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The COVID-19 pandemic has made

it clear that epidemic models play

an important role in how governments

and the public respond to infectious

disease crises. Early in the pandemic,

models were used to estimate the true

number of infections. Later, they esti-

mated key parameters, generated

short-term forecasts of outbreak

trends, and quantified possible effects

of interventions on the unfolding

epidemic.1,2 In contrast to the coordi-

nating role played by major national

or international agencies in weather-

related emergencies, pandemic model-

ing efforts were initially scattered

across many research institutions.

Differences in modeling approaches

led to contrasting results, contributing

to confusion in public perception of the

pandemic. Efforts to coordinate model-

ing efforts in so-called “hubs” have

provided governments, healthcare agen-

cies, and the public with assessments

and forecasts that reflect the consensus

in the modeling community.3–6 This has

been achieved by openly synthesizing

uncertainties across different modeling

approaches and facilitating comparisons

between them.

USING MODELS TO SEE
INTO THE FUTURE

Epidemic models can give insight into

the future course of an epidemic,

either through short-term forecasts or

through the creation of longer-term

planning scenarios that assume a set of

future conditions (Figure A, available as

a supplement to the online version of

this article at http://www.ajph.org).

Forecasts are explicit quantitative

statements about probabilities of spe-

cific events in the future, such as inci-

dence rates of cases, hospitalizations,

or deaths. Such statements can be

compared with eventual observations

and can be rigorously assessed to dem-

onstrate model accuracy in real time.

However, reliable pandemic forecasts

can be made for only a short period

into the future. This is because of

uncertainties about the underlying

epidemic process, challenges in

anticipating outbreak-altering events

(e.g., emergence of a new variant), diffi-

culties in predicting human behavior,

and future interventions, which may

change in response to the forecasts

themselves.

Scenario modeling acknowledges

these limitations and gives plausible

future epidemic trajectories under a

well-defined set of conditions (or

assumptions), which in turn can pro-

vide stakeholders information to aid in

long-term planning. These planning
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scenarios can be designed to inform a

range of decisions, from choosing

between different disease control poli-

cies to a business determining what

must be done to weather coming epi-

demic disruptions. However, because

the assumptions of scenarios are

unlikely to occur in exactly the way they

have been defined, it is difficult to

objectively assess the performance of

models making these projections.

Different types of methods may be

suitable for generating forecasts and

scenarios. On the one hand, statistical

and simple mechanistic models often

perform particularly well at short-term

forecasting. On the other hand, more

complex mechanistic approaches

sometimes struggle with making accu-

rate short-term forecasts because of

challenges in accounting for uncer-

tainty about the underlying state of the

system. For longer-term planning sce-

narios, models must be able to encode

scenario assumptions (e.g., waning

immunity, behavior changes). This

requires structural complexity that

many statistical or simple mechanistic

models lack.

Whether aimed at forecasting or

planning scenarios, there is a lot of vari-

ation in how epidemic models are com-

posed. For example, models can vary in

terms of what data they use, what they

assume about transmission, and what

analytic approach they use to produce

projections. Because of this, relying on

one model is dangerous because there

is no guarantee that one model’s

choices and assumptions will yield an

accurate prediction.

In many fields, there is a long tradi-

tion of combining multiple models to

mitigate this limitation by providing a

single prediction that summarizes the

view of the participating models.7 There

has been a growing interest in using

ensemble methodologies in epidemiol-

ogy, with notable efforts in forecasting,

risk prediction, causal inference, and

decision-making.8–12

COORDINATION,
COLLABORATION,
AND EVALUATION

A modeling “hub” is a consortium of

research groups organized around a

particular scientific challenge. Hubs in

many fields, including climatology and

ecology, have helped to build consen-

sus and translate individual model

outputs into collective quantitative wis-

dom. This process often takes place in

close collaboration with partners who

will ultimately benefit from the model-

ing output.

Collaborative, multiteam infectious

disease modeling efforts have existed

in various forms for at least 10 years

and have played a central role in the

COVID-19 response (Figure B, available

as a supplement to the online version

of this article at http://www.ajph.org).

COVID-19 hub efforts (including fore-

casting and scenario hubs in the United

States and Europe) have leveraged

research networks, software, and tech-

niques developed for forecasting

efforts around dengue,8 influenza,10

and Ebola.11 These COVID-19 hubs

aimed to (1) create real-time modeling

systems that provide useful informa-

tion to partners; (2) create “feedback

loops” for modelers by encouraging

model development, evaluation, and

comparison; and (3) foster a modeling

community with an open science ethos.

Despite differences between fore-

casting and scenario projections, there

is still value in taking a “hub approach”

to both tasks. Over time, ensembles of

multiple models have provided more

reliable information than any one

model. In the US COVID-19 Forecast

Hub, an ensemble was the most consis-

tently accurate forecaster of mortality

over the course of the COVID-19 pan-

demic (through December 2021).3 This

finding echoes previous outbreak fore-

casting research, where ensembles

consistently performed well, if not the

best, on all evaluated metrics.8,10,11

It is harder to assess performance, or

even to define what we mean by accu-

racy, for long-term scenarios because

these projections are made under spe-

cific sets of assumptions that may or

may not come to pass. Nonetheless,

the hub approach provides critical ben-

efits by ensuring that models are

focused on the same broad assump-

tions about the future. Here, too,

appropriate ensemble methods can

distill results to facilitate interpretation

and inform action (Figure A).12

MODELS NOT ORACLES

The ensemble or hub approach is not a

guarantee of accuracy or utility. The US

COVID-19 Forecast Hub ensemble

(including many component models)

has struggled to produce accurate

forecasts of cases and hospitalizations

during periods of rapidly changing epi-

demic dynamics, such as the US peak

of the winter wave in early 2021 or

the rapid increases associated with

the Delta variant in summer 2021 or in

winter 2021–2022.3 Likewise, although

longer-term projections from the

COVID-19 Scenario Modeling Hub

projected a Delta-associated resur-

gence in the United States, the ensem-

ble significantly underestimated its

speed and size, even though there

were no clear deviations from scenario

assumptions.13

However, even when projections are

wrong, the hubs play a role in
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enhancing the scientific rigor and integ-

rity of epidemic modeling. The coordi-

nation provided by hubs ensures that

approaches may be prospectively and

objectively evaluated in uniform, fair, and

unbiased comparisons. Furthermore, by

evaluating many models simultaneously,

we can gain insight into whether suc-

cesses and failures are properties of

individual approaches or represent a

challenge to the field as a whole.

THE SHARED CHALLENGE
OF DATA

In contrast with weather forecasting,

which has seen sustained investment

in data collection infrastructure for dec-

ades, public health surveillance sys-

tems lag far behind. The lack of timely,

granular, and relevant data limits model

performance. By partnering with paral-

lel data curation efforts, hubs can help

the community access critical data

sources and overcome challenges

together.

Data challenges are present even in

the most seemingly straightforward of

model inputs, such as the number of

reported COVID-19 cases in a geo-

graphic area or jurisdiction. Case defini-

tions can vary by geography and time,

and reporting frequencies and rates

of testing have changed over time.

These issues have led to fundamental

changes in what a reported case repre-

sents during the pandemic.

To help mitigate these data issues,

COVID-19 modeling hubs have devel-

oped close relationships with data

curation teams.14,15 These relation-

ships have been critical to COVID-19

hubs, both in providing a source of

common “ground truth” data on which

models can be fit, evaluated, and com-

pared and in being stores of expertise

in dealing with heterogeneous and

inconsistent data streams. Active com-

munication between data and model-

ing communities has proved critical.

This process ensures that modeling

teams have information about data

anomalies and changes in reporting

that could fundamentally alter appar-

ent case trajectories and hence lead to

distorted model projections.

Curated data repositories can also

help provide modeling teams with easy

access to granular data on the wide

array of other phenomena that might

affect the subsequent course of the

epidemic. These include mobility statis-

tics, genomic sequences, wastewater

surveillance, government responses,

and behavioral data.

CONCLUSIONS

During the pandemic, model and data

curation evolved in real time. This is far

from optimal; we do not learn how to

forecast a cyclone while it is happening.

The value proposition of the hub

coordination model is two-fold. First,

scientifically, there is value in building

infrastructure with standing capability

to evaluate which models, ensemble

approaches, and data were most

useful at different times during the

outbreak response. Second, operation-

ally, there is value in developing proce-

dures that harness the insights of a

diverse network of scientists while

guarding against groupthink and

overconfidence.12

As researchers, system developers,

and public health officials who have

been deeply involved in the real-time

operation of modeling hubs during the

COVID-19 pandemic and prior epidem-

ics, we believe the hub approach is a

vital path forward for predictive disease

modeling efforts. Bringing together

multiple modeling teams to answer

pressing questions can provide part-

ners with important information

during emerging outbreaks. At their

best, hubs provide the leadership and

operational structure to ensure that

model outputs are solicited widely,

stored centrally, synthesized efficiently,

communicated clearly, and evaluated

honestly.

Modeling hubs and public data cura-

tion are and will remain crucial pieces

of infrastructure for supporting public

health decision-making in outbreak

crises. It will be important to extend

these approaches so they can be

adopted in low- and middle-income

countries to inform decisions in

resource-constrained settings. Critical

issues include building local capacity

for modeling and strengthening global

connections between modelers and

policymakers.

In all, the systems developed before

and matured during the COVID-19 pan-

demic are just a beginning. They must

be nurtured and sustained between

epidemics so they can help turn the

tide the next time human populations

face a pandemic.
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