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EXISTENCE OF CURVES WITH CONSTANT GEODESIC
CURVATURE IN A RIEMANNIAN 2-SPHERE

DA RONG CHENG AND XIN ZHOU

ABSTRACT. We prove the existence of immersed closed curves of constant ge-
odesic curvature in an arbitrary Riemannian 2-sphere for almost every pre-
scribed curvature. To achieve this, we develop a min-max scheme for a weighted
length functional.

1. INTRODUCTION

In this paper, we investigate the existence of closed curves with prescribed con-
stant geodesic curvature in an arbitrary Riemannian 2-sphere. Aside from being
natural geometric objects, curves with constant geodesic curvature are also trajec-
tories of charged particles in a special class of magnetic fields, and the existence
problem has been studied extensively. Moreover, a famous conjecture by Arnold
[2, 1981-9] asserts that every Riemannian 2-sphere contains at least two distinct
closed curves with geodesic curvature « for any 0 < kK < co. Many approaches have
been developed to tackle this conjecture, including Morse-Novikov theory, sym-
plectic topology methods, degree theory, and variational theory. Nevertheless, the
conjecture remains open for an arbitrary Riemannian 2-sphere. Our main result,
using a new variational scheme analogous to that in our earlier work [9], estab-
lishes the existence of at least one such curve for almost every prescribed geodesic
curvature, without any curvature assumption on the ambient metric.

Theorem 1.1. Given a 2-sphere with an arbitrary Riemannian metric (S?,g), for
almost every k > 0, there exists a non-trivial closed immersed curve with constant
geodesic curvature k.

Remark 1.2. We learned after completing this work that Theorem 1.1 is already
contained in the work of Asselle and Benedetti [4], where solutions are interpreted as
magnetic geodesics. However, we think our method, which involves perturbing the
length functional and hence differs from that in [4], should still be of independent
interest. (For other related work on magnetic geodesics, see for instance [1,4,5] and
the references therein.)

To write down the differential equation of interest, assume that (S2,g) is iso-
metrically embedded into some RY. The solutions we produce are smooth curves
u: St — (S2,9) C RY satisfying |u/| = 1 and
(1.1) u = A () + ke Quu),
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where ()’ denotes component-wise differentiation, « is the prescribed geodesic cur-
vature, and A, @ are, respectively, the second fundamental form of the embedding
(82,9) — RY and the almost-complex structure on S? induced by the metric and
the orientation. An outline of our proof of Theorem 1.1 is given below following
a brief discussion of some related previous results. Here we mention that while
Theorem 1.1 yields a solution for almost every k, we do not have a uniform control
over their lengths as k varies. Conceivably, the method for [9, Theorem 1.2] can be
used to overcome this and remove the restriction on x in Theorem 1.1 when (52, g)
has positive curvature, but we do not pursue this here.

We now briefly review previous results on the Arnold conjecture. This is by no
means an exhaustive survey, and the reader is encouraged to consult the references
and their bibliographies for a more complete picture. Focusing on the multi-valued
nature of the relevant functional (see Section 2.1 below), Novikov [17] proposed a
generalization of Morse theory, now known as the Morse-Novikov theory, and as an
application it was shown by Novikov-Taimanov [18] that closed embedded curve of
curvature k exists for strong field, that is, for x large; see also [26]. On the other
hand, using the symplectic topology methods introduced by Arnold [3], Ginzburg
(see the survey [12] and references therein) obtained the existence of close curves of
constant geodesic curvature « for small and large values of k. Recently, Schneider
has developed a degree theory for immersed curves in [22] and confirmed Arnold’s
conjecture assuming non-negative Gaussian curvature [23]; see also [20,21]. Finally,
we mention that Zhou-Zhu [29], using the CMC min-max theory in the Almgren-
Pitts framework developed in [27,28], proved the existence of networks of constant
geodesic curvature k for any £ > 0 on an arbitrary closed Riemannian surface, and
Ketover-Liokumovich [14] has further shown that the network is C'! and has at
most 1 node point.

By comparison, the existence of close geodesics on Riemannian 2-spheres, and
also on general closed Riemannian manifolds, dates back to Birkhoff [8]. See also [10]
for a strengthened version by Colding-Minicozzi. Since then, tremendous progress
has been made on the existence of closed geodesics, and we refer the reader to [16]
for a nice summary. In particular, every Riemannian 2-sphere contains at least
three distinct simple closed geodesics [13,15], and also infinitely many possibly
self-intersecting ones [7,11].

Overview of proof. Formally speaking, the curves we seek are unit-speed critical
points of the following weighted length functional:

/sl || dO + k- A(fu) =: L(u) + k- A(fu),

where A(f,) is the area enclosed by a choice of extension f, of u to the unit disk
and is only well-defined up to an integer multiple of Area,(S?). (See Section 2.1
for more details.) However, this weighted functional is not directly amenable to
standard variational techniques due to at least two issues. First of all, the length of
a curve is invariant under reparametrizations. Secondly, since it is possible for the
enclosed area term to become very negative, the weighted functional is not bounded
from below, and nor does it control the length of the curve.

To overcome the first difficulty, instead of replacing the length by the energy
as in the classical setting of geodesics, where the enclosed area term is absent, we
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perturb the functional by replacing L(u) with

La(u) = Ll [(52 + ‘U/|2) 1'55 _€1+E]d9,

thereby obtaining a C*-functional whose critical points are smooth with constant
speed. We note that a similar regularization was used by Bahri-Taimanov [6] in
finding periodic orbits in magnetic fields. However, in their situation magnetic
fields are assumed to be exact, and as a result their functionals are single-valued.
Also, the Morse-theoretic arguments in [6] require their perturbed functionals to
be C?, whereas C' suffices for our present purposes.

Next, to address the second difficulty and also obtain uniform estimates with
respect to the parameter £, we utilize the monotonicity properties of the min-
max value with respect to k along with Fatou’s lemma, as done by Struwe [24],
to obtain, for almost every k, a minimizing sequence of sweepouts whose almost-
maximal slices enjoy L.-bounds independently of €. (See also our previous work
on CMC spheres [9].) In addition, the non-triviality of the sweepouts together
with an isoperimetric inequality allow us to establish a uniform lower bound on
L. for these slices as well. The upper and lower bounds then put us in a position
to apply a standard deformation argument using pseudo-gradient flows to produce
non-constant critical points u. of the perturbed functionals with L.(u.) uniformly
bounded, which implies a uniform Lipschitz estimate as each u. has constant speed.
To conclude the proof of Therem 1.1, we use the Euler-Lagrange equations of L, .
to obtain higher-order estimates independent of € and pass to a subsequential limit
as € — 0 to get a smooth, constant-speed curve which is non-trivial thanks to the
uniform lower bound on L. (u.), and satisfies (1.1) up to reparametrization.

We remark that if we proceed as in the case of geodesics and replace L(u) by

1
—/ lu'|2do
2 /o

when perturbing the weighted length functional, we would obtain in the end a
solution to (1.1) with constant, but not necessarily unit, speed. The geodesic
curvature of the resulting curve is then x divided by this constant speed, which we
could not prescribe.

Organization. In Section 2, we set up some notation and define the perturbed
functional L, .. We show that critical points of L, . are smooth and prove a
version of the Palais-Smale condition for L, .. Most of our effort goes into Section
3, where we find non-trivial critical points of L, . with L. bounded independent of
¢ for almost all prescribed curvatures x > 0. Two key ingredients are a derivative
bound for the min-max values with respect to x, contained in Section 3.1, and a
localized version of the pseudo-gradient flow argument, contained in Section 3.2.
The proof of the main result is completed in Section 4 by analyzing the limit of
critical points when ¢ — 0.

2. THE PERTURBED FUNCTIONAL

Below, S' denotes the unit circle, and functions on S* are identified with 27-
periodic functions on R. We assume that the target (52, g) is isometrically embed-
ded into some R¥, and denote by A the second fundamental form of this embedding.
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By V we mean a tubular neighborhood of S? in R" on which the nearest-point pro-
jection, denoted II : V — 52, has bounded derivatives of all orders. For brevity, the
differential of II will be denoted P : V — RV*N_ Thus for y € V, the matrix P,
represents orthogonal projection onto Tn(y)52. Given a map v : ST = V, we write
P, for the composition Powv : St — RVXV,

The metric g and the volume form on (52, g) determines an orthogonal almost-
complex structure on 752, which we denote by @, given by

Volg(X,Y) = g(X,Q(Y)).

2.1. Preliminaries. We will work with the following Sobolev spaces for ¢ > 0
small:
Wwhite(§h; 82) = {fu e WHF(SLRY) | u(f) € S for all @ € S*}.

We equip it with the subspace topology coming from the W11*¢-norm
_1
fullase = ([ a4 4 o)) .
Sl

The space Wh1+¢(S1; §2) is a smooth, closed submanifold of the Banach space
White(SL.RN) with the tangent space at u identified with

To = {¢p € WHITE(SHRY) | 4(0) € T)y(5)S? for all 6 € S},
which is a closed subspace of W1 1T¢(S1; RY) with a closed complement. Letting
O, (¢) = (u+) for ¢ € Ty, then for small enough balls B, around the origins in
Tu, the collection {(Bu, OulB, ) fuew1.1+<(s1,52) form a smooth atlas. Restricting the
W+ norm to each tangent space T, yields a Finsler structure on Wh1+¢(S1; §2).
For u € Wh1+¢(S1; 52) consider
E(u) = {f € C°([0,1] x S*; 8%) | £(0,-) = constant, f(1,-) = u},
which can be thought of as the set of extensions of u to the unit disk D. A key
component of the perturbed functionals is the area enclosed by extensions, which
we now define. First, denoting by 6 and ¢ the variables on S! and [0, 1], respectively,

we introduce the following more restrictive class of extensions
14€

E(u)={f € EW)NW([0,1]xS%; 82) | fo € L'*2([0,1]xSY), fre L= ([0,1]xS)},
and equip it with the topology coming from the norm
Frellfllco + 1 fell e + 1 follite-

For u € Wh1(51; 52) and f € £(u), we define the area enclosed by u with respect
to the extension f by

A(f) :/ f*Vol,.
[0,1]x S*
The basic properties of the enclosed area are summarized below.
Lemma 2.1. Given u € WH1+e(S1; 52)  the following hold.
(a) For fo, f1 € E(u) we have
A(fo) — A(f1) = kArea,(S?) for some k € Z.
(b) Let F :[0,1] — E(u) be a continuous path. Then A(F(0)) = A(F(1)).

(c) There exists a universal constant 8y such that if fo, fi € E(u) and || fo—fillco <
do then A(f1) = A(fo).
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Proof. For part (a), we consider the concatenation h = fo 4+ (— f1), defined by
B fo(2t,0) ,if t €10,1/2],
ht,0) = { fE2—200) .ifte[l/21].

1+e
=, and

The map h lies in C° N WHL([0,1] x S*;5?) with hg € L'™¢ and hy € L
induces a continuous map h : S2 — S2. Next, the integrability of hy and hy,
along with the fact that h(0,-) and h(1,-) are constant maps, imply that we may
approximate h with maps h; € C°°([0,1] x S1;5?) such that h;(t,-) = h(0,-) near
t=0, h;(t,-) =h(1,-) near t =1, and

175 = hllco + 1[(hj)e = hell

11-5 + ||(hj)9 — h9H1+5 — 0.

o~

It follows from the existence of such approximations that deg(h) can be computed
by m f[o,l]xsl h*Vol, = %, hence the latter is an integer. Part (b)
follows from part (a) and the continuity of ¢t — A(F(t)). Part (c) can be deduced
by applying (b) to F(s, ) = II(sf1 + (1 — s) fo), provided dy is chosen so that the
360-distance neighborhood of S? is still contained in V. O

Remark 2.2. Note that Lemma 2.1(c) allows us to define the enclosed area func-
tional on &£(u) by approximation by letting

A(f) = A(f),

where f € £(u) is such that ||f — f|jco < do/2. To see that such approximations
exist, let ¢ : R — [0,1] be a smooth cut-off function with ((¢t) = 0 for ¢ < 0 and
C(t)=1for t > 1. For f € £(f), we first erase its boundary value by considering

f(tv ) = f(tv ) - (C(t)f(la ) + (1 - C(t))f(oa ))
This can be approximated uniformly on [0, 1] x S* by maps f; € C>=([0,1] x SL; RN)
which vanish near {0,1} x S*. In particular, eventually it makes sense to define
J; =T0(F5 + (COF (L) + (1= C)F(0.))),

which agrees with f on {0,1} x S, converges uniformly to f, and also lies in & (u),
since the map (¢(¢)f(1,-) + (1 —¢(¢))f(0,-)) belongs to CONW1([0,1] x S1;RY)
and has t-derivative and #-derivative lying in L> and L'*%, respectively.

It is also not hard to see that Lemma 2.1(a)(c) continue to hold for the extended
functional, with & (u) replaced by & (), and that part (b) holds with the CO-topology
on &(u) by partitioning [0, 1] and applying part (c) repeatedly. We omit the details.

Next we define the perturbations of the weighted length functional.
Definition 2.3. For k,e > 0, and u € WHiTe(S1 82) f € £(u), we let
Ln,s(ua f) = LE(U) + K- A(f)’

where
1+e

Le(w) :/51 (22 + [u/[2) 5" — &) dp.

Here L. is a regularization of the length functional L(u) = [, |u/[d). We end
this preliminary section by collecting some standard estimates that will be used
repeatedly.

Licensed to Cornell Univ. Prepared on Wed Jun 1 19:12:57 EDT 2022 for download from IP 132.174.252.179.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



9012 DA RONG CHENG AND XIN ZHOU

Lemma 2.4. There exists a universal constant Ay such that the following hold for
all e € (0,1) and u,v € White(§1; 52),

(a) L(u) < Age + Ag(L.(u))T= .
14e 14e
(b) |Le(u) = Le(v)] < Ao (|[t/l1e + [0 140e) 7 lJu— ]l 35

(¢) Suppose ||lu—v|co < g and let f € E(u) be an extension of u. Define h € £(v)
by concatenating f with q : (t,0) — I(tv(0) + (1 — t)u(@)). Then

[A(f) = A(R)] < Aoflu — vllco (L(u) + L(v)).
Proof. For part (a) we first use Holder’s inequality to get L(u) < C(Le(u) +
glte) T The conclusion then follows from the fact that for o € (0,1) we have

(2.1) (t+s) <t*+ s forall t,s > 0.

For part (b), note that the above inequality implies, still for o € (0, 1), that
(2.2) [t — s < |t — 8| for all £,5 > 0.
Applying this with a = 13 (recall that ¢ € (0,1) by assumption), we obtain

\Lg(u)—Lg(v)IS/S (2 + ')
14e 1+e 1+5
g/ 2 — o'2] d@:/ | + o' 5 — o' B
1
< ([ Q1w = vr
St

which implies the result. For part (c), since ¢ € C° N W11(]0,1] x S;5?) with
qo € L'*E([0,1] x S*;52) and ¢ € L*([0,1] x S*;S?), it’s not hard to see that
A(h) — A(f) = f[O,l]xsl ¢*Vol,. That is,

[A(S) = A(h)]

1
< [ 10Vl )ty (Pt 1ty = ). Pyt + (1= ) o
0

1+5

— (e + |v’|2)#’d6‘

< [ o ul(]+ e
Sl
This clearly gives the desired estimate. ([l

To state the next lemma, given ¢ € (0,1), for convenience we define F : RN - R
by

1+e

Fly)=(*+y*) =

Of course the derivative of F' is given by (dF'), = (1 + 5)% We collect
2

two standard estimates below for later use. The proofs are included in Appendix
A for the sake of completeness.

Lemma 2.5. For all yo,y, € RN, there hold
ly1 — yol2
(23) ((dF) 1 (dF) 0) ' (yl - yO) > Ce 1—e )
’ ’ (e + lyaf? + lyol?) =

(2.4) |(dF)y, = (dF)y,| < O+ |yal? + [yol*)**lyr — ol
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2.2. Local reduction. The fact that L, . depends both on the map v and the
extension f is a major technical point that we need to keep track of throughout the
paper. Fortunately, we may eliminate the f-dependence locally on simply-connected
neighborhoods. Specifically, given a simply-connected open set A C WH1T¢( St 52)
and a map ug € A, along with an extension fy € £(ug), then for any other u € A we
have by connectedness a path h : [0,1] — A leading from wuy to u. Concatenating
fo with the map (¢,0) — h(t,0) yields an extension f, € £(u), and we define

L:l,s(u) = LN,E(U, fu)

We now verify that L_ is well-defined, C'-functional on A.

K,E
Lemma 2.6.

(a) LA is well-defined. That is, the choice of path h is irrelevant.

K,E

(b) LA, is a C*-functional on A.

K,E

Proof. Part (a) follows from Lemma 2.1(b) and simply-connectedness. Next, take
u € A and counsider a chart (B,,©,) centered at u. Below we drop the subscripts
in By, ©,, for brevity. To prove (b), it suffices to show that Ly}, 0 © is C* on B. To

that end, note that for ¢ € B, letting f(¢,6) = ©(ty(0)), we have

(25) LA.(0(4)) = /

Sl(e2+|@(¢)/|2)¥d9+m/ FVoly+KA(fu)—2mel .

[0,1]x S
The map ¢ — O(z) is in fact smooth from B to WH1T¢(SLRY). On the other
hand, using (2.4) from Lemma 2.5, it is not hard to see that

vir [ (4 [?) 7 de
S1
defines a C'-functional W1 1+¢(S1: RY) — R. Hence the first term on the right-
hand side of (2.5) is C!. As for the second term, we write {%} for the coordinates

in RV, and introduce the functions a;; : V — R defined by

a35(0) = (Vo (P )+ Pol )

Note that these are smooth functions. Moreover, since we may write
/ f*Vol, = / aij(u 4 ) (u) + )i dbdt,
[0,1]x 51 [0,1]x 51

it is not hard to see using the smoothness of a;; and the embedding Wh1*+e — C©
along with Holder’s inequality that the second term on the right-hand side of (2.5)
is C1 as well. |

Definition 2.7. The functional Léa is called the local reduction of L, . on A
induced by v and f. Note that we are suppressing from the notation its dependence
on u and f, as these should always be clear from the context. Note also that, by
Lemma 2.1(a) and Lemma 2.6(b), any two local reductions differ by a fixed integer

multiple of x£Voly(S?) on any connected subset of their common domain.
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2.3. First variation. In this section we compute the first variation of L, .. We
do so with the help of local reductions, and then show that the choice of reduction
is irrelevant, and consequently the first variation makes sense globally. To begin,
let A C WHite(S1 §2) be a simply-connected open set on which a local reduction
Léa is defined. Since Léa is a C''-functional on A, at each u € A it has a differen-
tial, denoted by 5L,€’47E (u), which is a bounded linear functional on 7, and can be
computed by

(2:6) SLA)(0) = 5] Ly LA (T + 1),

Definition 2.8. For u € Wh1T¢(S1; §2) we define § L, . (u) : T, — R by letting
OLye(u) = 0L (),

where Lﬁa is any local reduction on a simply-connected neighborhood A of u. Note

that such a neighborhood always exists since W11T¢(S1; §2) is a manifold. Also,

in view of the last remark in Definition 2.7 and the equation (2.6), 0L, o(u) is
well-defined.

Definition 2.9. A map u € WhT¢(S1: 62) is a critical point of Ly . if 6L, . (u) =
0.

To compute §L (u)(tp) for u € WHITE(S1:8%) and ¢ € Ty, we fix f € E(u),
consider the local reduction induced by (u, f) on a simply-connected neighborhood
A of u, and carry out the differentiation in (2.6). Note that for sufficiently small ¢,

letting f(s,0) = II(u + s) for (s,0) € [0,t] x S, we have
L (W(u + 1)) = L2 (u)

t ~ ~
@7 = Lt ) = L)+ v [ [ Vol (R Foyde]ds.
0o Jst
The t-derivative of the integral term at ¢ = 0 is equal to
(2.8) [ (ol (Pao) )0 = [ Qutatyan,
51 51

where we used the fact that (Volg),(X,Y) = X - Q.(Y) and P,(¢¥) = ¢ to get
the equality. On the other hand, for the terms involving L. on the right-hand side
of (2.7), we have

d -
(2.9) =| L+ t) = (1+2) /S (€2 + [u'[2) = o’ - o/ df.

Here no projection is required since ¥ € T,. Putting together (2.8) and (2.9), we
obtain the following first variation formula for L, :

Y,

210) L) = [ () e Qulu)ds
s @)

The norm of § L, .(w), which we denote by ||dL, . (u)||, is defined by duality.

It will be convenient for us to have a version of the first variation formula where
the test function 1 is allowed to vary in W1 1+¢(S1RY). To that end we also define

Gre(u) = 0Lk (u)o P,.
We define the norm of Gy, .(u) by
1Gre(w)l = sup{Gre(u)(¥) | ¥ € WHTE(SERY), [[9]1,14 <1}
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The following lemma establishes a relationship between |Gy c(v)|| and || 0Ly o (u)]]-
For the reader’s convenience we include a proof in Appendix A.

Lemma 2.10. There exists a universal constant Ay such that for k > 0 and ¢ €
(0,1/2), we have

10Lsc (@)l < [Gre(w)l] < A1+ [Jufli14) 10 Ln (W),
for all uw € White(S1; 52),

The proposition below gives an alternative expression for G, . (u) which will be
useful later, particularly in the next section.

Proposition 2.11.
(2.11)

Grow®) = [ (1+2) Lk 4

s @)

A, u) ,
W “h K- Qu(u').

Proof. Assuming for the moment that u € C*°(S?; S?), then we have by (2.10) that

(2.12) Gre(w)(@) = /S1 [— 1+ E)Pu(((g2 + |u’|2)%u’)/> + /@Qu(u’)} -pdb.

+(1+4¢)

1—¢
2

Now note that of course v’ € T,S?, while the orthogonal projection of u” onto
(T,S%)* is exactly A, (u',u’). Hence

P((& + [P F ) ) = (€ 4+ B Fr) = (& + )5 Ay, ).

Substituting this into (2.12) and integrating by parts give (2.11) when u €
C>(S; S?). The case u € WH1T¢(S1; 52) follows by approximation. O

2.4. Regularity of critical points and the Palais-Smale condition. We first
establish the regularity of critical points of the perturbed functional.

Proposition 2.12. Let u € Wh1T¢(SY: 82) be a critical point of Ly .. Then u is
smooth with estimates, and moreover |u'| is constant.

Proof. Introducing

ul

ER
we see that |h]? = (e2 + [o/|*)*71|v/|?, and hence |u/|? = 771(|h|?), where 7 denotes
the (strictly increasing) function t +— (2 + )=t for t > —e2. (Note: 7/(t) =
(62 + t)°72(e% + ¢t).) Consequently

3

(2.13) o = (2 + 7L (R2) T R

From this it follows that u’ has the same regularity as h, since 771

the fact that u is a critical point means that
A,y u)

(2.14) /91(1+€)( Wy +(l+e)——a Y+ r Quu) =0,

2+ ) (& + [ P) 5

is smooth. Now,

for all p € WhHite(S1; RY). Rearranging, we see from the above that

(2.15) [y == wew.
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where A ()
u'u
wi=—=2 L L (14e)7 k- Quu).
G (e Q)
The smoothness of h follows inductively from (2.15) and (2.13). To see that u has
constant speed, we note from (2.15) that

W =w L h,

where the orthogonality follows since h is a multiple of «’. Consequently |h|? is
constant, and hence, by (2.13), we see that |u’|? is constant. O

Proposition 2.13. Let u; be a sequence in W€ (S1; 52) satisfying

(1) Le(uj) < C for some C independent of j.

(if) 1imy o0 |6 Ls & (uy)]| = 0.

Then a subsequence of u;, which we do not relabel, converges strongly in White to
a critical point w of Ly with L.(u) < C.
Proof. To begin, we note that assumption (ii) implies that lim; o ||Gx.c(u;)|| =0
by Lemma 2.10. Next, assumption (i) implies that the sequence u; is bounded
in Wbt and hence, passing to a subsequence if necessary, we may assume
that u; converges weakly in W11+¢ and strongly in C° to some limit map u €
White (S §2), Next, for j, k large we write

Ry = Gre(uj)(uj — ur) — Ge(ur)(u; — ur).

Then by assumption (ii) and the boundedness of (u;) in W1 we see that |R;x| —
0 as j, k — oo. On the other hand, using (2.11) we find that

[ (P = @P)g) - (5 = )
A, (), ufy) Ay, (u), up,)

= jk_(1+€)/91(( - i—e 175)'(uj_uk)

24 [uj2) = (24 uhl?)
[ (@) = Quu ) -y = )

Hence by the convergence properties of (u;) arranged above, together with (2.3),
we see that

|u/‘ — |2
(2.16) . /S ( j U = 0;x(1),

l—e
e + [ |2 + |uy )=

where 0; (1) denotes quantities that tend to zero as j,k — oco. To continue, we
note by Holder’s inequality that

e2-1
[ = = [ = P ) G+ )

14+e l—e
e— 2 e 2
g(/ u;_u;|2(g2+|u;|2+|u;|2)—21> (/ <a2+|u;|2+|u;|2>1¥) -
S S

This implies by (2.16) and the W1 1T¢-boundedness of the sequence u; that

1-¢2
4

j}cigloo Juf = uilli4e = 0.

In other words, the convergence of u; to u is strong in Wh1+e, This proves the
first conclusion of the proposition. The second conclusion is obvious. ([l
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EXISTENCE OF CURVES WITH CONSTANT GEODESIC CURVATURE 9017

3. EXISTENCE OF NON-TRIVIAL CRITICAL POINTS

To any continuous path v € C°([0,1]; Wh1+2(S1; §2)) starting and ending at
constant maps, the map (¢,6) — ~(¢)(0) is continuous by Sobolev embedding, and
induces a continuous map h., : S* — S?. We then define the class of admissible
sweepouts to be

P = {7 € C([0,1]; WH'*5(5%;.5%)) | 4(0),7(1) = constant, deg(h,) =1}.

Given v € P, and t € [0, 1], we define f, ; € E(y(t)) by letting f, .(s,0) = v(st)(0).
For k,e > 0, the min-max value is defined by
wre = inf sup Ly (y(t), fy.1)-
Y€Pe tel0,1]
We summarize some basic properties of admissible sweepouts and the min-max
values below.

Lemma 3.1. For k > 0,e > 0, the following hold.

(a) The collection P. is non-empty, and for each v € Pe, the function t
Ly (Y(t), fy.¢) is continuous.

(b) 0 <wye < 0.

Proof. For the first assertion of (a), we obtain an element of P. by parametrizing
appropriately the circles {(z1, 79,2t — 1) | 22 + 22 = 1 — (2t — 1)?} for t € [0, 1]
coming from the standard embedding of S? into R3. Next, note that for v € P.
and o € [0, 1], letting A be a simply-connected neighborhood of () and L:‘,E the
local reduction induced by (v(to), fy,4,), then for ¢ sufficiently close to to we have

L2 (V1) = Lic(Y(1), frr)-

The second assertion of (a) then follows from Lemma 2.6(b). For part (b), the finite-
ness of w,, . follows easily from part (a). On the other hand, since L, -(7(0), fy,0) =
0 for all v € P., we see that w, . > 0.

3.1. Derivative estimates on the min-max value and uniform length
bound.

Proposition 3.2.

(a) Given € > 0, the function k — wy /K is non-increasing.
(b) Given k > 0, we have wy e < w1+ 27 for all e € (0,1).
(c) Given a sequence €; — 0, for almost every ko > 0, there exist a constant c,
and a subsequence of €;, which we do not relabel, such that
d
0< —
T dk
Proof. For part (a), we note that for k > &’ > 0, any u € WH+¢(91: §2) and any
f € E(u), there holds
Ln’ ) LK ) —
(3.1) e f)  LInelen]) 52K )y s

K’ K K K -

Wi e
(—&) <e¢, forallj.
K=K0 K

Now, given 6 > 0, we may choose v € P, such that

Ly t), < Wy 0.
trél[gﬁ] we(Y(#)s frt) < Were +
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9018 DA RONG CHENG AND XIN ZHOU

Dividing by " and using (3.1), we deduce that
LN,E(’Y(t)7f“/,t) < max LN’,E(’Y(t)u f’y,t)

/

K’ e i
/ K! ’

w
<

s

< max S
K te[0,1] K te[0,1] K

K

where the first inequality follows from the definition of w,, .. Since § > 0 is arbitrary,
we get the desired monotonicity.
For part (b) we begin by noting that for all u € W12(S; 82) and € € (0,1) we
have
(3.2)
1+e

[+ ) —eefao < [ W) Fan< [ (a4 - sz,
1 S1 S

Next, given § > 0, we may choose v € P; such that

L, t), " 0.
tlen[gﬁ] A(Y(), fr0) < w1 +

Combining this with (3.2) gives

Wr,e < max Ly c(v(t), fy) < e L (v(t), fr.¢) + 27 < wge + 2 + 6,

where the first inequality follows from the definition of w, . and the fact that
P1 C P.. Letting 6 — 0 yields the asserted inequality.

For part (c), thanks to part (a) and basic real analysis, we know that the deriv-
ative % (—w”’:j ) exists for almost every x > 0 and is non-negative. Moreover, for

all 0 < a < b, there holds

b
d ( wm&j)dlﬁ < Wa,e; Wh,e; < Wa,e;
o dk K T a b — a’

where the last inequality follows from Lemma 3.1(b). Thus, by Fatou’s lemma, we

obtain
b .. d Wk e .. b d Wk e
/ liminf — (——’J) dr < hmlnf/ — (——’]) dk
o J—oo dk K j—oo J, dk K

where we used part (b) to get the last inequality. Consequently, we have
. d Wk e
0 < liminf — (——J) < 00, for almost every x € (a,b).
J—>00 K K

The result follows from the arbitrariness of a and b. O

We next explain how the derivative estimate in Proposition 3.2 translates into
uniform length upper bounds.

Proposition 3.3. Suppose for some k >0 and € € (0,1/2) we have
d W e
(RN
dm( K ) =¢
Then for large enough n there exist sweepouts 7y, € Pe with the following properties:
(a) maXie[o,1] Ln,e(ﬁ)/n(t)v f’yn,t) S Wyet+ %
(b) Le(vn(t)) < 8k%c whenever Ly (Vi (t), foynt) = Wie —

3=
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EXISTENCE OF CURVES WITH CONSTANT GEODESIC CURVATURE 9019

Proof. We define k,, = £ — (4cn) ! and note that by the assumed derivative bound,
for large enough n there holds

1 K K
(3.3) (u - h) < 2.

K—FKn \ Kp K -

By the definition of wy,, ., we may choose v, € P. such that

Kn
A4 Ln n(l), K B
(3 ) trerl[g;}i] ns€ (’y ( ) f’ant) <w n,€ + 2”

Then from (3.1) and (3.3) we get
Wr, e 1 Wi e 1

1 1
- LR t ) S - L t ) < o S
o trél[gﬁ] (), frnt) . tren[gﬁ(] ke (Y ()5 fryt) o + on . n

This proves property (a). To check (b), suppose for some ¢t we have

1 W, 1
ELma(’Yn(t)vf'yn,t) > Ta - H
Combining this with (3.4) and (3.1),
1 1 w w 3
I3 ) < ( K € K,n _)
Kn <(m(t)) < K—FKnp \ En K 2n
< 1 (wnn,s wn,e) + 6
K—Knp\ Kp K
< 8,
where we used (3.3) to get the last line. Consequently,
LE(’Yn(t)) S SK/ZCv
as asserted in (b). O

3.2. Existence of non-trivial critical points for the perturbed functional.

Lemma 3.4. Given k > 0, there exist positive constants n1,m2 > 0 and €9 < 1/2,
depending only on k, such that if € € (0,e9), v € P- and ty € [0, 1] are such that

Le(y(to)) < m,
then

Lye((to), fy,t0) < max Ly (Y(L), fy,t) — .
t€0,1]
Proof. We first note that there exists ap > 0 such that max;cjo,1) L(7(t)) > ao, for
otherwise the induced map k- would be homotopic to a constant, contradicting the
definition of P.. By Lemma 2.4(a), provided eg < 7=, this means

Qo 1+e¢
max L.(y(t)) > (2 )1+e >
max Le(3(1)) > (54 > (

Qo
24,
Thus, with 171 < o < a1 (71 and « to be determined), there must exist some t’' # g

so that L.(y(¢')) = «. Assuming, without loss of generality, that t' > ¢, we let
t1 = inf{t > to | Le(y(t)) > a}. In particular

(3.5) L.(v(t)) < a for all t € [to,t1],

)2 = .

with equality holding at ¢ = t;. Next we claim that
(3.6) [A(fy 1) = Alfy10)| < C” + Cas (Le(v(to)) + Le(4(11))),
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9020 DA RONG CHENG AND XIN ZHOU

with C' independent of . To see this, we choose arbitrary points ¢; € v(¢;)(S?)
(i =0,1) and note that since by Lemma 2.4(a) and (3.5),

(3.7) 17(t:) = cilloo < L(7(t:)) < Ag(e +aT7) < Ag(eo +ab),

it makes sense to define the following extension of y(t;) provided a, ¢ are sufficiently
small depending on Ay and the constant §y from Lemma 2.1:

hals,0) = T(s(£:)(6) + (1 — 5)c).
A direct computation as in the proof of Lemma 2.4(c) shows that
2

(3.8) |A(h)| < Cllv(t) — cillso L(v(t:)) < C(L(y(t:)))",

where C' depends only on K := ||dII||. Note also that |(h;(s, ~))9| < Klv(t:)al,
and thus

Lelhs, )+ 2m1% = [ (4t ol?) ¥ it
< KY(Lo(y(t)) + 2met ™) < K2 (a + 27! ™€), for all s € [0, 1].
In other words,
Le(hi(s,-) < K?a+21(K? — 1)gg < K?(a + 27eg).

Combining this with (3.5), we see that, decreasing «, ¢ further if necessary so that
(1+ K?)(a + 2mep) < ay, the concatenation ho — fy+, + fy,t, — h1 induces a null-
homotopic map from S? to itself. Consequently by (3.8), Lemma 2.4 and (3.5) we
infer that

A(fra) = A1) < G| + AR
< C((Le (o)) T + £) 4+ C((Le (1)
< C& 4 C(La(1(t0))) ™ + C(Le(y(0)) ™
< C® + Cat (Le(y(to)) + Le(v(11))),

(0,1/2). We next use (3.6) and the

2

= +e)

triangle inequality to compute

L e (V(t1), fy0) = Li.e(V(t0)s frto) 2 Le(v(t1)) = Le (v(t0)) — £ A(f,0) — A(fo16)|
> (1 — Crad)Lo(y(t1)) — (1 + Cra®)Lo(y(to)) — Cre?
> (1- C’/@oz%)oz -1+ Cras )y — Ckes,
where we used the fact that L.(v(t1)) = o and L.(y(t0)) < m to get the last line.
Upon requiring, in addition to the above thresholds on « and g, that Cras < 1 /2,

and then choosing 7, and &g so that (1 4+ Cka3 )y < a/8 and Cked < /8, we
conclude the proof with 1y = a/4. O

In the pseudo-gradient flow argument below, we shall only deform the sweepouts
where L, . is close to the min-max value w, .. In such regions there is in fact a
single well-defined reduction of L, .. Specifically, fixing ¢ € (0,1/2), x > 0 and
r < $rAreay(S?), we define

N ={uecWhte(8% 8%) | |L..(u, f) — wxc| < r for some f € E(u)}.
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EXISTENCE OF CURVES WITH CONSTANT GEODESIC CURVATURE 9021

By Lemma 2.4(c) it’s not hard to see that N’ N {L(u) < C} is open for all C' < oo,
and hence N is open. We next define the reduction on A mentioned above. Given
u € N, we choose f € E(u) such that |Ly o (u, f) — wx.| < r and set

Lﬁ{s(u) = Lye(u, f).

Note that L,{f - (u) is well-defined since by Lemma 2.1(a) and our choice of r, any
two such choices of extensions in £(u) enclose the same area.

Lemma 3.5. LY_ is a C*-functional on N, and 6L/,:{6 =6L,. on N.

K,€

Proof. We will show that each ug € N has a simply-connected neighborhood A on
which LQ{ . coincides with L7_, which implies the result by Lemma 2.6(b). To that

K,e9
end, let fo € E(ug) be an extension such that Lﬁfe(uo) = Ly «(uo, fo) and consider

the local reduction Lée induced by (ug, fo) on a simply-connected neighborhood A

of up. In particular Léa(uo) = LQ{E (up). Now by Lemma 2.4(c) and the openness
of N, we may choose A so that A C N and

|Lﬁs(u) - Lf)s(uoﬂ <rforallueA
Then for u € A we have
LA (u) = LY (u)] < |L2 - (u) = LA (uo)| + | LN (w0) = wiee] + |wie = Lc(w)]
< 3r < KVoly(S?),
which implies Ly}, (u) = L{XE (u) by Lemma 2.1(a). O

Proposition 3.6. Given k > 0,e € (0,e9), suppose for some ¢ > 0 there exist
sweepouts v, € P satisfying the conclusions of Proposition 3.3. Then, passing to
a subsequence if necessary, there exist t,, € [0,1] such that

(a) |Lms(7n(tn)vf'yn,tn) - w,,€75| < %
(b) u(tn) converges strongly in W1+¢(S%;.82) to a critical point u of L, . with
L.(u) < 8k%c, and Ly c(u, f) = wxe for some f € E(u).

(¢) m < Lg(w). In particular u is non-constant.
Proof. For brevity we write a,, = x/n and Cy = 8x2c, and let
Jp ={t €[0,1] | Lic e (70 (1), fryn,t) > Wi e — Qn}
Iy ={t € [0,1] | Lie(Yn(t); fy,t) = wWie — an/2}-

With r as chosen above Lemma 3.5, we first want to prove the following statement:
For all B € (0,r), there exists ng € N such that
(%) inf{||6Ls.c (v ()| | t € Jn} < B, for all n > ng.

Assume by contradiction that there exists some 5 € (0,7) and a subsequence
which we do not relabel, such that for all n, we have
(3.9) I0L.c(vn(t))]| > B for all t € J,.

Letting A be defined as above, then for large enough n we have v, (t) € N provided
t € J,, in which case

(3‘10) LN,E(’Vn(t)v f'Ynat) = LQ{e('Vn(t))'
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Next, following the proof of [25, Theorem 3.4] we introduce the sets
K={ue WI’HE(Sl; 52) | 0Ly c(u) =0, Le(u) < Co, Lge(u, f) = wpre
for some f € E(u)}.
Us = {u €N | 0Ly (u)]| < 8, Le(u) < Co + 6, | LN (1) — wyec| < 8}
V,={ueN||u—vli14e < p for some v € K}.

By Proposition 2.13 and Lemma 2.4(c) we see that K C N is a compact set, and
that both {Us}s>0 and {V,},>0 form fundamental systems of neighborhoods of K
(see [25, Lemma 2.3]). We briefly explain the argument for {Us}s~o. Assume by
contradiction that there exists a neighborhood B of K and a sequence ¢; — 0 such
that for all j we can find u; € Us, \ B. By Proposition 2.13, u; has a subsequence,
which we do not relabel, converging strongly in W11T¢(St; 52) to u satisfying
0Ly c(u) =0 and L.(u) < Cy. Next, for sufficiently large j, by Lemma 2.4(a)(c),
the strong W 1*¢_convergence of u; to u and Sobolev embedding, we see that there
exists f; € £(u) such that

lim |Ljf:{a(uj) - L,{,E(u, fj)l =0.

J—00

Recalling the definition of U5, and that §; — 0, we deduce that
hm |Ln,s(ua fj) - wn,6| = 07
Jj—o0

and hence the sequence L, . (u, f;) is eventually constantly equal to wy . by Lemma
2.1(a). This shows that u € K, a contradiction since u; ¢ B for all j.
Returning to the main line of argument, there exist p, u sufficiently small so that
Us DV, DV, DU,.
This implies by (3.9) that for n large enough, the set 7, (J,) is disjoint from Ug
and hence is separated from U, by at least a distance of p. That is,
(3.11) By(yn(Jn)) N U, = 0.

On the other hand, if n is so large the a,, < p/2, it is not hard to see with the help
of Lemma 2.4(a)(c), the upper bound in Proposition 3.3(b) and (3.10) that there
exists p’ < p, independent of n, such that,

(3.12) By (Ya(Jn)) € {u € N | Le(u) < Co + py | LY o(u) — wiec| < ).

Now since LQ{ . is a C''-functional on N, it possesses a pseudo-gradient vector field
X N\ C — White(SLRN) where C = {u € N' | L c(u) = 0} (see [25, Lemma
3.9] or [19, p. 206]), with the property that
(pl) X(u) €Ty, for all u e N\ C.
(p2) [ X (w)[1,14 < 2min{l, [[0Ly e (w)]]}-
(p3) (0L e(u), X (u)) < —min{L, [|Ls,c ()| }H[0Ls,e(u)]]-
Consider the flow generated by X, denoted

Q:{(s,u) |lue N\C,s€[0,T(u))} - N,

where T'(u) is the maximal existence time for the integral curve starting at . Then
by property (p2) along with (3.11) and (3.12), we see that for all n large enough
and u € v, (Jp), there holds T'(u) > p'/2 and

6L, (Bs ()| = p, for s € [0, p/2).
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Combining this with (p3), Proposition 3.3(a) and (3.10), we see that following hold
for all t € J,: First,

(3'13) L{c\{e (q)s('}/n(t))) < Ln,e(ﬁ)/n(t)v f’yn,t)v for s € [O,pl/Z).
Second, for n large enough,
P T

(3:14) LY(®y ja(m(t) < LY (1)) = == < e +an — =

To continue, we take a continuous cut-off function ¢, so that ¢, (t) =1 on I,, and
Cn(t) = 0 outside of a compact subset of J,,, and define, for (s,t) € [0,1] x [0, 1],

_ @(s(n(t)p'/fi,fyn(t)) Jif t € Jy,
Pns,t) = { (t) ft .
Letting 7, = I';,(1,-), then by Lemma 3.4, eventually 0,1 lie outside of J,, and

hence are still mapped to constants by 7,. The continuity properties of the flow ®
then implies that 5, € P.. Moreover, we claim the following two properties: First

/2 /.2

< Wie — Qp /2.

of all,

(3.15) Ly (9n(2), f%,t) = Ly (a(1), f’ymt)’ fort ¢ J,.
Secondly,

(3.16) Lioe(Fn(t), f5,0) = LY .(Fn(t)), for t € J,,.

To see these, note that given ¢ € [0, 1], we may use I',, to construct a homotopy of
extensions to show that

(3'17) Lm,e(ﬁn(t)v f?n,t) = Ln,e(;yn(t)v f’yn,t + Fn('v t))7

which implies (3.15) by the definition of T',, and the fact that v, (t) = ,(¢) for
t ¢ J,. As for (3.16), note that by an argument similar to Lemma 3.1(a), for
t € J,, the function

S = Ln,e(rn(sat)y f”/n,t + Fn('at)ho,s])

is continuous on [0,1]. Hence, by Lemma 2.1(a) it differs from s LQ{E (Thn(s,t))

by a fixed integer multiple of r - Area,(S?). Since the two functions coincide at

s =0 by (3.10), they agree for s € [0, 1]. This combined with (3.17) give (3.16).
By (3.15), (3.16), (3.13) and (3.14) we see that

Ln,s(ﬁn(t)a fﬁn,t) < Wk,e — %; for all ¢t € In,
and that
~ [67%%
L/{,E(’Yn(t)v f”?n,t) S Ln,s(’Yn(t)a f’yn,t) S w/{,e - 77 fOI' t ¢ In

Hence, we conclude that for n sufficiently large there holds

~ o
tlerl[g:}i] LH:E(/yn(t)7 f:%ut) < w’ixa - 7717

which contradicts the fact that %, € P., and hence the property (x) must hold.
Consequently there exists a subsequence of ~,, which we do not relabel, and a
sequence of times t,, € J,, such that v, (t,) has, by Proposition 3.3(b) and Propo-
sition 2.13, a subsequence converging strongly in W*¢ to u with 6L, .(u) = 0
and L.(u) < Cp.

We are now ready to verify the conclusions of the Proposition. Part (a) is
immediate from the definition of J,. For part (b) it remains to find f € E(u)
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such that L, -(u, f) = wy . Note that by the same reasoning as in the proof that
{Us}s>0 form a fundamental system of neighborhoods of K, for sufficiently large n
there exists f,, € £(u), with the property that

|A(fy, t.) — A(fn)]
< Cllyn(tn) — ull114e(2e + Le(Ya(tn)) ™= + Ls(u)ﬁ) — 0 as n — oo.

Consequently
nlggo |Ln,e(7n(tn>7 f’yn,tn) - Ln,e(uv fn)| =0.

Combining this with (a), which we just proved, and Lemma 2.1(a), we see that
eventually Ly .(u, f,) is constantly equal to wy ., yielding the desired extension of
u. Finally, part (c) can be deduced from the strong W11T¢_convergence of v, (t,)
to u, together with Lemma 3.4, the definition of J,,, and the fact that a,, — 0 as
n — oco. The proof is complete. (Il

4. PASSAGE TO THE LIMIT AS € — 0

In this section we complete the proof of the main existence theorem. By Propo-
sition 3.2(c) and Proposition 3.3, for almost every & there exists a sequence £; — 0
and a constant ¢ such that for all j, there exist sweepouts {v,} C P., to which
we may apply Proposition 3.6 to extract a non-trivial critical point u; of Ly,

satisfying
(4.1) m < Le, (uj) < 8kc.
By Proposition 2.12 we know that u; is smooth, and that I; := |u]| is constant.

Consequently, by (4.1) we have

2
_2 2 T+e,
m 1+e; )\ THe; 4k=C lte; i
(4.2) (%+5j ) ’—gfglJ?g( — +e ) — &l

The proposition below finishes the proof of Theorem 1.1.

Proposition 4.1. Passing to a subsequence if necessary, u; converge smoothly
on S' to a non-trivial limit u which, after reparametrization if necessary, satisfies
|w/|=1 and

' = A, (W, u) + kQy ().
Proof. Since each u; has constant speed I;, equation (2.14) becomes

1—

(4.3) /51 [(L4ej)uf -0 + (145) Ay, (0, uf) -+ k(€3 +13) 7 Qu, (u})-1p]df = 0,

for all ¢ € C'(S;RY). Since [; is uniformly bounded from above, we infer by
bootstrapping that (u;) is uniformly bounded in C*(S*;RY) for all k. Hence we
may extract a subsequence, which we do not relabel, converging smoothly on S! to
a limit u having constant speed | = lim;_, [;, which must lie in (0, 00) by (4.2).
Moreover, passing to the limit in (4.3), we see that u satisfies

—u" + Ay (u u) + KL Qu(u') = 0.
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Now reparametrize u by setting v(s) = u(s/l) for s € [0, 2xl]. Then |v'| = 1, and
v (s) = 17%u" (s /1)
=172 Ay (/1) (s/1) + K17 Qu(u/)(s/1)
= A, (v, 0")(s) + K- Qu(v))(5). O

APPENDIX A. PROOFS OF SOME STANDARD ESTIMATES

Proof of Lemma 2.5. For (2.3), we let y; = ty; + (1 — t)yo, and apply the funda-
mental theorem of calculus to write

((dF)y, = (dF)y,) - (41 = %0)

_ ' Y1 — Yo e Ye - (y1 — yo) ) _
=0+9( G~V i ) )

1
e—3
>(1+ E)/ &+ yel>) = (lyr — wol* (€ + |yel®) = (1 = &) lwel*[yr — wol?)dt
0

1
e—1
26(1+5)/ (€2 + [wl?) T w1 — ol 2,
0

which implies (2.3) since € < 1 and |y:|* < 2]yo|? + 2|1 |2
Throughout the proof of (2.4), the inequalities (2.1) and (2.2), along with the
fact that
1]+ lyol < Oy l* + [yol )2,

will be used frequently without further comment. To begin, we assume without
loss of generality that |yi| > |yo|, and write

1 Y1
dF). — (dF _ 2 2\e/2 (.2 2ye/2y___ It
T2 (@) = @F)) = (€ + P12 = (& + o)) i
(2 2y YL Yo
( lyol*) (52+|y1\2)1/2
1 1
2 2\e/2 _
+ (&% + |yol?) ((€2+|y1|2)1/2 (82+|y0|2)1/2>yo

= I+ II+1Il
Estimating I is rather straightforward:
1< Ml l® = lyolI% < (Il + lyol)*/2Jy1 — yol*/?
< O+ [yol® + [va ) *yn — wol /.

As for T1, we note that since |y1| > |yo|, we have

1
(A1) e+l > S + i + [vol®)-

Hence
11| < C(e* + [yol + [1])> 2 |y1 — yol"™/2|y1 — ol
< O+ |yol® + |1 )?) |y — wol7/2.

Licensed to Cornell Univ. Prepared on Wed Jun 1 19:12:57 EDT 2022 for download from IP 132.174.252.179.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



9026 DA RONG CHENG AND XIN ZHOU

Finally, for 111, using (A.1) and the fact that |yo|(2 + |yo|?)~/? < 1, we have
el (€ + [ )2 = (€ + [y
(€% + |yo[)1/2(e2 + |y |?)1/2
< (@ + lwol® + w1 > 2 (fyal + o)y = wol >y — wol
< CE + lyol® + 91 1*)*|yr = ol
Combining the estimates for I, IT and IIT gives (2.4). a

[1IT| < (% + [yol*)

Proof of Lemma 2.10. The first inequality follows since for all ¢ € T, with |22 <
1, we have

0Ly (u) () = Gre(W)(¥) <G e(W)[[[¢ll2,2 < (|G ()]l

For the second inequality, note that by the smoothness of the nearest-point projec-
tion and the chain rule for weak derivatives, the composition P, : ST — RV*¥ lies
in White with

(A.2) [Pulli;i4e < CQ+ [lu/fl14)-

Recall also the basic fact that if f,h € W1+¢(S1; RY), then so does fh, in which
case

(A.3) | fhll1a4e < Cllflliasellpll1,14e-

By (A.2) and (A.3), we see that for all ¢ € WhiTe(SLRN) with [[¢]114. < 1,
the matrix-vector product P, () belongs to 7T, and satisfies || P, (¢)||1,14c < C(1+
[lw/||14e). Consequently,

Gre(u)(¥)) = 0Ly (u)(Pu(¥)) < 16Ln (u)l[[[Pu(t))]
S 0Lk ()l - C(A + [lu'[l14e)-

This proves the second inequality in the statement. O

1,14¢
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