hetero-
geneity over space, thus resulting in poor prediction performance
across diverse spatial regions. It is worth mentioning that our pro-
posed Spatial-Net does not intend to replace the existing networks;
instead, it is a model-agnostic framework that can be applied to
these deep learning models to handle spatial heterogeneity.

One may also address spatial heterogeneity by transferring knowl-
edge learned from labeled spatial datasets to unseen regions. For
example, researchers have developed domain adaptation methods
that explore the invariant feature representation across different
spatial datasets [11, 27]. Meta-learning methods have also been
used to automatically learn models that can be easily adapted to
different spatial regions [20, 26]. However, these methods are com-
monly based on assumptions of similarity on certain aspects of data
distributions. For example, many domain adaptations require differ-
ent regions have similar distribution of classes; and meta-learning
methods, e.g., MAML [7, 20], may yield degraded performance
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when regions have large discrepancy. In the future, meta-learners
can also be integrated into Spatial-Net to speed-up training.

Our work is also related to data clustering, which has the po-
tential of improving predictive performance by training individual
models separately for different clusters [13, 23]. However, in real-
world problems, related variables may not be observed directly (or
often unobserved) but rather inferred through a proxy (e.g., spectral
reflectance values captured by satellites). Hence, the collected input
features have less expressive power and the clustering obtained
using these features may not fully capture spatial heterogeneity.
Moreover, clustering can significantly reduce the training data avail-
able for each individual model, making it difficult to train complex
models. Recent work on mixture pattern mining [24] can identify
regions with specified mixture signatures of point processes (e.g.,
homogeneous mixtures). However, it cannot handle data where
processes @ : X — y cannot be described by explicit statistical
models (e.g., Poisson), which are most often the case for deep learn-
ing tasks. In addition, it aims to find interesting sub-regions but
cannot segment the whole space into homogeneous processes.

Another related but different direction is the attention mecha-
nism. Currently, attention methods [6] mainly aim to find "focus"
regions within a training or test sample (i.e., weighting information
within a sample itself or its features) but do not aim to tackle dis-
tribution heterogeneity or non-stationarity, or, to provide explicit
hierarchies or distribution-relationships across samples.

6 CONCLUSIONS AND FUTURE WORK

We proposed a novel Spatial-Net with a significance-based grow-
and-collapse (SIG-GAC) framework to capture spatial heterogeneity
commonly embedded in spatial datasets. Our evaluations demon-
strated the effectiveness of the proposed method in improving
the predictive performance and addressing spatial heterogeneity.
In particular, we show that our method can partition data into
spatially-contiguous and homogeneous regions. By sharing param-
eters over the hierarchical structure, Spatial-Net can achieve good
performance even with reduced training data. While in this paper
we evaluated Spatial-Net with agricultural and land cover mapping,
the approach can be generally applied to various spatial tasks in-
volving heterogeneity (e.g., traffic prediction, weather forecasting,
climate change projection).

In future work, we will extend Spatial-Net by developing new
methods to: (1) capture spatial processes with irregular footprints;
(2) cover a greater variety of network architectures (e.g., LSTM for
spatio-temporal tasks, GAN for generative tasks) and other types
of machine learning methods; and (3) transfer heterogeneity knowl-
edge learned in a spatial region to new areas. We will also expand
synthetic data generation for more comprehensive evaluations.
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A APPENDIX FOR REPRODUCIBILITY

A.1 Additional notes on SIG-GAC framework

Fig. 12 shows a flow-chart describing the high-level key steps of
the growth phase of the SIG-GAC framework to help with imple-
mentation. Specifically, the grower Gg is responsible for managing
and generating a sequence of candidates for node-split at multiple
scales, while the verifier Gy determines whether the impact of a
split is statistically significant to reject the null hypothesis Hy. In-
significant splits or candidates with a level greater than [0,y will
be removed from Gg’s candidate set and added to the set Hj,qf
of stable nodes. Nodes in Hj,¢ are leaf nodes of the spatial hier-
archy H. In our experiments, [v;in and [vy,qx are set to 2 and 6,
respectively. Alg. 1 shows the pseudo-code for one example im-
plementation of SIG-GAC. We recommend to not use recursive
implementations of SIG-GAC as they may incur memory issues.

Recommender G,

—» Queue empty?

Yes
Level > lv,;,?
Return Yes
Verifier G,
Yes Level <lv,,,? No
Yes.

N0 Significant?
T Split Keep

Addto|[  Spatial /
stable ||heterogeneity| F'  F
node set test

Figure 12: High-level key steps in grower G.

For more robust significance testing, especially for scenarios
where sample size is large, we additionally incorporated a test
on effect size to reduce non-interesting splits (i.e., two "different”
distributions but "small differences"), as recommended for typical
p-value based statistical tests. Specifically, effect size here is de-
fined by U(LL((SL;;IT’;)))_LL(T;(];{;)))) , where L(?"(T})) and L(T'(T}))
are the losses on validation samples before and after the split. It
evaluates the mean difference between two groups (i.e., validation
samples in T%. before and after the split), which is normalized by

the standard deviation of the differences. In other words, effect
size measures the scale of the difference as a proportion of the
standard deviation. Typically, effect sizes below 0.4 are considered
small and values above 0.8 and 1.4 are considered moderate and
large, respectively. Effect size is not sensitive to sample size (not
using degrees of freedom). In the future, more statistical measures
and other conditions will be incorporated to further improve the
robustness of the decisions.

A.2 Additional details on synthetic data

The synthetic dataset is generated using four random features with
three observed {X1, X2, X3} and one unobserved X4. To incorporate
spatial autocorrelation in the synthetic data, the space is randomly
partitioned into small tiles for each feature separately, and the
values of a feature in each tile (randomly chosen integers) are the
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Algorithm 1: SIG-GAC

Require:
o Input data X and y in space D
® Deep network 7
o Significance level o
® Minimum and maximum split levels [0y, and [0,4x
1: F.initTrain(X, y)
2: queue.init().add(Node(D))
{Grow}
while queue.notEmpty() do
: H = queue.dequeue()
if H.lo == lv,4x then H_stable.add(H), continue
if H.prev_split is None or H.prev_split == 'vertical’ then
H,, H; = H.split(horizontal’)
: else
9: H,, H, = H.split('vertical’)
10: end if
11: {Statistical test: [v,,ip, is optional (only used in the growth phase)}
12:  poalue, Fsplit, Fnosplir = testHeterogeneity(F, Hy, Ha, X, ¥, [0min)
13:  if povalue < a then

3:
4
5:
6:
7
8

14: queue.enqueue(H;, Hy)
15: F.sync(Fspiir)
16: else
17: H_stable.add(H)
18: end if
19: end while
{Collapse}

20: for [v = lvyax to 1 do
21: while AC_node = getUnvisitedNode(H_stable, lv) do

22: for (H,, Hp) in getUnvisitedChildrenPairs(AC_node) do
23: if isValidPair(H,, Hp) then

24: poalue, Fspiir, Frosplir = testHeterogeneity(F, Ha, Hp, X, y)
25: if pvalue > o then

26: 7:‘Sync(7:nuspli1‘)

27: H_stable.merge(Hg, Hp)

28: end if

29: end if

30: end for

31: updateVisitStatus(H_stable, AC_node)

32: end while

33: end for

34: return 7, H_stable

same. To mimic autocorrelation at different scales, the unobserved
feature is not further partitioned into smaller random tiles, but
directly uses the partitions of spatial processes (¥; to ®4) and the
values in each partition are set to the same random integer value.

Spatial heterogeneity is modeled by the generation function
which uses different weights for each spatial process (footprints
defined by partitions): yfrauret =X40 (Z?:l Wfart O X;), where
part € {1to 4} is the ID of the spatial partition of each distinct
spatial process; © is the element-wise (Hadamard) product; W‘f art
is the weight for feature i in partition part, and the weight values for
each partition are the same for each observed feature i (unobserved
feature is used as a multiplier so no additional weights are added).

The partition information is not observed by a learning model,
and a model only sees {X1, X2, X3} (without unobserved feature
X4) and samples of y,,,,.. The generated data has a dimension of
1000 x 1000. Finally, each training sample is a pair of three features
and a ysrye value at each pixel; 25% of pixels are used for training,
25% for validation, and 50% for testing.

A.3 Code and implementation details

To promote open science and reproducibility, the code and datasets
used in the experiments are shared at: https://github.com/yqthanks


https://github.com/yqthanks
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