
TRANSACTIONS OF THE

AMERICAN MATHEMATICAL SOCIETY

Volume 374, Number 12, December 2021, Pages 9007–9028

https://doi.org/10.1090/tran/8510

Article electronically published on September 16, 2021

EXISTENCE OF CURVES WITH CONSTANT GEODESIC

CURVATURE IN A RIEMANNIAN 2-SPHERE

DA RONG CHENG AND XIN ZHOU

Abstract. We prove the existence of immersed closed curves of constant ge-
odesic curvature in an arbitrary Riemannian 2-sphere for almost every pre-

scribed curvature. To achieve this, we develop a min-max scheme for a weighted
length functional.

1. Introduction

In this paper, we investigate the existence of closed curves with prescribed con-
stant geodesic curvature in an arbitrary Riemannian 2-sphere. Aside from being
natural geometric objects, curves with constant geodesic curvature are also trajec-
tories of charged particles in a special class of magnetic fields, and the existence
problem has been studied extensively. Moreover, a famous conjecture by Arnold
[2, 1981-9] asserts that every Riemannian 2-sphere contains at least two distinct
closed curves with geodesic curvature κ for any 0 < κ < ∞. Many approaches have
been developed to tackle this conjecture, including Morse-Novikov theory, sym-
plectic topology methods, degree theory, and variational theory. Nevertheless, the
conjecture remains open for an arbitrary Riemannian 2-sphere. Our main result,
using a new variational scheme analogous to that in our earlier work [9], estab-
lishes the existence of at least one such curve for almost every prescribed geodesic
curvature, without any curvature assumption on the ambient metric.

Theorem 1.1. Given a 2-sphere with an arbitrary Riemannian metric (S2, g), for
almost every κ > 0, there exists a non-trivial closed immersed curve with constant

geodesic curvature κ.

Remark 1.2. We learned after completing this work that Theorem 1.1 is already
contained in the work of Asselle and Benedetti [4], where solutions are interpreted as
magnetic geodesics. However, we think our method, which involves perturbing the
length functional and hence differs from that in [4], should still be of independent
interest. (For other related work on magnetic geodesics, see for instance [1,4,5] and
the references therein.)

To write down the differential equation of interest, assume that (S2, g) is iso-
metrically embedded into some R

N . The solutions we produce are smooth curves
u : S1 → (S2, g) ⊂ R

N satisfying |u′| = 1 and

(1.1) u′′ = Au(u
′, u′) + κ ·Qu(u

′),
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where (·)′ denotes component-wise differentiation, κ is the prescribed geodesic cur-
vature, and A,Q are, respectively, the second fundamental form of the embedding
(S2, g) → R

N and the almost-complex structure on S2 induced by the metric and
the orientation. An outline of our proof of Theorem 1.1 is given below following
a brief discussion of some related previous results. Here we mention that while
Theorem 1.1 yields a solution for almost every κ, we do not have a uniform control
over their lengths as κ varies. Conceivably, the method for [9, Theorem 1.2] can be
used to overcome this and remove the restriction on κ in Theorem 1.1 when (S2, g)
has positive curvature, but we do not pursue this here.

We now briefly review previous results on the Arnold conjecture. This is by no
means an exhaustive survey, and the reader is encouraged to consult the references
and their bibliographies for a more complete picture. Focusing on the multi-valued
nature of the relevant functional (see Section 2.1 below), Novikov [17] proposed a
generalization of Morse theory, now known as the Morse-Novikov theory, and as an
application it was shown by Novikov-Taimanov [18] that closed embedded curve of
curvature κ exists for strong field, that is, for κ large; see also [26]. On the other
hand, using the symplectic topology methods introduced by Arnold [3], Ginzburg
(see the survey [12] and references therein) obtained the existence of close curves of
constant geodesic curvature κ for small and large values of κ. Recently, Schneider
has developed a degree theory for immersed curves in [22] and confirmed Arnold’s
conjecture assuming non-negative Gaussian curvature [23]; see also [20,21]. Finally,
we mention that Zhou-Zhu [29], using the CMC min-max theory in the Almgren-
Pitts framework developed in [27,28], proved the existence of networks of constant
geodesic curvature κ for any κ > 0 on an arbitrary closed Riemannian surface, and
Ketover-Liokumovich [14] has further shown that the network is C1,1 and has at
most 1 node point.

By comparison, the existence of close geodesics on Riemannian 2-spheres, and
also on general closed Riemannian manifolds, dates back to Birkhoff [8]. See also [10]
for a strengthened version by Colding-Minicozzi. Since then, tremendous progress
has been made on the existence of closed geodesics, and we refer the reader to [16]
for a nice summary. In particular, every Riemannian 2-sphere contains at least
three distinct simple closed geodesics [13, 15], and also infinitely many possibly
self-intersecting ones [7, 11].

Overview of proof. Formally speaking, the curves we seek are unit-speed critical
points of the following weighted length functional:

ˆ

S1

|u′| dθ + κ ·A(fu) =: L(u) + κ ·A(fu),

where A(fu) is the area enclosed by a choice of extension fu of u to the unit disk
and is only well-defined up to an integer multiple of Areag(S

2). (See Section 2.1
for more details.) However, this weighted functional is not directly amenable to
standard variational techniques due to at least two issues. First of all, the length of
a curve is invariant under reparametrizations. Secondly, since it is possible for the
enclosed area term to become very negative, the weighted functional is not bounded
from below, and nor does it control the length of the curve.

To overcome the first difficulty, instead of replacing the length by the energy
as in the classical setting of geodesics, where the enclosed area term is absent, we
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EXISTENCE OF CURVES WITH CONSTANT GEODESIC CURVATURE 9009

perturb the functional by replacing L(u) with

Lε(u) :=

ˆ

S1

[
(ε2 + |u′|2)

1+ε
2 − ε1+ε

]
dθ,

thereby obtaining a C1-functional whose critical points are smooth with constant
speed. We note that a similar regularization was used by Bahri-Taimanov [6] in
finding periodic orbits in magnetic fields. However, in their situation magnetic
fields are assumed to be exact, and as a result their functionals are single-valued.
Also, the Morse-theoretic arguments in [6] require their perturbed functionals to
be C2, whereas C1 suffices for our present purposes.

Next, to address the second difficulty and also obtain uniform estimates with
respect to the parameter ε, we utilize the monotonicity properties of the min-
max value with respect to κ along with Fatou’s lemma, as done by Struwe [24],
to obtain, for almost every κ, a minimizing sequence of sweepouts whose almost-
maximal slices enjoy Lε-bounds independently of ε. (See also our previous work
on CMC spheres [9].) In addition, the non-triviality of the sweepouts together
with an isoperimetric inequality allow us to establish a uniform lower bound on
Lε for these slices as well. The upper and lower bounds then put us in a position
to apply a standard deformation argument using pseudo-gradient flows to produce
non-constant critical points uε of the perturbed functionals with Lε(uε) uniformly
bounded, which implies a uniform Lipschitz estimate as each uε has constant speed.
To conclude the proof of Therem 1.1, we use the Euler-Lagrange equations of Lκ,ε

to obtain higher-order estimates independent of ε and pass to a subsequential limit
as ε → 0 to get a smooth, constant-speed curve which is non-trivial thanks to the
uniform lower bound on Lε(uε), and satisfies (1.1) up to reparametrization.

We remark that if we proceed as in the case of geodesics and replace L(u) by

1

2

ˆ

S1

|u′|2dθ

when perturbing the weighted length functional, we would obtain in the end a
solution to (1.1) with constant, but not necessarily unit, speed. The geodesic
curvature of the resulting curve is then κ divided by this constant speed, which we
could not prescribe.

Organization. In Section 2, we set up some notation and define the perturbed
functional Lκ,ε. We show that critical points of Lκ,ε are smooth and prove a
version of the Palais-Smale condition for Lκ,ε. Most of our effort goes into Section
3, where we find non-trivial critical points of Lκ,ε with Lε bounded independent of
ε for almost all prescribed curvatures κ > 0. Two key ingredients are a derivative
bound for the min-max values with respect to κ, contained in Section 3.1, and a
localized version of the pseudo-gradient flow argument, contained in Section 3.2.
The proof of the main result is completed in Section 4 by analyzing the limit of
critical points when ε → 0.

2. The perturbed functional

Below, S1 denotes the unit circle, and functions on S1 are identified with 2π-
periodic functions on R. We assume that the target (S2, g) is isometrically embed-
ded into some RN , and denote by A the second fundamental form of this embedding.

Licensed to Cornell Univ. Prepared on Wed Jun  1 19:12:57 EDT 2022 for download from IP 132.174.252.179.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



9010 DA RONG CHENG AND XIN ZHOU

By V we mean a tubular neighborhood of S2 in R
N on which the nearest-point pro-

jection, denoted Π : V → S2, has bounded derivatives of all orders. For brevity, the
differential of Π will be denoted P : V → R

N×N . Thus for y ∈ V , the matrix Py

represents orthogonal projection onto TΠ(y)S
2. Given a map v : S1 → V , we write

Pv for the composition P ◦ v : S1 → R
N×N .

The metric g and the volume form on (S2, g) determines an orthogonal almost-
complex structure on TS2, which we denote by Q, given by

Volg(X,Y ) = g(X,Q(Y )).

2.1. Preliminaries. We will work with the following Sobolev spaces for ε > 0
small:

W 1,1+ε(S1;S2) = {u ∈ W 1,1+ε(S1;RN ) | u(θ) ∈ S2 for all θ ∈ S1}.

We equip it with the subspace topology coming from the W 1,1+ε-norm

‖u‖1,1+ε =
( ˆ

S1

|u|1+ε + |u′|1+εdθ
) 1

1+ε .

The space W 1,1+ε(S1;S2) is a smooth, closed submanifold of the Banach space
W 1,1+ε(S1;RN ), with the tangent space at u identified with

Tu = {ψ ∈ W 1,1+ε(S1;RN ) | ψ(θ) ∈ Tu(θ)S
2 for all θ ∈ S1},

which is a closed subspace of W 1,1+ε(S1;RN ) with a closed complement. Letting
Θu(ψ) = Π(u+ψ) for ψ ∈ Tu, then for small enough balls Bu around the origins in
Tu, the collection {(Bu,Θu|Bu

)}u∈W 1,1+ε(S1;S2) form a smooth atlas. Restricting the

W 1,1+ε-norm to each tangent space Tu yields a Finsler structure on W 1,1+ε(S1;S2).
For u ∈ W 1,1+ε(S1;S2), consider

E(u) = {f ∈ C0([0, 1]× S1;S2) | f(0, ·) = constant, f(1, ·) = u},

which can be thought of as the set of extensions of u to the unit disk D. A key
component of the perturbed functionals is the area enclosed by extensions, which
we now define. First, denoting by θ and t the variables on S1 and [0, 1], respectively,
we introduce the following more restrictive class of extensions

Ẽ(u)={f ∈ E(u)∩W 1,1([0, 1]×S1;S2) | fθ ∈ L1+ε([0, 1]×S1), ft∈L
1+ε
ε ([0, 1]×S1)},

and equip it with the topology coming from the norm

f 	→ ‖f‖C0 + ‖ft‖ 1+ε
ε

+ ‖fθ‖1+ε.

For u ∈ W 1,1+ε(S1;S2) and f ∈ Ẽ(u), we define the area enclosed by u with respect
to the extension f by

A(f) =

ˆ

[0,1]×S1

f∗Volg.

The basic properties of the enclosed area are summarized below.

Lemma 2.1. Given u ∈ W 1,1+ε(S1;S2), the following hold.

(a) For f0, f1 ∈ Ẽ(u) we have

A(f0)−A(f1) = kAreag(S
2) for some k ∈ Z.

(b) Let F : [0, 1] → Ẽ(u) be a continuous path. Then A(F (0)) = A(F (1)).

(c) There exists a universal constant δ0 such that if f0, f1 ∈ Ẽ(u) and ‖f0−f1‖C0 <
δ0 then A(f1) = A(f0).
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Proof. For part (a), we consider the concatenation h = f0 + (−f1), defined by

h(t, θ) =

{
f0(2t, θ) , if t ∈ [0, 1/2],

f1(2− 2t, θ) , if t ∈ [1/2, 1].

The map h lies in C0 ∩ W 1,1([0, 1] × S1;S2) with hθ ∈ L1+ε and ht ∈ L
1+ε
ε , and

induces a continuous map ĥ : S2 → S2. Next, the integrability of hθ and ht,
along with the fact that h(0, ·) and h(1, ·) are constant maps, imply that we may
approximate h with maps hj ∈ C∞([0, 1]× S1;S2) such that hj(t, ·) = h(0, ·) near
t = 0, hj(t, ·) = h(1, ·) near t = 1, and

‖hj − h‖C0 + ‖(hj)t − ht‖ 1+ε
ε

+ ‖(hj)θ − hθ‖1+ε → 0.

It follows from the existence of such approximations that deg(ĥ) can be computed

by 1
Areag(S2)

´

[0,1]×S1 h
∗Volg = A(f0)−A(f1)

Areag(S2) , hence the latter is an integer. Part (b)

follows from part (a) and the continuity of t 	→ A(F (t)). Part (c) can be deduced
by applying (b) to F (s, ·) = Π(sf1 + (1 − s)f0), provided δ0 is chosen so that the
3δ0-distance neighborhood of S2 is still contained in V . �

Remark 2.2. Note that Lemma 2.1(c) allows us to define the enclosed area func-
tional on E(u) by approximation by letting

A(f) = A(f̃),

where f̃ ∈ Ẽ(u) is such that ‖f − f̃‖C0 < δ0/2. To see that such approximations
exist, let ζ : R → [0, 1] be a smooth cut-off function with ζ(t) = 0 for t ≤ 0 and
ζ(t) = 1 for t ≥ 1. For f ∈ E(f), we first erase its boundary value by considering

f̂(t, ·) = f(t, ·)−
(
ζ(t)f(1, ·) + (1− ζ(t))f(0, ·)

)
.

This can be approximated uniformly on [0, 1]×S1 by maps f̂j ∈ C∞([0, 1]×S1;RN )
which vanish near {0, 1} × S1. In particular, eventually it makes sense to define

fj = Π(f̂j +
(
ζ(t)f(1, ·) + (1− ζ(t))f(0, ·)

)
),

which agrees with f on {0, 1}×S1, converges uniformly to f , and also lies in Ẽ(u),
since the map

(
ζ(t)f(1, ·) + (1− ζ(t))f(0, ·)

)
belongs to C0 ∩W 1,1([0, 1]× S1;RN )

and has t-derivative and θ-derivative lying in L∞ and L1+ε, respectively.
It is also not hard to see that Lemma 2.1(a)(c) continue to hold for the extended

functional, with Ẽ(u) replaced by E(u), and that part (b) holds with the C0-topology
on E(u) by partitioning [0, 1] and applying part (c) repeatedly. We omit the details.

Next we define the perturbations of the weighted length functional.

Definition 2.3. For κ, ε > 0, and u ∈ W 1,1+ε(S1;S2), f ∈ E(u), we let

Lκ,ε(u, f) = Lε(u) + κ ·A(f),

where

Lε(u) =

ˆ

S1

[
(ε2 + |u′|2)

1+ε
2 − ε1+ε

]
dθ.

Here Lε is a regularization of the length functional L(u) =
´

S1 |u
′|dθ. We end

this preliminary section by collecting some standard estimates that will be used
repeatedly.
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Lemma 2.4. There exists a universal constant A0 such that the following hold for

all ε ∈ (0, 1) and u, v ∈ W 1,1+ε(S1;S2).

(a) L(u) ≤ A0ε+A0(Lε(u))
1

1+ε .

(b) |Lε(u)− Lε(v)| ≤ A0

(
‖u′‖1+ε + ‖v′‖1+ε

) 1+ε
2 ‖u− v‖

1+ε
2

1,1+ε.

(c) Suppose ‖u−v‖C0 < δ0 and let f ∈ E(u) be an extension of u. Define h ∈ E(v)
by concatenating f with q : (t, θ) 	→ Π(tv(θ) + (1− t)u(θ)). Then

|A(f)−A(h)| ≤ A0‖u− v‖C0

(
L(u) + L(v)

)
.

Proof. For part (a) we first use Hölder’s inequality to get L(u) ≤ C
(
Lε(u) +

ε1+ε
) 1

1+ε . The conclusion then follows from the fact that for α ∈ (0, 1) we have

(2.1) (t+ s)α ≤ tα + sα for all t, s ≥ 0.

For part (b), note that the above inequality implies, still for α ∈ (0, 1), that

(2.2) |tα − sα| ≤ |t− s|α for all t, s ≥ 0.

Applying this with α = 1+ε
2 (recall that ε ∈ (0, 1) by assumption), we obtain

|Lε(u)− Lε(v)| ≤

ˆ

S1

∣∣(ε2 + |u′|2)
1+ε
2 − (ε2 + |v′|2)

1+ε
2

∣∣dθ

≤

ˆ

S1

∣∣|u′|2 − |v′|2
∣∣ 1+ε

2 dθ =

ˆ

S1

∣∣|u′|+ |v′|
∣∣ 1+ε

2 |u′ − v′|
1+ε
2 dθ

≤
( ˆ

S1

(|u′|+ |v′|)1+ε
) 1

2
( ˆ

S1

|u′ − v′|1+ε
) 1

2 ,

which implies the result. For part (c), since q ∈ C0 ∩ W 1,1([0, 1] × S1;S2) with
qθ ∈ L1+ε([0, 1] × S1;S2) and qt ∈ L∞([0, 1] × S1;S2), it’s not hard to see that
A(h)−A(f) =

´

[0,1]×S1 q
∗Volg. That is,

|A(f)−A(h)|

≤

ˆ 1

0

ˆ

S1

|(Volg)q(t,θ)(Ptv+(1−t)u(v − u), Ptv+(1−t)u(tv
′ + (1− t)u′))|dθdt

≤ C

ˆ

S1

|v − u|(|u′|+ |v′|)dθ.

This clearly gives the desired estimate. �

To state the next lemma, given ε ∈ (0, 1), for convenience we define F : RN → R

by

F (y) = (ε2 + |y|2)
1+ε
2 .

Of course the derivative of F is given by (dF )y = (1 + ε) y

(ε2+|y|2)
1−ε
2

. We collect

two standard estimates below for later use. The proofs are included in Appendix
A for the sake of completeness.

Lemma 2.5. For all y0, y1 ∈ R
N , there hold

(2.3)
(
(dF )y1

− (dF )y0

)
· (y1 − y0) ≥ cε

|y1 − y0|2

(ε2 + |y1|2 + |y0|2)
1−ε
2

,

(2.4) |(dF )y1
− (dF )y0

| ≤ C(ε2 + |y1|
2 + |y0|

2)ε/4|y1 − y0|
ε/2.
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2.2. Local reduction. The fact that Lκ,ε depends both on the map u and the
extension f is a major technical point that we need to keep track of throughout the
paper. Fortunately, we may eliminate the f -dependence locally on simply-connected
neighborhoods. Specifically, given a simply-connected open set A ⊂ W 1,1+ε(S1;S2)
and a map u0 ∈ A, along with an extension f0 ∈ E(u0), then for any other u ∈ A we
have by connectedness a path h : [0, 1] → A leading from u0 to u. Concatenating
f0 with the map (t, θ) 	→ h(t, θ) yields an extension fu ∈ E(u), and we define

LA
κ,ε(u) = Lκ,ε(u, fu).

We now verify that LA
κ,ε is well-defined, C1-functional on A.

Lemma 2.6.

(a) LA
κ,ε is well-defined. That is, the choice of path h is irrelevant.

(b) LA
κ,ε is a C1-functional on A.

Proof. Part (a) follows from Lemma 2.1(b) and simply-connectedness. Next, take
u ∈ A and consider a chart (Bu,Θu) centered at u. Below we drop the subscripts
in Bu,Θu for brevity. To prove (b), it suffices to show that LA

κ,ε ◦Θ is C1 on B. To

that end, note that for ψ ∈ B, letting f̃(t, θ) = Θ(tψ(θ)), we have

(2.5) LA
κ,ε(Θ(ψ)) =

ˆ

S1

(ε2+|Θ(ψ)′|2)
1+ε
2 dθ+κ

ˆ

[0,1]×S1

f̃∗Volg+κA(fu)−2πε1+ε.

The map ψ → Θ(ψ) is in fact smooth from B to W 1,1+ε(S1;RN ). On the other
hand, using (2.4) from Lemma 2.5, it is not hard to see that

v 	→

ˆ

S1

(ε2 + |v′|2)
1+ε
2 dθ

defines a C1-functional W 1,1+ε(S1;RN ) → R. Hence the first term on the right-
hand side of (2.5) is C1. As for the second term, we write { ∂

∂yi } for the coordinates

in R
N , and introduce the functions aij : V → R defined by

aij(y) = (Volg)Π(y)(Py(
∂

∂yi
), Py(

∂

∂yj
)).

Note that these are smooth functions. Moreover, since we may write
ˆ

[0,1]×S1

f̃∗Volg =

ˆ

[0,1]×S1

aij(u+ tψ)(uj
θ + tψj

θ)ψ
idθdt,

it is not hard to see using the smoothness of aij and the embedding W 1,1+ε → C0

along with Hölder’s inequality that the second term on the right-hand side of (2.5)
is C1 as well. �

Definition 2.7. The functional LA
κ,ε is called the local reduction of Lκ,ε on A

induced by u and f . Note that we are suppressing from the notation its dependence
on u and f , as these should always be clear from the context. Note also that, by
Lemma 2.1(a) and Lemma 2.6(b), any two local reductions differ by a fixed integer
multiple of κVolg(S

2) on any connected subset of their common domain.
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2.3. First variation. In this section we compute the first variation of Lκ,ε. We
do so with the help of local reductions, and then show that the choice of reduction
is irrelevant, and consequently the first variation makes sense globally. To begin,
let A ⊂ W 1,1+ε(S1;S2) be a simply-connected open set on which a local reduction
LA
κ,ε is defined. Since LA

κ,ε is a C1-functional on A, at each u ∈ A it has a differen-

tial, denoted by δLA
κ,ε(u), which is a bounded linear functional on Tu, and can be

computed by

(2.6) δLA
κ,ε(u)(ψ) =

d

dt

∣∣
t=0

LA
κ,ε(Π(u+ tψ)).

Definition 2.8. For u ∈ W 1,1+ε(S1;S2) we define δLκ,ε(u) : Tu → R by letting

δLκ,ε(u) = δLA
κ,ε(u),

where LA
κ,ε is any local reduction on a simply-connected neighborhood A of u. Note

that such a neighborhood always exists since W 1,1+ε(S1;S2) is a manifold. Also,
in view of the last remark in Definition 2.7 and the equation (2.6), δLκ,ε(u) is
well-defined.

Definition 2.9. A map u ∈ W 1,1+ε(S1;S2) is a critical point of Lκ,ε if δLκ,ε(u) =
0.

To compute δLκ,ε(u)(ψ) for u ∈ W 1,1+ε(S1;S2) and ψ ∈ Tu, we fix f ∈ E(u),
consider the local reduction induced by (u, f) on a simply-connected neighborhood
A of u, and carry out the differentiation in (2.6). Note that for sufficiently small t,

letting f̃(s, θ) = Π(u+ sψ) for (s, θ) ∈ [0, t]× S1, we have

LA
κ,ε(Π(u+ tψ))− LA

κ,ε(u)

= Lε(Π(u+ tψ))− Lε(u) + κ ·

ˆ t

0

[ ˆ

S1

(Volg)f̃ (f̃s, f̃θ)dθ
]
ds.(2.7)

The t-derivative of the integral term at t = 0 is equal to

(2.8) κ

ˆ

S1

(Volg)u
(
Pu(ψ), u

′
)
dθ = κ

ˆ

S1

ψ ·Qu(u
′)dθ,

where we used the fact that (Volg)u(X,Y ) = X · Qu(Y ) and Pu(ψ) = ψ to get
the equality. On the other hand, for the terms involving Lε on the right-hand side
of (2.7), we have

d

dt

∣∣∣
t=0

Lε(Π(u+ tψ)) = (1 + ε)

ˆ

S1

(ε2 + |u′|2)
ε−1

2 u′ · ψ′dθ.(2.9)

Here no projection is required since ψ ∈ Tu. Putting together (2.8) and (2.9), we
obtain the following first variation formula for Lκ,ε:

(2.10) δLκ,ε(u)(ψ) =

ˆ

S1

(1 + ε)
u′ · ψ′

(ε2 + |u′|2)
1−ε
2

+ κψ ·Qu(u
′)dθ.

The norm of δLκ,ε(u), which we denote by ‖δLκ,ε(u)‖, is defined by duality.
It will be convenient for us to have a version of the first variation formula where

the test function ψ is allowed to vary in W 1,1+ε(S1;RN ). To that end we also define

Gκ,ε(u) = δLκ,ε(u) ◦ Pu.

We define the norm of Gκ,ε(u) by

‖Gκ,ε(u)‖ = sup{Gκ,ε(u)(ψ) | ψ ∈ W 1,1+ε(S1;RN ), ‖ψ‖1,1+ε ≤ 1}.

Licensed to Cornell Univ. Prepared on Wed Jun  1 19:12:57 EDT 2022 for download from IP 132.174.252.179.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EXISTENCE OF CURVES WITH CONSTANT GEODESIC CURVATURE 9015

The following lemma establishes a relationship between ‖Gκ,ε(u)‖ and ‖δLκ,ε(u)‖.
For the reader’s convenience we include a proof in Appendix A.

Lemma 2.10. There exists a universal constant A1 such that for κ > 0 and ε ∈
(0, 1/2), we have

‖δLκ,ε(u)‖ ≤ ‖Gκ,ε(u)‖ ≤ A1(1 + ‖u‖1,1+ε)‖δLκ,ε(u)‖,

for all u ∈ W 1,1+ε(S1;S2).

The proposition below gives an alternative expression for Gκ,ε(u) which will be
useful later, particularly in the next section.

Proposition 2.11.

(2.11)

Gκ,ε(u)(ψ) =

ˆ

S1

(1 + ε)
u′ · ψ′

(ε2 + |u′|2)
1−ε
2

+ (1 + ε)
Au(u

′, u′)

(ε2 + |u′|2)
1−ε
2

· ψ + κψ ·Qu(u
′).

Proof. Assuming for the moment that u ∈ C∞(S1;S2), then we have by (2.10) that

(2.12) Gκ,ε(u)(ψ) =

ˆ

S1

[
− (1 + ε)Pu

((
(ε2 + |u′|2)

ε−1

2 u′
)′)

+ κQu(u
′)
]
· ψdθ.

Now note that of course u′ ∈ TuS
2, while the orthogonal projection of u′′ onto

(TuS
2)⊥ is exactly Au(u

′, u′). Hence

Pu

((
(ε2 + |u′|2)

ε−1

2 u′
)′)

=
(
(ε2 + |u′|2)

ε−1

2 u′
)′
− (ε2 + |u′|2)

ε−1

2 Au(u
′, u′).

Substituting this into (2.12) and integrating by parts give (2.11) when u ∈
C∞(S1;S2). The case u ∈ W 1,1+ε(S1;S2) follows by approximation. �

2.4. Regularity of critical points and the Palais-Smale condition. We first
establish the regularity of critical points of the perturbed functional.

Proposition 2.12. Let u ∈ W 1,1+ε(S1;S2) be a critical point of Lκ,ε. Then u is

smooth with estimates, and moreover |u′| is constant.

Proof. Introducing

h =
u′

(ε2 + |u′|2)
1−ε
2

,

we see that |h|2 = (ε2+ |u′|2)ε−1|u′|2, and hence |u′|2 = τ−1(|h|2), where τ denotes
the (strictly increasing) function t 	→ (ε2 + t)ε−1t for t > −ε2. (Note: τ ′(t) =
(ε2 + t)ε−2(ε2 + εt).) Consequently

(2.13) u′ =
(
ε2 + τ−1(|h|2)

) 1−ε
2 h.

From this it follows that u′ has the same regularity as h, since τ−1 is smooth. Now,
the fact that u is a critical point means that

(2.14)

ˆ

S1

(1 + ε)
u′ · ψ′

(ε2 + |u′|2)
1−ε
2

+ (1 + ε)
Au(u

′, u′)

(ε2 + |u′|2)
1−ε
2

· ψ + κψ ·Qu(u
′) = 0,

for all ψ ∈ W 1,1+ε(S1;RN ). Rearranging, we see from the above that

(2.15)

ˆ

S1

〈h, ψ′〉 = −

ˆ

S1

w · ψ,
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where

w :=
Au(u

′, u′)

(ε2 + |u′|2)
1−ε
2

+ (1 + ε)−1κ ·Qu(u
′).

The smoothness of h follows inductively from (2.15) and (2.13). To see that u has
constant speed, we note from (2.15) that

h′ = w ⊥ h,

where the orthogonality follows since h is a multiple of u′. Consequently |h|2 is
constant, and hence, by (2.13), we see that |u′|2 is constant. �

Proposition 2.13. Let uj be a sequence in W 1,1+ε(S1;S2) satisfying

(i) Lε(uj) ≤ C for some C independent of j.
(ii) limj→∞ ‖δLκ,ε(uj)‖ = 0.

Then a subsequence of uj, which we do not relabel, converges strongly in W 1,1+ε to

a critical point u of Lκ,ε with Lε(u) ≤ C.

Proof. To begin, we note that assumption (ii) implies that limj→∞ ‖Gκ,ε(uj)‖ = 0
by Lemma 2.10. Next, assumption (i) implies that the sequence uj is bounded
in W 1,1+ε and hence, passing to a subsequence if necessary, we may assume
that uj converges weakly in W 1,1+ε and strongly in C0 to some limit map u ∈
W 1,1+ε(S1;S2). Next, for j, k large we write

Rjk = Gκ,ε(uj)(uj − uk)−Gκ,ε(uk)(uj − uk).

Then by assumption (ii) and the boundedness of (uj) in W 1,1+ε we see that |Rjk| →
0 as j, k → ∞. On the other hand, using (2.11) we find that

ˆ

S1

((dF )u′

j
− (dF )u′

k
) · (u′

j − u′
k)

= Rjk − (1 + ε)

ˆ

S1

( Auj
(u′

j , u
′
j)

(ε2 + |u′
j |

2)
1−ε
2

−
Auk

(u′
k, u

′
k)

(ε2 + |u′
k|

2)
1−ε
2

)
· (uj − uk)

− κ

ˆ

S1

(
Quj

(u′
j)−Quk

(u′
k)
)
· (uj − uk).

Hence by the convergence properties of (uj) arranged above, together with (2.3),
we see that

(2.16) cε

ˆ

S1

|u′
j − u′

k|
2

(ε2 + |u′
j |
2 + |u′

k|
2)

1−ε
2

= oj,k(1),

where oj,k(1) denotes quantities that tend to zero as j, k → ∞. To continue, we
note by Hölder’s inequality that
ˆ

S1

|u′
j − u′

k|
1+ε =

ˆ

S1

|u′
j − u′

k|
1+ε(ε2 + |u′

j |
2 + |u′

k|
2)

ε2−1

4 (ε2 + |u′
j |
2 + |u′

k|
2)

1−ε2

4

≤

(
ˆ

S1

|u′
j − u′

k|
2(ε2 + |u′

j |
2 + |u′

k|
2)

ε−1

2

) 1+ε
2

(
ˆ

S1

(ε2 + |u′
j |

2 + |u′
k|

2)
1+ε
2

) 1−ε
2

.

This implies by (2.16) and the W 1,1+ε-boundedness of the sequence uj that

lim
j,k→∞

‖u′
j − u′

k‖1+ε = 0.

In other words, the convergence of uj to u is strong in W 1,1+ε. This proves the
first conclusion of the proposition. The second conclusion is obvious. �

Licensed to Cornell Univ. Prepared on Wed Jun  1 19:12:57 EDT 2022 for download from IP 132.174.252.179.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EXISTENCE OF CURVES WITH CONSTANT GEODESIC CURVATURE 9017

3. Existence of non-trivial critical points

To any continuous path γ ∈ C0([0, 1];W 1,1+ε(S1;S2)) starting and ending at
constant maps, the map (t, θ) 	→ γ(t)(θ) is continuous by Sobolev embedding, and
induces a continuous map hγ : S2 → S2. We then define the class of admissible
sweepouts to be

Pε = {γ ∈ C0([0, 1];W 1,1+ε(S1;S2)) | γ(0), γ(1) = constant, deg(hγ) = 1}.

Given γ ∈ Pε and t ∈ [0, 1], we define fγ,t ∈ E(γ(t)) by letting fγ,t(s, θ) = γ(st)(θ).
For κ, ε > 0, the min-max value is defined by

ωκ,ε = inf
γ∈Pε

sup
t∈[0,1]

Lκ,ε(γ(t), fγ,t).

We summarize some basic properties of admissible sweepouts and the min-max
values below.

Lemma 3.1. For κ > 0, ε > 0, the following hold.

(a) The collection Pε is non-empty, and for each γ ∈ Pε, the function t 	→
Lκ,ε(γ(t), fγ,t) is continuous.

(b) 0 ≤ ωκ,ε < ∞.

Proof. For the first assertion of (a), we obtain an element of Pε by parametrizing
appropriately the circles {(x1, x2, 2t − 1) | x2

1 + x2
2 = 1 − (2t − 1)2} for t ∈ [0, 1]

coming from the standard embedding of S2 into R
3. Next, note that for γ ∈ Pε

and t0 ∈ [0, 1], letting A be a simply-connected neighborhood of γ(t0) and LA
κ,ε the

local reduction induced by (γ(t0), fγ,t0), then for t sufficiently close to t0 we have

LA
κ,ε(γ(t)) = Lκ,ε(γ(t), fγ,t).

The second assertion of (a) then follows from Lemma 2.6(b). For part (b), the finite-
ness of ωκ,ε follows easily from part (a). On the other hand, since Lκ,ε(γ(0), fγ,0) =
0 for all γ ∈ Pε, we see that ωκ,ε ≥ 0. �

3.1. Derivative estimates on the min-max value and uniform length

bound.

Proposition 3.2.

(a) Given ε > 0, the function κ 	→ ωκ,ε/κ is non-increasing.

(b) Given κ > 0, we have ωκ,ε ≤ ωκ,1 + 2π for all ε ∈ (0, 1).
(c) Given a sequence εj → 0, for almost every κ0 > 0, there exist a constant c,

and a subsequence of εj, which we do not relabel, such that

0 ≤
d

dκ

∣∣∣
κ=κ0

(
−
ωκ,εj

κ

)
≤ c, for all j.

Proof. For part (a), we note that for κ > κ′ > 0, any u ∈ W 1,1+ε(S1;S2) and any
f ∈ E(u), there holds

(3.1)
Lκ′,ε(u, f)

κ′
−

Lκ,ε(u, f)

κ
=

κ− κ′

κ′ · κ
Lε(u) ≥ 0.

Now, given δ > 0, we may choose γ ∈ Pε such that

max
t∈[0,1]

Lκ′,ε(γ(t), fγ,t) < ωκ′,ε + δ.
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Dividing by κ′ and using (3.1), we deduce that

ωκ,ε

κ
≤ max

t∈[0,1]

Lκ,ε(γ(t), fγ,t)

κ
≤ max

t∈[0,1]

Lκ′,ε(γ(t), fγ,t)

κ′
<

ωκ′,ε

κ′
+

δ

κ′
,

where the first inequality follows from the definition of ωκ,ε. Since δ > 0 is arbitrary,
we get the desired monotonicity.

For part (b) we begin by noting that for all u ∈ W 1,2(S1;S2) and ε ∈ (0, 1) we
have
(3.2)
ˆ

S1

[
(ε2 + |u′|2)

1+ε
2 − ε1+ε

]
dθ ≤

ˆ

S1

(1 + |u′|2)
1+ε
2 dθ ≤

ˆ

S1

(
(1 + |u′|2)− 1

)
dθ+ 2π.

Next, given δ > 0, we may choose γ ∈ P1 such that

max
t∈[0,1]

Lκ,1(γ(t), fγ,t) < ωκ,1 + δ.

Combining this with (3.2) gives

ωκ,ε ≤ max
t∈[0,1]

Lκ,ε(γ(t), fγ) ≤ max
t∈[0,1]

Lκ,1(γ(t), fγ,t) + 2π < ωκ,1 + 2π + δ,

where the first inequality follows from the definition of ωκ,ε and the fact that
P1 ⊂ Pε. Letting δ → 0 yields the asserted inequality.

For part (c), thanks to part (a) and basic real analysis, we know that the deriv-

ative d
dκ

(
−

ωκ,εj

κ

)
exists for almost every κ > 0 and is non-negative. Moreover, for

all 0 < a < b, there holds
ˆ b

a

d

dκ

(
−
ωκ,εj

κ

)
dκ ≤

ωa,εj

a
−

ωb,εj

b
≤

ωa,εj

a
,

where the last inequality follows from Lemma 3.1(b). Thus, by Fatou’s lemma, we
obtain

ˆ b

a

lim inf
j→∞

d

dκ

(
−
ωκ,εj

κ

)
dκ ≤ lim inf

j→∞

ˆ b

a

d

dκ

(
−
ωκ,εj

κ

)
dκ

≤ lim inf
j→∞

ωa,εj

a
≤

ωa,1 + 2π

a
,

where we used part (b) to get the last inequality. Consequently, we have

0 ≤ lim inf
j→∞

d

dκ

(
−
ωκ,εj

κ

)
< ∞, for almost every κ ∈ (a, b).

The result follows from the arbitrariness of a and b. �

We next explain how the derivative estimate in Proposition 3.2 translates into
uniform length upper bounds.

Proposition 3.3. Suppose for some κ > 0 and ε ∈ (0, 1/2) we have

d

dκ

(
−

ωκ,ε

κ

)
≤ c.

Then for large enough n there exist sweepouts γn ∈ Pε with the following properties:

(a) maxt∈[0,1] Lκ,ε(γn(t), fγn,t) ≤ ωκ,ε +
κ
n .

(b) Lε(γn(t)) ≤ 8κ2c whenever Lκ,ε(γn(t), fγn,t) ≥ ωκ,ε −
κ
n .
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Proof. We define κn = κ−(4cn)−1 and note that by the assumed derivative bound,
for large enough n there holds

(3.3)
1

κ− κn

(ωκn,ε

κn
−

ωκ,ε

κ

)
≤ 2c.

By the definition of ωκn,ε, we may choose γn ∈ Pε such that

(3.4) max
t∈[0,1]

Lκn,ε(γn(t), fγn,t) < ωκn,ε +
κn

2n
.

Then from (3.1) and (3.3) we get

1

κ
max
t∈[0,1]

Lκ,ε(γn(t), fγn,t) ≤
1

κn
max
t∈[0,1]

Lκn,ε(γn(t), fγn,t) <
ωκn,ε

κn
+

1

2n
≤

ωκ,ε

κ
+

1

n
.

This proves property (a). To check (b), suppose for some t we have

1

κ
Lκ,ε(γn(t), fγn,t) ≥

ωκ,ε

κ
−

1

n
.

Combining this with (3.4) and (3.1),

1

κn · κ
Lε(γn(t)) ≤

1

κ− κn

(ωκn,ε

κn
−

ωκ,n

κ
+

3

2n

)

≤
1

κ− κn

(ωκn,ε

κn
−

ωκ,ε

κ

)
+ 6c

≤ 8c,

where we used (3.3) to get the last line. Consequently,

Lε(γn(t)) ≤ 8κ2c,

as asserted in (b). �

3.2. Existence of non-trivial critical points for the perturbed functional.

Lemma 3.4. Given κ > 0, there exist positive constants η1, η2 > 0 and ε0 < 1/2,
depending only on κ, such that if ε ∈ (0, ε0), γ ∈ Pε and t0 ∈ [0, 1] are such that

Lε(γ(t0)) < η1,

then

Lκ,ε(γ(t0), fγ,t0) < max
t∈[0,1]

Lκ,ε(γ(t), fγ,t)− η2.

Proof. We first note that there exists α0 > 0 such that maxt∈[0,1] L(γ(t)) ≥ α0, for
otherwise the induced map hγ would be homotopic to a constant, contradicting the
definition of Pε. By Lemma 2.4(a), provided ε0 < α0

2A0
, this means

max
t∈[0,1]

Lε(γ(t)) ≥ (
α0

2A0
)1+ε ≥ (

α0

2A0
)2 =: α1.

Thus, with η1 < α < α1 (η1 and α to be determined), there must exist some t′ �= t0
so that Lε(γ(t

′)) = α. Assuming, without loss of generality, that t′ > t0, we let
t1 = inf{t > t0 | Lε(γ(t)) ≥ α}. In particular

(3.5) Lε(γ(t)) ≤ α for all t ∈ [t0, t1],

with equality holding at t = t1. Next we claim that

(3.6) |A(fγ,t1)−A(fγ,t0)| ≤ Cε2 + Cα
1
3

(
Lε(γ(t0)) + Lε(γ(t1))

)
,
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with C independent of ε. To see this, we choose arbitrary points ci ∈ γ(ti)(S
1)

(i = 0, 1) and note that since by Lemma 2.4(a) and (3.5),

(3.7) ‖γ(ti)− ci‖∞ ≤ L(γ(ti)) ≤ A0

(
ε+ α

1
1+ε

)
≤ A0(ε0 + α

2
3 ),

it makes sense to define the following extension of γ(ti) provided α, ε0 are sufficiently
small depending on A0 and the constant δ0 from Lemma 2.1:

hi(s, θ) = Π
(
sγ(ti)(θ) + (1− s)ci

)
.

A direct computation as in the proof of Lemma 2.4(c) shows that

(3.8) |A(hi)| ≤ C‖γ(ti)− ci‖∞L(γ(ti)) ≤ C
(
L(γ(ti))

)2
,

where C depends only on K := ‖dΠ‖∞. Note also that |
(
hi(s, ·)

)
θ
| ≤ K|γ(ti)θ|,

and thus

Lε(hi(s, ·)) + 2πε1+ε =

ˆ

S1

(
ε2 + |(hi(s, ·))θ|

2
) 1+ε

2 dθ

≤ K1+ε(Lε(γ(ti)) + 2πε1+ε) ≤ K2(α+ 2πε1+ε), for all s ∈ [0, 1].

In other words,

Lε(hi(s, ·)) ≤ K2α+ 2π(K2 − 1)ε0 < K2(α+ 2πε0).

Combining this with (3.5), we see that, decreasing α, ε0 further if necessary so that
(1 +K2)(α+ 2πε0) < α1, the concatenation h0 − fγ,t0 + fγ,t1 − h1 induces a null-
homotopic map from S2 to itself. Consequently by (3.8), Lemma 2.4 and (3.5) we
infer that

|A(fγ,t1)−A(fγ,t0)| ≤ |A(h0)|+ |A(h1)|

≤ C
(
(Lε(γ(t0)))

1
1+ε + ε

)2
+ C

(
(Lε(γ(t1)))

1
1+ε + ε

)2

≤ Cε2 + C
(
Lε(γ(t0))

) 2
1+ε + C

(
Lε(γ(t1))

) 2
1+ε

≤ Cε2 + Cα
1−ε
1+ε

(
Lε(γ(t0)) + Lε(γ(t1))

)
,

which implies the claim since 1−ε
1+ε > 1

3 if ε ∈ (0, 1/2). We next use (3.6) and the
triangle inequality to compute

Lκ,ε(γ(t1), fγ,t1)−Lκ,ε(γ(t0), fγ,t0)≥Lε(γ(t1))−Lε(γ(t0))−κ|A(fγ,t1)−A(fγ,t0)|

≥ (1− Cκα
1
3 )Lε(γ(t1))− (1 + Cκα

1
3 )Lε(γ(t0))− Cκε2

> (1− Cκα
1
3 )α− (1 + Cκα

1
3 )η1 − Cκε20,

where we used the fact that Lε(γ(t1)) = α and Lε(γ(t0)) < η1 to get the last line.

Upon requiring, in addition to the above thresholds on α and ε0, that Cκα
1
3 < 1/2,

and then choosing η1 and ε0 so that (1 + Cκα
1
3 )η1 < α/8 and Cκε20 < α/8, we

conclude the proof with η2 = α/4. �

In the pseudo-gradient flow argument below, we shall only deform the sweepouts
where Lκ,ε is close to the min-max value ωκ,ε. In such regions there is in fact a
single well-defined reduction of Lκ.ε. Specifically, fixing ε ∈ (0, 1/2), κ > 0 and
r < 1

4κAreag(S
2), we define

N = {u ∈ W 1,1+ε(S1;S2) | |Lκ,ε(u, f)− ωκ,ε| < r for some f ∈ E(u)}.
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By Lemma 2.4(c) it’s not hard to see that N ∩ {L(u) < C} is open for all C < ∞,
and hence N is open. We next define the reduction on N mentioned above. Given
u ∈ N , we choose f ∈ E(u) such that |Lκ,ε(u, f)− ωκ,ε| < r and set

LN
κ,ε(u) = Lκ,ε(u, f).

Note that LN
κ,ε(u) is well-defined since by Lemma 2.1(a) and our choice of r, any

two such choices of extensions in E(u) enclose the same area.

Lemma 3.5. LN
κ,ε is a C1-functional on N , and δLN

κ,ε = δLκ,ε on N .

Proof. We will show that each u0 ∈ N has a simply-connected neighborhood A on
which LN

κ,ε coincides with LA
κ,ε, which implies the result by Lemma 2.6(b). To that

end, let f0 ∈ E(u0) be an extension such that LN
κ,ε(u0) = Lκ,ε(u0, f0) and consider

the local reduction LA
κ,ε induced by (u0, f0) on a simply-connected neighborhood A

of u0. In particular LA
κ,ε(u0) = LN

κ,ε(u0). Now by Lemma 2.4(c) and the openness
of N , we may choose A so that A ⊂ N and

|LA
κ,ε(u)− LA

κ,ε(u0)| < r for all u ∈ A.

Then for u ∈ A we have

|LA
κ,ε(u)− LN

κ,ε(u)| ≤ |LA
κ,ε(u)− LA

κ,ε(u0)|+ |LN
κ,ε(u0)− ωκ,ε|+ |ωκ,ε − LN

κ,ε(u)|

< 3r < κVolg(S
2),

which implies LA
κ,ε(u) = LN

κ,ε(u) by Lemma 2.1(a). �

Proposition 3.6. Given κ > 0, ε ∈ (0, ε0), suppose for some c > 0 there exist

sweepouts γn ∈ Pε satisfying the conclusions of Proposition 3.3. Then, passing to

a subsequence if necessary, there exist tn ∈ [0, 1] such that

(a) |Lκ,ε(γn(tn), fγn,tn)− ωκ,ε| ≤
κ
n .

(b) γn(tn) converges strongly in W 1,1+ε(S1;S2) to a critical point u of Lκ,ε with

Lε(u) ≤ 8κ2c, and Lκ,ε(u, f) = ωκ,ε for some f ∈ E(u).

(c) η1 ≤ Lε(u). In particular u is non-constant.

Proof. For brevity we write αn = κ/n and C0 = 8κ2c, and let

Jn = {t ∈ [0, 1] | Lκ,ε(γn(t), fγn,t) > ωκ,ε − αn}.

In = {t ∈ [0, 1] | Lκ,ε(γn(t), fγn,t) ≥ ωκ,ε − αn/2}.

With r as chosen above Lemma 3.5, we first want to prove the following statement:

For all β ∈ (0, r), there exists n0 ∈ N such that

(∗) inf{‖δLκ,ε(γn(t))‖ | t ∈ Jn} < β, for all n ≥ n0.

Assume by contradiction that there exists some β ∈ (0, r) and a subsequence
which we do not relabel, such that for all n, we have

(3.9) ‖δLκ,ε(γn(t))‖ ≥ β for all t ∈ Jn.

Letting N be defined as above, then for large enough n we have γn(t) ∈ N provided
t ∈ Jn, in which case

(3.10) Lκ,ε(γn(t), fγn,t) = LN
κ,ε(γn(t)).
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Next, following the proof of [25, Theorem 3.4] we introduce the sets

K = {u ∈ W 1,1+ε(S1;S2) | δLκ,ε(u) = 0, Lε(u) ≤ C0, Lκ,ε(u, f) = ωκ,ε

for some f ∈ E(u)}.

Uδ = {u ∈ N | ‖δLκ,ε(u)‖ < δ, Lε(u) < C0 + δ, |LN
κ,ε(u)− ωκ,ε| < δ}.

Vρ = {u ∈ N | ‖u− v‖1,1+ε < ρ for some v ∈ K}.

By Proposition 2.13 and Lemma 2.4(c) we see that K ⊂ N is a compact set, and
that both {Uδ}δ>0 and {Vρ}ρ>0 form fundamental systems of neighborhoods of K
(see [25, Lemma 2.3]). We briefly explain the argument for {Uδ}δ>0. Assume by
contradiction that there exists a neighborhood B of K and a sequence δj → 0 such
that for all j we can find uj ∈ Uδj \ B. By Proposition 2.13, uj has a subsequence,

which we do not relabel, converging strongly in W 1,1+ε(S1;S2) to u satisfying
δLκ,ε(u) = 0 and Lε(u) ≤ C0. Next, for sufficiently large j, by Lemma 2.4(a)(c),
the strong W 1,1+ε-convergence of uj to u and Sobolev embedding, we see that there
exists fj ∈ E(u) such that

lim
j→∞

|LN
κ,ε(uj)− Lκ,ε(u, fj)| = 0.

Recalling the definition of Uδj and that δj → 0, we deduce that

lim
j→∞

|Lκ,ε(u, fj)− ωκ,ε| = 0,

and hence the sequence Lκ,ε(u, fj) is eventually constantly equal to ωκ,ε by Lemma
2.1(a). This shows that u ∈ K, a contradiction since uj /∈ B for all j.

Returning to the main line of argument, there exist ρ, µ sufficiently small so that

Uβ ⊃ V2ρ ⊃ Vρ ⊃ Uµ.

This implies by (3.9) that for n large enough, the set γn(Jn) is disjoint from Uβ

and hence is separated from Uµ by at least a distance of ρ. That is,

(3.11) Bρ(γn(Jn)) ∩ Uµ = ∅.

On the other hand, if n is so large the αn < µ/2, it is not hard to see with the help
of Lemma 2.4(a)(c), the upper bound in Proposition 3.3(b) and (3.10) that there
exists ρ′ < ρ, independent of n, such that,

(3.12) Bρ′(γn(Jn)) ⊂ {u ∈ N | Lε(u) < C0 + µ, |LN
κ,ε(u)− ωκ,ε| < µ}.

Now since LN
κ,ε is a C

1-functional onN , it possesses a pseudo-gradient vector field

X : N \ C → W 1,1+ε(S1;RN ), where C = {u ∈ N | δLκ,ε(u) = 0} (see [25, Lemma
3.9] or [19, p. 206]), with the property that

(p1) X(u) ∈ Tu for all u ∈ N \ C.
(p2) ‖X(u)‖1,1+ε < 2min{1, ‖δLκ,ε(u)‖}.
(p3) 〈δLκ,ε(u), X(u)〉 < −min{1, ‖δLκ,ε(u)‖}‖δLκ,ε(u)‖.

Consider the flow generated by X, denoted

Φ : {(s, u) | u ∈ N \ C, s ∈ [0, T (u))} → N ,

where T (u) is the maximal existence time for the integral curve starting at u. Then
by property (p2) along with (3.11) and (3.12), we see that for all n large enough
and u ∈ γn(Jn), there holds T (u) ≥ ρ′/2 and

‖δLk,ε(Φs(u))‖ ≥ µ, for s ∈ [0, ρ′/2).
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Combining this with (p3), Proposition 3.3(a) and (3.10), we see that following hold
for all t ∈ Jn: First,

(3.13) LN
κ,ε

(
Φs(γn(t))

)
≤ Lκ,ε(γn(t), fγn,t), for s ∈ [0, ρ′/2).

Second, for n large enough,

(3.14) LN
κ,ε(Φρ′/3(γn(t))) ≤ LN

κ,ε(γn(t))−
ρ′µ2

3
< ωκ,ε +αn −

ρ′µ2

3
< ωκ,ε −αn/2.

To continue, we take a continuous cut-off function ζn so that ζn(t) = 1 on In and
ζn(t) = 0 outside of a compact subset of Jn, and define, for (s, t) ∈ [0, 1]× [0, 1],

Γn(s, t) =

{
Φ
(
sζn(t)ρ

′/3, γn(t)
)

, if t ∈ Jn,
γn(t) , if t /∈ Jn.

Letting γ̃n = Γn(1, ·), then by Lemma 3.4, eventually 0, 1 lie outside of Jn and
hence are still mapped to constants by γ̃n. The continuity properties of the flow Φ
then implies that γ̃n ∈ Pε. Moreover, we claim the following two properties: First
of all,

(3.15) Lκ,ε(γ̃n(t), fγ̃n,t) = Lκ,ε(γn(t), fγn,t), for t /∈ Jn.

Secondly,

(3.16) Lκ,ε(γ̃n(t), fγ̃n,t) = LN
κ,ε(γ̃n(t)), for t ∈ Jn.

To see these, note that given t ∈ [0, 1], we may use Γn to construct a homotopy of
extensions to show that

(3.17) Lκ,ε(γ̃n(t), fγ̃n,t) = Lκ,ε(γ̃n(t), fγn,t + Γn(·, t)),

which implies (3.15) by the definition of Γn and the fact that γn(t) = γ̃n(t) for
t /∈ Jn. As for (3.16), note that by an argument similar to Lemma 3.1(a), for
t ∈ Jn, the function

s 	→ Lκ,ε(Γn(s, t), fγn,t + Γn(·, t)|[0,s])

is continuous on [0, 1]. Hence, by Lemma 2.1(a) it differs from s 	→ LN
κ,ε(Γn(s, t))

by a fixed integer multiple of κ · Areag(S
2). Since the two functions coincide at

s = 0 by (3.10), they agree for s ∈ [0, 1]. This combined with (3.17) give (3.16).
By (3.15), (3.16), (3.13) and (3.14) we see that

Lκ,ε(γ̃n(t), fγ̃n,t) < ωκ,ε −
αn

2
, for all t ∈ In,

and that

Lκ,ε(γ̃n(t), fγ̃n,t) ≤ Lκ,ε(γn(t), fγn,t) ≤ ωκ,ε −
αn

2
, for t /∈ In.

Hence, we conclude that for n sufficiently large there holds

max
t∈[0,1]

Lκ,ε(γ̃n(t), fγ̃n,t) < ωκ,ε −
αn

2
,

which contradicts the fact that γ̃n ∈ Pε, and hence the property (∗) must hold.
Consequently there exists a subsequence of γn, which we do not relabel, and a
sequence of times tn ∈ Jn, such that γn(tn) has, by Proposition 3.3(b) and Propo-
sition 2.13, a subsequence converging strongly in W 1,1+ε to u with δLκ,ε(u) = 0
and Lε(u) ≤ C0.

We are now ready to verify the conclusions of the Proposition. Part (a) is
immediate from the definition of Jn. For part (b) it remains to find f ∈ E(u)
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such that Lκ,ε(u, f) = ωκ,ε. Note that by the same reasoning as in the proof that
{Uδ}δ>0 form a fundamental system of neighborhoods of K, for sufficiently large n
there exists fn ∈ E(u), with the property that

|A(fγn,tn)−A(fn)|

≤ C‖γn(tn)− u‖1,1+ε

(
2ε+ Lε(γn(tn))

1
1+ε + Lε(u)

1
1+ε

)
→ 0 as n → ∞.

Consequently

lim
n→∞

|Lκ,ε(γn(tn), fγn,tn)− Lκ,ε(u, fn)| = 0.

Combining this with (a), which we just proved, and Lemma 2.1(a), we see that
eventually Lκ,ε(u, fn) is constantly equal to ωκ,ε, yielding the desired extension of
u. Finally, part (c) can be deduced from the strong W 1,1+ε-convergence of γn(tn)
to u, together with Lemma 3.4, the definition of Jn, and the fact that αn → 0 as
n → ∞. The proof is complete. �

4. Passage to the limit as ε → 0

In this section we complete the proof of the main existence theorem. By Propo-
sition 3.2(c) and Proposition 3.3, for almost every κ there exists a sequence εj → 0
and a constant c such that for all j, there exist sweepouts {γn} ⊂ Pεj to which
we may apply Proposition 3.6 to extract a non-trivial critical point uj of Lκ,εj

satisfying

(4.1) η1 ≤ Lεj (uj) ≤ 8κ2c.

By Proposition 2.12 we know that uj is smooth, and that lj := |u′
j | is constant.

Consequently, by (4.1) we have

(4.2)
( η1
2π

+ ε
1+εj
j

) 2
1+εj − ε2j ≤ l2j ≤

(
4κ2C

π
+ ε

1+εj
j

) 2
1+εj

− ε2j .

The proposition below finishes the proof of Theorem 1.1.

Proposition 4.1. Passing to a subsequence if necessary, uj converge smoothly

on S1 to a non-trivial limit u which, after reparametrization if necessary, satisfies

|u′| = 1 and

u′′ = Au(u
′, u′) + κQu(u

′).

Proof. Since each uj has constant speed lj , equation (2.14) becomes

(4.3)

ˆ

S1

[
(1+εj)u

′
j ·ψ

′+(1+εj)Auj
(u′

j , u
′
j) ·ψ+κ(ε2j + l2j )

1−εj
2 Quj

(u′
j) ·ψ

]
dθ = 0,

for all ψ ∈ C1(S1;RN ). Since lj is uniformly bounded from above, we infer by
bootstrapping that (uj) is uniformly bounded in Ck(S1;RN ) for all k. Hence we
may extract a subsequence, which we do not relabel, converging smoothly on S1 to
a limit u having constant speed l = limj→∞ lj , which must lie in (0,∞) by (4.2).
Moreover, passing to the limit in (4.3), we see that u satisfies

−u′′ +Au(u
′, u′) + κl ·Qu(u

′) = 0.
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Now reparametrize u by setting v(s) = u(s/l) for s ∈ [0, 2πl]. Then |v′| ≡ 1, and

v′′(s) = l−2u′′(s/l)

= l−2Au(u
′, u′)(s/l) + κl−1 ·Qu(u

′)(s/l)

= Av(v
′, v′)(s) + κ ·Qv(v

′)(s). �

Appendix A. Proofs of some standard estimates

Proof of Lemma 2.5. For (2.3), we let yt = ty1 + (1 − t)y0, and apply the funda-
mental theorem of calculus to write

(
(dF )y1

− (dF )y0

)
· (y1 − y0)

= (1 + ε)
( ˆ 1

0

y1 − y0

(ε2 + |yt|2)
1−ε
2

− (1− ε)
yt · (y1 − y0)

(ε2 + |yt|2)
3−ε
2

yt dt
)
· (y1 − y0)

≥ (1 + ε)

ˆ 1

0

(ε2 + |yt|
2)

ε−3

2

(
|y1 − y0|

2(ε2 + |yt|
2)− (1− ε)|yt|

2|y1 − y0|
2
)
dt

≥ ε(1 + ε)

ˆ 1

0

(ε2 + |yt|
2)

ε−1

2 |y1 − y0|
2dt,

which implies (2.3) since ε < 1 and |yt|
2 ≤ 2|y0|

2 + 2|y1|
2.

Throughout the proof of (2.4), the inequalities (2.1) and (2.2), along with the
fact that

|y1|+ |y0| ≤ C(|y1|
2 + |y0|

2)1/2,

will be used frequently without further comment. To begin, we assume without
loss of generality that |y1| ≥ |y0|, and write

1

1 + ε

(
(dF )y1

− (dF )y0

)
=

(
(ε2 + |y1|

2)ε/2 − (ε2 + |y0|
2)ε/2

) y1
(ε2 + |y1|2)1/2

+ (ε2 + |y0|
2)ε/2

y1 − y0
(ε2 + |y1|2)1/2

+ (ε2 + |y0|
2)ε/2

( 1

(ε2 + |y1|2)1/2
−

1

(ε2 + |y0|2)1/2

)
y0

=: I + II + III.

Estimating I is rather straightforward:

|I| ≤ ||y1|
2 − |y0|

2|
ε
2 ≤ (|y1|+ |y0|)

ε/2|y1 − y0|
ε/2

≤ C(ε2 + |y0|
2 + |y1|

2)ε/4|y1 − y0|
ε/2.

As for II, we note that since |y1| ≥ |y0|, we have

(A.1) ε2 + |y1|
2 ≥

1

2
(ε2 + |y1|

2 + |y0|
2).

Hence

|II| ≤ C(ε2 + |y0|
2 + |y1|

2)ε/2−1/2|y1 − y0|
1−ε/2|y1 − y0|

ε/2

≤ C(ε2 + |y0|
2 + |y1|

2)ε/4|y1 − y0|
ε/2.
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Finally, for III, using (A.1) and the fact that |y0|(ε2 + |y0|2)−1/2 ≤ 1, we have

|III| ≤ (ε2 + |y0|
2)ε/2

|y0|
∣∣(ε2 + |y1|

2)1/2 − (ε2 + |y0|
2)1/2

∣∣
(ε2 + |y0|2)1/2(ε2 + |y1|2)1/2

≤ (ε2 + |y0|
2 + |y1|

2)ε/2−1/2(|y1|+ |y0|)
1/2|y1 − y0|

1/2−ε/2|y1 − y0|
ε/2

≤ C(ε2 + |y0|
2 + |y1|

2)ε/4|y1 − y0|
ε/2.

Combining the estimates for I, II and III gives (2.4). �

Proof of Lemma 2.10. The first inequality follows since for all ψ ∈ Tu with ‖ψ‖2,2 ≤
1, we have

δLκ,ε(u)(ψ) = Gκ,ε(u)(ψ) ≤ ‖Gκ,ε(u)‖‖ψ‖2,2 ≤ ‖Gκ,ε(u)‖.

For the second inequality, note that by the smoothness of the nearest-point projec-
tion and the chain rule for weak derivatives, the composition Pu : S1 → R

N×N lies
in W 1,1+ε, with

(A.2) ‖Pu‖1,1+ε ≤ C(1 + ‖u′‖1+ε).

Recall also the basic fact that if f, h ∈ W 1,1+ε(S1;RN ), then so does fh, in which
case

(A.3) ‖fh‖1,1+ε ≤ C‖f‖1,1+ε‖h‖1,1+ε.

By (A.2) and (A.3), we see that for all ψ ∈ W 1,1+ε(S1;RN ) with ‖ψ‖1,1+ε ≤ 1,
the matrix-vector product Pu(ψ) belongs to Tu, and satisfies ‖Pu(ψ)‖1,1+ε ≤ C(1+
‖u′‖1+ε). Consequently,

Gκ,ε(u)(ψ) = δLκ,ε(u)(Pu(ψ)) ≤ ‖δLκ,ε(u)‖‖Pu(ψ)‖1,1+ε

≤ ‖δLκ,ε(u)‖ · C(1 + ‖u′‖1+ε).

This proves the second inequality in the statement. �
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