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Ferromagnetic percolation transition in a multiorbital flat band assisted by Hund’s coupling
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By connecting Hund’s physics with flat band physics, we establish an exact result for studying ferromagnetism
in a multiorbital system. We consider a two-layer model consisting of a px , py-orbital honeycomb lattice layer and
an f -orbital triangular lattice layer with sites aligned with the centers of the honeycomb plaquettes. The system
features a flat band that admits a percolation representation for an appropriate chemical potential difference
between the two layers. In this representation, the ground-state space is spanned by maximum-spin clusters of
localized single-particle states, and averaging over the ground states yields a correlated percolation problem with
weights due to the spin degeneracy of the clusters. A paramagnetic-ferromagnetic transition occurs as the band
approaches half filling and the ground states become dominated by states with a large maximum-spin cluster, as
shown by Monte Carlo simulation.
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I. INTRODUCTION

Flat band physics gives rise to rich phases of matter in the
presence of interactions, ranging from Mott insulating and
Wigner crystal states to magnetism and fractional quantum
Hall type topological states [1–16]. However, reaching a rig-
orous theoretical understanding of many-body states in flat
bands is difficult, since flat bands enhance interaction effects.
As a result, nonperturbative techniques and exact results are
particularly valuable.

Flat bands can often be attributed to a large number of
degenerate states that are spatially localized due to destructive
interference. Tight-binding models on line graphs [2] as well
as certain decorated lattices such as the Tasaki lattice [17]
feature flat bands that can be understood through destruc-
tively interfering hopping, as can the flat bands in many more
general graphs [18]. In the presence of a repulsive on-site
Hubbard interaction, these models exhibit saturated ferro-
magnetism when the flat band is half filled [1,19]. Certain
models such as the Tasaki lattice possess a provable ferro-
magnetic phase extending below half filling by realizing a
direct exchange mechanism between overlapping localized
states. In these models, interacting ground states are degen-
erate and spanned by different configurations of clusters of
localized states, with the clusters independently maximizing
spin [1,20]. Since the total spin of each cluster depends only
on its size, the result is a correlated percolation representation
that can be efficiently simulated to find the transition from
paramagnetic states with small clusters at low filling to ferro-
magnetic states with large clusters at high filling [21,22].

Orbital degrees of freedom, essential in many real ma-
terials, can be vital to the formation of a flat band, as
orbital-dependent anisotropic hopping can facilitate the for-
mation of localized states. A particular example of this is the
honeycomb lattice with px and py orbitals at each site and
orbital-dependent nearest-neighbor hopping along the bond

directions, where it was shown in Ref. [3] that both the lowest
and highest bands are flat. The flat band degeneracy can be
attributed to loop states localized around each honeycomb
plaquette where the p orbital at each site is oriented perpen-
dicularly to the outgoing bond, preventing hopping out of the
plaquette due to the bond-projected hopping.

However, in the presence of interactions, flat-band lo-
calized states do not guarantee a provable ferromagnetic
transition based on the percolation representation. Unlike in
the Tasaki lattice, repulsive Hubbard interactions do not lead
to an immediate percolation representation in the px, py-
orbital honeycomb model. To take advantage of the direct
exchange mechanism, Mielke and Tasaki’s scheme [1] re-
quires that no more than two flat band localized states overlap
at any site and that each state satisfy a quasilocality condition,
which leads to a preference for each flat band localized state to
be at most singly occupied. In multiorbital systems, the condi-
tions in Mielke and Tasaki’s scheme are often violated, which
can break the percolation representation. For the p-orbital
honeycomb model [3], the loop states violate both conditions,
with three loop states overlapping at each py orbital on each
site. This can introduce additional states into the interacting
ground-state space that have lower spin within the cluster.

In this paper, we show that the combination of Hund’s
physics and flat band physics can allow a percolation repre-
sentation to be found for multiorbital systems. We construct a
two-layer model consisting of a px- and py-orbital honeycomb
layer together with a triangular lattice f -orbital layer. For
appropriate chemical potential difference between the layers,
the system features a flat band spanned by localized states
centered on each f orbital. We show that when this band is the
highest energy band and at least half filled, the system admits a
percolation representation in the presence of Hund’s coupling
between the p orbitals. This result goes beyond Mielke and
Tasaki’s scheme [1] and allows three localized states to over-
lap on site, which is useful for honeycomb lattice systems.
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FIG. 1. Top view of the two-layer lattice. Red and blue respec-
tively denote positive and negative lobes for the p- and f -orbital
wave functions. (a) Examples are shown of hopping t f between f
orbitals, tp between p orbitals along the honeycomb bond direction,
and t f p between f and p orbitals perpendicular to the hopping direc-
tion. (b) A localized state formed by a superposition of an f orbital
and a surrounding loop of p orbitals with alternating signs.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the multiorbital flat band model with in-
traorbital Hubbard interactions and Hund’s coupling. We then
discuss the localized single-particle flat band states that will
be useful for establishing the percolation representation. In
Sec. III, we first review Mielke and Tasaki’s scheme for perco-
lation representations, then prove a Hund’s coupling-assisted
percolation representation using the localized flat band states
for our multiorbital system, and finally present Monte Carlo
simulation results for the ferromagnetic percolation transition.

II. MULTIORBITAL FLAT BAND MODEL

In order to find a multiorbital flat band system that admits
a percolation representation, we construct a model where the
flat band is described by suitable localized states. The model
system consists of spin-1/2 electrons in a two-layer system
with one layer a px, py-orbital honeycomb lattice and the other
a triangular lattice with one fy(3x2−y2 ) orbital per site. The f -
orbital triangular lattice sites are aligned with the centers of
the p-orbital honeycomb plaquettes. The set of p-orbital and
f -orbital sites will respectively be labeled �p and � f , with
the overall two-layer lattice � = �p � � f .

For our model, the kinetic part of the Hamiltonian in-
cludes hopping within the p- and f -orbital layers as well
as between nearest f and p orbitals, HK = Hp

K + H f
K + H f p

K ,
with hopping terms depicted in Fig. 1(a). Hp

K consists of
nearest-neighbor hopping between p orbitals projected along
the honeycomb bond direction, which describes σ bonding:

Hp
K = tp

∑
r∈�A

p

∑
σ=↑,↓

3∑
i=1

p†
r+vi,vi,σ pr,vi,σ + H.c., (1)

where the hopping amplitude tp > 0, since the projected p
orbitals are odd under reflection through the σ bond. �A

p is
the A sublattice of the p-orbital layer and pr,vi,σ = v̂i · pr,σ
is the projection of the px, py orbitals at site r in the bond
direction v̂i. The vectors vi are the nearest-neighbor vectors
v1 = (1, 0), v2 = (− 1

2 ,
√

3
2 ), v3 = (− 1

2 ,−
√

3
2 ). Here we take

the honeycomb lattice bond length to be 1. This px, py-
orbital model has been previously discussed, for example, in
Refs. [3,23–25].

The f -orbital layer forms a triangular lattice with sites
R aligned with the centers of the p-orbital honeycombs and
features nearest-neighbor hopping given by

H f
K = t f

∑
R∈� f

∑
σ=↑,↓

6∑
i=1

f †
R+wi,σ

fR,σ + H.c., (2)

where t f > 0, for reasons similar to tp > 0, and wi are the
six nearest-neighbor vectors on the f -orbital triangular lat-
tice, wi = √

3(cos φi, sin φi ) with φi = π
6 (2i − 1) and i =

1, . . . , 6.
Hopping between layers involves nearest p- and f -orbital

sites. Due to symmetry of the fy(3x2−y2 ) orbitals, only the px, py
orbitals directed perpendicularly to the in-plane hopping di-
rection are involved in the hopping, as shown in Fig. 1(a). The
hopping between the layers is then described by

H f p
K = t f p

∑
R∈� f

∑
σ=↑,↓

6∑
i=1

(−1)i−1 f †
R,σ

pR+ui,u⊥
i ,σ + H.c., (3)

where t f p > 0 and ui = (cos θi, sin θi ) with θi = π
3 (i − 1), a

reordering of the v vectors. In particular, R + ui ∈ �p when
R ∈ � f . Here u⊥

i are defined to be unit vectors perpendicu-
lar to ui with sign chosen so that u⊥

i+1 is a π/3 rotation of
ui. Thus, u⊥

i = (− sin θi, cos θi ). The alternating sign in the
hopping amplitude is due to the fact that the fy(3x2−y2 ) orbital
changes sign under π

3 rotation. To interpret the model as a
two-layer system, the ui vectors can be thought of as the
xy-plane component of the vector between the f orbitals on
� f and the adjacent p orbitals on �p, with the z component
being a small interlayer distance.

The chemical potentials for the p and f orbitals are given
by Hμ = −μpN̂p − μ f N̂ f , where the total number operator
for p-orbital electrons is N̂p = ∑

r∈�p

∑
p=px,py

∑
σ=↑↓ nr,p,σ

with nr,px,σ = p†
r,x̂,σ pr,x̂,σ and a similar expression for nr,py,σ .

The total number operator for f -orbital electrons is de-
fined similarly, N̂ f = ∑

R∈� f

∑
σ=↑↓ nR, f ,σ with nR, f ,σ =

f †
R,σ fR,σ . In a layered material, the chemical potential dif-

ference between the p- and f -orbital layers can in principle
be controlled by gating. For an appropriate chemical potential
difference, we will see that the model admits the desired flat
band for any particular hopping amplitudes.

The on-site intraorbital Coulomb interaction is described
by the Hubbard U terms for p and f orbitals. Written in a
particle-hole-symmetric form, the Hubbard interaction Hamil-
tonian HU is

HU = Up

∑
r∈�p

∑
p=px,py

(
nr,p,↑ − 1

2

)(
nr,p,↓ − 1

2

)

+Uf

∑
R∈� f

(
nR, f ,↑ − 1

2

)(
nR, f ,↓ − 1

2

)
, (4)

which can also be written in terms of H ′
U =

Up
∑

r∈�p

∑
p=px,py

nr,p,↑nr,p,↓ +Uf
∑

R∈� f
nR, f ,↑nR, f ,↓ as

HU = H ′
U − Up

2 N̂p − Uf

2 N̂ f + 2Up|�p|+Uf |� f |
4 . This alternate
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expression, which separates the two-particle interaction H ′
U

from terms that shift the chemical potential will be convenient
for studying the interacting ground states in Sec. III. We will
consider only the repulsive case with Up,Uf > 0.

As we will see, the intraorbital Hubbard interactions alone
are not sufficient for the percolation representation we discuss
in Sec. III B. The ability of the Hund’s coupling in multiorbital
systems to polarize electrons in degenerate orbitals will be
essential. The on-site Hund’s coupling between px and py
orbitals is

HJ = −J
∑
r∈�p

(
Sr,px · Sr,py − 1

4
nr,px nr,py

)
, (5)

where Sir,px/y = 1
2

∑
μ,ν=↑,↓ p†

r,x̂/ŷ,μσ i
μν pr,x̂/ŷ,ν with Pauli ma-

trices σ i, i = x, y, z, and the Hund’s coupling J > 0. The
number operators without a spin index count both spin up and
down, such as nr,px = ∑

σ=↑,↓ nr,px,σ . The Hund’s coupling
energy is J for an on-site interorbital singlet and zero for a
triplet state.

We now study the structure of the flat bands in the non-
interacting model and examine the localized flat band states.
In the absence of the hopping between f and p orbitals, the
p-orbital layer described by Hp

K − μpN̂p is known to exhibit
flat bands at energies Ep,± = ± 3

2 tp − μp [3,23,24]. The lower
flat band for spin σ is spanned by localized p-orbital loops
with alternating sign |ψ−(p)

R,σ
〉 = 1√

6

∑6
i=1(−1)i−1p†

R+ui,u⊥
i ,σ

|0〉
on each honeycomb, where the f orbital site R ∈ � f is used
to label the surrounding honeycomb. The upper flat band
is spanned by |ψ+(p)

R,σ
〉 = 1√

6

∑6
i=1 p

†
R+ui,u⊥

i ,σ
|0〉. These loop

states feature a superposition of px and py orbitals to form
a p orbital perpendicular to the outgoing bond that cannot hop
out due to the bond-projected hopping. These states can also
be thought of as localized due to destructive interference in
the px, py basis.

In the presence of the f -orbital layer and interlayer hop-
ping, Hf p hybridizes the p- and f -orbital bands. In general,
this hybridization disperses the p-orbital flat band at energy
Ep,−, while the flat band at Ep,+ remains flat due to destructive
interference at the f -orbital sites. We can find conditions
under which there is a flat band at an energy Ef p with eigen-
states involving both p and f orbitals by taking the ansatz
|ψR,σ 〉 ≡ a|ψ−(p)

R,σ
〉 + b| fR,σ 〉, with a and b determined by

HK |ψR,σ 〉 = (Ep,− − μp)a
∣∣ψ−(p)

R,σ

〉 + 6t f pa| fR,σ 〉
+ t f pb

∣∣ψ−(p)
R,σ

〉 − μ f b| fR,σ 〉

+ (−at f p + bt f )
6∑

i=1

| fR+wi,σ 〉

= Ef p|ψR,σ 〉. (6)

The state

|ψR,σ 〉 = Nt
(
t f

∣∣ψ−(p)
R,σ

〉 + t f p| fR,σ 〉) (7)

FIG. 2. For μp = 0, tp = 5, t f = 1, and t f p = 4.5, plots are
shown of (a) the band structure of HK in the first Brillouin zone with
μ f = μc

f and (b) the energy of the top band as a function of ky and
μ f . At μ f = μc

f , the top band is flat.

with normalization Nt = 1/
√
t2
f + t2

f p is an eigenstate with
energy Ef p = Ep,− + t2

f p/t f as long as μ f = μc
f with

μc
f ≡ μp + 6t f + 3

2
tp − t2

f p

t f
. (8)

The state |ψR,σ 〉 is localized to the f -orbital site R and the
neighboring p-orbital sites, as shown in Fig. 1(b). These local-
ized states at different R are degenerate and form a complete
basis for the flat band with energy Ef p. To see that |ψR,σ 〉
for all R span the Ef p flat band, note that these states are
linearly independent since only |ψR,σ 〉 has nonzero amplitude
at the f -orbital site R. This set of linearly independent states
has the same dimension as the flat band, the Ef p eigenspace,
since one state is associated with each unit cell. This argument
assumes no other bands touch the Ef p flat band, which is true
for a range of parameters as we will now see by examining the
dispersive bands.

When μ f = μc
f , there are five bands including the two flat

bands at energies Ef p and Ep,+ and three dispersive bands with
energies

E2,±(k) = −μp ± tp
2

√
4 cos

3kx
2

cos

√
3ky
2

+ 2 cos
√

3ky + 3,

E1(k) = −3tp
2

− μp + 2t f

(
2 cos

3kx
2

cos

√
3ky
2

+ cos
√

3ky − 3

)
, (9)

as shown in Fig. 2(a). In fact, E2,± are exactly the dispersive
bands of the p-orbital model Hp

K [3]. When μ = μc
f , the ad-

dition of the f -orbital layer leaves the dispersive bands and
one flat band, Ep,+, of the p-orbital layer unchanged, while
introducing a dispersive band E1(k) and involving f orbitals
in the remaining flat band Ef p. The flat band at energy Ef p

will be useful for the percolation representation. It is the
highest energy band and well separated from the lower bands
when t2

f p > 3tpt f , which we will assume is the case below. In
Fig. 2(b), the energy of the top band with a μ f shift is plotted
as a function of μ f − μc

f and ky, showing band curvature
decreasing until the band becomes flat band at μ f = μc

f .
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As we will see in the next section, the structure of the
localized states in the flat band at energy Ef p allows a per-
colation representation to be found for the interacting ground
states. At any particular f -orbital site R, only one localized
state |ψR,σ 〉 is nonzero. This will be a valuable feature for
studying the interacting system, since, using the localized
states to construct many-body states, the Hubbard interaction
at each f orbital will give an energetic preference against
doubly occupied states. The combination of Hund’s coupling
and Hubbard interactions on the p-orbital sites will then lead
to spin exchange symmetry between overlapping localized
states and thus to the percolation representation.

III. FERROMAGNETIC PERCOLATION
IN INTERACTING FLAT BANDS

Before discussing the main result, we first briefly review
the percolation representation in the Hubbard model studied
by Mielke and Tasaki [1]. We then present and prove our
results for the model discussed in Sec. II, where the presence
of Hund’s coupling plays an important role.

A. Mielke-Tasaki percolation in flat-band Hubbard models

For a system where the lowest-energy single-particle band
is flat, a percolation representation of ferromagnetism in the
flat band was found in Ref. [1] in terms of a linearly inde-
pendent set of Nd states {ϕu(r)} spanning the space of the flat
band. In this notation, r is a lattice site and u labels the state
ϕu. The index set of all state labels u is denoted �ϕ . The per-
colation representation applies under two further conditions.
First is quasilocality, which requires each single-particle state
to have a special site in its support where every other state
vanishes, i.e., for each u there is an r∗

u such that ϕv (r∗
u ) �= 0

if and only if v = u. Second is that no more than two states
can overlap at any site, i.e., for any site r there are at most two
states u and v such that ϕu(r) �= 0 and ϕv (r) �= 0. Two states u
and v are said to be directly connected or overlapping if there
is such a site r where both states are nonzero.

Under these conditions, Ref. [1] found that if the number
of electrons satisfies Ne � Nd , the ground states of the in-
teracting system in the presence of a repulsive single-orbital
Hubbard interaction can be written as a linear superposition
of states formed from clusters of single-particle states with
maximum total spin.

The ground-state space being spanned by the cluster states
yields a percolation representation where typical ground states
are paramagnetic at low filling and ferromagnetic at high
filling. If filling is low, a typical ground state consists of small,
independent clusters that individually maximize spin but can
have low total spin. If filling is high, there is typically one
macroscopic cluster dominating the total spin. In particular,
if Ne = Nd , the ground-state space is spanned by fully spin-
polarized states with trivial spin degeneracy. The above result
from Ref. [1] thus allows for a filling-dependent ferromag-
netic transition to be studied by treating the transition as a
geometric percolation problem with additional spin weights
due to the cluster Sz degeneracy [21].

This percolation representation was proven by constructing
Ne-particle interacting states from single-particle flat band

states and requiring the interacting states to have minimum
Hubbard interaction energy, giving a ground state of the inter-
acting system since the flat band minimizes the kinetic energy.
In the proof of this result, the quasilocality condition is used
to prevent double occupation of single-particle states, and the
requirement that an overlap between single-particle states at
a particular site involves only two states u and v yields the
fact that the overall state is symmetric under swapping the
spins of u and v, indicating maximum total spin in the cluster.
Violating either of these conditions can lead to clusters with
lower total spin that still have zero interaction energy.

For the model in Sec. II, the localized states shown in Fig. 1
satisfy quasilocality, as only one such state is nonzero at each
f orbital, but the conditions of the above theorem do not hold
since three single-particle states have nonzero amplitude in
the py-orbital component on each honeycomb lattice site r ∈
�p. Thus, just the interaction HU is insufficient to produce
a percolation representation of maximum-spin clusters in our
multiorbital model, and we will find that the combination of
HU and HJ allows for a percolation representation. We note as
well that the f orbitals allowing quasilocality to be satisfied
in the basis of localized states |ψR,σ 〉 is necessary to find a
percolation representation in terms of these localized states.
Using features of the proof of our main result in Sec. III B, we
demonstrate in Appendix A an explicit example with a lower-
than-maximum-spin cluster for the flat bands of the p-orbital
Hamiltonian Hp

K even when intraorbital Hubbard interactions
and Hund’s coupling are both considered.

B. Hund’s coupling-assisted percolation representation

We will now see, by studying the model in Sec. II, that
the presence of Hund’s coupling can allow a percolation rep-
resentation to be found for certain multiorbital systems even
when there are overlaps between more than two localized
states on one site. The argument proceeds as follows. First, we
perform a particle-hole transformation to study a model with
a lowest-energy flat band. Next, we write an arbitrary ground
state as a superposition of Ne-particle states in the localized
state basis. Then, we require the ground state to be a zero-
energy eigenstate of the the Hund’s coupling as well as the
intraorbital Hubbard interaction in the f , px, and py orbitals.
This will show that when the particle-hole-transformed flat
band is at most half filled, the ground-state space is spanned
by states with maximum-spin clusters. Finally, we invert the
particle-hole transformation to show that when the highest-
energy flat band of the original system is at least half filled, the
ground-state space is also spanned by states with maximum-
spin clusters.

Since the many-electron states used for the percolation
representation will be constructed from the localized single-
particle flat band states |ψR,σ 〉 in Eq. (7), we begin by defining
a creation operator a†

R,σ
for the localized state |ψR,σ 〉 centered

at site R ∈ � f ,

a†
R,σ

≡
∑
R∈� f

ϕR(R, f )c†
σ (R, f ) +

∑
r∈�p

p=px, py

ϕR(r, p)c†
σ (r, p)

≡ ϕR · c†
σ , (10)
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with c†
σ a compact notation for f -, px-, and py-orbital elec-

tron creation operators on the entire lattice � as a (|� f | +
2|�p|)-component vector. The wave function ϕR is compactly
supported, taking nonzero values only for the f orbital at
R and the px and py orbitals at R + ui for i = 1, 2, . . . , 6,
as shown in Fig. 1(b). In this notation, a component of c†

σ

will be labeled c†
σ (r, or ) where r is a site on the lattice and

or is the orbital index at that site. Thus, if r = R ∈ � f ,
or ∈ Or = { f }, and c†

σ (R, f ) = f †
R,σ . Similarly, if r ∈ �p,

or ∈ Or = {px, py}. The dot product notation is a shorthand
for summing over all sites and orbitals. The subscript R ∈ � f

in ϕR identifies the localized state centered at R.
The maximum-spin cluster states that will span the ground-

state space for appropriate filling are defined by selecting
a subset A ⊂ � f and placing one single-particle localized
state ϕR at each R ∈ A. The set A can then be partitioned
into A = ⊔n

k=1Ck , where Ck are disjoint clusters, and two
states labeled by R,R′ ∈ A belong to the same cluster if
they are overlapping or connected by a path of overlapping
states. Since total spin is maximized within each cluster, these
states can be constructed from states |
A↑〉 = ∏

R∈A a
†
R,↑|0〉

or |
(h)
A↑〉 = ∏

R∈A aR,↑|F 〉, depending on whether the flat
band is the lowest- or highest-energy band. Here |F 〉 =∏

r∈�

∏
or∈Or

c†
↑(r, or )c†

↓(r, or )|0〉 is the fully filled state and
the orbital product is over Or, the set of all orbitals or at
site r.

For the particle-hole transformed Hamiltonian, where the
flat band is the lowest-energy band, the Sz spin of each
cluster can be lowered by a cluster spin-lowering opera-
tor S−

Ck
= ∑

(r,or )∈Vk S
−
r,or with S−

r,or = c†
↓(r, or )c↑(r, or ) acting

on Vk = {(r, or )|ϕR(r, or ) �= 0 for anyR ∈ Ck}, the set of or-
bitals where at least one state in the cluster is nonzero.
For the original Hamiltonian, where the flat band is the
highest-energy band, the analogous operator acting on holes is
S(h)−
Ck

= ∑
(r,or )∈Vk c↓(r, or )c†

↑(r, or ).
For the particle-hole transformed Hamiltonian, found by

replacing creation and annihilation operators fR,σ ↔ f †
R,σ

,

pr,x̂,σ ↔ p†
r,x̂,σ , and pr,ŷ,σ ↔ p†

r,ŷ,σ in H , we find the follow-
ing theorem.

Theorem 1. Consider the particle-hole transformed Hamil-
tonian H (ph) = −HK + HU + HJ − J

2 N̂p − Hμ with t2
f p >

3tpt f and tp, t f , t f p,Up,Uf , J > 0. When Ne � |� f | and
μ f = μ

(ph),c
f ≡ μc

f +Uf /2 −Up/2 + J/2, with μc
f defined in

Eq. (8), the ground-state space of H (ph) is spanned by the
states

∣∣
(ph)
A,{mk}

〉 =
n∏

k=1

(
S−
Ck

) |Ck |
2 −mk |
A↑〉 (11)

with A ⊂ � f and |A| = Ne.
One important detail is that the required μ f in Theorem 1

is not the μc
f for which HK has a highest-energy flat band.

Instead, there is a shift due to the additional chemical potential
terms in the particle-hole-symmetric HU and the particle-hole-
transformed Hund’s coupling HJ − J

2 N̂p. When μ f = μ
(ph),c
f ,

the single-particle terms in H (ph) have a lowest-energy flat
band spanned by the set of states {ϕR}R∈� f . We have dis-

carded additional constant terms in H (ph), as they will not
affect the spectrum or chemical potential condition.

For our original model, we find the following theorem.
Theorem 2. Consider H = HK + HU + HJ + Hμ with

t2
f p > 3tpt f and tp, t f , t f p,Up,Uf , J > 0. When Ne � 4|�p| +

|� f | and μ f = μ
(ph),c
f , defined in Theorem 1, the ground-state

space of H is spanned by

∣∣
A,{mk}
〉 =

n∏
k=1

(
S(h)−
Ck

) |Ck |
2 −mk

∣∣
(h)
A↑

〉
, (12)

where A ⊂ � f , |A| = Ne, and A = ⊔n
k=1Ck where Ck are dis-

joint clusters.
We now proceed with the proof of Theorem 1, from which,

our main result, Theorem 2 immediately follows by a particle-
hole transformation. Importantly, the basis states |
A,{mk}〉
feature maximum total spin within each cluster, since |
A,{mk}〉
is a particle-hole transformation of |
(ph)

A,{mk}〉 and total spin
commutes with particle-hole transformations, as reviewed in
Appendix B.

Proof. Following Ref. [1], we construct operators canoni-
cally conjugate to a†

R,σ by defining

bR,σ = κR · cσ ,
(13)

κR(r, or ) =
∑
R′∈� f

(G−1)R,R′ϕR′ (r, or ),

with GR,R′ = ϕR · ϕR′ the Gram matrix for the states ϕR.
Thus, κR · ϕR′ = δR,R′ implies the canonical anticommutation
relation {bR′,σ ′ , a†

R,σ
} = δR,R′δσ,σ ′ . Note that since there is

overlap between localized states centered on neighboring f
orbitals at R and R′, {aR′,σ ′ , a†

R,σ
} �= 0, and bR will serve as

a more convenient annihilation operator. The states κR serve
as an alternate basis for the flat band, and this Gram matrix
procedure is essentially a method of constructing a dual basis
where each element of the dual basis is orthogonal to all but
one of the vectors in the original basis. This procedure is
similar to the construction of reciprocal lattice vectors from
direct lattice vectors.

Now the original electron operators cσ (r, or ) can be
expressed in terms of the operators bR that annihilate
the single-particle localized flat band states and operators
dσ (r, or ) orthogonal to the flat band. Multiplying the defini-
tion of bR by ϕR(r, or ) and summing over R, dσ (r, or ) can be
defined to express the electron annihilation operators as

cσ (r, or ) =
∑
R∈� f

ϕR(r, or )bR,σ + dσ (r, or ), (14)

where dσ (r, or ) = ∑
r′∈� ψ (r, or; r′, or′ )cσ (r′, o′

r′ ) with
ψ (r, or; r′, o′

r′ ) ≡ δr,r′δor,o′
r′

− ∑
R∈� f

ϕR(r, or )κR(r′, o′
r′ ) a

projection out of the flat band spanned by ϕR and κR. Thus,
{dσ (r, or ), a†

R,σ
} = {dσ (r, or ), b†

R,σ
} = 0. Since the ground

state will be expressed in terms of a†
R,σ

operators, this
construction allows the ground-state condition in the presence
of interactions to be analyzed using only states orthogonal
or canonically conjugate to the single-particle localized flat
band states.
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When it is possible to construct an Ne-electron state from
single-particle flat band states that simultaneously minimizes
the interactions, such a state will be a ground state, and
the ground-state space will be spanned by the collection of
these states. In particular, the n↑n↓ interaction H ′

U and HJ

are positive semidefinite, so when there are states satisfying
H ′
U |
〉 = HJ |
〉 = 0 with energy −NeEf p, these states will

be ground states of H (ph) and can be written

|
(ph)〉 =
∑

A↑,A↓⊂� f

f (A↑,A↓)
∏

R∈A↑∪A↓

∏
σR

a†
R,σR

|0〉, (15)

with constraints on the coefficients f (A↑,A↓) to be deter-
mined by the zero-interaction-energy conditions. Here A↑ and
A↓ are subsets of � f and σR = ↑ or ↓ if R ∈ A↑ or R ∈ A↓.
If R ∈ A↑ ∩ A↓, the product over σR includes both, with the
spin-up operator to the left. The sum over A↑,A↓ is a sum over
all possible such subsets satisfying |A↑| + |A↓| = Ne. We will
see that |
(ph)〉 = 0 if Ne > |� f |.

Since H ′
U and HJ are themselves sums of positive semidef-

inite operators at each site, we first consider the Hubbard
interaction on an f orbital at R, which gives the condition

0 = c↑(R, f )c↓(R, f )|
(ph)〉

=
⎛
⎝d↑(R, f ) +

∑
R′∈� f

ϕR′ (R, f )bR′,↑

⎞
⎠

×
⎛
⎝d↓(R, f ) +

∑
R′′∈� f

ϕR′′ (R, f )bR′′,↓

⎞
⎠|
(ph)〉

⇒ bR,↑bR,↓|
(ph)〉 = 0, (16)

since dσ (r, or ) anticommutes with bR,σ and with the a†
R,σ

operators in |
〉, and ϕR′ (R, f ) �= 0 only when R′ = R.
Thus, since this condition holds for any R ∈ � f , the state
|
(ph)〉 must satisfy f (A↑,A↓) = 0 if A↑ ∩ A↓ �= ∅, or, in other
words, there must be no double occupancy of localized single-
particle states. If Ne > |� f |, this condition can only be met
if |
(ph)〉 = 0, meaning the ground state cannot be expressed
solely in terms of Ne flat band states and must have energy
higher than −NeEf p.

Next, we examine the Hubbard interaction in the px and
py orbitals. Consider a honeycomb cell labeled by R0 ∈ � f

and examine its rightmost vertex, r0 = R0 + u1. Two addi-
tional honeycomb cells, centered at R1 = R0 + w1 and R6 =
R0 + w6, share vertex r0. The corresponding localized single-
particle states ϕRi

have nonzero component in the py orbital at
r0 for all three of R0, R1, and R6, but only R1 and R6 have a
nonzero px component at r0. Excluding the normalization fac-
tor t f /

√
6(t2

f + t2
f p) on the p-orbital components, the nonzero

px components are, ϕR1 (r0, px ) = −
√

3
2 and ϕR6 (r0, px ) =√

3
2 while the nonzero py components are ϕR0 (r0, py) = 1,

ϕR1 (r0, py) = − 1
2 , and ϕR6 (r0, py) = − 1

2 . No other localized
states ϕR are nonzero at r0.

The zero-interaction-energy condition for the px-orbital
Hubbard interaction at site r0 is

0 = c↑(r0, px )c↓(r0, px )|
(ph)〉

=
(∑
i=1,6

ϕRi (r0, px )bRi,↑

)

×
(∑
i=1,6

ϕRi (r0, px )bRi,↓

)
|
(ph)〉

⇒ (
bR1,↑bR6,↓ − bR1,↓bR6,↑

)|
(ph)〉 = 0, (17)

where the last line follows from the no-double-occupancy
condition Eq. (16) and the fact that ϕR0 (r0, px ) = 0. The
condition in Eq. (17) essentially projects out states involv-
ing a spin-singlet component between the states centered
at R1 and R6. Explicitly, this condition gives that for any
configuration where A↑ = B↑ � {R1} and A↓ = B↓ � {R6}
with R1,R6 /∈ B↑,B↓, the coefficients are symmetric un-
der exchange of spins, f (B↑ � {R1},B↓ � {R6}) = f (B↑ �
{R6},B↓ � {R1}). Since the choice of R0 is arbitrary, this
gives the general condition that the state must have spin
exchange symmetry between localized single-particle states
that are nearest neighbors in the y direction, states R and
R′ = R + w2. Equations (16) and (17) are equivalent to the
conditions resulting from quasilocality and the requirement
that no more than two single-particle states overlap at any site
in Ref. [1].

The zero-interaction-energy condition for the py orbitals
involves three overlapping states at any site. For the py orbital
at site r0, using Eqs. (16) and (17),

0 = c↑(r0, py)c↓(r0, py)|
(ph)〉
= ϕR6 (r0, py)ϕR0 (r0, py)

(
bR6,↑bR0,↓ − bR6,↓bR0,↑

)|
(ph)〉
+ ϕR1 (r0, py )ϕR0 (r0, py)

(
bR1,↑bR0,↓ − bR1,↓bR0,↑

)|
(ph)〉
⇒ (

bR6,↑bR0,↓ − bR6,↓bR0,↑
)|
(ph)〉

+ (
bR1,↑bR0,↓ − bR1,↓bR0,↑

)|
(ph)〉 = 0. (18)

While this condition is satisfied for states that maximize spin
(have spin exchange symmetry) between single-particle states
at R6 and R0 as well as between those at R1 and R0, it is not
the case that every state |
〉 satisfying Eq. (18) must have such
spin exchange symmetry. Thus, the percolation representation
is not strictly valid when the only interaction is H ′

U .
The final condition we consider is HJ |
〉 = 0. This condi-

tion can be written using only annihilation operators in HJ by
writing HJ = J

2

∑
r∈�p

nr,S=0, where nr,S=0 = (p†
r,ŷ,↓p

†
r,x̂,↑ −

p†
r,ŷ,↑p

†
r,x̂,↓)(pr,x̂,↑pr,ŷ,↓ − pr,x̂,↓pr,ŷ,↑) ≡ c†

r,S=0cr,S=0 is an
operator that counts whether there is a spin singlet between
the px and py orbitals at site r. The derivation of this operator
identity is shown in Appendix C. In this form, HJ is clearly a
sum of positive semidefinite operators, and HJ |
〉 = 0 if and
only if cr,S=0|
〉 = 0 for every r ∈ �p.
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In terms of localized state operators, the zero-interaction-
energy condition for Hund’s coupling at site r0 is

0 = [c↑(r0, px )c↓(r0, py) − c↓(r0, px )c↑(r0, py)]|
(ph)〉
= ϕR6 (r0, px )ϕR0 (r0, py)

(
bR6,↑bR0,↓ − bR6,↓bR0,↑

)|
(ph)〉
+ ϕR1 (r0, px )ϕR0 (r0, py)

(
bR1,↑bR0,↓ − bR1,↓bR0,↑

)|
(ph)〉
⇒ (

bR6,↑bR0,↓ − bR6,↓bR0,↑
)|
(ph)〉

− (
bR1,↑bR0,↓ − bR1,↓bR0,↑

)|
(ph)〉 = 0, (19)

using the no-double-occupancy condition from Eq. (16) and
the spin triplet condition between R1 and R6 from Eq. (17).
Taking the sum and difference of the conditions in Eqs. (18)
and (19) gives spin triplet conditions between R0 and R1 and
between R0 and R6. In other words, the spin degree of free-
dom must be fully symmetrized among any overlapping states
at r0. This argument holds for any choice of R0, meaning it
applies at any site in the same honeycomb sublattice as r0.
In fact, as can be seen by considering the leftmost site on
the R0-centered honeycomb, r′

0 = R0 + u4, these spin sym-
metrization conditions apply both sublattices of the p-orbital
honeycomb lattice �p. If spin is symmetrized between any
two overlapping localized states, a cluster of localized states
will be fully spin symmetrized, since any two localized states
in a cluster can be connected by a path of overlapping local-
ized states each adjacent pair of which must have symmetrized
spin. Thus, clusters of localized states have maximum total
spin SCk ,tot = |Ck |

2 and ground states for Ne � |� f | can be
written in the form of Eq. (11). �

Theorem 2 follows immediately by particle-hole trans-
formation. In particular, since Theorem 1 requires the
lowest-energy flat band to be at most half filled, Theorem
2 requires the highest-energy flat band to be at least half
filled. The clusters in Eq. (12) are then connected sets of
holes, or singly-occupied localized states, surrounded by a
doubly-occupied background.

In order to interpret Theorem 2 as a percolation representa-
tion, note that when the highest-energy flat band is exactly half
filled, |Ne| = 4|�p| + |� f |, there is a single cluster spanning
the system, and all ground states have total spin |� f |

2 . When
the system is close to fully filled, clusters are small and it is
easy to find combinations of basis states in Eq. (12) with low
total spin. As the highest-energy flat band approaches half
filling, the ground-state space becomes dominated by states
with a large cluster spanning the system and carrying large
spin. There is thus a paramagnetic-ferromagnetic transition
as the system approaches half filling of the top band from
above in the sense that sufficiently close to half filling, the
ground-state space is dominated by states with macroscopic
spin.

C. Monte Carlo simulation of the correlated
percolation transition

With the result in Theorem 2, we can now study the ferro-
magnetic transition in our multiorbital model through Monte
Carlo simulations for correlated percolation. The ground-state
basis in Theorem 2 is first reorganized into a purely geomet-
ric percolation representation by averaging over the cluster

configurations and spins [1,21]. At a fixed filling, whether
typical states in the ground-state space are ferromagnetic can
be determined by considering the total spin S2 averaged over
the ground-state space. Fixing the cluster configuration A and
averaging over the Sz spins {mk} of the clusters gives that the
averaged total spin of the cluster configuration, SA, depends
only on the size of each cluster Ck ⊂ A [1,21]:

S2
A ≡ 1

W (A)

∑
{mk}

〈

A,{mk}

∣∣S2
∣∣
A,{mk}

〉 =
n∑

k=1

|Ck|
2

( |Ck|
2

+ 1

)
.

(20)

This result can be interpreted as a geometric correlated perco-
lation representation for the averaged ground-state spin. For
our model, the percolation problem is defined on the trian-
gular lattice � f where a geometric configuration is specified
by the set of filled sites A ⊂ � f and each configuration has
a weighting factor W (A) = ∑

{mk} 1 = ∏n
k=1(|Ck| + 1). Since

Theorem 2 applies when the highest band in the multiorbital
system is at least half filled, filled sites in the percolation
representation correspond to holes, or singly occupied lo-
calized states, in the multiorbital system. Similarly, empty
sites in the percolation representation correspond to doubly
occupied localized states in the multiorbital system. In the
following discussion, we will refer directly to filled and empty
sites in the percolation representation, with filling density p
corresponding to the hole density per unit cell of the original
model.

At fixed filling p, which defines the canonical ensemble,
the spin averaged over all cluster configurations A in the
ground-state space is

〈S2〉 =
∑

AW (A)S2
A

Z
,

W (A) =
n∏

k=1

(|Ck| + 1),

Z =
∑
A

W (A),

(21)

with the sum over subsets A ⊂ � f with |A| = N = p|� f |,
and the weights W (A) account for cluster Sz degeneracy.
When examining the ensemble averaged spin, it will be useful
to consider the spin fraction s2 ≡ 〈S2〉/S2

max, where S2
max =

N/2(N/2 + 1) corresponds to a configuration with all filled
sites in a single cluster.

It will also be useful to consider the grand canonical en-
semble at fixed fugacity z ≡ eμ̃, which requires the grand
canonical weights

WGC(A) =
n∏

k=1

z|Ck |(|Ck| + 1) (22)

and the corresponding ensemble average involving a sum over
all subsets A ⊂ � f without fixing |A|. The fugacity z and
the corresponding μ̃ used in the grand canonical simulations
couple directly to the percolation representation, or to the
holes in the flat band, and are thus not related to the physical
chemical potentials μp and μ f .
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FIG. 3. (a) Averaged spin fraction s2 in the canonical ensemble
at different fillings p on a triangular lattice of size |� f | = 230 × 230.
Typical configurations are shown on a 150 × 150 system for (b) p =
0.45, (c) p = 0.58, and (d) p = 0.65. Empty sites are white, and the
largest cluster is black. The remaining clusters are colored on a blue-
green scale corresponding to cluster size.

For canonical ensemble simulations, filling is fixed, and
the update step consists of an attempted swap of a randomly
selected filled site with a randomly selected empty site. For
grand canonical ensemble simulations at fixed z, an update
step consists of randomly selecting a site and attempting
to fill it if empty or empty it if filled. A proposed update
from configuration A to A′ is then accepted with probability
min{1,W (A′)/W (A)} or min{1,WGC(A′)/WGC(A)}, depend-
ing on the ensemble. In both cases, simulations are done on the
triangular lattice with periodic boundary conditions. Further
details about the algorithm used for correlated percolation can
be found in Appendix D.

Results for the canonical ensemble in a range of fillings
near the transition are shown in Fig. 3(a). The spin fraction
s2 is near zero, and in fact scales to zero with system size,
when p < p1 ≈ 0.55, and the system is in a paramagnetic
phase with typical configurations having small clusters, as
shown for p = 0.45 in Fig. 3(b). For p1 < p < p2 ≈ 0.63,
the spin fraction grows quickly with p and typical configu-
rations are phase separated, with a region with small clusters
separated from a region with a macroscopic cluster shown for
p = 0.58 in Fig. 3(c). This phase separation behavior, which
does not appear in the standard site percolation problem,
has been previously observed for correlated percolation on
the square lattice in Ref. [21], where it was understood by
interpreting the weights as an effective repulsive interaction.
For p > p2, the largest cluster spreads uniformly throughout
the lattice, as shown for p = 0.65 in Fig. 3(d), and the sys-
tem is ferromagnetic. As p → 1, the system becomes fully
spin polarized. Due to the effective repulsive interaction of
the weights, the fillings p1 and p2 are both larger than the
critical filling pc = 0.5 for standard site percolation on the
triangular lattice [26]. Since the filling p in the percolation
representation corresponds to hole density in the original
multiorbital model, the corresponding electron densities per

FIG. 4. Filling p as a function of fugacity z in the grand canonical
ensemble with different system sizes |� f | = L × L shown in differ-
ent colors. Inset: Histograms of filling at the finite size estimates of zc
for each system size. The histograms use bins of width 1/L2 and are
rescaled by the bin width to give an approximation of the probability
density P(p) that a configuration is at filling p for the particular zc.
Any empty bins are excluded.

unit cell for the paramagnetic phase are ne > 9.45, for phase
separation are 9.45 > ne > 9.37, and for the ferromagnetic
phase are 9.37 > ne � 9 with fully saturated ferromagnetism
at flat band half filling ne = 9.

For grand canonical ensemble simulations, filling p as a
function of flat band fugacity z is shown in Fig. 4 for triangular
lattices with linear dimension L ≡ √|� f |. As the system size
increases, the transition sharpens, suggesting a discontinuity
in p(z) at a critical zc in the thermodynamic limit. For finite
sizes, the estimate of zc is given by the point at which the
histogram of the Monte Carlo configurations features two well
defined peaks with approximately equal height, as shown in
the inset of Fig. 4. For L = 50, jumps between fillings pgc1 =
0.53(1) and pgc2 = 0.64(1) occur at the estimated zc ≈ 1.91.

IV. CONCLUSIONS

We have established an exact result useful for studying fer-
romagnetism in an interacting multiorbital flat band system.
We constructed a multiorbital Hubbard model on a two-layer
lattice consisting of a honeycomb lattice layer of px and
py orbitals and a triangular lattice layer of fy(3x2−y2 ) orbitals
aligned with the centers of the honeycomb plaquettes. For
an appropriate chemical potential difference between the two
layers, the model exhibits two flat bands due to destruc-
tive interference. The presence of Hund’s coupling between
degenerate p orbitals, in addition to repulsive intraorbital
Hubbard interactions, allows the highest-energy flat band to
admit a provable percolation representation for the degener-
ate many-body ground states. Ground states correspond to
configurations of spin-polarized clusters of localized electron
states, leading to a percolation representation for the average
ground-state spin. As the flat band filling varies from fully
filled to half filled, the many-body ground states transition
from a paramagnetic to a ferromagnetic phase, as shown by
Monte Carlo simulations for correlated percolation.
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APPENDIX A: LOWER-SPIN CLUSTERS
IN P-ORBITAL SYSTEM

In this Appendix, we consider just the px- and py-orbital
Hamiltonian H = Hp

K + Hp
U + HJ , including the p-orbital

kinetic Hamiltonian in Eq. (1), the intraorbital Hubbard in-
teractions in the p orbitals Hp

U = Up
∑

r∈�p

∑
p=px,py

(nr,p,↑ −
1
2 )(nr,p,↓ − 1

2 ), as well as Hund’s coupling between p orbitals
in Eq. (5). By use of a simple example, we show that the
loop state basis |ψ−(p)

R,σ
〉 does not admit a simple percolation

representation, as there are states where clusters do not max-
imize total spin. For consistency, we use the notation from
Sec. III B of the main text with the modification that there
are no f -orbital sites and � f is simply the set of honeycomb
plaquette labels. Thus, ϕR(r, or ) describes the component at
orbital or = px, py of site r of a loop state on the plaquette R.
All operators aR,σ and bR,σ are defined similarly to those in
Sec. III B using the wave functions ϕR(r, or ) defined only at
sites r ∈ �p.

Consider an arbitrary plaquette centered at R0 together
with the six surrounding plaquettes centered at Ri = R0 + wi

with i = 1, . . . , 6. The nonzero components at site r1 = R0 +
u1 are ϕR1 (r1, px ) = −

√
3

2 and ϕR6 (r1, px ) =
√

3
2 while the

nonzero py components are ϕR0 (r1, py) = 1, ϕR1 (r1, py) =
− 1

2 , and ϕR6 (r1, py) = − 1
2 , discarding the 1/

√
6 normaliza-

tion factor.
The equivalents of the zero-interaction-energy conditions

in Eq. (17), (18), and (19) in this case are

0 = [
bR1↑bR1↓ + bR6↑bR6↓ − (

bR1↑bR6↓ − bR1↓bR6↑
)]|
〉

0 = [
4bR0↑bR0↓ + bR1↑bR1↓ + bR6↑bR6↓

+ (
bR1↑bR6↓ − bR1↓bR6↑

) − 2
(
bR0↑bR6↓ − bR0↓bR6↑

)
− 2

(
bR0↑bR1↓ − bR0↓bR1↑

)]|
〉
0 = [

bR1↑bR1↓ − bR6↑bR6↓ + (
bR0↑bR6↓ − bR0↓bR6↑

)
− (

bR0↑bR1↓ − bR0↓bR1↑
)]|
〉. (A1)

These equations reduce to the conditions in the main text
when there is a quasilocality site, the f orbitals, that elim-
inates the double occupancy terms bRi↑bRi↓. Thus, these
conditions are satisfied by states with spin exchange sym-
metry when there are no doubly occupied loop states,
meaning states where clusters of loop states maximize spin
remain ground states. There are, however, linearly indepen-
dent ground states that do not maximize spin due to having a

FIG. 5. Two-electron state |
′
R0

〉, which consists of a central
filled spin-up loop surrounded by a superposition of spin-down loops
on the central and six surrounding plaquettes. This state does not
maximize spin despite avoiding the interaction energy.

doubly occupied loop state. One such example is

∣∣
′
R0

〉 = a†
R0↑

6∑
i=0

a†
Ri↓|0〉, (A2)

a two-particle state consisting of a spin-up loop at the R0 pla-
quette surrounded by a superposition of spin-down loops at R0

and the surrounding plaquettes, as sketched in Fig. 5. It can be
verified that the state |
′

R0
〉 satisfies the three zero-interaction-

energy conditions on every site. The conditions in Eq. (A1)
are satisfied by |
′

R0
〉, and the conditions for the remaining

sites can be shown to hold as well and follow from simple
mappings. For example, the conditions at site r2 = R0 + u2

follow from replacing R0 → R1, R1 → R0, and R6 → R2 in
Eq. (A1).

The two-electron state |
′
R0

〉 includes a component
where the state ϕR0

is doubly occupied and has total spin
〈
′

R0
|S2

tot |
′
R0

〉/〈
′
R0

|
′
R0

〉 = 6
7 . The percolation representa-

tion with maximum-spin clusters thus does not hold in the
loop basis for Hp

K . It should be noted that the state |
′
R0

〉 in
Fig. 5, when written in the orbital basis rather than the loop
basis, is equivalent to a two-electron state with one loop state
on the central plaquette and a larger loop on the boundary
of the six neighboring plaquettes. Thus, in the orbital basis,
this state avoids the interaction energy trivially by avoiding
doubly occupied sites. However, this state cannot be written as
a superposition of maximum-spin clusters of single-plaquette
loops, since it has a component where the loop R0 is doubly
occupied, and thus the percolation representation does not
hold in terms of the single-plaquette loop basis.

It is important to note that the lack of a percolation repre-
sentation in the loop state basis does not imply the absence of
ferromagnetism in the phase diagram. Indeed, ferromagnetism
at flat band half filling can be verified using Mielke’s theorem,
according to which a system with a lowest- or highest-energy
flat band is ferromagnetic at flat band half filling for U > 0 if
and only if the orthogonal projection matrix onto the flat band
space is irreducible [29–31]. In fact, the lack of a percolation
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representation in one basis in general does not prevent a per-
colation representation from being found in another choice of
basis, though for the p-orbital Hamiltonian, any other basis
would likely feature overlaps between more than two states
even if quasilocality were satisfied. Thus, while the p-orbital
system is ferromagnetic at flat band half filling, it is difficult
to find a percolation representation with which the onset of
ferromagnetism near flat band half filling can be studied, and
the most natural basis of loop states |ψ−(p)

R,σ
〉 does not admit

such a representation.

APPENDIX B: PARTICLE-HOLE TRANSFORMATION
OF TOTAL SPIN OPERATOR

We show here for completeness that the particle-hole trans-
formation and total spin operators commute. For notational
simplicity, consider electron operators ciσ , absorbing both the
site and orbital indices into the single index i. The total spin
operator can be written

S2
tot =

(∑
i

Si

)2

= 1

4

∑
i, j

∑
μναβ=↑,↓

c†
iμciνc

†
jαc jβσμν · σαβ

= 1

4

∑
i, j

∑
μναβ=↑,↓

(−ciνc
†
iμ + δμν )(−c jβc

†
jα + δαβ )

× σμν · σαβ

= 1

4

∑
i, j

∑
μναβ=↑,↓

ciνc
†
iμc jβc

†
jασμν · σαβ

= S(ph)2
tot , (B1)

which follows from the tracelessness of σ i and the fact that
σμν · σαβ = σνμ · σβα . The particle-hole transformed spin op-
erator is S(ph)

tot = 1
2

∑
i

∑
μν ciμσμνc

†
iν , which is the original

spin operator Stot with the replacement ciμ ↔ c†
iμ. Thus, total

spin is preserved by the particle-hole transformation.

APPENDIX C: HUND’S COUPLING OPERATOR IDENTITY

The Hund’s coupling term HJ is a sum of positive semidef-
inite operators at each honeycomb site,

HJ =
∑
r∈�p

hJ (r),

hJ (r) ≡ −J

(
Sr,px · Sr,py − 1

4
nr,px nr,py

)
,

(C1)

where Sir,px/y = 1
2

∑
μ,ν=↑,↓ p†

r,x̂/ŷ,μσ i
μν pr,x̂/ŷ,ν and nr,px/y =∑

μ=↑,↓ p†
r,x̂/ŷ,μpr,x̂/ŷ,μ. hJ (r) takes its minimum eigenvalue

of 0 when the px and py orbitals at site r are singly occupied
and form a spin triplet state, which can be seen explicitly by
using the Pauli matrix completeness identity

∑3
i=1 σ i

αβσ i
μν =

2δανδβμ − δαβδμν to write

hJ (r) = −J

4

[
−nr,px nr,py +

∑
μ,ν;α,β=↑,↓

p†
r,x̂,μpr,x̂,ν p

†
r,ŷ,α pr,ŷ,β

× (2δανδβμ − δαβδμν )

]

= J

2

(
nr,px,↑nr,py,↓ + nr,px,↓nr,py,↑

− p†
r,x̂,↑pr,x̂,↓p

†
r,ŷ,↓pr,ŷ,↑ − p†

r,x̂,↓pr,x̂,↑p
†
r,ŷ,↑pr,ŷ,↓

)

= −J

2

(
p†
r,x̂,↑p

†
r,ŷ,↓pr,x̂,↑pr,ŷ,↓ + p†

r,x̂,↓p
†
r,ŷ,↑pr,x̂,↓pr,ŷ,↑

− p†
r,x̂,↑p

†
r,ŷ,↓pr,x̂,↓pr,ŷ,↑ − p†

r,x̂,↓p
†
r,ŷ,↑pr,x̂,↑pr,ŷ,↓

)

= J

2
(p†

r,ŷ,↓p
†
r,x̂,↑ − p†

r,ŷ,↑p
†
r,x̂,↓)

× (pr,x̂,↑pr,ŷ,↓ − pr,x̂,↓pr,ŷ,↑)

≡ J

2
nr,S=0. (C2)

The Hund’s coupling term can thus be written in terms of a
sum of singlet number operators.

APPENDIX D: CORRELATED PERCOLATION
SIMULATION ALGORITHM

In this Appendix, we detail the method used for performing
Monte Carlo simulations of the correlated percolation prob-
lem. The method is similar to that used in Refs. [21,22]. As in
the main text, we are considering correlated site percolation
in particular, as opposed to bond percolation. We denote the
graph G = (V,E ) with V the set of vertices and E the set
of edges. The general method does not depend on the graph
structure, though the graph relevant to the main text is the
triangular lattice. The correlated percolation algorithm makes
use of many of the subroutines for uncorrelated percolation,
particularly generating initial configurations at different fill-
ings and labeling the clusters.

For uncorrelated percolation, sample configurations can be
generated at an exact filling p simply by uniformly selecting
sites to fill until p|V | are filled or by filling p|V | sites and
performing a random permutation [32]. These configurations
are then already independent samples for uncorrelated perco-
lation that can have clusters labeled by the Hoshen-Kopelman
algorithm [33]. Uncorrelated percolation in a range of filling
p0 � p � p1 can be efficiently simulated by generating a con-
figuration at filling p|V | + 1 from a configuration at filling
p|V | and updating the cluster labels using the Newman-Ziff
algorithm [32].

For correlated percolation, an uncorrelated percolation
configuration can be used as an initial configuration and la-
beled using the Hoshen-Kopelman algorithm. However, as
a result of the nonuniform weights, these configurations are
not independent samples from the equilibrium distribution
and must be moved towards equilibrium by applying an
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update scheme such as the Metropolis-Hastings Monte Carlo
algorithm.

The graph and the configuration are stored using the fol-
lowing structures.

(1) Neighbor array. A 2D array of site neighbors of size
|V | × Dmax, where element (i, n) of the array is the site index
in for the nth neighbor of site i and Dmax is the coordination
number or the maximum vertex degree in a general graph.

(2) Configuration array. An array {li} for sites i =
1, · · · , |V | with li = 0 for empty sites and li a positive integer,
the cluster label, for filled sites.

(3) Clustermap. A map from cluster labels l to cluster val-
ues Val (l ), which are nonzero integers. If Val (l ) > 0, Val (l )
is the size of the cluster to which sites labeled l belong. If
Val (l ) < 0, then l ′ ≡ |Val (l )| is another cluster label belong-
ing to the same cluster.

(4) Proper cluster label. A label l (kp) with value
Val (l (kp) ) > 0 equal to the size of the cluster containing i.
The proper cluster label l (kp) is found from the cluster label
l (1) ≡ li for site i by iteratively evaluating l (k+1) = |Val (l (k) )|
with l (kp) the first label in this sequence with positive cluster
value.

The cluster map scheme is central to the Hoshen-Kopelman
algorithm [33]. In the end, the quantities relevant to the
percolation transition are the sizes of the clusters rather
than the cluster labels, which can be assigned according
to any convenient scheme. As clusters merge, the Hoshen-
Kopelman algorithm keeps track of the new cluster sizes
efficiently by using negative cluster values to avoid the need
to update cluster labels for individual sites in the new clus-
ter, and clusters are then identified by the proper cluster
labels.

A simpler but less efficient scheme involves traversing all
clusters. The cluster values can then all be made positive and
equal to the size of the corresponding cluster, with all filled
sites in a cluster sharing the same cluster label. This can be
done by starting from an initial unlabeled configuration and
scanning through sites on the graph, skipping empty sites as
well as previously visited filled sites. When an unvisited filled
site is reached, it is assigned the smallest available cluster la-
bel l . The cluster containing this site is traversed by iteratively
visiting filled neighbors and each site in the cluster is assigned
the same cluster label l . The correspondingVal (l ) is set to the
size of this cluster.

The Hoshen-Kopelman algorithm improves efficiency by
avoiding the need to fully traverse clusters to relabel filled
sites when merging clusters. This is done by the following
using negative cluster values to point to another label in the
same cluster. When filling a site i would merge multiple clus-
ters to form a larger cluster, the total number of sites |Ci| in
the new cluster can be found by consulting the cluster map
for the labels of each of the ni filled neighbors im of i. The
smallest proper cluster label l among the filled neighbors is
then given the cluster value Val (l ) = |Ci| = 1 + ∑ni

m=1 |Cim |
and the proper cluster labels of the remaining neighbors l ′ > l
are all given the valueVal (l ′) = −l . The merge thus leaves all
sites in the cluster with the same proper cluster label l and the
need to traverse the entire cluster is avoided at the small cost
of one additional cluster map lookup when finding the cluster
size in the future.

Once an initial configuration at filling p is generated and
labeled, an equilibrium configuration of the weighted distri-
bution in the canonical ensemble, Eq. (21), is generated by
iterating the following procedure. For clarity, we refer directly
to the size of the cluster containing site i as |Ci|, noting that
|Ci| is found by consulting the cluster map for label li.

(1) Starting from configuration A, select one filled site i
and one empty site j uniformly at random.

(2) Empty site i and calculate the weight ratio w′ ≡
W (A′)/W (A), where A′ is the configuration A with i removed,
as follows:

(a) Set the initial weight ratio value w′ ← 1/(|Ci| + 1)
with Ci ⊂ A the cluster initially containing site i. Set a
counter c ← 0 for the number of filled sites traversed.

(b) While the number of unvisited filled neighbors of i
is ni > 0, pick an unvisited filled neighbor im of site i and
perform a breadth first search (BFS) of the clusterCim ⊂ A′
containing im.

(i) During the search, mark visited cluster sites and
count the size of the cluster |Cim |.

(ii) If during the search all neighbors of i have been
visited, break the loop.

(iii) If the search completes without visiting all
neighbors of i, update the weight ratio w′ ← w′ ×
(|Cim | + 1) and the counter c ← c + |Cim |.
(c) The size of the remaining cluster must be |Ci| −

1 − c, and the weight is updated accordingly, w′ ← w′ ×
(|Ci| − c).
(3) Fill site j and calculate the weight ratio w′′ ≡

W (A′′)/W (A′), where A′′ is the configuration A′ with j filled,
by consulting the cluster map for A′ as follows.

(a) Find the proper cluster labels for each filled neigh-
bor of j and create a list of nc filled neighbors jm with one
jm for each distinct proper cluster label. Note that nc is the
number of clusters neighboring j in A′.

(b) Store the minimum proper cluster label lmin among
proper cluster labels lm for the jm. Set Val (lmin) ← 1
+ ∑nc

m=1 |Cjm |. For all lm > lmin, set Val (lm) ← −lmin.
(c) Set the weight ratio w′′ ← (1 + ∑nc

m=1 |Cjm |)/∏nc
m=1(|Cjm | + 1).

(4) Accept the trial configuration A′′ if w ≡ w′ × w′′ =
W (A′′)/W (A) > 1. Otherwise accept A′′ with probability w.

Explicitly filling site j and updating the cluster labels can
be delayed until after the updated configuration is accepted,
since the relative weight w′′ for filling a site can be calculated
from the cluster map before filling the site. When emptying a
site i, is it unfortunately necessary in the worst case to traverse
all but one of the clusters Cin neighboring i, since connectiv-
ity cannot be determined by examining only the neighbors
of i. Since each cluster Cin must be traversed anyway when
emptying site i, it is reasonable to assign a new cluster label
to each traversed site of the cluster to minimize the number
of negative cluster values in the cluster map. We allow early
termination in the update step when all neighbors of i have
been visited, make use of the fact that knowing the size of the
original cluster Ci with i filled means one of the clusters Cin
with i empty need not be explicitly traversed. Performing a
breadth first search of the clusters maximizes the chances of
early termination occurring before the last cluster is traversed.
As opposed to filling a site, emptying a site is performed
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explicitly to generate a trial configuration, since all but one
of the neighboring clusters must be traversed to update the
cluster labels. If the configuration is rejected, the site can
simply be filled in.

Equilibrium configurations in the grand canonical ensem-
ble at fixed fugacity z, with weights given by Eq. (22),

follow from an initial configuration by selecting a site uni-
formly at random and attempting to empty it if filled or
fill it if empty, using the corresponding subroutine from the
canonical ensemble simulations. The initial configuration can
be randomly generated at any filling or even taken to be
empty.
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