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A B S T R A C T   

The estimation of parameters and model structure for informing infectious disease response has become a focal 
point of the recent pandemic. However, it has also highlighted a plethora of challenges remaining in the fast and 
robust extraction of information using data and models to help inform policy. In this paper, we identify and 
discuss four broad challenges in the estimation paradigm relating to infectious disease modelling, namely the 
Uncertainty Quantification framework, data challenges in estimation, model-based inference and prediction, and 
expert judgement. We also postulate priorities in estimation methodology to facilitate preparation for future 
pandemics.   

1. Introduction 

Efficient and timely estimation in parametric models of epidemio
logical processes for real-world systems is highly challenging, but 

fundamental to scientific understanding, forecasting and decision- 
making under uncertainty (Shea et al., 2020a). There are different di
mensions to the estimation paradigm that can be conducted indepen
dently, including parameter estimation, quantification of uncertainty 
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and sensitivity and model structure uncertainty, but ideally should be 
united in a single coherent framework due to their dependence on each 
other. Estimation approaches should incorporate all major sources of 
uncertainty, otherwise estimates may be biased and/or overly precise. 
Key sources of uncertainty include inherent variation in natural systems 
and our lack of knowledge about these systems, typically broken down 
into: observation error or bias (where the process of data collection is 
imperfect); stochastic uncertainty (where inherent randomness in the 
transmission process impacts outcomes of interest); parameter uncer
tainty (where data are insufficient to fully identify model inputs); 
structural uncertainty (where the choice of model structure is un
known); and model discrepancy (reflecting differences between the re
ality and the mathematical approximation to it that the model provides). 
Adequate treatment of uncertainty increases robustness of forecasts, 
predictions and decisions, facilitating a robust description and under
standing of the processes involved. The uncertainty estimates can either 
be a natural by-product of statistical inference procedures, or a quantity 
of statistical interest in their own right. 

Statistical inference for mechanistic infectious disease models is 
challenging for many reasons, which has been discussed extensively in 
Lloyd-Smith et al., 2015) and accompanying papers. Chief amongst 
these is the fact that the transition processes (e.g., transmission, recov
ery etc.) depend on the numbers of individuals in each epidemiological 
state at any given time. In practice, these are only partially observed. For 
example, infection times must be inferred from events such as 
onset-of-symptoms, which are also uncertain and recorded with error. 
These issues are exacerbated by asymptomatic infections, as seen often 
seen in infectious diseases, including recently for Covid-19. Therefore, 
statistical methods are combined with data to infer these missing vari
ables alongside parameter values in the underlying transmission model. 
Especially in the case of emerging diseases, typically it is also unclear 
how to structure models e.g., in terms of disease progression, or what 
spatial and temporal heterogeneities should be accounted for (Marion 
et al., 2021). Therefore, and regardless of whether a model is deter
ministic or stochastic, statistical inference is used to quantify uncer
tainty in model structures, assess and select models, and handle 
multi-model ensembles. If these models are used to support decisions, 
then these challenges also need to be addressed in real-time. 

Deterministic, state-and-transition transmission models can be fitted 
relatively efficiently to data, by assuming transitions between states are 
a continuous process, ignoring intrinsic uncertainty associated with the 
underlying epidemiological history. Methods such as least-squares 
fitting are often used to find a set of input parameters that minimise 
the residual error between simulated event curves and observed data. 
More sophisticated methods, such as using explicit stochastic observa
tion processes that account for discrepancies between the simulated 
event curves and the observed data points can also be used to construct 
likelihood functions that (depending on how they are implemented) can 
produce exact inference for a given transmission/observation model 
(Wilkinson, 2013). However, deterministic models are at best an 
approximation to the average behaviour of an underlying stochastic 
system, and as such are applicable only in certain scenarios, for example, 
with high infection levels in large, well-mixed populations. In highly 
heterogeneous populations, such as those with spatial or network 
structures (Eames et al., 2015), these models are less appropriate, or 
indeed when the numbers of infections are low, then predictions from 
these models can deviate dramatically from their stochastic 
counterparts. 

Stochastic transmission models offer more realism at the cost of 
significant increases in computational complexity. Here events are 
modelled probabilistically. For example, models of livestock infections 
such as foot-and-mouth disease or E coli might choose to model trans
mission between herds, or alternatively at the individual animal-level, 
with coupled processes modelling within- and between-herd spread 
(Touloupou et al., 2020). Similar considerations apply to human dis
eases. Some frameworks model individual-level interactions, while 

others model transmission among and between groups, such as 
meta-population models. Since transmissions are rarely observed, the 
amount of missing information that needs to be imputed in the inference 
process is linked to the model, so that an individual-based model for 
every individual in the UK would correspond to many millions of un
observed stochastic events, making inference and predictions highly 
computationally intensive. 

It is clear that there are multiple challenges to developing timely 
epidemiological models. One challenge that seems common to all ap
proaches is the need to develop infrastructure to conduct more 
comprehensive uncertainty analyses in real-time, whether through 
availability of more efficient algorithms, general software, computa
tional power or knowledge and expertise. This in turn will facilitate 
urgent decision-making, so simple and fast estimation procedures will 
remain desirable. In all circumstances, decisions must be made in the 
face of considerable uncertainty and often at speed, and this uncertainty 
needs to be communicated effectively to enhance decision making by 
those (typically non-quantitative experts) responsible. Thus, uncertainty 
quantification also presents challenges for expert elicitation, and 
communication (including visualisation). 

In this paper, to prepare for future pandemics, we highlight a series 
of key challenges pertaining to estimation, uncertainty quantification 
and expert elicitation that are relevant to pandemic modelling. In Sec
tion 2, we outline challenges in the Uncertainty Quantification paradigm 
for estimation of uncertainties and sensitivities coupled with model 
calibration for large-scale pandemic models. Section 3 identifies chal
lenges of using real-world data in estimation procedures in real-time. 
Section 4 suggests challenges for parameter estimation and model se
lection in pandemic modelling, and finally, Section 5 discusses the 
challenges of using expert judgement in pandemics when evidence and 
data are less readily available than is required by the models. 

2. Uncertainty quantification (UQ) 

As mentioned above, one of the principal aims of estimation is to 
measure and account for the various aspects of potential bias and un
certainty inherent in the mathematical and statistical modelling of real- 
world systems. We begin by discussing the UQ framework, which in its 
fullest interpretation is a formal set of statistical methodologies ac
counting for the discrepancies present in the use of computer models to 
represent the real world, and their associated calibration to data and 
forecasting for future outcomes. Aspects of UQ are applicable at all 
stages of the modelling process, specifically pre-, during- and post- 
pandemic, and can therefore underpin or inform the sections that 
follow. Here we focus predominantly on the use of Gaussian Processes 
for emulation, as these are used most commonly as the basis for 
emulation. However, there remain challenges in alternative emulator 
models that may be more appropriate in cases where responses are non- 
Gaussian, such as non-symmetric or multimodal outputs. In these in
stances, we point the reader to other papers where alternatives including 
multiple emulators (Caiado and Goldstein, 2015) or quantile emulation 
(Fadikar et al., 2018) are discussed. 

2.1. Simulators and emulation 

The mathematical and statistical analysis of complex numerical 
models or simulators, and their connection to the real world, is often 
referred to as Uncertainty Quantification (UQ). Although the modelling 
of pandemics faces clear challenges that could be addressed by using 
these methods, with a few exceptions (Andrianakis et al., 2015; 
McCreesh et al., 2017; McKinley et al., 2018; Gugole et al., 2021), there 
has been little application of UQ methodology to epidemic models. A 
major such challenge is that of estimation, in UQ often referred to as 
model calibration (sometimes model tuning). Nonetheless, the problem 
being solved is the same: can real-world data corresponding to model 
outputs (say hospital admissions) be used to tell us something about the 
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model inputs (transmission rates, say), and how can this be achieved 
efficiently within a coherent framework that incorporates all appre
ciable sources of uncertainty? 

One of the main tools employed in complex UQ tasks is an emulator, 
often a Gaussian (or second order) process. A Gaussian Process (GP) is a 
stochastic process that gives smooth continuous functions that can be 
fitted to model runs as a surrogate for the true (unknown) analytical 
solution to the model. The key here is speed: such GP emulators are 
typically several orders of magnitude faster to evaluate than the epide
miological model they are mimicking, and hence they facilitate other
wise infeasible UQ calculations, including a comprehensive exploration 
of the model’s parameter (input) space and behaviour. A second sub
stantial advantage of GPs over other possible surrogate models (such as 
polynomials) is that the GP includes an estimate of its own uncertainty. 
This can be formally included in any subsequent calculation, inflating 
any uncertainty calculations to account for the fact that a surrogate 
model has been used rather than the true model. The fit of the GP and the 
validity of its estimated uncertainty can be tested using additional model 
runs (Bastos and O’Hagan, 2009). The GP emulator has many applica
tions in the analysis of computer models, for instance predicting a new 
value (with uncertainty) and performing sensitivity and uncertainty 
analyses efficiently. 

2.2. Sensitivity analysis 

An additional stage of the UQ framework is sensitivity analysis, in 
which the impact of changes to inputs or parameters of the model on the 
outputs of that model is studied. This can be done as part of the model 
construction process (Marion et al., 2021) but can also be useful in 
estimation. In particular, it can be useful in reducing the dimension of 
the estimation problem, by avoiding focus on parameters that have little 
importance for the model; in determining important parameters to focus 
estimation and calibration procedures on; or highlighting areas where 
data may be particularly useful in obtaining inference or uncertainty 
reduction. Frequently this sensitivity analysis is not done as a routine 
part of the estimation procedure, meaning that time can subsequently be 
wasted on non-identifiable or nuisance parameters that are of little 
statistical interest. Sensitivity analyses of stochastic models also cause 
computational and algebraic challenges that can be prohibitive for their 
general uptake. 

2.3. Calibration and history matching 

One substantial difference between the UQ and more conventional 
estimation approaches is explicit acknowledgement that the model will 
never be a perfect representation of the real world, no matter what 
model parameters are used. This has profound implications. For 
example, simply using a method such as least squares with no discrep
ancy term will ‘overfit’ the model and have poor predictive perfor
mance. Including a structural model discrepancy term, in both the past 
and in the future, can result in vastly improved predictions. This solves 
two problems: overfitting in the past and being overly confident in the 
future. The inclusion of model discrepancy elevates the analysis from 
that of the model to the analysis of the real world itself and provides a 
(partial) defence against the question “Why should we use these models 
to make decisions?”. 

There are two current methods for calibrating models. The first 
builds an emulator for the model and an emulator for the discrepancy 
simultaneously (Kennedy and O’Hagan, 2001). If the interest is only in 
prediction, then the Kennedy and O’Hagan method works well, but there 
is an identifiability problem between the two emulators. Their sum can 
be estimated but the two components are difficult to separate (Bryn
jarsdottir and O’Hagan, 2014). Several solutions to this problem have 
been proposed but are subject to severe limitations. 

An alternative is termed history matching (HM—Vernon et al., 
2010). HM aims to identify those inputs that give predicted model 

outputs so far removed from the data that they can be regarded as 
implausible. HM proceeds by producing and validating an emulator, that 
is trained on a carefully-designed set of model runs (using theory from 
optimal experimental design). Then the distance between the data and 
emulated model output (called the implausibility) is calculated and 
scaled by three ‘variance’ terms: the emulator variance (which is 
known), the data variance (supplied by the data collector) and a model 
discrepancy term (elicited from the model developer, in combination 
with a series of carefully-designed experiments on the model, see Section 
5 below). If this implausibility is greater than a defined threshold the set 
of model inputs is ruled implausible. It is worth noting that the 
implausibility measure is a normalised unimodal variable, and as such 
these cut-off thresholds can be informed by theory, most notably 
Pukelsheim’s three-sigma rule (Pukelsheim, 1994). By adding extra 
model runs, as a new wave, inside the not ruled out yet (NROY) region, 
increasingly more accurate emulators can be produced, which reduce 
the NROY region further. Eventually, either the NROY space becomes so 
small that further reduction is unhelpful (adding extra waves makes no 
difference to the NROY space, and better data are needed to reduce it 
any further), or the NROY space vanishes as all sets of model inputs are 
implausible. The implication of the latter is that, regardless of the model 
inputs, the model cannot be made to agree with the data. Analysts then 
need either to find another model, or a higher tolerance value for the 
model discrepancy is required (Runge et al., 2016). Common usage of 
conventional estimation methods can miss the fact that the model may 
not fit the data well. This is especially problematic because, as the 
number of model runs is increased, the estimated uncertainty on a bad fit 
can be reduced: in essence bad model fits can lead to misleadingly tight 
posterior distributions. 

Such methods for model calibration from the UQ field offer many 
advantages over conventional estimation methods. The use of fast GP 
emulators allows the use of Monte Carlo or other sampling-based 
methods that would be impossible with a full model. The inclusion of 
model discrepancy in the calibration/estimation methodologies ac
knowledges that models are not perfect representations of the real 
world, in the same way that data are not—both contain biases and 
uncertainties. 

2.4. Model discrepancy 

Formal separation of model and reality within the UQ framework 
opens many further possibilities, including construction of an over
arching framework that incorporates multiple epidemiological models 
in a coherent fashion (Goldstein and Rougier, 2009). This is virtually 
impossible without such structural model discrepancy terms. This 
framework allows the predictive power of multiple models to be com
bined coherently, while acknowledging their various strengths, weak
nesses and differences. Similarly, fast, simple models (for which many 
runs can be evaluated to train the emulator with high accuracy) can be 
combined with slower, more detailed models (for which far fewer runs 
are available). Furthermore, these methods allow separation of the 
inference and simulation frameworks, so that the same techniques can 
be used to fit a wide range of different models, without having to make 
fundamental changes to the nature of the inference algorithm. Hence 
such a separation could represent a step change in epidemiological 
analysis. 

The major challenges for using these approaches for real-time 
pandemic modelling are:  

1. Efficient Model Calibration support: the provision of efficient and 
robust UQ methods and code to aid the epidemiologists’ model 
calibration efforts. The efficiency is achieved via the use of emula
tion, allowing epidemiologists to calibrate current models, and to 
explore more complex/higher-dimensional models when needed.  

2. Acknowledging the difference between the model and reality: 
calibration methods should be robust in the sense that they 
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incorporate structural model discrepancy, and hence guard against 
the dangers of treating an imperfect model as perfect. They should 
also exhibit robustness to (miss-)specification of distributional forms 
in the likelihood and associated error structures.  

3. Scaling: the current GP-based emulators do not scale well to large 
numbers of parameters or outputs (unless treated independently). 
Appropriate methods exist when these parameters correspond to 
spatial fields or time series. Increasing the number of inputs via a 
hierarchy of models, for example, by adding spatial effects to a non- 
spatial model as described in (5) below, is a possible simple solution.  

4. Uptake of these methods: a substantial challenge is the paradigm 
shift required for the uptake of these methods. Going from traditional 
ideas of statistical model fitting to ideas such as using fast emulators 
or representing all major sources of uncertainty in and around the 
models, including the structural model discrepancy terms, is hin
dered by widely available infrastructure, so it is not surprising if take 
up is slow during a pandemic when time is short. It also requires that 
modellers become familiar with fitting and validating (GP) emula
tors, which are currently not widely taught. This is exacerbated by 
the lack of suitable easy-to-use software or a lack of familiarity with 
software that is available, an issue addressed by point 1). An 
expository paper is currently in preparation for publication in this 
series to assist with the adoption of these methods (Dunne et al., 
2021) and an application to HIV can be found in Andrianakis et al., 
2015). 

Other more sophisticated challenges, of no less importance are:  
5. Multilevel Model Emulation and Calibration: the incorporation of 

multiple levels of fidelity of epidemiological model (e.g., using fast, 
medium and slow versions) within a UQ emulation and calibration 
framework. This, as described above, is the most efficient way to 
emulate and calibrate very detailed epidemiological models (Craig 
et al., 1997; Kennedy and O’Hagan, 2000; Cumming and Goldstein, 
2010).  

6. Coherent Overarching Structure for Combining Multiple 
Models: the provision of techniques to aid the combination of 
models from multiple research groups into a coherent structure to 
give more powerful predictions and subsequent decision support, 
underpinned by more realistic uncertainty statements. While some 
progress has been made on this front during the SARS-CoV2 
pandemic, far more must be done. Suitable UQ frameworks for 
this, are ready to be employed (Rougier et al., 2013; Goldstein and 
Rougier, 2009).  

7. Generalising UQ to Stochastic Models: UQ methodology was 
traditionally designed with deterministic models in mind. While 
much of it has been generalised to stochastic models, a setting closer 
to traditional statistics where many more tools are available, key 
challenges remain, e.g., issues around bi-modality and quantile 
emulation in complex stochastic models, motivating further research 
into the set of requisite statistical methods. 

We have focused here on estimation/calibration, but the above 
challenges and UQ solutions also pertain to the critical issues of pre
diction and decision support (Marion et al., 2021; Hadley et al., 2021). 

3. Data challenges for estimation during a pandemic 

Mathematical modelling works by simulating historic behaviour to 
understand better the current behaviour of the system, which can be 
used to make estimates and future predictions. The level of uncertainty 
in estimates and model outputs depends on several aspects, often closely 
related to the data. In this section, we describe some key estimation 
challenges that arise from use of data available during a pandemic. This 
discussion is general but draws on experience of the SARS-CoV2 
pandemic. 

3.1. Data availability and indirectness 

During a pandemic, particularly in the early stages, scarcity of data 
can make it challenging to fit models and estimate parameters. How
ever, during these early stages, policy decisions must be made despite 
scarce data, requiring models and estimation to use the data available 
efficiently, typically entailing a compromise between model complexity 
and parsimony, to make best use of available data whilst not running 
into issues of non-identifiability. As more data are collected, across 
multiple layers, models can be refined and complexity can be increased, 
if required. If models are non-identifiable in the early stages, further 
attention needs to be given to exploring the parameter space. This can be 
computationally intensive but is vital to ensure correct communication 
of limitations and uncertainty in estimation. 

Typically, even when scarce, epidemiological data can inform indi
rectly on the transmission process; however, complex data imputation 
techniques are needed even in the presence of abundant data. A major 
challenge is computational complexity and time. Care is needed to assess 
how much information the data contain about the parameters of inter
est, to ensure that the data are driving estimates (Section 4). 

Inferences of the transmission process may be biased by missing data. 
During the early stages of an epidemic, when outbreaks are spatially 
distinct, estimation of epidemiological parameters can be biased by 
factors such as travel out of outbreak areas (Overton et al., 2020), which 
may result in cases being missed, or inconsistent reporting rates across 
spatial regions, leading to different estimates of relationships between 
observed data and the underlying epidemic. 

Using multiple layers of data can help to reduce uncertainty, such as 
combining sequencing data with surveillance data to obtain more direct 
estimates of a chain of transmission events. In the SARS-CoV-2 
pandemic, appearance of different strains brought the possibility of 
higher relative transmissibility. This is hard to measure without 
detecting cases among contacts of an infected person, which relies on 
contact tracing or sequencing data. Challenges here relate to both the 
availability of data and accounting for biases in these. For example, 
there may be no systematic testing, producing challenges in what data to 
calibrate to or test model predictions against. If it is not possible to 
collect these data within the necessary timeframe, the challenge arises of 
how to deal with biases in predictions that may depend on these missing 
data. Although data collection from contact tracing and contact patterns 
is continuously improving, challenges remain in how to estimate the 
level of risk associated with different types of contact (Kretzschmar 
et al., 2021). 

The pandemic has given rise to many new sources of data, each 
bringing their own challenges in estimation. One example is the use of 
phone apps that allow users to submit symptoms or movement activities 
on a daily basis. These data provide resolution that would not be 
possible through more direct experimental designs, but such ‘commu
nity/citizen science’ data is known to come with many issues in po
tential biases (Dickinson et al., 2010). The use of waste water to sample 
for genetic viral material has also come to light, having previously been 
used to detect presence or absence of polio (O’Reilly et al., 2020). In
dividual host variation in shedding is a specific challenge in developing 
more accurate prevalence of infection in populations, as is the tracking 
of the original source of the genetic material. 

Even when the right type of data is available in sufficient quantities, 
it might not be at the correct resolution. For example, most mathemat
ical epidemiology is based on continuous-time models, but in practice 
data are always discrete, so a choice of whether to use a discrete-time 
model or how to discretise a continuous-time model is important. 
Continuous-time models may help with issues of censored data (see 
below). Similarly, time series data could be weekly rather than daily or 
fluctuate based on weekly reporting patterns, so the choice of how to 
aggregate or smooth data will affect estimation, requiring models that 
are robust to these systematic data issues. Resolution can also affect 
definitions of data used, such as whether to count all deaths where the 
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patient tested positive for a pathogen, or only those where it was the 
primary cause of death. Discrepancies across regions can make it hard to 
estimate consistent fatality rates. Similarly, hospital occupancy data 
may count occupancy from time of admission or from time of returning a 
positive test, which can lead to challenges in estimating length of stay. 
To address these issues, better meta-data are needed to provide clarity 
into the definitions used. Data missingness can substantially affect the 
benefits of high-resolution data. For example, during the COVID-19 
pandemic, high volumes of testing data have been collected. However, 
high levels of missingness in the numbers of negative cases make the 
data challenging to use, due to changes in testing rates over time 
(Shadbolt et al., 2021). 

3.2. Noisy data, truncation and aggregation 

Noisy signals arise from imperfections in observations and fluctua
tions in natural and human-mediated processes, requiring models to 
separate trends from residual effects. Aggregating over short time scales 
is prone to significant noise or delays, but if a signal is strong enough, the 
increased resolution may increase the usefulness of estimates. Aggre
gating over longer time scales can provide more stable estimates and less 
uncertainty, but estimates are affected by older data points so signal can 
be more “delayed”, and rapid changes in signal can be missed. It is 
important to determine a suitable balance between flexibility and 
timeliness of estimates, and robustness and reliability of such estimates. 

Lack of information due to gaps in data in space and/or time creates 
uncertainty in data streams. In these cases, imputation or smoothing 
between points relies on good understanding of biological processes to 
avoid introducing bias resulting from poor mechanistic representation 
and model discrepancy. Attention should be given to ensure that infor
mation is not being lost in the interpolation – for example on behaviour 
from mobility data if smoothing the relevant curve or from aggregating 
time series data (all cases vs age or risk-group stratified data). When an 
outbreak is unmitigated, such aggregation may be reasonable since the 
relative contribution across different units may be constant. However, 
for example, interventions may affect spatial or demographic groups 
differently. 

The choice of aggregation level reflects which sources of heteroge
neity are considered (Marion et al., 2021). Many parameters, such as 
symptom duration and outcome probabilities, vary substantially with 
factors such as age, sex, socio-economic context or ethnicity. Aggrega
tion across multiple covariates provides bigger sample cohorts, so esti
mates can be generated with seemingly lower uncertainty. If important 
covariates are not accounted for, estimated trends may be misleading. 
For example, data might suggest temporal changes in some parameter 
estimates that are driven by demographic changes over time. Data may 
be aggregated at a regional or national level, but this may fail to capture 
local heterogeneity, and local outbreaks might be very severe even if 
other areas are still apparently unaffected. However, disaggregating 
with multiple covariates may result in small sample sizes, inflating un
certainty, which could cause identifiability issues if estimates are used as 
model inputs. 

During a pandemic, reporting events such as the transition from 
infection to hospital admission (Pellis et al., 2020) or from hospital 
admission to death is often subject to significant delays. This leads to 
many observations being incomplete, lacking information regarding the 
duration of the delay and which outcome is observed. Such bias needs to 
be carefully adjusted for when estimating key epidemiological param
eters (Commenges, 1999). It is possible only to consider cases where all 
events of interest have been observed. However, this introduces a 
truncation bias, whereby observed distributions are shortened as they 
approach the most recent time points (Kalbfleisch and Lawless, 1991; 
Sun, 1995). The effect of delayed information on measures of uncer
tainty often is overlooked. Estimation will produce larger uncertainty 
intervals for recent events and even larger intervals when forecasting, 
which can make decision making more complex and subjective. To 

account for this, one can use data based on date of report rather than 
date of occurrence. However, this can lead to further complications in 
estimation. For example, hospital admission time-series may not be 
recorded by date of admission but by date of returning a positive test (htt 
ps://coronavirus.data.gov.uk/), whereas length of stay estimates may 
be generated from the time of admission (Vekaria et al., 2021). Fitting a 
relationship between time-series for admissions and bed occupancy will 
be inconsistent with hospital length of stay estimates. 

3.3. Multiple data streams 

Data collected during an outbreak may be generated as part of the 
emergency response, rather than a regular data collection process, 
which can lead to inconsistencies. This is particularly pertinent when 
data are requested from multiple sources. For example, during the 
Covid-19 pandemic, each NHS trust in England returned daily data on 
hospital admission and occupancy. However, being a novel request, it 
took a few months to ensure consistent data streams across the country. 
Such labour-intensive data are unlikely to be retrospectively corrected. 
Statistical models account for such issues, but more robustly when 
sources of errors are known. For example, if a model is fitted to multiple 
data streams, a known bias in a data stream can be built into the model 
uncertainty. Many countries have different definitions of what mea
surements relate to, such as different measures of mortality or different 
numbers in the tested population (Shadbolt et al., 2021). Random effects 
or latent variables can be used to account for individual variations in the 
data sources and there is increasing literature on integrated models 
combining data streams. One of the major estimation challenges here is 
developing methods that are sufficiently general to be of use to a wide 
range of scenarios. 

When using multiple data streams, which are inevitably interrelated, 
a relationship between the streams (both observed and unobserved) can 
be estimated (De Angelis et al., 2015). However, as an epidemic pro
gresses, interventions and policy changes can alter this relationship. 
Interventions such as vaccination may alter the age distribution of cases, 
thereby changing hospitalisation/mortality risk. Similarly, treatment 
could reduce mortality in infected individuals. Dimension reduction 
techniques can be used to address this, however the interpretation of 
these procedures is often challenging. A further challenge might arise 
when attempting to provide a country-wide reproduction number, as 
one could aggregate potentially de-synchronised data streams from 
different regions or combine regional reproduction numbers. If these 
variations are not properly accounted for, inference about infection
s/prevalence may be biased. If a model does not accurately capture the 
impact of an intervention, inference regarding the transmission process 
may be inaccurate (Kretzschmar et al., 2021). However, there may be 
insufficient data to quantify vaccine impacts on transmission/disease 
prevention accurately, creating a substantial modelling challenge. 

3.4. Challenges 

In preparing for future pandemics, methods for dealing with the 
following estimation challenges should be considered:  

1. Due to the indirectness of data streams, a challenge lies in 
assessing how much information the available data contain about the 
parameters of interest.  

2. Discrepancies in data collection procedures between spatial 
regions lead to different relationships between observed data and 
the underlying epidemic. If this is not correctly accounted for, esti
mates can be severely biased.  

3. Data may not be at the desired resolution, so a challenge lies in 
aligning model complexity to the available data or making the model 
robust in accounting for aggregated data.  

4. Temporal aggregation creates a challenge in how to determine the 
right balance between flexibility and timeliness of current estimates, 
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and the robustness and reliability of such estimates. This is important 
when investigating whether an apparent deviation from the previous 
trend should be considered trend or noise.  

5. Aggregating across demographic/regional groups may obscure 
important trends in the data. For example, the effectiveness of a stay- 
at-home order may correlate with sociodemographic deprivation and 
therefore failing to account for deprivation may bias estimation of 
the impact of such orders.  

6. Models and statistical methods need to account for incompleteness in 
recent data, due to censoring and reporting delays.  

7. When using multiple levels of data, challenges remain in connecting 
the various levels of data and accounting for potential biases.  

8. A challenge for future pandemics is accounting for inconsistencies 
between different data streams in estimation procedures to 
provide more accurate and robust quantification.  

9. Interventions and policy changes during a pandemic can alter 
relationships between data streams. This needs to be understood and 
appropriately accounted for when developing estimation models and 
quantifying uncertainty. 

4. Model-based inference and prediction/forecasting 

At different stages in a pandemic, some types of estimation are more 
feasible than others. In data sparse periods at the start of the pandemic, 
reliance may be on formal model analysis or expert elicitation. Reliance 
on data can be more robust as the pandemic evolves and data sources 
grow and extend. The choice of how to account for uncertainty is made 
more complex by the fact that there is a general lack of understanding of 
different types of uncertainty, as discussed in detail above. These dis
cussions notwithstanding, the principal estimation challenge is how to 
deal with large amounts of missing data and hidden states (e.g. pre- 
symptomatic infections) that are inherent in the modelling of epidemics. 

4.1. Explicit likelihoods and data augmentation 

Latent variable approaches (e.g., data-augmented MCMC: Gibson 
and Renshaw, 1998; O’Neill and Roberts, 1999) represent unobserved 
epidemiological events in the statistical model, and these are estimated 
as part of the inference routine. These often Bayesian approaches can, in 
theory, use standard methods such as Markov chain Monte Carlo to 
explore the joint (high-dimensional) parameter space of hidden vari
ables and parameters. Extensions, such as reversible-jump methodolo
gies (Green, 1995) can be employed to allow for unknown numbers of 
hidden variables. When applicable, these approaches can yield a huge 
amount of information, e.g. by robustly integrating multiple sources of 
data including epidemiological observations and genetics (Lau et al., 
2015). 

Implementing these techniques requires a close synergy between the 
underlying model and the inference algorithm to avoid complexities in 
updating the parameter values conditional on the data at each iteration. 
Standard random walk updating schemes do not work well with esti
mating hidden states due to inherent correlation between and within 
model components. Often, generic algorithms and poorly implemented 
code are extremely slow to explore parameter space. The development 
and optimisation of these approaches is thus very challenging and time- 
consuming, and for large systems with many hidden states, they can 
become computationally infeasible. However, some generic updating 
schemes have improved performance including non-centred parame
terisations (Papaspiliopoulos et al., 2003), tempered algorithms (Sacchi 
and Swallow, 2021) and model-based proposals (Pooley et al., 2015). 
Sometimes, approximate models such as discrete-time models help 
reduce computational complexity, and recent research has exploited 
sophisticated computer hardware, such as Graphics Processing Units, to 
help alleviate some of the computational burden. Despite this, for 
high-dimensional models, computational efficiency, and the challenges 
in implementation and coding, remain a bottleneck that limits practical 

application. Some open software implementations of these methods 
have been developed, e.g., GEM, (https://gem.readthedocs.io/en/late 
st/), however much more is required before these can be widely used 
by domain experts. 

4.2. Likelihood-free simulation-based approaches 

An alternative to using latent variables to capture hidden states, is to 
simulate them directly from the underlying model of interest. Ap
proaches such as maximum likelihood via iterated filtering (Ionides 
et al., 2006), Approximate Bayesian Computation (Minter and Retkute, 
2019), synthetic likelihoods (Wood, 2010) and particle MCMC (Andrieu 
et al., 2010) aim to approximate likelihood functions via simulations. In 
some cases, these methods can provide exact inference, conditional on 
the choice of transmission and observation models, but in practice the 
latter must often be replaced by a measure that penalises large de
viations from the observed data in a somewhat arbitrary fashion. The 
interpretation of these approximations is discussed in more detail in 
Wilkinson (2013). Despite these issues, these approaches are attractive 
because they are much more straightforward to implement than latent 
variable methods, since coding simulation models is in general much 
easier than using data-augmentation approaches, and general-purpose 
software exists to implement these. Simulation-based approaches are 
thus often touted as “plug-and-play”, but, in practice there are key 
challenges in scaling up these methods to large-scale systems. 

The main challenge is that these approaches can require hundreds- 
of-thousands, if not millions of simulation runs to explore the param
eter space adequately. If the simulation algorithms are highly stochastic, 
then this induces large variability in, for example, estimated likelihoods. 
Particle filter-based likelihood estimation typically scales poorly with 
data complexity. Thus, relative ease-of-implementation in practice often 
is superseded by extreme computational loads. Often the only compu
tationally viable approach is to match to summary measures of the data, 
especially if the data are highly complex. This relies on the generation of 
informative summary measures, since in many cases it is not possible to 
identify and generate sufficient statistics (i.e., those that preserve the 
information in the likelihood). This introduces a loss of information, 
which introduces more uncertainty into parameter inference and 
prediction. 

As discussed in Section 2, a statistical emulator may alleviate some of 
this computational burden by searching the parameter space exhaus
tively for areas of the space where good fits to the data are likely to be 
found, using techniques such as history matching. Alternatively, they 
can be used to emulate the likelihood directly. Since emulators are 
typically trained on individual outputs, it is necessary to reduce complex 
data sets to a lower dimensional set of informative summary statistics. 
Furthermore, expertise in fitting and validating emulators is required, 
and to date there is no general-purpose software for implementing these 
approaches. Moreover, some behaviours seen in stochastic infectious 
disease models, such as multimodal outcomes, are hard to emulate using 
standard approaches, and remain an area of ongoing research. 

4.3. Model structure and inference 

At different stages of a pandemic, the decision on which model 
structure to use may be forced by time constraints that govern when 
estimates need to be provided or by data availability/quality (Section 3), 
constrained by the familiarity of those responsible for model develop
ment with alternative approaches. However, even when sufficient data 
are available, the choice of which model to use and the potential im
plications of that decision on estimates of both parameters and uncer
tainty bounds are rarely apparent or considered. Stochastic and 
individual-based models are more realistic, and more widely appli
cable than deterministic models, particularly as more complex struc
tures are introduced, such as meta-populations, spatial structures or 
network dynamics (Eames et al., 2015). These structures may be critical 
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to answering policy questions such as concerning contact tracing or 
vaccination strategies (Marion et al., 2021). However, these models are 
inherently more difficult to fit to data than simpler deterministic models 
and are also more data- and computation-hungry. When there is need to 
quantify properties of an outbreak, to inform public health policy, it is 
important that relevant processes are included in the fitted model and 
that due consideration is given to the impact of model structure and its 
potential biases on estimation. 

4.4. Model assessment and comparison 

As discussed in Section 2, parameter and output uncertainties are 
conditional on the specific choice of model, and thus do not account for 
the discrepancies between the model and the reality it aims to represent. 
Incorporating terms into the model that can account for this discrepancy 
when conducting inference or predictions is an ongoing area of research, 
and although techniques exist for doing this for certain approaches 
(including history matching using emulators), these ideas have not been 
readily implemented into standard statistical approaches, such as data- 
augmented or particle MCMC. 

Associated with the idea of model discrepancy is the idea of model 
specification. Multiple model structures can be fitted to data, but new 
tools are needed to assess model fits, and either select between models or 
combine them in meaningful ways. Model assessment is frequently 
difficult with complex models, particularly with spatial and/or temporal 
components and especially for stochastic models. Latent residuals for 
spatio-temporal models of disease spread (Lau et al., 2014) are an 
interesting move in this direction but much work is needed to develop 
tools that can be routinely applied across a range of models (Gibson 
et al., 2018). Improved tools could provide significant advantages in 
tackling pandemics by identifying key characteristics of novel patho
gens, although this will likely require better quality data than are 
currently routinely available in outbreak settings (Shadbolt et al., 2021). 
Current methodologies, such as information criteria or calculation of 
marginal likelihood, are not well suited to disease transmission models 
or are computationally challenging (Pooley and Marion, 2018). For 
example, standard cross-validation (CV) methods may smooth over de
ficiencies in model structure if not conducted with care, and are difficult 
to employ in data sparse scenarios, or across highly structured data such 
as time-series, or spatially explicit or regional models. These approaches 
are also computationally demanding, since models need to be refitted 
multiple times for CV. 

There can be a significant difference between models used for 
explanation and description (Shmueli, 2010; Hanna, 1969) and those 
used for prediction or forecasting, both structurally and from a philo
sophical perspective. The treatment of uncertainty in each case is 
potentially different and active consideration needs to be given to what 
unknowns are being integrated over and/or which quantities could 
change beyond the data used to estimate the parameters. The reality is 
that in prediction, model structure and estimated parameter values are 
often considered to be constant, which will not be realistic in many 
settings. It seems that this distinction is often not made explicit or 
considered when developing statistical paradigms for estimation. Con
sistency across model types might not be feasible but little attempt ap
pears to have been made to consolidate this. 

4.5. Model ensembles 

With a plethora of model types and structures, and many ways of 
estimating parameters within those models, differences in estimates are 
almost inevitable. Understanding why these differences occur and how 
and whether it is sensible to combine inferences is complex and an 
ongoing area of research (Berger et al., 2021). Bayesian model averaging 
enables model aggregation in a statistically principled way, although it 
requires a close synergy between the specific aspects of the inference 
algorithm and the model. Expert elicitation may be required in this 

instance (Section 5). Interpretations of parameters might vary between 
models, meaning they are not directly comparable and cannot be aver
aged across models. Forecasts are often more straightforward to 
average, although outputs from different models may have different 
spatial and/or temporal granularity, precluding sensible averaging. 
Borrowing work from other application areas such as local-scale weather 
and population dynamic models may provide some ideas of how to 
advance, but models of pandemics are likely to be much more variable 
and stochastic than those, for example, that have been used to model 
long-term climate trends. Furthermore, the computational and 
time-constrained burdens of developing and fitting multiple models 
often means that individual research groups work with a single, or small 
sets of models. 

4.6. Limits to formal estimation 

Early in pandemics of novel viruses, knowledge about key parame
ters may be unreliable or non-existent. Data may be sparse or particu
larly noisy, making estimation of parameters especially challenging 
(Section 3). Bayesian inference enables models and data to be combined 
with prior distributions representing available information. Nonethe
less, problems remain. Reliance on assumed knowledge from other vi
ruses or pathogens may introduce biases. This may, however, be the only 
option, and putting a distribution on the range of parameter values is 
preferable to fixing the unknowns to take specific values. As such, the 
use of systematic prior elicitation techniques (Section 5) to establish 
plausible prior distributions will help to inform model simulations in the 
early stages of an outbreak. Systematic sensitivity analyses can help to 
identify which outputs from the model are sensitive to which parameters 
and thus offer a means of targeting data collection and study design to 
identify key parameters better, where possible (Shadbolt et al., 2021). 
Emulation and other techniques can also be employed to help perform 
systematic sensitivity analyses in high-dimensional systems. 

4.7. Challenges  

1. The principal challenge across this section is the development of 
efficient and more generally applicable approaches to updating 
latent states within MCMC frameworks for high-dimensional 
models and development of general-purpose software to implement 
latent variable approaches. 

2. Methodological challenges remain in the development of likeli
hood free methods based on informative summary statistics to 
conduct inference in high-dimensional and stochastic systems.  

3. Implementation of High Performance Computing (HPC) and 
cloud-based procedures for running large numbers of simula
tions from stochastic models. A key challenge is putting the infra
structure in place for groups to be able to respond quickly in the face 
of a future pandemic, as those often made available at institutional 
level cannot be made sufficiently flexible to be beneficial for all 
computational needs.  

4. Challenges remain in methodological approaches to model 
structure and inference, as well as facilitating the uptake of these 
methods by modellers conducting suitable investigations as part of 
the estimation process. One important challenge is generating 
observation processes that consider causes for systematic biases in 
observed data. 

5. Model discrepancy/structural bias: there are remaining chal
lenges in ensuring model-reality/structural discrepancies are 
routinely accounted for within estimation processes. 

6. Separation of predictive and descriptive approaches for con
ducting inference and estimation. Further challenges arise on sep
aration of validation and assessment approaches for these different 
philosophical approaches. 

7. An important challenge is to develop more approaches that indi
cate poor fit and point towards aspects of the model that are most 
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deficient. Further work is also needed to enable routine application 
of model comparison methods including marginal likelihood, suit
able information criteria and cross-validation.  

8. Models are developed and fitted by different research groups; hence 
generic ways of comparing and averaging models that have been 
fitted in different ways to different data are an important challenge. 
Difficulties remain in estimating weights or relative beliefs for each 
of the competing models. 

5. Challenges for expert judgement 

It will often be the case that decisions or forecasts need to be made 
when the evidence base is limited, particularly in the early stages of a 
pandemic, or when assessing whether a novel outbreak might lead to a 
new epidemic. However, even after many months of experience with 
Covid-19 and related data collection, analysis, modelling and scientific 
advances, there remain many important questions and data gaps. 
Therefore, at various stages during an epidemic, expert judgements may 
be required to fill gaps and support decisions; indeed, in some contexts 
this may be the only source of relevant information. 

5.1. Roles for expert judgement 

Expert knowledge has important roles to play in addressing many of 
the challenges of understanding and responding to a pandemic:  

1. Early warning to decision-makers: experts often alert decision- 
makers to emerging pathogen outbreaks, providing models to 
explain the perceived cause-and-effect relationships, and helping to 
characterise the potential or relative risks in relation to other infec
tious diseases and current policies.  

2. Formulating useful and relevant questions. During an outbreak it 
is important that policy measures are timely, and that subsequent 
research and assessments are focused on providing information 
while there is still time to act. However, as was evidenced by the 
recent COVID-19 pandemic, recognising all the relevant factors can 
be challenging; those involved may not agree on the formulation or 
prioritisation of key research questions. This can lead to unfocused 
research and conflicting recommendations. If decisions are to be 
made on how to act and where to invest in further research, then 
decision-makers need to decide on the problems to be addressed and 
the objectives of importance. These decisions often require the 
balancing of multiple values and objectives, and are best addressed 
within a decision-analytic framework (Shea et al., 2020a; Gregory 
et al., 2012). Here, experts are most often required to help frame 
possible actions to meet objectives, identify information sources to 
evaluate the consequences of actions, and estimate parameters and 
model structures. Importantly, objectives in decision-making and 
policy often extend beyond scientific concerns, to include social, 
economic and cultural values. This requires an appropriate pool of 
experts and stakeholders (Hadley et al., 2021). 

3. Developing models and identifying important parameters. Dur
ing an initial outbreak of a new infectious disease, expert opinion 
will be crucial to inform both model structure (e.g., transmission 
routes and the stages of the natural history of disease that should be 
considered) and parameter quantification (e.g., the distribution of 
latency times). Here, the combination of research question, expert 
knowledge, and available data will inform the required level of detail 
(e.g., explicit transmission networks vs. homogeneously mixing 
populations). In addition, expert knowledge may help disentangle 
unidentifiable sets of parameters (e.g., contact rates and transmission 
probabilities), by informing model parameters with prior distribu
tions. 

Uncertainty about the appropriate model should be taken fully 
into account, and a range of models considered. There is increasing 
use of multiple models in disease forecasting and scenario projection 

to aid decision-making (e.g., Li et al., 2017; Viboud et al., 2018; Ray 
et al., 2020; Borchering et al., 2021). Recently there have been 
moves to leverage Structured Expert Judgement approaches within 
multi-model analyses, to ensure full expression of scientific uncer
tainty (i.e., uncertainty about biological processes or parameters, or 
about interventions) while reducing linguistic misunderstandings 
and minimising cognitive biases in expert elicitation (Shea et al., 
2020a). This can be done by a curated discussion between modelling 
rounds, during which linguistic uncertainty about data streams, in
terventions and objectives can be discussed and clarified. Embedding 
these in structured decision-making approaches (Runge et al., 2020) 
may also enhance and streamline the integration of modelling and 
policy efforts (Shea et al., 2020a,b).  

4. Predicting the expected impact of interventions. This requires 
assumptions about the effects of postulated interventions, either in 
terms of model mechanics (e.g. a reduction in duration of infectivity 
due to treatment) or in terms of expected outcomes (e.g. a decrease in 
hospital admissions due to quarantining). Assumptions should be 
made explicit and informed by data, where available, and, where 
necessary, by expert judgement. 

A major challenge is that the outcomes of interventions will 
depend on the extent to which individuals and demographic groups 
participate in, or adhere to, required actions. Predictions about 
human behaviour are particularly challenging, especially in new and 
undocumented circumstances such as a pandemic. Timeliness is 
particularly important as participation and adherence patterns are 
likely to drift due to changes in risk perception and “policy fatigue” 
in the population. 

5. Communicating model assumptions and outputs. Model pre
dictions best represent what is currently known when they are based 
on a foundation of validated knowledge, and properly incorporate 
uncertainty. Involving expertise from diverse relevant disciplines 
will make model predictions more realistic and credible. Also, by 
involving experts from different disciplines, elements of a common 
taxonomy and technical language can be developed with which to 
discuss research questions across disciplines; this is particularly 
important when addressing emergent pathogen outbreaks and pan
demics, which are high-dimensional, multi-disciplinary problems. 
Such an approach in turn can help to communicate underlying as
sumptions, results, and their associated uncertainties to policy 
makers and the public at large. Ideally, experts should be drawn from 
a range of stakeholder communities, to engender transparency and 
understanding, leading to increased support for and trust in models 
to inform policy. Those with expertise in deliberative judgement and 
stakeholder engagement may help to engage different groups within 
society to increase awareness, trust and commitment to action. 

5.2. How to capitalise on expertise? 

While expert judgement is often required, there can be unease in 
using experts to inform decisions of importance, even when the data 
required are absent, contradictory or uninformative and even though 
decision-makers are quick to draw on trusted sources (e.g., informal 
discussions with those they perceive to be reliable experts). To some 
extent this unease is justified. Experience has repeatedly demonstrated 
that, under such circumstances, people are prone to make poor judge
ments, to be affected by contextual biases and other cognitive limita
tions (O’Hagan et al., 2006; Shanteau et al., 2012). Even those with 
substantial knowledge and expertise in a domain typically have diffi
culty in formulating their judgements in precise, unbiased and mean
ingful ways (Burgman et al., 2011a; Hemming et al., 2018). Real care is 
needed to minimise biases, inaccurate judgements and poor decisions. 

Even when experts are asked to provide judgements that are limited 
to the estimation of facts or outcomes (i.e., not value judgements), they 
may reasonably disagree (e.g., because of different background and 
expertise) and may offer different estimates. For those relying on 
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experts, this can be disconcerting. 
However, insights from studies of expert judgement have identified 

ways to capitalise on expert judgements to generate reliable judgements. 
Many contextual biases and psychological frailties can be mitigated by 
offering suitable facilitation, training and assistance to experts, as is 
done in Structured Expert Judgement (SEJ) protocols (see below). It is 
entirely natural that – in the face of real scientific uncertainty – experts 
will provide apparently divergent judgements; these alternative views 
are the essence of scientific endeavour and progress, and should be 
viewed as an advantage for informed decision support, especially if they 
bring different information and understandings to the table (Cawson 
et al., 2020; Moon et al., 2019). Eliciting expert knowledge from a 
diverse panel makes it more likely that the basic elements required to 
align research efforts and inform policy are considered. A variety of 
methods, including SEJ, for synthesising the range of opinions from an 
expert panel have been developed, and it has been shown that such 
syntheses generally provide more accurate judgements than less formal 
approaches (Hemming et al., 2018, 2020a; Colson and Cooke, 2017). 

5.3. What quantities to elicit? 

Expert elicitation is most easily focused on meaningful and in prin
ciple measurable outcomes or quantities, such as whether an emergent 
novel virus will escape its local area, or how many deaths there will be in 
a certain population and time-interval. If the quantity that has been 
forecast is later observed, predictive success can be formally evaluated 
and used to calibrate future forecasts and rank different forecasters. 

In applications it is often desirable to express uncertainty about 
theoretical quantities, such as the basic reproduction number R0, and 
other parameters of a model. A challenge is to find good ways to assess 
such parameters in terms of meaningful quantities. For instance, in a 
simple SIR model, it may be desirable to assess uncertainty about R0, 
based on expert opinion on the duration of infectiousness, combined 
with data on disease incidence over time during an outbreak, using 
modelling and expert judgement about the relationships between these 
quantities. 

5.4. How to express judgements? 

It is important for judgements to be expressed probabilistically. It 
will seem natural to many practitioners and modellers to give only single 
point estimates of unknown quantities, but these can be very misleading: 
it is instead vital for experts to be open about the associated un
certainties and their judgements of these. For example, when faced with 
a new infectious disease, information gained from a previous disease 
may be all that is available, but its relevance will be questionable, and 
this should be represented explicitly. Any projections from such past 
experience must be carefully considered, taking into account similarities 
and differences between the past and the future, and, importantly, 
hedged with appropriate, typically high, uncertainty. Such uncertainty 
is most usefully expressed as probabilities (O’Hagan and Oakley, 2004). 

It can be useful to conduct expert knowledge elicitation in an itera
tive fashion, asking experts first to make a private individual estimate, 
giving the experts feedback on how their estimates, knowledge and as
sumptions, and those of others, translate into expected outcomes, and 
allowing them to address any apparent discrepancies and mis
understandings. Feedback and iteration can reveal information or as
sumptions not considered by others and allow experts to see that their 
views of the problem, and even their interpretation of terms, may differ 
from their colleagues, so helping them to understand better the range of 
uncertainty. This is particularly important when experts are unpractised 
at expressing their knowledge in probabilistic terms. 

5.5. Structured Expert Judgement 

“Structured Expert Judgement” (SEJ, also known as “Expert 

Knowledge Elicitation”) is a broad label for a set of systematic decision 
support tools for model development and parameter quantification, for 
use when data are absent or incomplete and critical decisions need to be 
made. SEJ supplies structured and repeatable methods for the selection 
and training of experts, and elicitation and aggregation of their uncer
tain opinions about parameters and the outcomes of events. It delivers 
probabilistic assessments that are realistic, credible, defensible and, 
importantly, imparts transparency to the process so that it is possible to 
critique and review how outcomes based on judgements were derived 
(O’Hagan, 2019). There are several well-established implementations of 
SEJ, the most widely used being the Cooke (Cooke’s Classical Method) 
(Cooke, 1991), SHELF (Sheffield Elicitation Framework) (Oakley and 
O’Hagan, 2019; Gosling, 2018) and IDEA (Investigate, Discuss, Estimate 
and Aggregate) (Hemming et al., 2018) protocols. 

SEJ protocols share a number of features. They emphasise the need to 
elicit the judgement of more than one expert, encourage diversity in the 
group of experts convened, ask questions about meaningful events and 
quantities, request experts to quantify their uncertainty when expressing 
their judgements, and encourage open expression of judgements by 
anonymising the contributions of individual experts. While aggregation 
is not required (Morgan, 2015) many protocols provide processes to 
derive an aggregate estimate from expert judgements. Validation studies 
have shown these aggregated estimates are typically more accurate and 
better calibrated than those of a single, well-credentialled expert 
(Burgman et al., 2011b; Colson and Cooke, 2017; Hemming et al., 2018, 
2020). While there are many subtle differences in how the protocols 
guide experts through an elicitation, the primary differences relate to 
the level of interaction between experts, and the approach for aggre
gation (Hanea et al., 2022; O’Hagan, 2019). We briefly elaborate on 
these differences among the three protocols listed above. 

All three protocols begin by asking the experts to make judgements 
individually and privately. Cooke then aggregates the individual 
judgements by forming a weighted average. In order to derive weights, 
the experts are also asked for judgements about some additional quan
tities called seed variables, whose true values are known to the inves
tigator but not to the experts. Weights are computed based on how well 
each expert’s judgements accord with the known true values. The Cooke 
protocol does not include discussion between experts, except possibly to 
confirm the aggregated distribution. In contrast, group discussion is a 
feature of both SHELF and IDEA, with the objective of exploring dif
ferences in the initial judgements by sharing opinions and in
terpretations of the evidence. IDEA then asks the experts to revise their 
initial judgements, privately, after which they are aggregated, usually by 
an equally-weighted average. SHELF, however, asks the experts them
selves to agree on judgements that will represent what a rational, 
impartial observer would believe after hearing their opinions and their 
reasoning. 

An excellent, if slightly dated, overview of SEJ, with detailed prac
tical guidance, may be found in the 2014 report of the European Food 
Safety Authority on Expert Knowledge Elicitation (EFSA, 2014). While it 
is targeted to a different field of application, it is relevant to infectious 
diseases modelling. For more recent overviews see Dias et al. (2018), 
O’Hagan (2019), Hanea et al. (2022), Williams et al. (2021). 

SEJ has been applied successfully in a wide range of contexts, 
including for interventions to control spread of wildlife diseases (Szy
manski et al., 2009) and human infectious disease applications (McAn
drew et al., 2021; McAndrew and Reich, 2020). 

Some of the epidemiological and infection models developed in the 
UK, in response to the Covid-19 pandemic, have – inevitably – had to 
make use of expert judgement, in one form or another. But, this said, 
most, if not all, of these judgements were elicited informally and were 
untested, their sources undocumented, and associated uncertainties and 
assumptions not made explicit nor adequately reported. This state of 
affairs risks the introduction of serious biases and the lack of openness, 
transparency and scientific validation that can lead to the undermining 
of public and political trust in expert judgement in an evolving crisis. 
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Adopting SEJ in epidemiology would help create more reliable 
model assumptions and parameter estimates, would support the 
advancement and credibility of the science and provision of scientific 
advice and, ultimately, lay foundations for better decisions and public 
health outcomes. 

5.6. Challenges  

1. Building awareness of, expertise in, and familiarity with, structured 
expert elicitation in the epidemiological and modelling communities.  

2. Encouraging experts to become engaged in SEJ in a way that they 
feel they are contributing for the greater good. During the Covid-19 
pandemic, many people were willing to give of their time and 
expertise, but this cannot be taken for granted, especially if they 
perceive a risk of being identified personally and abused on social 
media  

3. Training suitable experts and facilitators so that they are ready to go 
when required. This includes having one or more expert panels, with 
administrative support available, especially at the start of an 
epidemic when a fast response is needed. Standing panels of facili
tators and administrators could also be used for other kinds of 
emergencies, though expert panels would need to be relevant to each 
specific task.  

4. Developing guidelines regarding which elicitation procedures can 
best serve different types of questions and uncertainties.  

5. Building and regularly updating an expert elicitation manual and 
toolbox for emergent zoonotic diseases and viral pandemic pre
paredness and rapid response, and ensuring its relevance, quality and 
readiness.  

6. Developing methods for efficient, appropriate and timely integration 
of expert judgements and accruing empirical data, and – perhaps 
most critical - continual revision and updating of estimates as con
ditions and circumstances vary when policy changes are imple
mented, or infection resurgences occur.  

7. Identifying formats for the clear presentation of the probabilistic 
expressions of knowledge that are the outcomes of SEJ exercises, and 
training modellers and decision makers to understand, utilise and 
communicate these effectively.  

8. Extending and consolidating advice for structured expert judgement 
beyond parameter estimation to guidance for full probabilistic 
methods, as well as guidance for the elicitation of multiple or 
consolidated models from experts.  

9. Developing principled methods for quantitative expert judgement of 
structural model discrepancy, whether inherent in the internal 
configuration of the model itself or reflecting its limitations in rep
resenting the real pandemic. 

6. Conclusion 

There is a large amount of research on modelling and estimation for 
epidemics and pandemics, as well as the development of the appropriate 
estimation and uncertainty quantification paradigms to conduct that 
research. However, the current Covid-19 pandemic has highlighted 
many remaining challenges in method development, application and 
uptake within the wider epidemiological community that should be 
treated as priorities in preparing for future pandemics. Whilst we treat 
these four aspects of estimation separately, a challenge of a unified and 
robust response to a global challenge such as a pandemic, is to combine 
these aspects together to maximise their collective benefits. A two-way 
passing of information between estimation mechanisms enables these 
to inform, and be informed by, other modelling approaches and data 
collection. Uncertainty quantification and sensitivity analysis and expert 
judgement are ideally placed to inform modelling and estimation as 
preliminary studies, whilst also being incredibly important components 
in their own right. For example, knowing the sensitivity of models to 
changes in specific parameters or data streams can help inform which to 

focus on (e.g. Swallow et al., 2021). 
Collating themes across the dimensions of this paper, major diffi

culties often revolve around the building of infrastructures necessary for 
conducting necessary analyses or communicating results on a large, 
rapidly changing and noisy system that rarely follows the format that 
ideal simulations prepare researchers for. These infrastructures cover 
data accessibility and computational resource availability and software 
development that is flexible enough to be useful for the wider commu
nity. Infrastructure issues also incorporate difficulties of open commu
nication and knowledge exchange between differing groups, where 
there is frequently a conflict between open science and rapid response 
and demands of academic careers. 

The current pandemic has highlighted the necessity of open 
communication routes between researchers, data providers and practi
tioners in each of these areas and priorities going forward should be in 
facilitating those open pathways, consolidating research engineers and 
other subject matter experts within the estimation pipeline, as well as 
making open software available so that uptake of robust uncertainty 
quantification and parameter and model estimation can be conducted by 
a wider community of epidemiological modellers. This should also be 
extended to the publication of negative test results, to allow better es
timates of prevalence than is possible relative to presence-only data. 
Further discussion on this important aspect of policy communication is 
discussed in Hadley et al. (2021). 

Often useful methods exist either within the wider field of epide
miology or in related application areas, but the potential has not come to 
the attention of those on the front line. Synthetic reviews, such as the 
ones in this special feature that draw on the varied expertise of many 
scientists, provide a critical repository of wide-ranging knowledge for 
novices and experts alike, and save researchers from having to reinvent 
the wheel in times of crisis. 

It is impossible to discuss challenges in estimation without also 
making references to challenges in the components that estimation de
pends on, namely the mechanistic models and data that feed into esti
mation approaches. Challenges within these areas inadvertently have 
knock-on effects on the ability of statisticians and modellers to 
conduct robust estimation, and hence challenges in all these areas 
should not be considered in isolation. Estimation also feeds into many 
other dimensions of pandemic preparedness and response, such as 
modelling interventions, informing policy and politics and determining 
emergence of new pathogens and/or virus strains. Without combining 
these different domains, estimation remains a purely academic affair 
and fails to reach its full potential in directly or indirectly informing 
public health responses. 
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