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ARTICLE INFO ABSTRACT

Keywords: The estimation of parameters and model structure for informing infectious disease response has become a focal
Statimcf‘l eStimaﬁ?f‘ ) point of the recent pandemic. However, it has also highlighted a plethora of challenges remaining in the fast and
Uncertainty quantification robust extraction of information using data and models to help inform policy. In this paper, we identify and

Expert elicitation

. . discuss four broad challenges in the estimation paradigm relating to infectious disease modelling, namely the
Pandemic modelling

Uncertainty Quantification framework, data challenges in estimation, model-based inference and prediction, and
expert judgement. We also postulate priorities in estimation methodology to facilitate preparation for future

pandemics.
1. Introduction fundamental to scientific understanding, forecasting and decision-
making under uncertainty (Shea et al., 2020a). There are different di-
Efficient and timely estimation in parametric models of epidemio- mensions to the estimation paradigm that can be conducted indepen-
logical processes for real-world systems is highly challenging, but dently, including parameter estimation, quantification of uncertainty
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and sensitivity and model structure uncertainty, but ideally should be
united in a single coherent framework due to their dependence on each
other. Estimation approaches should incorporate all major sources of
uncertainty, otherwise estimates may be biased and/or overly precise.
Key sources of uncertainty include inherent variation in natural systems
and our lack of knowledge about these systems, typically broken down
into: observation error or bias (where the process of data collection is
imperfect); stochastic uncertainty (where inherent randomness in the
transmission process impacts outcomes of interest); parameter uncer-
tainty (where data are insufficient to fully identify model inputs);
structural uncertainty (where the choice of model structure is un-
known); and model discrepancy (reflecting differences between the re-
ality and the mathematical approximation to it that the model provides).
Adequate treatment of uncertainty increases robustness of forecasts,
predictions and decisions, facilitating a robust description and under-
standing of the processes involved. The uncertainty estimates can either
be a natural by-product of statistical inference procedures, or a quantity
of statistical interest in their own right.

Statistical inference for mechanistic infectious disease models is
challenging for many reasons, which has been discussed extensively in
Lloyd-Smith et al., 2015) and accompanying papers. Chief amongst
these is the fact that the transition processes (e.g., transmission, recov-
ery etc.) depend on the numbers of individuals in each epidemiological
state at any given time. In practice, these are only partially observed. For
example, infection times must be inferred from events such as
onset-of-symptoms, which are also uncertain and recorded with error.
These issues are exacerbated by asymptomatic infections, as seen often
seen in infectious diseases, including recently for Covid-19. Therefore,
statistical methods are combined with data to infer these missing vari-
ables alongside parameter values in the underlying transmission model.
Especially in the case of emerging diseases, typically it is also unclear
how to structure models e.g., in terms of disease progression, or what
spatial and temporal heterogeneities should be accounted for (Marion
et al., 2021). Therefore, and regardless of whether a model is deter-
ministic or stochastic, statistical inference is used to quantify uncer-
tainty in model structures, assess and select models, and handle
multi-model ensembles. If these models are used to support decisions,
then these challenges also need to be addressed in real-time.

Deterministic, state-and-transition transmission models can be fitted
relatively efficiently to data, by assuming transitions between states are
a continuous process, ignoring intrinsic uncertainty associated with the
underlying epidemiological history. Methods such as least-squares
fitting are often used to find a set of input parameters that minimise
the residual error between simulated event curves and observed data.
More sophisticated methods, such as using explicit stochastic observa-
tion processes that account for discrepancies between the simulated
event curves and the observed data points can also be used to construct
likelihood functions that (depending on how they are implemented) can
produce exact inference for a given transmission/observation model
(Wilkinson, 2013). However, deterministic models are at best an
approximation to the average behaviour of an underlying stochastic
system, and as such are applicable only in certain scenarios, for example,
with high infection levels in large, well-mixed populations. In highly
heterogeneous populations, such as those with spatial or network
structures (Eames et al., 2015), these models are less appropriate, or
indeed when the numbers of infections are low, then predictions from
these models can deviate dramatically from their stochastic
counterparts.

Stochastic transmission models offer more realism at the cost of
significant increases in computational complexity. Here events are
modelled probabilistically. For example, models of livestock infections
such as foot-and-mouth disease or E coli might choose to model trans-
mission between herds, or alternatively at the individual animal-level,
with coupled processes modelling within- and between-herd spread
(Touloupou et al., 2020). Similar considerations apply to human dis-
eases. Some frameworks model individual-level interactions, while
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others model transmission among and between groups, such as
meta-population models. Since transmissions are rarely observed, the
amount of missing information that needs to be imputed in the inference
process is linked to the model, so that an individual-based model for
every individual in the UK would correspond to many millions of un-
observed stochastic events, making inference and predictions highly
computationally intensive.

It is clear that there are multiple challenges to developing timely
epidemiological models. One challenge that seems common to all ap-
proaches is the need to develop infrastructure to conduct more
comprehensive uncertainty analyses in real-time, whether through
availability of more efficient algorithms, general software, computa-
tional power or knowledge and expertise. This in turn will facilitate
urgent decision-making, so simple and fast estimation procedures will
remain desirable. In all circumstances, decisions must be made in the
face of considerable uncertainty and often at speed, and this uncertainty
needs to be communicated effectively to enhance decision making by
those (typically non-quantitative experts) responsible. Thus, uncertainty
quantification also presents challenges for expert elicitation, and
communication (including visualisation).

In this paper, to prepare for future pandemics, we highlight a series
of key challenges pertaining to estimation, uncertainty quantification
and expert elicitation that are relevant to pandemic modelling. In Sec-
tion 2, we outline challenges in the Uncertainty Quantification paradigm
for estimation of uncertainties and sensitivities coupled with model
calibration for large-scale pandemic models. Section 3 identifies chal-
lenges of using real-world data in estimation procedures in real-time.
Section 4 suggests challenges for parameter estimation and model se-
lection in pandemic modelling, and finally, Section 5 discusses the
challenges of using expert judgement in pandemics when evidence and
data are less readily available than is required by the models.

2. Uncertainty quantification (UQ)

As mentioned above, one of the principal aims of estimation is to
measure and account for the various aspects of potential bias and un-
certainty inherent in the mathematical and statistical modelling of real-
world systems. We begin by discussing the UQ framework, which in its
fullest interpretation is a formal set of statistical methodologies ac-
counting for the discrepancies present in the use of computer models to
represent the real world, and their associated calibration to data and
forecasting for future outcomes. Aspects of UQ are applicable at all
stages of the modelling process, specifically pre-, during- and post-
pandemic, and can therefore underpin or inform the sections that
follow. Here we focus predominantly on the use of Gaussian Processes
for emulation, as these are used most commonly as the basis for
emulation. However, there remain challenges in alternative emulator
models that may be more appropriate in cases where responses are non-
Gaussian, such as non-symmetric or multimodal outputs. In these in-
stances, we point the reader to other papers where alternatives including
multiple emulators (Caiado and Goldstein, 2015) or quantile emulation
(Fadikar et al., 2018) are discussed.

2.1. Simulators and emulation

The mathematical and statistical analysis of complex numerical
models or simulators, and their connection to the real world, is often
referred to as Uncertainty Quantification (UQ). Although the modelling
of pandemics faces clear challenges that could be addressed by using
these methods, with a few exceptions (Andrianakis et al., 2015;
McCreesh et al., 2017; McKinley et al., 2018; Gugole et al., 2021), there
has been little application of UQ methodology to epidemic models. A
major such challenge is that of estimation, in UQ often referred to as
model calibration (sometimes model tuning). Nonetheless, the problem
being solved is the same: can real-world data corresponding to model
outputs (say hospital admissions) be used to tell us something about the
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model inputs (transmission rates, say), and how can this be achieved
efficiently within a coherent framework that incorporates all appre-
ciable sources of uncertainty?

One of the main tools employed in complex UQ tasks is an emulator,
often a Gaussian (or second order) process. A Gaussian Process (GP) is a
stochastic process that gives smooth continuous functions that can be
fitted to model runs as a surrogate for the true (unknown) analytical
solution to the model. The key here is speed: such GP emulators are
typically several orders of magnitude faster to evaluate than the epide-
miological model they are mimicking, and hence they facilitate other-
wise infeasible UQ calculations, including a comprehensive exploration
of the model’s parameter (input) space and behaviour. A second sub-
stantial advantage of GPs over other possible surrogate models (such as
polynomials) is that the GP includes an estimate of its own uncertainty.
This can be formally included in any subsequent calculation, inflating
any uncertainty calculations to account for the fact that a surrogate
model has been used rather than the true model. The fit of the GP and the
validity of its estimated uncertainty can be tested using additional model
runs (Bastos and O'Hagan, 2009). The GP emulator has many applica-
tions in the analysis of computer models, for instance predicting a new
value (with uncertainty) and performing sensitivity and uncertainty
analyses efficiently.

2.2. Sensitivity analysis

An additional stage of the UQ framework is sensitivity analysis, in
which the impact of changes to inputs or parameters of the model on the
outputs of that model is studied. This can be done as part of the model
construction process (Marion et al., 2021) but can also be useful in
estimation. In particular, it can be useful in reducing the dimension of
the estimation problem, by avoiding focus on parameters that have little
importance for the model; in determining important parameters to focus
estimation and calibration procedures on; or highlighting areas where
data may be particularly useful in obtaining inference or uncertainty
reduction. Frequently this sensitivity analysis is not done as a routine
part of the estimation procedure, meaning that time can subsequently be
wasted on non-identifiable or nuisance parameters that are of little
statistical interest. Sensitivity analyses of stochastic models also cause
computational and algebraic challenges that can be prohibitive for their
general uptake.

2.3. Calibration and history matching

One substantial difference between the UQ and more conventional
estimation approaches is explicit acknowledgement that the model will
never be a perfect representation of the real world, no matter what
model parameters are used. This has profound implications. For
example, simply using a method such as least squares with no discrep-
ancy term will ‘overfit’ the model and have poor predictive perfor-
mance. Including a structural model discrepancy term, in both the past
and in the future, can result in vastly improved predictions. This solves
two problems: overfitting in the past and being overly confident in the
future. The inclusion of model discrepancy elevates the analysis from
that of the model to the analysis of the real world itself and provides a
(partial) defence against the question “Why should we use these models
to make decisions?”.

There are two current methods for calibrating models. The first
builds an emulator for the model and an emulator for the discrepancy
simultaneously (Kennedy and O’Hagan, 2001). If the interest is only in
prediction, then the Kennedy and O’Hagan method works well, but there
is an identifiability problem between the two emulators. Their sum can
be estimated but the two components are difficult to separate (Bryn-
jarsdottir and O’Hagan, 2014). Several solutions to this problem have
been proposed but are subject to severe limitations.

An alternative is termed history matching (HM—Vernon et al.,
2010). HM aims to identify those inputs that give predicted model
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outputs so far removed from the data that they can be regarded as
implausible. HM proceeds by producing and validating an emulator, that
is trained on a carefully-designed set of model runs (using theory from
optimal experimental design). Then the distance between the data and
emulated model output (called the implausibility) is calculated and
scaled by three ‘variance’ terms: the emulator variance (which is
known), the data variance (supplied by the data collector) and a model
discrepancy term (elicited from the model developer, in combination
with a series of carefully-designed experiments on the model, see Section
5 below). If this implausibility is greater than a defined threshold the set
of model inputs is ruled implausible. It is worth noting that the
implausibility measure is a normalised unimodal variable, and as such
these cut-off thresholds can be informed by theory, most notably
Pukelsheim’s three-sigma rule (Pukelsheim, 1994). By adding extra
model runs, as a new wave, inside the not ruled out yet (NROY) region,
increasingly more accurate emulators can be produced, which reduce
the NROY region further. Eventually, either the NROY space becomes so
small that further reduction is unhelpful (adding extra waves makes no
difference to the NROY space, and better data are needed to reduce it
any further), or the NROY space vanishes as all sets of model inputs are
implausible. The implication of the latter is that, regardless of the model
inputs, the model cannot be made to agree with the data. Analysts then
need either to find another model, or a higher tolerance value for the
model discrepancy is required (Runge et al., 2016). Common usage of
conventional estimation methods can miss the fact that the model may
not fit the data well. This is especially problematic because, as the
number of model runs is increased, the estimated uncertainty on a bad fit
can be reduced: in essence bad model fits can lead to misleadingly tight
posterior distributions.

Such methods for model calibration from the UQ field offer many
advantages over conventional estimation methods. The use of fast GP
emulators allows the use of Monte Carlo or other sampling-based
methods that would be impossible with a full model. The inclusion of
model discrepancy in the calibration/estimation methodologies ac-
knowledges that models are not perfect representations of the real
world, in the same way that data are not—both contain biases and
uncertainties.

2.4. Model discrepancy

Formal separation of model and reality within the UQ framework
opens many further possibilities, including construction of an over-
arching framework that incorporates multiple epidemiological models
in a coherent fashion (Goldstein and Rougier, 2009). This is virtually
impossible without such structural model discrepancy terms. This
framework allows the predictive power of multiple models to be com-
bined coherently, while acknowledging their various strengths, weak-
nesses and differences. Similarly, fast, simple models (for which many
runs can be evaluated to train the emulator with high accuracy) can be
combined with slower, more detailed models (for which far fewer runs
are available). Furthermore, these methods allow separation of the
inference and simulation frameworks, so that the same techniques can
be used to fit a wide range of different models, without having to make
fundamental changes to the nature of the inference algorithm. Hence
such a separation could represent a step change in epidemiological
analysis.

The major challenges for using these approaches for real-time
pandemic modelling are:

1. Efficient Model Calibration support: the provision of efficient and
robust UQ methods and code to aid the epidemiologists’ model
calibration efforts. The efficiency is achieved via the use of emula-
tion, allowing epidemiologists to calibrate current models, and to
explore more complex/higher-dimensional models when needed.

2. Acknowledging the difference between the model and reality:
calibration methods should be robust in the sense that they
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incorporate structural model discrepancy, and hence guard against
the dangers of treating an imperfect model as perfect. They should
also exhibit robustness to (miss-)specification of distributional forms
in the likelihood and associated error structures.

3. Scaling: the current GP-based emulators do not scale well to large
numbers of parameters or outputs (unless treated independently).
Appropriate methods exist when these parameters correspond to
spatial fields or time series. Increasing the number of inputs via a
hierarchy of models, for example, by adding spatial effects to a non-
spatial model as described in (5) below, is a possible simple solution.

4. Uptake of these methods: a substantial challenge is the paradigm
shift required for the uptake of these methods. Going from traditional
ideas of statistical model fitting to ideas such as using fast emulators
or representing all major sources of uncertainty in and around the
models, including the structural model discrepancy terms, is hin-
dered by widely available infrastructure, so it is not surprising if take
up is slow during a pandemic when time is short. It also requires that
modellers become familiar with fitting and validating (GP) emula-
tors, which are currently not widely taught. This is exacerbated by
the lack of suitable easy-to-use software or a lack of familiarity with
software that is available, an issue addressed by point 1). An
expository paper is currently in preparation for publication in this
series to assist with the adoption of these methods (Dunne et al.,
2021) and an application to HIV can be found in Andrianakis et al.,
2015).

Other more sophisticated challenges, of no less importance are:

5. Multilevel Model Emulation and Calibration: the incorporation of
multiple levels of fidelity of epidemiological model (e.g., using fast,
medium and slow versions) within a UQ emulation and calibration
framework. This, as described above, is the most efficient way to
emulate and calibrate very detailed epidemiological models (Craig
et al., 1997; Kennedy and O’Hagan, 2000; Cumming and Goldstein,
2010).

6. Coherent Overarching Structure for Combining Multiple
Models: the provision of techniques to aid the combination of
models from multiple research groups into a coherent structure to
give more powerful predictions and subsequent decision support,
underpinned by more realistic uncertainty statements. While some
progress has been made on this front during the SARS-CoV2
pandemic, far more must be done. Suitable UQ frameworks for
this, are ready to be employed (Rougier et al., 2013; Goldstein and
Rougier, 2009).

7. Generalising UQ to Stochastic Models: UQ methodology was
traditionally designed with deterministic models in mind. While
much of it has been generalised to stochastic models, a setting closer
to traditional statistics where many more tools are available, key
challenges remain, e.g., issues around bi-modality and quantile
emulation in complex stochastic models, motivating further research
into the set of requisite statistical methods.

We have focused here on estimation/calibration, but the above
challenges and UQ solutions also pertain to the critical issues of pre-
diction and decision support (Marion et al., 2021; Hadley et al., 2021).

3. Data challenges for estimation during a pandemic

Mathematical modelling works by simulating historic behaviour to
understand better the current behaviour of the system, which can be
used to make estimates and future predictions. The level of uncertainty
in estimates and model outputs depends on several aspects, often closely
related to the data. In this section, we describe some key estimation
challenges that arise from use of data available during a pandemic. This
discussion is general but draws on experience of the SARS-CoV2
pandemic.
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3.1. Data availability and indirectness

During a pandemic, particularly in the early stages, scarcity of data
can make it challenging to fit models and estimate parameters. How-
ever, during these early stages, policy decisions must be made despite
scarce data, requiring models and estimation to use the data available
efficiently, typically entailing a compromise between model complexity
and parsimony, to make best use of available data whilst not running
into issues of non-identifiability. As more data are collected, across
multiple layers, models can be refined and complexity can be increased,
if required. If models are non-identifiable in the early stages, further
attention needs to be given to exploring the parameter space. This can be
computationally intensive but is vital to ensure correct communication
of limitations and uncertainty in estimation.

Typically, even when scarce, epidemiological data can inform indi-
rectly on the transmission process; however, complex data imputation
techniques are needed even in the presence of abundant data. A major
challenge is computational complexity and time. Care is needed to assess
how much information the data contain about the parameters of inter-
est, to ensure that the data are driving estimates (Section 4).

Inferences of the transmission process may be biased by missing data.
During the early stages of an epidemic, when outbreaks are spatially
distinct, estimation of epidemiological parameters can be biased by
factors such as travel out of outbreak areas (Overton et al., 2020), which
may result in cases being missed, or inconsistent reporting rates across
spatial regions, leading to different estimates of relationships between
observed data and the underlying epidemic.

Using multiple layers of data can help to reduce uncertainty, such as
combining sequencing data with surveillance data to obtain more direct
estimates of a chain of transmission events. In the SARS-CoV-2
pandemic, appearance of different strains brought the possibility of
higher relative transmissibility. This is hard to measure without
detecting cases among contacts of an infected person, which relies on
contact tracing or sequencing data. Challenges here relate to both the
availability of data and accounting for biases in these. For example,
there may be no systematic testing, producing challenges in what data to
calibrate to or test model predictions against. If it is not possible to
collect these data within the necessary timeframe, the challenge arises of
how to deal with biases in predictions that may depend on these missing
data. Although data collection from contact tracing and contact patterns
is continuously improving, challenges remain in how to estimate the
level of risk associated with different types of contact (Kretzschmar
et al., 2021).

The pandemic has given rise to many new sources of data, each
bringing their own challenges in estimation. One example is the use of
phone apps that allow users to submit symptoms or movement activities
on a daily basis. These data provide resolution that would not be
possible through more direct experimental designs, but such ‘commu-
nity/citizen science’ data is known to come with many issues in po-
tential biases (Dickinson et al., 2010). The use of waste water to sample
for genetic viral material has also come to light, having previously been
used to detect presence or absence of polio (O’Reilly et al., 2020). In-
dividual host variation in shedding is a specific challenge in developing
more accurate prevalence of infection in populations, as is the tracking
of the original source of the genetic material.

Even when the right type of data is available in sufficient quantities,
it might not be at the correct resolution. For example, most mathemat-
ical epidemiology is based on continuous-time models, but in practice
data are always discrete, so a choice of whether to use a discrete-time
model or how to discretise a continuous-time model is important.
Continuous-time models may help with issues of censored data (see
below). Similarly, time series data could be weekly rather than daily or
fluctuate based on weekly reporting patterns, so the choice of how to
aggregate or smooth data will affect estimation, requiring models that
are robust to these systematic data issues. Resolution can also affect
definitions of data used, such as whether to count all deaths where the
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patient tested positive for a pathogen, or only those where it was the
primary cause of death. Discrepancies across regions can make it hard to
estimate consistent fatality rates. Similarly, hospital occupancy data
may count occupancy from time of admission or from time of returning a
positive test, which can lead to challenges in estimating length of stay.
To address these issues, better meta-data are needed to provide clarity
into the definitions used. Data missingness can substantially affect the
benefits of high-resolution data. For example, during the COVID-19
pandemic, high volumes of testing data have been collected. However,
high levels of missingness in the numbers of negative cases make the
data challenging to use, due to changes in testing rates over time
(Shadbolt et al., 2021).

3.2. Noisy data, truncation and aggregation

Noisy signals arise from imperfections in observations and fluctua-
tions in natural and human-mediated processes, requiring models to
separate trends from residual effects. Aggregating over short time scales
is prone to significant noise or delays, but if a signal is strong enough, the
increased resolution may increase the usefulness of estimates. Aggre-
gating over longer time scales can provide more stable estimates and less
uncertainty, but estimates are affected by older data points so signal can
be more “delayed”, and rapid changes in signal can be missed. It is
important to determine a suitable balance between flexibility and
timeliness of estimates, and robustness and reliability of such estimates.

Lack of information due to gaps in data in space and/or time creates
uncertainty in data streams. In these cases, imputation or smoothing
between points relies on good understanding of biological processes to
avoid introducing bias resulting from poor mechanistic representation
and model discrepancy. Attention should be given to ensure that infor-
mation is not being lost in the interpolation — for example on behaviour
from mobility data if smoothing the relevant curve or from aggregating
time series data (all cases vs age or risk-group stratified data). When an
outbreak is unmitigated, such aggregation may be reasonable since the
relative contribution across different units may be constant. However,
for example, interventions may affect spatial or demographic groups
differently.

The choice of aggregation level reflects which sources of heteroge-
neity are considered (Marion et al., 2021). Many parameters, such as
symptom duration and outcome probabilities, vary substantially with
factors such as age, sex, socio-economic context or ethnicity. Aggrega-
tion across multiple covariates provides bigger sample cohorts, so esti-
mates can be generated with seemingly lower uncertainty. If important
covariates are not accounted for, estimated trends may be misleading.
For example, data might suggest temporal changes in some parameter
estimates that are driven by demographic changes over time. Data may
be aggregated at a regional or national level, but this may fail to capture
local heterogeneity, and local outbreaks might be very severe even if
other areas are still apparently unaffected. However, disaggregating
with multiple covariates may result in small sample sizes, inflating un-
certainty, which could cause identifiability issues if estimates are used as
model inputs.

During a pandemic, reporting events such as the transition from
infection to hospital admission (Pellis et al., 2020) or from hospital
admission to death is often subject to significant delays. This leads to
many observations being incomplete, lacking information regarding the
duration of the delay and which outcome is observed. Such bias needs to
be carefully adjusted for when estimating key epidemiological param-
eters (Commenges, 1999). It is possible only to consider cases where all
events of interest have been observed. However, this introduces a
truncation bias, whereby observed distributions are shortened as they
approach the most recent time points (Kalbfleisch and Lawless, 1991;
Sun, 1995). The effect of delayed information on measures of uncer-
tainty often is overlooked. Estimation will produce larger uncertainty
intervals for recent events and even larger intervals when forecasting,
which can make decision making more complex and subjective. To
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account for this, one can use data based on date of report rather than
date of occurrence. However, this can lead to further complications in
estimation. For example, hospital admission time-series may not be
recorded by date of admission but by date of returning a positive test (htt
ps://coronavirus.data.gov.uk/), whereas length of stay estimates may
be generated from the time of admission (Vekaria et al., 2021). Fitting a
relationship between time-series for admissions and bed occupancy will
be inconsistent with hospital length of stay estimates.

3.3. Multiple data streams

Data collected during an outbreak may be generated as part of the
emergency response, rather than a regular data collection process,
which can lead to inconsistencies. This is particularly pertinent when
data are requested from multiple sources. For example, during the
Covid-19 pandemic, each NHS trust in England returned daily data on
hospital admission and occupancy. However, being a novel request, it
took a few months to ensure consistent data streams across the country.
Such labour-intensive data are unlikely to be retrospectively corrected.
Statistical models account for such issues, but more robustly when
sources of errors are known. For example, if a model is fitted to multiple
data streams, a known bias in a data stream can be built into the model
uncertainty. Many countries have different definitions of what mea-
surements relate to, such as different measures of mortality or different
numbers in the tested population (Shadbolt et al., 2021). Random effects
or latent variables can be used to account for individual variations in the
data sources and there is increasing literature on integrated models
combining data streams. One of the major estimation challenges here is
developing methods that are sufficiently general to be of use to a wide
range of scenarios.

When using multiple data streams, which are inevitably interrelated,
a relationship between the streams (both observed and unobserved) can
be estimated (De Angelis et al., 2015). However, as an epidemic pro-
gresses, interventions and policy changes can alter this relationship.
Interventions such as vaccination may alter the age distribution of cases,
thereby changing hospitalisation/mortality risk. Similarly, treatment
could reduce mortality in infected individuals. Dimension reduction
techniques can be used to address this, however the interpretation of
these procedures is often challenging. A further challenge might arise
when attempting to provide a country-wide reproduction number, as
one could aggregate potentially de-synchronised data streams from
different regions or combine regional reproduction numbers. If these
variations are not properly accounted for, inference about infection-
s/prevalence may be biased. If a model does not accurately capture the
impact of an intervention, inference regarding the transmission process
may be inaccurate (Kretzschmar et al., 2021). However, there may be
insufficient data to quantify vaccine impacts on transmission/disease
prevention accurately, creating a substantial modelling challenge.

3.4. Challenges

In preparing for future pandemics, methods for dealing with the
following estimation challenges should be considered:

1. Due to the indirectness of data streams, a challenge lies in
assessing how much information the available data contain about the
parameters of interest.

2. Discrepancies in data collection procedures between spatial
regions lead to different relationships between observed data and
the underlying epidemic. If this is not correctly accounted for, esti-
mates can be severely biased.

3. Data may not be at the desired resolution, so a challenge lies in
aligning model complexity to the available data or making the model
robust in accounting for aggregated data.

4. Temporal aggregation creates a challenge in how to determine the
right balance between flexibility and timeliness of current estimates,
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and the robustness and reliability of such estimates. This is important
when investigating whether an apparent deviation from the previous
trend should be considered trend or noise.

5. Aggregating across demographic/regional groups may obscure
important trends in the data. For example, the effectiveness of a stay-
at-home order may correlate with sociodemographic deprivation and
therefore failing to account for deprivation may bias estimation of
the impact of such orders.

6. Models and statistical methods need to account for incompleteness in
recent data, due to censoring and reporting delays.

7. When using multiple levels of data, challenges remain in connecting
the various levels of data and accounting for potential biases.

8. A challenge for future pandemics is accounting for inconsistencies
between different data streams in estimation procedures to
provide more accurate and robust quantification.

9. Interventions and policy changes during a pandemic can alter
relationships between data streams. This needs to be understood and
appropriately accounted for when developing estimation models and
quantifying uncertainty.

4. Model-based inference and prediction/forecasting

At different stages in a pandemic, some types of estimation are more
feasible than others. In data sparse periods at the start of the pandemic,
reliance may be on formal model analysis or expert elicitation. Reliance
on data can be more robust as the pandemic evolves and data sources
grow and extend. The choice of how to account for uncertainty is made
more complex by the fact that there is a general lack of understanding of
different types of uncertainty, as discussed in detail above. These dis-
cussions notwithstanding, the principal estimation challenge is how to
deal with large amounts of missing data and hidden states (e.g. pre-
symptomatic infections) that are inherent in the modelling of epidemics.

4.1. Explicit likelihoods and data augmentation

Latent variable approaches (e.g., data-augmented MCMC: Gibson
and Renshaw, 1998; O’Neill and Roberts, 1999) represent unobserved
epidemiological events in the statistical model, and these are estimated
as part of the inference routine. These often Bayesian approaches can, in
theory, use standard methods such as Markov chain Monte Carlo to
explore the joint (high-dimensional) parameter space of hidden vari-
ables and parameters. Extensions, such as reversible-jump methodolo-
gies (Green, 1995) can be employed to allow for unknown numbers of
hidden variables. When applicable, these approaches can yield a huge
amount of information, e.g. by robustly integrating multiple sources of
data including epidemiological observations and genetics (Lau et al.,
2015).

Implementing these techniques requires a close synergy between the
underlying model and the inference algorithm to avoid complexities in
updating the parameter values conditional on the data at each iteration.
Standard random walk updating schemes do not work well with esti-
mating hidden states due to inherent correlation between and within
model components. Often, generic algorithms and poorly implemented
code are extremely slow to explore parameter space. The development
and optimisation of these approaches is thus very challenging and time-
consuming, and for large systems with many hidden states, they can
become computationally infeasible. However, some generic updating
schemes have improved performance including non-centred parame-
terisations (Papaspiliopoulos et al., 2003), tempered algorithms (Sacchi
and Swallow, 2021) and model-based proposals (Pooley et al., 2015).
Sometimes, approximate models such as discrete-time models help
reduce computational complexity, and recent research has exploited
sophisticated computer hardware, such as Graphics Processing Units, to
help alleviate some of the computational burden. Despite this, for
high-dimensional models, computational efficiency, and the challenges
in implementation and coding, remain a bottleneck that limits practical
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application. Some open software implementations of these methods
have been developed, e.g., GEM, (https://gem.readthedocs.io/en/late
st/), however much more is required before these can be widely used
by domain experts.

4.2. Likelihood-free simulation-based approaches

An alternative to using latent variables to capture hidden states, is to
simulate them directly from the underlying model of interest. Ap-
proaches such as maximum likelihood via iterated filtering (Ionides
et al., 2006), Approximate Bayesian Computation (Minter and Retkute,
2019), synthetic likelihoods (Wood, 2010) and particle MCMC (Andrieu
et al., 2010) aim to approximate likelihood functions via simulations. In
some cases, these methods can provide exact inference, conditional on
the choice of transmission and observation models, but in practice the
latter must often be replaced by a measure that penalises large de-
viations from the observed data in a somewhat arbitrary fashion. The
interpretation of these approximations is discussed in more detail in
Wilkinson (2013). Despite these issues, these approaches are attractive
because they are much more straightforward to implement than latent
variable methods, since coding simulation models is in general much
easier than using data-augmentation approaches, and general-purpose
software exists to implement these. Simulation-based approaches are
thus often touted as “plug-and-play”, but, in practice there are key
challenges in scaling up these methods to large-scale systems.

The main challenge is that these approaches can require hundreds-
of-thousands, if not millions of simulation runs to explore the param-
eter space adequately. If the simulation algorithms are highly stochastic,
then this induces large variability in, for example, estimated likelihoods.
Particle filter-based likelihood estimation typically scales poorly with
data complexity. Thus, relative ease-of-implementation in practice often
is superseded by extreme computational loads. Often the only compu-
tationally viable approach is to match to summary measures of the data,
especially if the data are highly complex. This relies on the generation of
informative summary measures, since in many cases it is not possible to
identify and generate sufficient statistics (i.e., those that preserve the
information in the likelihood). This introduces a loss of information,
which introduces more uncertainty into parameter inference and
prediction.

As discussed in Section 2, a statistical emulator may alleviate some of
this computational burden by searching the parameter space exhaus-
tively for areas of the space where good fits to the data are likely to be
found, using techniques such as history matching. Alternatively, they
can be used to emulate the likelihood directly. Since emulators are
typically trained on individual outputs, it is necessary to reduce complex
data sets to a lower dimensional set of informative summary statistics.
Furthermore, expertise in fitting and validating emulators is required,
and to date there is no general-purpose software for implementing these
approaches. Moreover, some behaviours seen in stochastic infectious
disease models, such as multimodal outcomes, are hard to emulate using
standard approaches, and remain an area of ongoing research.

4.3. Model structure and inference

At different stages of a pandemic, the decision on which model
structure to use may be forced by time constraints that govern when
estimates need to be provided or by data availability/quality (Section 3),
constrained by the familiarity of those responsible for model develop-
ment with alternative approaches. However, even when sufficient data
are available, the choice of which model to use and the potential im-
plications of that decision on estimates of both parameters and uncer-
tainty bounds are rarely apparent or considered. Stochastic and
individual-based models are more realistic, and more widely appli-
cable than deterministic models, particularly as more complex struc-
tures are introduced, such as meta-populations, spatial structures or
network dynamics (Eames et al., 2015). These structures may be critical
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to answering policy questions such as concerning contact tracing or
vaccination strategies (Marion et al., 2021). However, these models are
inherently more difficult to fit to data than simpler deterministic models
and are also more data- and computation-hungry. When there is need to
quantify properties of an outbreak, to inform public health policy, it is
important that relevant processes are included in the fitted model and
that due consideration is given to the impact of model structure and its
potential biases on estimation.

4.4. Model assessment and comparison

As discussed in Section 2, parameter and output uncertainties are
conditional on the specific choice of model, and thus do not account for
the discrepancies between the model and the reality it aims to represent.
Incorporating terms into the model that can account for this discrepancy
when conducting inference or predictions is an ongoing area of research,
and although techniques exist for doing this for certain approaches
(including history matching using emulators), these ideas have not been
readily implemented into standard statistical approaches, such as data-
augmented or particle MCMC.

Associated with the idea of model discrepancy is the idea of model
specification. Multiple model structures can be fitted to data, but new
tools are needed to assess model fits, and either select between models or
combine them in meaningful ways. Model assessment is frequently
difficult with complex models, particularly with spatial and/or temporal
components and especially for stochastic models. Latent residuals for
spatio-temporal models of disease spread (Lau et al., 2014) are an
interesting move in this direction but much work is needed to develop
tools that can be routinely applied across a range of models (Gibson
et al., 2018). Improved tools could provide significant advantages in
tackling pandemics by identifying key characteristics of novel patho-
gens, although this will likely require better quality data than are
currently routinely available in outbreak settings (Shadbolt et al., 2021).
Current methodologies, such as information criteria or calculation of
marginal likelihood, are not well suited to disease transmission models
or are computationally challenging (Pooley and Marion, 2018). For
example, standard cross-validation (CV) methods may smooth over de-
ficiencies in model structure if not conducted with care, and are difficult
to employ in data sparse scenarios, or across highly structured data such
as time-series, or spatially explicit or regional models. These approaches
are also computationally demanding, since models need to be refitted
multiple times for CV.

There can be a significant difference between models used for
explanation and description (Shmueli, 2010; Hanna, 1969) and those
used for prediction or forecasting, both structurally and from a philo-
sophical perspective. The treatment of uncertainty in each case is
potentially different and active consideration needs to be given to what
unknowns are being integrated over and/or which quantities could
change beyond the data used to estimate the parameters. The reality is
that in prediction, model structure and estimated parameter values are
often considered to be constant, which will not be realistic in many
settings. It seems that this distinction is often not made explicit or
considered when developing statistical paradigms for estimation. Con-
sistency across model types might not be feasible but little attempt ap-
pears to have been made to consolidate this.

4.5. Model ensembles

With a plethora of model types and structures, and many ways of
estimating parameters within those models, differences in estimates are
almost inevitable. Understanding why these differences occur and how
and whether it is sensible to combine inferences is complex and an
ongoing area of research (Berger et al., 2021). Bayesian model averaging
enables model aggregation in a statistically principled way, although it
requires a close synergy between the specific aspects of the inference
algorithm and the model. Expert elicitation may be required in this
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instance (Section 5). Interpretations of parameters might vary between
models, meaning they are not directly comparable and cannot be aver-
aged across models. Forecasts are often more straightforward to
average, although outputs from different models may have different
spatial and/or temporal granularity, precluding sensible averaging.
Borrowing work from other application areas such as local-scale weather
and population dynamic models may provide some ideas of how to
advance, but models of pandemics are likely to be much more variable
and stochastic than those, for example, that have been used to model
long-term climate trends. Furthermore, the computational and
time-constrained burdens of developing and fitting multiple models
often means that individual research groups work with a single, or small
sets of models.

4.6. Limits to formal estimation

Early in pandemics of novel viruses, knowledge about key parame-
ters may be unreliable or non-existent. Data may be sparse or particu-
larly noisy, making estimation of parameters especially challenging
(Section 3). Bayesian inference enables models and data to be combined
with prior distributions representing available information. Nonethe-
less, problems remain. Reliance on assumed knowledge from other vi-
ruses or pathogens may introduce biases. This may, however, be the only
option, and putting a distribution on the range of parameter values is
preferable to fixing the unknowns to take specific values. As such, the
use of systematic prior elicitation techniques (Section 5) to establish
plausible prior distributions will help to inform model simulations in the
early stages of an outbreak. Systematic sensitivity analyses can help to
identify which outputs from the model are sensitive to which parameters
and thus offer a means of targeting data collection and study design to
identify key parameters better, where possible (Shadbolt et al., 2021).
Emulation and other techniques can also be employed to help perform
systematic sensitivity analyses in high-dimensional systems.

4.7. Challenges

1. The principal challenge across this section is the development of
efficient and more generally applicable approaches to updating
latent states within MCMC frameworks for high-dimensional
models and development of general-purpose software to implement
latent variable approaches.

2. Methodological challenges remain in the development of likeli-
hood free methods based on informative summary statistics to
conduct inference in high-dimensional and stochastic systems.

3. Implementation of High Performance Computing (HPC) and
cloud-based procedures for running large numbers of simula-
tions from stochastic models. A key challenge is putting the infra-
structure in place for groups to be able to respond quickly in the face
of a future pandemic, as those often made available at institutional
level cannot be made sufficiently flexible to be beneficial for all
computational needs.

4. Challenges remain in methodological approaches to model
structure and inference, as well as facilitating the uptake of these
methods by modellers conducting suitable investigations as part of
the estimation process. One important challenge is generating
observation processes that consider causes for systematic biases in
observed data.

5. Model discrepancy/structural bias: there are remaining chal-
lenges in ensuring model-reality/structural discrepancies are
routinely accounted for within estimation processes.

6. Separation of predictive and descriptive approaches for con-
ducting inference and estimation. Further challenges arise on sep-
aration of validation and assessment approaches for these different
philosophical approaches.

7. An important challenge is to develop more approaches that indi-
cate poor fit and point towards aspects of the model that are most
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deficient. Further work is also needed to enable routine application
of model comparison methods including marginal likelihood, suit-
able information criteria and cross-validation.

8. Models are developed and fitted by different research groups; hence
generic ways of comparing and averaging models that have been
fitted in different ways to different data are an important challenge.
Difficulties remain in estimating weights or relative beliefs for each
of the competing models.

5. Challenges for expert judgement

It will often be the case that decisions or forecasts need to be made
when the evidence base is limited, particularly in the early stages of a
pandemic, or when assessing whether a novel outbreak might lead to a
new epidemic. However, even after many months of experience with
Covid-19 and related data collection, analysis, modelling and scientific
advances, there remain many important questions and data gaps.
Therefore, at various stages during an epidemic, expert judgements may
be required to fill gaps and support decisions; indeed, in some contexts
this may be the only source of relevant information.

5.1. Roles for expert judgement

Expert knowledge has important roles to play in addressing many of
the challenges of understanding and responding to a pandemic:

1. Early warning to decision-makers: experts often alert decision-
makers to emerging pathogen outbreaks, providing models to
explain the perceived cause-and-effect relationships, and helping to
characterise the potential or relative risks in relation to other infec-
tious diseases and current policies.

2. Formulating useful and relevant questions. During an outbreak it
is important that policy measures are timely, and that subsequent
research and assessments are focused on providing information
while there is still time to act. However, as was evidenced by the
recent COVID-19 pandemic, recognising all the relevant factors can
be challenging; those involved may not agree on the formulation or
prioritisation of key research questions. This can lead to unfocused
research and conflicting recommendations. If decisions are to be
made on how to act and where to invest in further research, then
decision-makers need to decide on the problems to be addressed and
the objectives of importance. These decisions often require the
balancing of multiple values and objectives, and are best addressed
within a decision-analytic framework (Shea et al., 2020a; Gregory
et al., 2012). Here, experts are most often required to help frame
possible actions to meet objectives, identify information sources to
evaluate the consequences of actions, and estimate parameters and
model structures. Importantly, objectives in decision-making and
policy often extend beyond scientific concerns, to include social,
economic and cultural values. This requires an appropriate pool of
experts and stakeholders (Hadley et al., 2021).

3. Developing models and identifying important parameters. Dur-
ing an initial outbreak of a new infectious disease, expert opinion
will be crucial to inform both model structure (e.g., transmission
routes and the stages of the natural history of disease that should be
considered) and parameter quantification (e.g., the distribution of
latency times). Here, the combination of research question, expert
knowledge, and available data will inform the required level of detail
(e.g., explicit transmission networks vs. homogeneously mixing
populations). In addition, expert knowledge may help disentangle
unidentifiable sets of parameters (e.g., contact rates and transmission
probabilities), by informing model parameters with prior distribu-
tions.

Uncertainty about the appropriate model should be taken fully
into account, and a range of models considered. There is increasing
use of multiple models in disease forecasting and scenario projection
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to aid decision-making (e.g., Li et al., 2017; Viboud et al., 2018; Ray
et al., 2020; Borchering et al., 2021). Recently there have been
moves to leverage Structured Expert Judgement approaches within
multi-model analyses, to ensure full expression of scientific uncer-
tainty (i.e., uncertainty about biological processes or parameters, or
about interventions) while reducing linguistic misunderstandings
and minimising cognitive biases in expert elicitation (Shea et al.,
2020a). This can be done by a curated discussion between modelling
rounds, during which linguistic uncertainty about data streams, in-
terventions and objectives can be discussed and clarified. Embedding
these in structured decision-making approaches (Runge et al., 2020)
may also enhance and streamline the integration of modelling and
policy efforts (Shea et al., 2020a,b).

4. Predicting the expected impact of interventions. This requires
assumptions about the effects of postulated interventions, either in
terms of model mechanics (e.g. a reduction in duration of infectivity
due to treatment) or in terms of expected outcomes (e.g. a decrease in
hospital admissions due to quarantining). Assumptions should be
made explicit and informed by data, where available, and, where
necessary, by expert judgement.

A major challenge is that the outcomes of interventions will
depend on the extent to which individuals and demographic groups
participate in, or adhere to, required actions. Predictions about
human behaviour are particularly challenging, especially in new and
undocumented circumstances such as a pandemic. Timeliness is
particularly important as participation and adherence patterns are
likely to drift due to changes in risk perception and “policy fatigue”
in the population.

5. Communicating model assumptions and outputs. Model pre-
dictions best represent what is currently known when they are based
on a foundation of validated knowledge, and properly incorporate
uncertainty. Involving expertise from diverse relevant disciplines
will make model predictions more realistic and credible. Also, by
involving experts from different disciplines, elements of a common
taxonomy and technical language can be developed with which to
discuss research questions across disciplines; this is particularly
important when addressing emergent pathogen outbreaks and pan-
demics, which are high-dimensional, multi-disciplinary problems.
Such an approach in turn can help to communicate underlying as-
sumptions, results, and their associated uncertainties to policy
makers and the public at large. Ideally, experts should be drawn from
a range of stakeholder communities, to engender transparency and
understanding, leading to increased support for and trust in models
to inform policy. Those with expertise in deliberative judgement and
stakeholder engagement may help to engage different groups within
society to increase awareness, trust and commitment to action.

5.2. How to capitalise on expertise?

While expert judgement is often required, there can be unease in
using experts to inform decisions of importance, even when the data
required are absent, contradictory or uninformative and even though
decision-makers are quick to draw on trusted sources (e.g., informal
discussions with those they perceive to be reliable experts). To some
extent this unease is justified. Experience has repeatedly demonstrated
that, under such circumstances, people are prone to make poor judge-
ments, to be affected by contextual biases and other cognitive limita-
tions (O’Hagan et al., 2006; Shanteau et al., 2012). Even those with
substantial knowledge and expertise in a domain typically have diffi-
culty in formulating their judgements in precise, unbiased and mean-
ingful ways (Burgman et al., 2011a; Hemming et al., 2018). Real care is
needed to minimise biases, inaccurate judgements and poor decisions.

Even when experts are asked to provide judgements that are limited
to the estimation of facts or outcomes (i.e., not value judgements), they
may reasonably disagree (e.g., because of different background and
expertise) and may offer different estimates. For those relying on
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experts, this can be disconcerting.

However, insights from studies of expert judgement have identified
ways to capitalise on expert judgements to generate reliable judgements.
Many contextual biases and psychological frailties can be mitigated by
offering suitable facilitation, training and assistance to experts, as is
done in Structured Expert Judgement (SEJ) protocols (see below). It is
entirely natural that — in the face of real scientific uncertainty — experts
will provide apparently divergent judgements; these alternative views
are the essence of scientific endeavour and progress, and should be
viewed as an advantage for informed decision support, especially if they
bring different information and understandings to the table (Cawson
et al.,, 2020; Moon et al., 2019). Eliciting expert knowledge from a
diverse panel makes it more likely that the basic elements required to
align research efforts and inform policy are considered. A variety of
methods, including SEJ, for synthesising the range of opinions from an
expert panel have been developed, and it has been shown that such
syntheses generally provide more accurate judgements than less formal
approaches (Hemming et al., 2018, 2020a; Colson and Cooke, 2017).

5.3. What quantities to elicit?

Expert elicitation is most easily focused on meaningful and in prin-
ciple measurable outcomes or quantities, such as whether an emergent
novel virus will escape its local area, or how many deaths there will be in
a certain population and time-interval. If the quantity that has been
forecast is later observed, predictive success can be formally evaluated
and used to calibrate future forecasts and rank different forecasters.

In applications it is often desirable to express uncertainty about
theoretical quantities, such as the basic reproduction number R, and
other parameters of a model. A challenge is to find good ways to assess
such parameters in terms of meaningful quantities. For instance, in a
simple SIR model, it may be desirable to assess uncertainty about Rq,
based on expert opinion on the duration of infectiousness, combined
with data on disease incidence over time during an outbreak, using
modelling and expert judgement about the relationships between these
quantities.

5.4. How to express judgements?

It is important for judgements to be expressed probabilistically. It
will seem natural to many practitioners and modellers to give only single
point estimates of unknown quantities, but these can be very misleading:
it is instead vital for experts to be open about the associated un-
certainties and their judgements of these. For example, when faced with
a new infectious disease, information gained from a previous disease
may be all that is available, but its relevance will be questionable, and
this should be represented explicitly. Any projections from such past
experience must be carefully considered, taking into account similarities
and differences between the past and the future, and, importantly,
hedged with appropriate, typically high, uncertainty. Such uncertainty
is most usefully expressed as probabilities (O’Hagan and Oakley, 2004).

It can be useful to conduct expert knowledge elicitation in an itera-
tive fashion, asking experts first to make a private individual estimate,
giving the experts feedback on how their estimates, knowledge and as-
sumptions, and those of others, translate into expected outcomes, and
allowing them to address any apparent discrepancies and mis-
understandings. Feedback and iteration can reveal information or as-
sumptions not considered by others and allow experts to see that their
views of the problem, and even their interpretation of terms, may differ
from their colleagues, so helping them to understand better the range of
uncertainty. This is particularly important when experts are unpractised
at expressing their knowledge in probabilistic terms.

5.5. Structured Expert Judgement

“Structured Expert Judgement” (SEJ, also known as “Expert
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Knowledge Elicitation™) is a broad label for a set of systematic decision
support tools for model development and parameter quantification, for
use when data are absent or incomplete and critical decisions need to be
made. SEJ supplies structured and repeatable methods for the selection
and training of experts, and elicitation and aggregation of their uncer-
tain opinions about parameters and the outcomes of events. It delivers
probabilistic assessments that are realistic, credible, defensible and,
importantly, imparts transparency to the process so that it is possible to
critique and review how outcomes based on judgements were derived
(O’Hagan, 2019). There are several well-established implementations of
SEJ, the most widely used being the Cooke (Cooke’s Classical Method)
(Cooke, 1991), SHELF (Sheffield Elicitation Framework) (Oakley and
O’Hagan, 2019; Gosling, 2018) and IDEA (Investigate, Discuss, Estimate
and Aggregate) (Hemming et al., 2018) protocols.

SEJ protocols share a number of features. They emphasise the need to
elicit the judgement of more than one expert, encourage diversity in the
group of experts convened, ask questions about meaningful events and
quantities, request experts to quantify their uncertainty when expressing
their judgements, and encourage open expression of judgements by
anonymising the contributions of individual experts. While aggregation
is not required (Morgan, 2015) many protocols provide processes to
derive an aggregate estimate from expert judgements. Validation studies
have shown these aggregated estimates are typically more accurate and
better calibrated than those of a single, well-credentialled expert
(Burgman et al., 2011b; Colson and Cooke, 2017; Hemming et al., 2018,
2020). While there are many subtle differences in how the protocols
guide experts through an elicitation, the primary differences relate to
the level of interaction between experts, and the approach for aggre-
gation (Hanea et al., 2022; O'Hagan, 2019). We briefly elaborate on
these differences among the three protocols listed above.

All three protocols begin by asking the experts to make judgements
individually and privately. Cooke then aggregates the individual
judgements by forming a weighted average. In order to derive weights,
the experts are also asked for judgements about some additional quan-
tities called seed variables, whose true values are known to the inves-
tigator but not to the experts. Weights are computed based on how well
each expert’s judgements accord with the known true values. The Cooke
protocol does not include discussion between experts, except possibly to
confirm the aggregated distribution. In contrast, group discussion is a
feature of both SHELF and IDEA, with the objective of exploring dif-
ferences in the initial judgements by sharing opinions and in-
terpretations of the evidence. IDEA then asks the experts to revise their
initial judgements, privately, after which they are aggregated, usually by
an equally-weighted average. SHELF, however, asks the experts them-
selves to agree on judgements that will represent what a rational,
impartial observer would believe after hearing their opinions and their
reasoning.

An excellent, if slightly dated, overview of SEJ, with detailed prac-
tical guidance, may be found in the 2014 report of the European Food
Safety Authority on Expert Knowledge Elicitation (EFSA, 2014). While it
is targeted to a different field of application, it is relevant to infectious
diseases modelling. For more recent overviews see Dias et al. (2018),
O’Hagan (2019), Hanea et al. (2022), Williams et al. (2021).

SEJ has been applied successfully in a wide range of contexts,
including for interventions to control spread of wildlife diseases (Szy-
manski et al., 2009) and human infectious disease applications (McAn-
drew et al., 2021; McAndrew and Reich, 2020).

Some of the epidemiological and infection models developed in the
UK, in response to the Covid-19 pandemic, have — inevitably — had to
make use of expert judgement, in one form or another. But, this said,
most, if not all, of these judgements were elicited informally and were
untested, their sources undocumented, and associated uncertainties and
assumptions not made explicit nor adequately reported. This state of
affairs risks the introduction of serious biases and the lack of openness,
transparency and scientific validation that can lead to the undermining
of public and political trust in expert judgement in an evolving crisis.
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Adopting SEJ in epidemiology would help create more reliable
model assumptions and parameter estimates, would support the
advancement and credibility of the science and provision of scientific
advice and, ultimately, lay foundations for better decisions and public
health outcomes.

5.6. Challenges

1. Building awareness of, expertise in, and familiarity with, structured
expert elicitation in the epidemiological and modelling communities.

2. Encouraging experts to become engaged in SEJ in a way that they
feel they are contributing for the greater good. During the Covid-19
pandemic, many people were willing to give of their time and
expertise, but this cannot be taken for granted, especially if they
perceive a risk of being identified personally and abused on social
media

3. Training suitable experts and facilitators so that they are ready to go
when required. This includes having one or more expert panels, with
administrative support available, especially at the start of an
epidemic when a fast response is needed. Standing panels of facili-
tators and administrators could also be used for other kinds of
emergencies, though expert panels would need to be relevant to each
specific task.

4. Developing guidelines regarding which elicitation procedures can
best serve different types of questions and uncertainties.

5. Building and regularly updating an expert elicitation manual and
toolbox for emergent zoonotic diseases and viral pandemic pre-
paredness and rapid response, and ensuring its relevance, quality and
readiness.

6. Developing methods for efficient, appropriate and timely integration
of expert judgements and accruing empirical data, and — perhaps
most critical - continual revision and updating of estimates as con-
ditions and circumstances vary when policy changes are imple-
mented, or infection resurgences occur.

7. Identifying formats for the clear presentation of the probabilistic
expressions of knowledge that are the outcomes of SEJ exercises, and
training modellers and decision makers to understand, utilise and
communicate these effectively.

8. Extending and consolidating advice for structured expert judgement
beyond parameter estimation to guidance for full probabilistic
methods, as well as guidance for the elicitation of multiple or
consolidated models from experts.

9. Developing principled methods for quantitative expert judgement of
structural model discrepancy, whether inherent in the internal
configuration of the model itself or reflecting its limitations in rep-
resenting the real pandemic.

6. Conclusion

There is a large amount of research on modelling and estimation for
epidemics and pandemics, as well as the development of the appropriate
estimation and uncertainty quantification paradigms to conduct that
research. However, the current Covid-19 pandemic has highlighted
many remaining challenges in method development, application and
uptake within the wider epidemiological community that should be
treated as priorities in preparing for future pandemics. Whilst we treat
these four aspects of estimation separately, a challenge of a unified and
robust response to a global challenge such as a pandemic, is to combine
these aspects together to maximise their collective benefits. A two-way
passing of information between estimation mechanisms enables these
to inform, and be informed by, other modelling approaches and data
collection. Uncertainty quantification and sensitivity analysis and expert
judgement are ideally placed to inform modelling and estimation as
preliminary studies, whilst also being incredibly important components
in their own right. For example, knowing the sensitivity of models to
changes in specific parameters or data streams can help inform which to
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focus on (e.g. Swallow et al., 2021).

Collating themes across the dimensions of this paper, major diffi-
culties often revolve around the building of infrastructures necessary for
conducting necessary analyses or communicating results on a large,
rapidly changing and noisy system that rarely follows the format that
ideal simulations prepare researchers for. These infrastructures cover
data accessibility and computational resource availability and software
development that is flexible enough to be useful for the wider commu-
nity. Infrastructure issues also incorporate difficulties of open commu-
nication and knowledge exchange between differing groups, where
there is frequently a conflict between open science and rapid response
and demands of academic careers.

The current pandemic has highlighted the necessity of open
communication routes between researchers, data providers and practi-
tioners in each of these areas and priorities going forward should be in
facilitating those open pathways, consolidating research engineers and
other subject matter experts within the estimation pipeline, as well as
making open software available so that uptake of robust uncertainty
quantification and parameter and model estimation can be conducted by
a wider community of epidemiological modellers. This should also be
extended to the publication of negative test results, to allow better es-
timates of prevalence than is possible relative to presence-only data.
Further discussion on this important aspect of policy communication is
discussed in Hadley et al. (2021).

Often useful methods exist either within the wider field of epide-
miology or in related application areas, but the potential has not come to
the attention of those on the front line. Synthetic reviews, such as the
ones in this special feature that draw on the varied expertise of many
scientists, provide a critical repository of wide-ranging knowledge for
novices and experts alike, and save researchers from having to reinvent
the wheel in times of crisis.

It is impossible to discuss challenges in estimation without also
making references to challenges in the components that estimation de-
pends on, namely the mechanistic models and data that feed into esti-
mation approaches. Challenges within these areas inadvertently have
knock-on effects on the ability of statisticians and modellers to
conduct robust estimation, and hence challenges in all these areas
should not be considered in isolation. Estimation also feeds into many
other dimensions of pandemic preparedness and response, such as
modelling interventions, informing policy and politics and determining
emergence of new pathogens and/or virus strains. Without combining
these different domains, estimation remains a purely academic affair
and fails to reach its full potential in directly or indirectly informing
public health responses.
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