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Abstract

Stay-at-home orders and shutdowns of non-essential businesses are powerful, but socially
costly, tools to control the pandemic spread of SARS-CoV-2. Mass testing strategies, which
rely on widely administered frequent and rapid diagnostics to identify and isolate infected
individuals, could be a potentially less disruptive management strategy, particularly where
vaccine access is limited. In this paper, we assess the extent to which mass testing and iso-
lation strategies can reduce reliance on socially costly non-pharmaceutical interventions,
such as distancing and shutdowns. We develop a multi-compartmental model of SARS-
CoV-2 transmission incorporating both preventative non-pharmaceutical interventions
(NPIs) and testing and isolation to evaluate their combined effect on public health outcomes.
Our model is designed to be a policy-guiding tool that captures important realities of the test-
ing system, including constraints on test administration and non-random testing allocation.
We show how strategic changes in the characteristics of the testing system, including test
administration, test delays, and test sensitivity, can reduce reliance on preventative NPIs
without compromising public health outcomes in the future. The lowest NPI levels are possi-
ble only when many tests are administered and test delays are short, given limited immunity
in the population. Reducing reliance on NPIs is highly dependent on the ability of a testing
program to identify and isolate unreported, asymptomatic infections. Changes in NPlIs,
including the intensity of lockdowns and stay at home orders, should be coordinated with
increases in testing to ensure epidemic control; otherwise small additional lifting of these
NPIs can lead to dramatic increases in infections, hospitalizations and deaths. Importantly,
our results can be used to guide ramp-up of testing capacity in outbreak settings, allow for
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nificant societal costs. We analyze how mixed control strategies, which utilize interven-
tions that prevent new infections from occurring (e.g., distancing or shut-downs) and
others that actively search for and isolate existing infections (here, mass testing), can
achieve improved public health outcomes while avoiding severe socio-economic burdens.
Our results suggest that increasing testing capacity, including the number of tests available
and the speed at which test results are provided, can reduce reliance on costly preventative
interventions. Such reduction is possible with more isolation of active infections, includ-
ing those without reported symptoms. However, failing to maintain preventative inter-
ventions without sufficient testing capacity can lead to large increases in infection
burdens. By defining the combined effect of these interventions through mathematical
models, this study provides insight into relaxation of distancing measures, and lays the
groundwork for future public health economics analyses on the cost-effectiveness of com-
bined management strategies.

Introduction

A wide range of public health interventions have been employed globally in response to the
rapid pandemic spread of the SARS-CoV-2 virus, and the associated global burden of COVID-
19 disease. In the early days of the pandemic, when little was known about the biology of the
virus and the strategies that would most effectively mitigate its transmission [1], many coun-
tries implemented strict lockdowns to limit contacts between individuals [2-9]. Though effec-
tive in reducing virus spread and minimizing public health burden [7,8,10], significant social
and economic costs [11,12] meant these lockdowns have been increasingly unsustainable over
time.

Some countries and states are turning to testing and isolation-based strategies as a viable
mechanism for control while waiting for effective vaccines and pharmaceuticals to become
widely available [13]. The utility of “test, trace, and isolate” strategies has been demonstrated
in prior outbreaks of novel infectious diseases, including SARS [14] and Ebola [15], as well as
in a multitude of mathematical models [16]. For SARS-CoV-2 specifically, contact tracing and
isolation have been shown effective for suppressing early spread, both empirically [17,18] and
via modeling [19,20]. However, contact tracing systems have struggled to keep up as caseloads
become large [21].

Developments in testing technology and capacity (e.g., United States Food and Drug
Administration [22]) have made it potentially feasible and cost-effective to implement larges-
cale testing and isolation strategies for the management of SARS-CoV-2. An increasing body
of literature describes the characteristics of mass, population-level testing and isolation pro-
grams that successfully control community transmission. These studies emphasize the neces-
sity of testing frequently and providing results quickly, even if this requires sacrifices to test
sensitivity (i.e., the ability of the test to correctly identify infected individuals) [23,24]. Unlike
symptomatic, or reactive, testing currently being used in many countries, these mass testing
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strategies require frequently testing a significant proportion of the population, including
groups of individuals that may generally not present symptoms (e.g., testing on college cam-
puses [25,26]).

However, testing capacity, though growing, remains relatively low across much of the
world [27]. Consequently, few locales are currently in a position to provide large-scale testing
as a sole, or even primary, method for SARS-CoV-2 control. In these cases, where the virus
cannot be sufficiently contained by testing and isolation and sufficient vaccination thresholds
have not been achieved, preventative non-pharmaceutical interventions (NPIs), such as mask-
ing or distancing, are necessary to further mitigate viral transmission. Yet, the interaction
between preventative NPIs and isolation of active infections, especially mass testing strategies,
is even less understood than the effects of either intervention alone (though see McCombs and
Kadelka [28] for a COVID-19 example). Identifying effective combination interventions will
be crucial as countries move from control strategies based primarily on preventative NPIs
towards those that rely more heavily on testing and isolation, and ultimately wide-spread phar-
maceutical reduction in burden of disease.

Using multiple interventions has proven effective for controlling transmission in a variety
of pathogens (e.g., influenza [29,30], early SARS-CoV-2 in China [18], HIV [31]). However,
combining NPIs with testing and isolation is likely to produce complex transmission dynam-
ics, making it difficult to quantify the effects of mixed control. These complex dynamics may
arise in part because of differences in the timing of non-pharmaceutical interventions and iso-
lation relative to the infection process. NPIs, like physical distancing, prevent new infections
by preemptively reducing contacts across the entire population, whereas isolation of infected
individuals reduces subsequent transmission after, but not before isolation. Further, variation
in compliance or existing immunity may make the needs of each locale different.

To clarify these decision-critical issues, we develop a mathematical model to explore the
interaction between various preventative NPIs and testing and isolation strategies. Our analy-
sis addresses how the testing strategy’s characteristics affect the intensity of the minimally suf-
ficient NPIs to achieve desired public health outcomes, including daily test administration
(i.e., how many tests are performed each day), test delays (i.e., the average time from test
administration to isolation), and test sensitivity (defined as the accuracy of a test in identifying
infectious individuals). By describing the effectiveness of these combined public health inter-
ventions, our framework can help, in a time of extreme social, economic, and psychological
hardship, to clarify a path to lifting costly NPIs and ramping-up testing capacity, all while
maintaining control of transmission.

Methods
Model description

Transmission during the acute phase of the SARS-CoV-2 pandemic can plausibly be assumed
to follow an SEIR-like epidemiological model (Susceptible-Exposed-Infected-Recovered)
because waning of immunity is unlikely within the short (< 6 months) timeframe of our
model (Fig 1). We account for key aspects of SARS-CoV-2 biology, including transmission
without symptoms (both infections that never develop reportable symptoms and those that are
infectious before symptom onset and subsequent reporting) [32,33].

In our model, individuals move from being susceptible to exposed once they have been
infected (the E class: infected but not yet infectious). On becoming infectious, individuals
move into one of three categories: asymptomatic (i.e., never develop reportable symptoms),
mild symptomatic (i.e., develop reportable symptoms that are not severe enough to require
hospitalization), or severe symptomatic (i.e., develop reportable symptoms that eventually lead

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009518  October 28, 2021 3/19


https://doi.org/10.1371/journal.pcbi.1009518

PLOS COMPUTATIONAL BIOLOGY Synergistic interventions to control COVID-19

Recovery before results

Fig 1. Compartmental structure of the model. Individuals are classified by epidemiological and testing state (S:
susceptible, E: exposed, Ps and Pyy: presymptomatic transmission for severe and mild infections, respectively, Is and
I\i: symptom reporting for severe and mild infections, respectively, A: asymptomatic infection, H: hospitalized, W:
awaiting test results, T: isolated, R: recovered). Pathogen transmission occurs between non-isolated, infected
individuals (P, I, A, and W classes) and susceptible individuals (S class). Red filled compartments are isolated, and thus
are assumed to not contribute to onward transmission of the pathogen. Solid lines show epidemiological transitions,
with parameters to define the rate of transition (see S1 Appendix for full list of transition rates and Table 1 for
parametric assumptions). Dashed lines show transitions made through testing, and grey lines show transitions out of
waiting and testing classes. The W and T classes are a set of compartments broken down by infection status of tested
and isolated individuals respectively (expanded in bottom half of figure). Individuals that report symptoms (I classes)
isolate upon test administration, whereas randomly tested individuals await results in the W classes, where they can (1)
develop and report symptoms (i.e., move from Wp to W), (2) recover or become hospitalized before they receive test
results, or (3) receive test results and isolate. Individuals remain isolated until recovery.

https://doi.org/10.1371/journal.pcbi.1009518.9001

to hospitalization). We distinguish infections based on reported symptom status because self-
reporting is a primary mechanism for test administration in many countries. We assume that
60% of all infections would eventually develop reportable symptoms [34], and 5% of those
with symptoms would be severe enough to require hospitalization [35].

We assume infected individuals who will eventually be symptomatic can start infecting oth-
ers before symptom onset and reporting. All asymtomatic and mildly symptomatic infections
are assumed to eventually recover. Severe symptomatic infections are assumed to be hospital-
ized and isolated from the population until recovery or death. We assume that recovery
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confers immunity over the short timeframe of our model in alignment with evidence that
SARS-CoV-2 reinfection is rare in the six months following infection [36,37]. We maintain
standard assumptions about homogenous mixing, as other modeling studies assessing testing
programs have shown little difference between such a model and one with a more realistic con-
tact structure [24]. For a deterministic representation of our model structure, which was based
on the model of Davies et al. [38], see S2 Appendix.

Interventions

We model public health interventions that combine preventative NPIs (e.g., masking, distanc-
ing, and lockdown) with testing and isolation. As preventative NPIs reduce the chance of new
infection, they are modeled to decrease transmission by some fraction, d, which we call the
‘NPI intensity’. Isolation reduces the effective number of infected individuals in the population
and thus prevents an infected individual from contributing to onwards transmission.

We assume that testing is the primary mechanism for identifying infections to be isolated.
The testing system in our model is characterized by three components: test administration,
test delays, and test sensitivity. We explicitly model the number of tests that are administered
each day (in some places this may be limited by availability of tests and in others by demand
for tests). Testing delays represent the average time, after test administration, it takes to receive
test results and subsequently isolate those with a positive diagnosis. We define effective test
sensitivity as the percent of actively infectious individuals correctly identified by the diagnostic
test. This definition differs from the way sensitivity is determined for other tests (e.g., sensitiv-
ity as defined for reverse transcription polymerase chain reaction (RT-PCR) which detects the
presence of a viral sequence), but reflects our focus on public health rather than individual
patient objectives [23,39,40]. Consistent with our definition of effective sensitivity, we assume
that exposed individuals (E class) cannot be detected.

Test allocation follows a consistent state-dependent rule and is executed stochastically
using the following sequential steps:

1. Allocate one test for each newly hospitalized patient.

2. Using the remaining tests, allocate one test for each individual that has reported symptoms.
The group of individuals reporting symptoms each day includes a constant background
rate of non-SARS-CoV-2-infected individuals that report for testing. If there are more indi-
viduals reporting symptoms than available tests, allocate tests randomly among the group
reporting symptoms.

3. Using the remaining tests, randomly sample individuals without symptoms for testing.

Whilst we do not claim this is the most efficient way to utilize a fixed number of tests, we believe
it represents a simple and logical prioritization that could be implemented. Silverman et al. [41]
showed that increases in all-cause care seeking for respiratory infections was highly correlated
with cases of COVID-19 early in the pandemic, so we model a constant background rate of
symptomatic non-SARS-CoV-2-infected care seeking (test allocation step 2). We further
assume that reporting for influenza-like illness (ILI) and SARS-CoV-2 are related, where
increases in SARS-CoV-2 reporting also yield higher background care seeking rates. As such, in
our model, 0.1(1-p)% of the population reports for testing each day despite not being infected
with SARS-CoV-2, where p is the proportion of SARS-CoV-2 infections that are not reported
(Table 1) and 0.1 aligns the order of magnitude with estimates of influenza related medical visits
in the United States [42,43]. This simplifying assumption ignores seasonality and potential feed-
backs between SARS-CoV-2 interventions and ILI care seeking or prevalence.
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Table 1. Model parameters. Where no reference is provided, values were assumed. Values shown with an asterisk (*)
were considered in sensitivity analyses. The transmission rate, 8, was calibrated to yield Ry = 2.5 using the next genera-
tion matrix method. Transmission rate shown is for primary parameters but was recalibrated for each set of sensitivity

analyses.

Biological Parameters

Transmission rate for infected individuals, B

Relative transmissibility of asymptomatic infections, p
Time from exposure to infectiousness (days), £

Time from infectiousness to symptom reporting (days), }
Recovery time for asymptomatic infections (days), iA
Recovery time for mild symptomatic infections (days), iw
Time from symptom reporting to hospitalization (days), i
Recovery time for hospitalized infections (days), lg

Time from hospitalization to death (days), 1
Proportion of infections that are not reported (asymptomatic), p

Proportion of reported (symptomatic) infections requiring
hospitalization, q

Intervention Parameters
Non-pharmaceutical intervention (NPI) intensity, (1-d)

Delay between test administration and results,
Number of tested individuals from class I, w;, on a given day,
dependent on:

Test administration

Effective test sensitivity

Proportion of population without SARS-CoV-2 infection reporting

for testing each day
https://doi.org/10.1371/journal.pcbi.1009518.t001

Value

0.502

1,0.5% [44]
3[38]
2.1[38]
5[38]

2.9 [38,45,46]
2.1 [47]

12 [48]

7.5 [48]

0.4 [34], 0.2, 0.6*[49]
0.05 [35]

Values assessed
0% to 60%, in 5% increments

1 hour, and 12 hours to 8 days, in 12-hour
increments

1%, 2.5%, and 5% to 50% in 5%
increments

90%, 100%
0.001 (1-p)

Individuals who report with symptoms are assumed to quarantine immediately upon test

administration (test allocation step 2), and those who are randomly sampled isolate only after
receiving results (test allocation step 3). We compared this policy with a second, where all indi-
viduals isolate only after receiving positive results. All individuals awaiting results are assumed
to continue mixing in the population, and thus can transmit virus to others. Note, for simplic-
ity, we omitted isolation of individuals who receive a false positive result, though we acknowl-
edge that imperfect specificity could indirectly affect disease dynamics by impacting long-term
compliance with mass testing strategies [50] or further decreasing transmission through addi-
tional contact reduction.

Model implementation, parameterization, and initiation

We implemented the model stochastically using the chain-binomial framework [51-53].

This method assumes that all individuals in the population are classified into a set of compart-
ments (defined for our model in Fig 1), and that individuals move between compartments in
discrete time steps. The number of individuals that transition from compartment i to compart-
ment j at time ¢ is determined by a random draw from a binomial distribution, Binomial(ty,
t,), where ty is the number of individuals in compartment i at time ¢ and t,, is the probability
of transitioning from i to j. This probability, t,, is derived from the transition rate, r;;(t),
between compartments i and j (defined for our model in Table 1). Given that a transition
event happens at rate r;(t), the number of transitions that occur in a time interval At is distrib-
uted as Poisson(r; ;(t)At). Consequently, the probability of no transition events occurring is
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exp(-r;;(t)At) and the probability of transitioning is 1- exp(-r;;(t)At). Since we implement our
model in daily time steps (i.e., At = 1), the transition probability can be simplified to 1- exp(-r;
j(t). S1 Appendix includes a full list of transition probabilities for our model. To avoid nega-
tive numbers of individuals, we update the transition probabilities and the resulting number of
individuals in each compartment asynchronously in the following order: (1) biological transi-
tions, including infection events, symptom reporting, hospitalization, recovery, and death; (2)
test administration and quarantine, if applicable; (3) test results and corresponding isolations
for those that are positive.

Model parameters were chosen from literature sources (Table 1). We used the next-genera-
tion matrix method [54] to calibrate the transmission parameter to yield an initial, uncontrolled
basic reproduction number, Ry, of 2.5, as estimates of R, before interventions are reported
between 2.2 and 2.68 [44,45,55,56] (though some estimates are higher, see [57] for a review).
For our analyses, we considered a well-mixed population of 10,000 individuals with low levels
of existing immunity in the midst of a growing outbreak of SARS-CoV-2. To generate initial
conditions for this scenario, we modeled an initial importation of one mild, presymptomatic
infection and one asymptomatic infection that seeded an outbreak which grew unbounded for
7 days (unbounded R, = 2.5) and then experienced moderate growth for 90 days (R, = 1.125
during this period). This setup is not meant to reflect an actual location. We simulated this sce-
nario 1000 times, and the simulation with the 50 percentile of prior immunity (i.e. recovered
individuals) on Day 97 was used as our initial conditions (S1 Fig and S1 Table). This approach
yielded a population in which approximately 5% of individuals have immunity.

Using these initial conditions, we implemented a range of combination interventions
(Table 1) for 30 days, to replicate a short-term planning scenario. Each combination interven-
tion included NPI intensity, test administration, test delay, and effective test sensitivity. NPI
intensity ranged from no use of NPIs (0%) to strong reliance on NPIs (60%), a range that cap-
tures realistic decreases in transmission due to NPIs (e.g., Flaxman et al. [7]). We modeled test
administration from testing 0% to 50% of the population each day. Though this range includes
values for daily test administration that have yet to be achieved and sustained, we intentionally
include scenarios where tests are widely available to explore the effects of mass testing on
transmission. This aligns with other analyses in the literature (e.g., Larremore et al. [24]). To
capture an extreme range of testing delays observed during the pandemic, we considered rapid
tests (which yield results in an hour, on average) to those that take up to 8 days on average to
return results. Lastly, we used 90% and 100% effective test sensitivities. These values are not
intended to reflect actual diagnostics, but rather explore the effects of decreases in test sensitiv-
ity that may be necessary to achieve large numbers of tests and/or rapid results as it is difficult
to measure effective test sensitivity empirically (though see [58,59] for estimates).

We performed 5000 simulations for each potential combination intervention and tracked
infection events (i.e., “true” cumulative incidence, regardless of reporting), hospitalizations
and deaths. We interpolated the resulting administration-delay-sensitivity-NPI-infection sur-
face to derive contours for 250, 500, and 1000 total infections over 30 days after the interven-
tion change. We ran an additional 5000 simulations for interventions along the 500-infection
contour and for interventions where NPI intensity was 5% less than those on the contour. As
our model does not consider age or comorbidities, we focus primarily on cumulative infec-
tions in our results. We acknowledge that there may be other public health objectives of inter-
est [60,61] and choosing a different objective could alter intervention recommendations [62].
We report all results as median values in alignment with other COVID-19 modeling efforts,
including the Forecasting Hub [63] and Scenario Modeling Hub [61].

At the time of model parameterization, there was significant uncertainty about the nature
of asymptomatic infections. Additional sensitivity analyses assessed the impact of this
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uncertainty in two key areas: (1) the proportion of infections that do not develop reportable
symptoms (including values that align with more recent reviews [49]) and (2) the relative
infectiousness of asymptomatic infections (Table 1). In addition, as immunity levels vary
greatly across settings, we quantified the effect of the degree of prior immunity in the popula-
tion when the intervention change is implemented (S1 Table).

The model and analyses were implemented in R version 3.5.1 [64]. All code is available on the
following GitHub repository: https://github.com/eahowerton/COVID19_combined_interventions.

Results

Our analyses describe the combined effect of preventative NPIs and testing and isolation strat-
egies for epidemic control. As expected, high test administration, short testing delays, and
more intense NPIs all decrease SARS-CoV-2 infection burdens (Fig 2). Specifically, contours
illustrate sets of combined interventions which yield approximately equivalent cumulative
infections (median over 5000 simulations; black lines, Fig 2A and 2B). Thus, a public health
system willing to tolerate a given level of infection could in principle choose any intervention
combination above this contour without exceeding their infection threshold.

For a fixed test delay, testing a larger percent of the population each day can maintain pub-
lic health outcomes with less reliance on NPIs (Fig 2A). The magnitude of test delays deter-
mines the extent to which improvements in test administration permit a reduction in NPIs
without increasing disease burden. When delays are relatively long (5 days), testing an addi-
tional 5% of the population each day yields at most a 1.5% decrease in the minimally sufficient

A Test delay: 1 hour I I 1 day I | 2 days | | 5 days | c 50% NPI: 3'0"'0
60% 1
B ——o50——
= |\
g o i S —
2 40%
£
o 20%1 T — =
z = 1000— O
Ml S5
5 Q 22
0% © D 30%-{
10% 20% 30% 40% 50% 20% 30% 40% 50%  10% 20% 30% 40% 50%  10% 20% 30% 40% 50% 43 &
Test administration €5
(% of population tested daily) % B
>a
B Test administration: 1% | 5% I | 20% | | 50% ‘g 8_ 20%
60% 1 F o
e 250 /—’—'-259— 250— 250~ s} )
L Effective
2 = Sensitivity
0 40% ] —m——
c //4—'——’_
2 10% - = 90%
£
o 20%{————1000=——= 1000— 41000
= /" / / —_— 100%
0% 0%
2 4 6 8

Cumulative infections

4 6 8 2 4 6 8 0 2 4 6 8
Average test delay Average test delay
(days from test to isolation) (days from test to isolation)

500 1,000 1,500 2,000

Fig 2. Efficacy of combined interventions including preventative NPIs (e.g., masking, distancing, lockdowns) and testing and isolation. Infections in the
30 days after intervention change (represented as a median of 5000 stochastic simulations) are shown across non-pharmaceutical intervention (NPI) intensities
both when test delays are fixed (A) and test administration is fixed (B) for several sample values. In both, isoclines are shown for 250, 500, and 1000 infections,
representing potential threshold levels of median infections that a local system can tolerate. Similarly, the test delay and administration required to achieve a
given NPI intensity (C) are shown for four potential NPI intensities (line color) across two possible effective test sensitivities (line type; solid = 100%,

dashed = 90%), all assuming 500-infection threshold levels (contours for 250- and 1000-infection thresholds shown in S2 Fig). Grey arrows represent sample
policy movements between interventions that maintain public health outcomes, where moves can be made by increasing testing administration (vertical
arrows), decreasing test delays (horizontal arrows), or a combination (diagonal arrows). Moves can maintain NPI intensity with a less sensitive test (thick
arrows), decrease NPI intensity with the same test (medium arrows), and decrease NPI intensity with a less sensitive test (light arrows). See S3 Fig for a version
of this figure showing results when individuals who report for testing are assumed to wait for a test result to isolate.

https://doi.org/10.1371/journal.pcbi.1009518.9002
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NPI intensity required to achieve the same level of pandemic control; whereas when tests are
rapid, this same increase in test administration yields up to a 12.6% decrease. Since rapid tests
isolate infections more quickly and thus have a greater effect on reducing overall transmission,
we expect increasing the administration of rapid tests to have the largest impact on the mini-
mally sufficient NPI intensity.

The extent to which minimally sufficient NPIs are decreased by shortening test delays
depends on both test administration and current test delays (Fig 2B). When test administra-
tion is low (e.g., 1%), which reflects testing levels across much of the world [27], decreasing
test delays permits little reduction in NPT intensity. This result is due primarily to the immedi-
ate isolation of cases reporting for testing, as in the model most tests are used for this purpose
when administration is low. As more tests are administered, the delays associated with these
tests have a large influence on the minimally sufficient NPI intensity. In high-administration
cases (e.g., 50%), decreases in test delays when delays are already long makes a less substantial
difference on NPI intensity, but as test turnaround times become sufficiently fast, small
improvements in test delays can yield large changes in the minimally sufficient NPIs. For
example, assuming 20% daily test administration and a moderate tolerance threshold (500
infections), a 1-day decrease in testing delays lowers the minimally sufficient NPI intensity by
1.4% when current delays are 7 days, but by 12.8% when current delays are 2 days.

To reduce costs incurred by NPIs or the testing program, policy makers may move between
mixed intervention strategies that maintain satisfactory public health outcomes. Fig 2C illus-
trates how reductions in the intensity of NPIs can be facilitated by improving the performance
of a testing program. Consider, for example, a policy that seeks to reduce NPI intensity from
30% to 20% (medium-thickness arrows, Fig 2C) without increasing total infection burden.
This can be achieved by reducing test delays by 1.6 days (horizontal arrow), increasing daily
testing to an additional 22% of the population per day (vertical arrow), or a smaller combined
improvement in both (diagonal arrow). Note that if these gains come at the expense of effective
test sensitivity (light-thickness arrows, Fig 2C; e.g., by switching from RT-PCR to rapid diag-
nostic tests), additional, but small, gains in test turnaround times or administration are neces-
sary (difference between medium and light grey arrows). Similarly, a less sensitive test may
offer cost savings; the same reliance on NPIs can be maintained without increasing burdens if
the less sensitive test increases administration to at least 3% of the population per day or
decreases delays by approximately half a day (heavy-thickness arrows, Fig 2C). As more tests
are administered, false negative results accumulate and consequently larger gains in test
administration are required to compensate for decreased sensitivity.

Sensitivity analyses show that test administration, test delays, and the minimally sufficient
NPI intensity maintain approximately the same contours across uncertainty about prior
immunity, percent of infections that are asymptomatic, and the relative infectiousness of
asymptomatic infections (S4 Fig). Testing capacity (i.e., administration and delays) that
achieves tolerable public health outcomes decreases if there is a higher degree of population
immunity, achieved through vaccination for example, and if asymptomatic infections are less
infectious than those with symptoms. Changes in the percent of infections that are asymptom-
atic, which could arise from differences in age structure or access to care, has little effect on the
minimally sufficient NPI intensity for a given testing capacity.

Combined interventions with less intense NPIs can achieve equivalent public health out-
comes because they isolate a greater number of infected individuals via testing (Fig 3). The
minimally sufficient NPIs are lowest when a significant proportion of infections are isolated
before symptom reporting (i.e., presymptomatic and asymptomatic infections), which
increases with higher test administration and shorter test delays. For example, consider two
interventions with NPI intensity of 35% and 25%. Public health outcomes are maintained
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Fig 3. Total isolations, and of those how many were individuals without symptoms (presymptomatic and
asymptomatic infections), for various combined interventions. Each dot represents an intervention combination
that results in a median of 500 infections over the 30 days after intervention change (i.e., falls along the contour in Fig
2). For each intervention combination, we record the percent of all infections that are isolated while infectious (x-axis)
and isolated before reporting (y-axis). Dot color represents non-pharmaceutical intervention (NPI) intensity and dot
size represents test delay of the corresponding strategy. Outcomes are shown for a fixed number of test administration
levels (1%, 5%, 20%, 50% of the population tested per day), and dashed lines connect strategies with the same NPI
intensity across administration levels. Grey lines serve as a reference to show the percent of all isolations that occurred
in those without reported symptoms. Points with cross and asterisk are discussed in the text. See S6 Fig for a version of
this figure comparing results when individuals with symptomatic infections are assumed to wait for a test result to
isolate.

https://doi.org/10.1371/journal.pchi.1009518.g003

under 35% NPI intensity when tests are available for 5% of the population each day and delays
are 2 days; this results in isolating 55% of all infections, with 9% of the infections being isolated
before symptom reporting (cross, Fig 3). In contrast, reducing NPIs to 25% can maintain pub-
lic health outcomes when tests are available for 20% of the population if delays are at most 2.5
days. Such an intervention results in a similar percent of infections being isolated (58%) but
now 25% of those infections are isolated before reporting symptoms (asterisk, Fig 3). Similarly,
isolating reported infections immediately upon test administration has a substantial impact on
the minimally sufficient NPI intensity because fewer infected individuals recover before being
isolated, especially when test delays are long (S5 Fig).

Lifting NPIs an additional 5% (beyond what is recommended along the contours in Fig 2),
leads to an average 20% increase in infections over 30 days (Fig 4). Long test delays and low
test administration both exacerbate increases caused by additional reopening. For example,
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Fig 4. Increases in infections due to additional lifting of NPIs. Increases measure the change in cumulative
infections in the 30 days after intervention implementation caused by lifting non-pharmaceutical interventions (NPIs)
an additional 5% beyond the recommended NPI intensity. Each point represents a unique combination of test delay
(x-axis) and test administration (color). The percent increase was calculated as (O —Og)/Og, where Oy is the number
of infections that occur with additional NPI lifting, and Og is the outcome when intervention adheres to NPI
recommendations as indicated along the 500-infection contour in Fig 2. Points are not shown for interventions with

short delays and high administration because such combinations yield fewer than 500 median cumulative infections
without any NPIs (e.g., see Fig 2A: 1 hour, or Fig 2B: 50% administration).

https://doi.org/10.1371/journal.pcbi.1009518.9004

assuming 20% test administration, lifting NPIs by an additional 5% yields a 20% increase in
infections when delays are 7 days, and only a 14% increase when delays are 1 day. Similarly,
total infections increase 21% when 1% of the population is tested daily, compared to 14%
when 20% is tested daily, assuming delays are 1 day. Larger increases correspond to interven-
tion strategies that rely more heavily on NPIs for transmission control (i.e., long test delays or
low test administration). Note that the appearance of a slightly higher increase in infections
under very long test delays and 50% test administration is a result of a large number of individ-
uals passing through both the asymptomatic and waiting classes. Because the model does not
track individuals, passing through both classes can yield a minor increase in the infectious
period; the effect is negligible for most settings but results in a minimial increase in infections
under this most extreme intervention scenario. We note that this slight bias is within the range
of stochastic variation.

Discussion

Large-scale testing and isolation provides promise as a public health intervention that both
maintains control of the COVID-19 pandemic and enables continued social and economic
activity [13]. In this paper, we discuss how testing and isolation strategies can be combined
with preventative non-pharmaceutical interventions such as lockdowns, physical distancing
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and mask wearing to reduce socio-economic and psychological burdens. Identifying effective
combination interventions is instrumental for safely ramping-up testing capacity and lifting
costly NPIs without causing adverse public health outcomes. Our analysis demonstrates inter-
actions between multiple interventions focused on this goal. It further provides a decision-
making framework with numerous equally effective options for meeting tolerable infection
thresholds. Such flexibility is crucial for successfully implementing interventions across a
range of social contexts, including situations with different NPI compliance levels.

Maintaining NPIs will be critically important to ensure control of SARS-CoV-2 while con-
tinuing to build testing capacity, where capacity refers to the overall ability to process tests
including administration and delays. When few tests are available or delays are long, relatively
strong NPIs must be continued to keep public health burdens to manageable levels. Impor-
tantly, both high testing capacity and short test delays must be achieved in order to safely
reduce NPIs to low levels. Failing to maintain sufficient NPIs can lead to considerable
increases in infections, hospitalizations and deaths. These increases are most extreme when
testing capacity is small since management strategies rely heavily on NPIs in these cases.
Higher degrees of immunity in the population, enabled by vaccination for example, reduce
testing capacity and NPIs needed to control burdens, though continuing these interventions
through vaccine rollout will be critically important to prevent interim increases in cases. Our
results emphasize the importance of minimizing time from infection to isolation, as shown in
other modeling studies [19,24,28]. Long testing delays significantly limit the range of interven-
tions available to meet public health requirements. As such, the development and use of rapid
tests provides decision-makers with more intervention options, including a shift away from
burdensome and costly NPIs or an ability to compensate for decreases in compliance.

Swiftly identifying and isolating infections in individuals with symptoms or those reporting
for testing can decrease reliance on NPIs; yet, public health outcomes can be maintained
under the lowest NPI levels when interventions isolate a large proportion of asymptomatic
infections. Increases in test administration enable the testing of individuals who do not self-
report and subsequent isolation of asymptomatic infections. However, systems which fail to
test individuals without reported symptoms, or those that do not provide access to testing for
all, will not achieve the same results no matter how many tests are performed. Thus, we
emphasize the importance of building testing systems to screen individuals without symptoms
as a necessary step in the process of decreasing our reliance on NPIs, especially when pharma-
ceutical alternatives are not readily available. Testing in asymptomatic populations can also
allow more accurate measurement of epidemiological dynamics and estimation of key parame-
ters, which are crucial for epidemiological modeling for future decision-making [39].

Potential policy options are limited by resource, compliance, and technological constraints.
As such, feasible interventions represent only a limited set of the combinations we explore in
this paper. Outlining the most efficient ways to move between these possible interventions,
including health economic modeling to investigate cost-benefit tradeoffs (e.g., Lee et al. [65]),
is an important next step for future research and could build directly on the outputs of our
study. For example, some NPIs (e.g., masking and between-individual physical distancing, or
“staying six-feet apart”), though less effective in reducing transmission, are much less costly
than lockdowns. This difference means it may be more cost effective to continue low-cost pre-
ventative interventions with a mass testing strategy, as we show a small degree of preventative
intervention has a meaningful effect on required testing capacity. Considering both short- and
long-term costs, across many domains including public health, social, and economic, will be
important for designing readily achievable and sustainable strategies.

In addition to practical constraints, uncertainty further inhibits decision making. An ability
to precisely estimate the effect of an NPI on transmission is a difficult task retrospectively

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009518  October 28, 2021 12/19


https://doi.org/10.1371/journal.pcbi.1009518

PLOS COMPUTATIONAL BIOLOGY Synergistic interventions to control COVID-19

[66,67], and even more challenging prospectively. Our results show the sensitivity of public
health outcomes to NPI intensity, and thus an ability to accurately predict and estimate the
effect of NPIs on transmission is central to implementing this approach and should be the
focus of future research. Advances in behavioral science on differential compliance across
interventions and statistical methods for estimating transmission-reducing effects of interven-
tions, given compliance, would allow us to integrate across biological and behavioral uncer-
tainty to identify strategies with the greatest chance of success in a given context. Though
some countries (e.g., Slovakia [13], South Korea and Singapore [68]) and institutions (e.g.,
some university campuses [25]) have achieved remarkably high testing rates, we acknowledge
that widely implementing mass testing will require broad buy-in from institutions (e.g., gov-
ernments and employers) and individuals (i.e., willingness on the part of people to participate
in testing and abide by isolation), as well as proper technology, such as low-cost, at-home,
rapid diagnostic tests [23,40,69].

Our model framework is intentionally designed to be general in order to allow for explora-
tion of epidemic outcomes under combined interventions. As such, the estimates in this paper
are not meant to provide exact testing requirements, but rather to draw general conclusions
about the relationship between NPI intensity and testing and isolation strategies for control-
ling COVID-19. As a result of this generality, there are components of SARS-CoV-2 dynamics
that are not included explicitly, such as reintroduction [70], potential reinfection [71], age
structure [8,9,38], viral-load dynamics [24,65], time-varying biological and intervention
parameters [72], and widespread vaccination, though our framework supports the inclusion of
these components. Further, we make specific assumptions about the testing system that war-
rant additional exploration, including the effect of daily testing (as compared to using the
same number of tests at other frequencies) and test allocation. Finally, we make no assump-
tions about the relative costs of different intervention combinations. A comprehensive cost-
benefit analysis would be beneficial to determine how to prioritize different intervention com-
binations to balance direct public health burden from disease, while recognizing important
downstream costs from quarantines, shut-downs, and isolations.

Like other modeling [24,26,28] and empirical [13] studies, our results suggest that rapid or
more available tests provide increased control of transmission and can also compensate for
decreases in test sensitivity typically associated with rapid tests. However, unlike previous work,
we define how these testing characteristics interact with NPIs in a model framework that explicitly
accounts for constraints on daily test administration and non-random test allocation. We show
that increases in test administration have the greatest impact when test delays are small, less than
48 hours, and decreases in test delays enable the most reopening when delays are already relatively
short or more tests are administered. Lifting NPIs too rapidly can lead to significant increases in
infections, hospitalizations, and deaths in the 30 days after the intervention change.

Strategically combining public health interventions could allow us to maintain control of
SARS-CoV-2, achieve increasing degrees of social and economic activity, and therefore
decrease the significant overall societal costs incurred because of the COVID-19 pandemic.
Understanding the efficacy of combined public health interventions is a key first step in identi-
fying cost-effective ways to manage the pandemic.

Supporting information

S1 Fig. Simulations used to generate initial conditions. Grey lines show all simulations, and
black line shows simulation selected as initial conditions for interventions. See Methods for
details on how initial conditions were generated.

(TTF)
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S2 Fig. Contours for additional tolerance thresholds. Test delay and administration required
to achieve a given non-pharmaceutical intervention (NPI) intensity (line color) are shown for
two possible test sensitivities (line type; solid = 100% effective test sensitivity, dashed = 90%
effective test sensitivity), across 250- and 1000-infection thresholds.

(TIF)

$3 Fig. Outcomes when symptomatic infections are isolated upon receiving test results.
Infections in the 30 days after intervention change (represented as a median of 5000 stochastic
simulations) are shown across non-pharmaceutical intervention (NPI) intensities both when
test delays are fixed (A) and test administration is fixed (B) for several sample values. In both,
isoclines are shown for 250, 500, 1000, and 2000 infections. Similarly, the test delay and admin-
istration required to achieve a given NPI intensity (C) are shown for five potential NPT intensi-
ties (line color) across two possible test sensitivities (line type; solid = 100% sensitivity,

dashed = 90% sensitivity), all assuming 500-case tolerance. Note: colors have been rescaled
compared to main text.

(TIF)

$4 Fig. Results of sensitivity analyses. Sensitivity analyses considered the effect of assump-
tions about (A) prior immunity; (B) the percent of infections that are asymptomatic; and (C)
the relative infectiousness of asymptomatic infections. Each panel shows contours representing
combination interventions (test delay, x-axis, and test administration, y-axis) that yield equiva-
lent public health outcomes (as in Fig 2C). In all panels, contours show interventions which
yield a median 250 infections in the 30 days following intervention change. The base scenario,
as reported in the main text and represented with a black line in each panel, has 4.77% prior
immunity, 40% asymptomatic infections, and equal infectiousness between symptomatic and
asymptomatic infections.

(TIF)

S5 Fig. Changes in total isolations and NPI intensity due to immediate quarantine of
symptomatic infections. Interventions which quarantine symptomatic infections immediately
upon test administration are compared to the corresponding intervention (identical test
administration and delay, with non-pharmaceutical intervention (NPI) intensity adjusted to
yield 500-infection tolerance threshold, i.e., chosen to fall along the isocline shown in Fig 2)
where symptomatic infections wait to be isolated until receiving test results. Differences are
shown for four sample test administrations (color) by test delay (dot size). The difference was
calculated as Op—Oy, where Op, is the outcome (total isolations or minimally sufficient NPI
intensity) when symptomatic isolation is delayed based on time to test results, and Oy is the
outcome under immediate quarantine of symptomatic infections.

(TIF)

S6 Fig. Isolations comparing strategies which isolate symptomatic infections immediately
(red) vs. upon receiving results (grey). See Fig 3 legend for figure description. Note: red
points shown are identical to those shown in Fig 3, with colors rescaled to match those in grey,
and are provided as a reference.

(TIF)

S1 Appendix. Transitions between model compartments.
(PDF)

S$2 Appendix. Deterministic model representation.
(PDF)
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S1 Table. Initial conditions. Initial conditions representing moderate levels of prior immu-
nity at the time of intervention change. All W classes and T classes are represented by W; and
T;, respectively. Increased levels of prior immunity were also considered in sensitivity analyses
(denoted by *).

(PDF)
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