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1. Introduction

In a standard stochastic control problem, the value function is well defined and is the unique (viscosity) solution
of the associated HJB equation or the path-dependent H]B equation in a path-dependent setting. The existence
and/or uniqueness of optimal controls often require stronger conditions (typically certain compactness and/or
convexity conditions). We remark that the value exists even if there is no optimal control; additionally, when
there are multiple optimal controls, they share the same value. Similar results hold for two-person, zero-sum
games under the Isaacs condition, where one may study the unique game value without requiring the existence
or uniqueness of the equilibriums (saddle points). We refer to the book by Mertens et al. [30] for a general expos-
ition of the theory and section 2 of Possamai et al. [33] for a literature review on continuous-time, two-person,
zero-sum stochastic differential games. The situation is quite different for nonzero-sum stochastic differential
games. There have been many works on the existence of Nash equilibriums by using either the PDE method
or BSDE method; see, for example, Bensoussanand Frehse [4], Buckdahn et al. [6], Cardaliaguet and Plaskacz [8],
El-Karoui and Hamadene [13], Friedman [18], Hamadene [19], Hamadene et al. [23], Hamadene and Mannucci
[20], Hamadene and Mu [21, 22], Lin [26], Mannucci [28, 29], Olsder [31], Rainer [34], Sun and Young [37], Uchida
[38], and Wu [39], to mention a few. We emphasize that, unlike stochastic control problems or zero-sum games,
in the nonzero-sum case, different equilibriums could lead to different values, which makes it difficult to study
the game value in a standard manner when there are multiple equilibriums. On the other hand, when there is no
equilibrium, it becomes inconvenient even to define the game value.

We shall define the game value as the set of the values of the game over all equilibriums, which we call the set
value of the game. For general set valued analysis, we refer to the book by Aubin and Frankowska [2]. With the
empty set as a possible set value, both the existence and uniqueness of the set value of the game is always guaran-
teed by definition. It turns out that this set value behaves benignly as the (real-valued) value function in stochastic
control theory; it enjoys the regularity, stability, and most importantly, the Dynamic Programming Principle (DPP
for short) in an appropriate sense. When the set value is a singleton, for example, in two-person, zero-sum games
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or in stochastic control problems (a “game” with only one player), it reduces to a standard value function (real or
vector valued) and satisfies a (path-dependent) PDE.

Our idea of studying the set value for nonzero sum games follows the line of, among others, Abreu et al. [1] and
Sannikov [36]. The work of Abreu et al. [1] considers the set value of an infinitely repeated game in discrete time
over all sequential equilibriums. Because of the homogeneousness of the game, its set value is time and state invari-
ant and thus is actually a fixed set or, say, a set valued constant. It is shown in Abreu et al. [1] that this set value
satisfies the so-called factorization and self-generation, which is exactly in the same spirit of our DPP. The work of
Sannikov [36] considers a similar game, but in continuous time models. The set value is again a fixed set, and the
main focuses of Sannikov [36] are the characterization and geometric properties of this set as well as their economic
implications. Another highly related work is Cardaliaguet et al. [9], which uses viability theory. The main focus of
Cardaliaguet et al. [9] is the numerical approximation for the set of initial states satisfying some required properties.
Our goal is to study standard nonzero-sum games in finite time horizon both in discrete time and in continuous
time models, and we shall investigate systematically the dynamic set value of the game over all Nash equilibriums.

In Section 2, we study the discrete time model. Besides establishing the DPP, in the spirit of Abreu et al. [1], our
main contribution is to show that, even in the state-dependent (or, say, Markovian) setting, the DPP would fail if
one restricts to state-dependent equilibriums. Consequently, it is necessary to consider path-dependent controls in
order to have the DPP, which is not the case for stochastic control problems and zero-sum games and is due to the
nonuniqueness of the values (although the set of values is always unique). Although already studied in the literature
in various contexts, we also show that DPP would fail if we restrict to Pareto optimal equilibriums and discuss how
to choose an “optimal” equilibrium by introducing a central planner. Another highly relevant problem, although
not discussed in this paper, is to estimate the model parameters with the presence of multiple equilibriums, for
which we refer to Section 2 of the survey paper by Ho and Rosen [24] and the references therein. We shall also re-
mark that, as already observed in Pham and Zhang [32], through Buckdahn’s counterexample for zero-sum games,
to ensure the DPP for the game value we need to consider closed-loop controls rather than open-loop controls.

In Section 3, we study our main object: a continuous time model in a path-dependent setting. It is in general diffi-
cult to study the true equilibriums in this model. Motivated by Buckdahn et al. [6] and chapter VIL.4 of Mertens et al.
[30], we relax the set value of the game to the limit of the value sets over all e-equilibriums. Then, the set value will
be compact and nonempty as long as there exist ¢-equilibriums for all ¢ > 0, which is a much weaker requirement
than the existence of true equilibriums (see e.g., Frei and dos Reis [17] for an example) and is sufficient for practical
purposes in most applications. This is exactly in the spirit of the stochastic control problems, where the value is the
limit of the values over e-optimal controls. Indeed, for stochastic control problems and zero-sum game problems, the
(standard) value function corresponds to this relaxed set value, not the original one from true equilibriums when an
optimal control or saddle point does not exist. We believe this approach of the values could be efficient in more gen-
eral control/game problems, where the optimal control/equilibrium may not exist or is hard to analyze.

Our next result is the regularity (sensitivity with respect to the state process) and stability (sensitivity with re-
spect to the coefficients) of the set value under mild regularity assumptions on the coefficients. These results
have fundamental importance in applications. As a consequence, we obtain the measurability of the set value in
terms of the state. Our result is in the direction of Feinstein [15], except that Feinstein [15] studies the set of the
equilibriums instead of the values.

The main result of this paper is the DPP for the set value, which can be viewed as a type of time consistency
and justifies that the set value is an appropriate object for our dynamic model. Although natural in light of its
counterpart in the discrete model, the result is much more involved in the continuous time model and requires
several approximations. The pathwise setting adds the technical difficulty. As already observed in Section 2, the
pathwise structure is intrinsically needed even in the state-dependent setting.

Finally, we provide a duality result, motivated by Ma and Yong [27] and Karnam et al. [25], which is in the
same spirit of the level set approach; see, for example, Barles et al. [3]. We introduce an auxiliary control problem
on an enlarged state space, where the additional state corresponds to the possible values of the game. The value
function of the new control problem is a viscosity solution of a standard path-dependent HJB equation, for which
we refer to Ekren et al. [11, 12] and Ren et al. [35]. Then, the set value of the game is characterized as the nodal
set of this new value function. This approach is related to the viability approach in Cardaliaguet [9] and is quite
efficient in terms of numerical computation of the set value.

2. The Discrete Model

In this section, we study a discrete model with finite time horizon, which is introduced in Section 2.2. The DPP for
the set value is similar to Abreu et al. [1] and is presented in Section 2.3. The results in Section 2.4 concerning the
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Table 1. Costs of static nonzero-sum game for Example 1.

J(CL) (12:0 agzl
a=0] (0,1) | (2,2
a=1](3,3) ] (1,0

state-dependent case are new, to the best of our knowledge. The observations in Sections 2.1, 2.5, and 2.6 are inter-
esting but not surprising in the game literature. We nevertheless present them here because the same properties
hold in the continuous-time model in the next section, but it is easier for the readers to include them in this section.

2.1. A Static Game
In this subsection, we consider a simple static game with N players and present some basic observations about
Nash equilibriums. Player i’s control takes values in a Borel measurable set A; in some arbitrary topological
space. Fora=(ay,...,an) € A:= A1 X ... X AN, Ji(a) is the player i’s cost function that they player seeks to minim-
ize,and J:=(J1,...,IJn) : A — RN. We say that a* € A is a Nash equilibrium if
Jia) <Jia*,a;) forall a; € A,

where (a7, a;) is the same as a*, except that its i-th component is replaced by a;.

Note that there might be multiple equilibriums or no equilibriums. We emphasize that the nonzero-sum game

could have different values J(a*) at different equilibriums 4%, as we see in Example 1 below. We thus introduce
the set value of the game:

V:={J(a*) : for all equilibriums a*} cR".

Example 1. Set N=2, A; = A, ={0,1}, and J(a) as in Table 1 below. Then the game has two equilibriums, a* =
(0,0) and a* = (1,1), and the set value is V ={(0,1),(1,0)}.

Remark 1. The existence of Nash equilibrium is not guaranteed. However, we emphasize that in this case our set
value is still well defined with V = (). Moreover, our set value is by definition unique, even if there are multiple
equilibriums.

Remark 2.

i. Nash equilibriums may not be Pareto optimal among all controls. Again, set N =2, A; = A, = {0,1}, and let J(a)
be as in the left side of Table 2; then, clearly there is a unique equilibrium a* = (1,1) with value J(a*) = (3,3). How-
ever, we note that [;(0,0) =1 <3 = Ji(a*) forbothi =1,2.

ii. In general, the comparison principle does not hold for the game value. Consider the ] on the right side of
Table 2. There is a unique equilibrium a* = (0,0) with value J(@) = (2,2). Note that J;(a) < Ti(a) forallae A and
i=1,2,but]i(a*) =3>2=],(@) forbothi=1,2.

2.2. The Set Value in a Dynamic Setting

We now consider a dynamic setting. In this section, we assume that both the time and the state are discrete.
Let T:={0,1,...,T} denote the set of discrete times, and for each t € T, S; the set of discrete states at t with
IS¢| < co. For the reason we will explain in Section 2.4 below, we shall consider a path-dependent setting:
ST:={x=(xo,...,xr) : Xt €S;,t € T}. Set Q:=ST as the sample space, F := 29 X,:Q — S, the canonical process:
X¢(x) =x;, and F = {F;}g <, <1 = FX, the natural filtration generated by X. Clearly, all the functions involved will
be F-measurable. Throughout this section, all of the time-dependent functions ¢ will be required to be adapted
in the sense that ¢(t,x) depends only on (t,Xo, - - -, x;). We shall denote

x=: if x;=X, forall s=0,---,¢, and SEX:z{ieST:i:tx}.

There are N players, where the set of admissible controls .A; of the i-th player consists of adapted mappings
a;: TxST — A;. Denote A:=A; X --- x Ay and a := (a1, - - -,an). For any (¢,x,a) € T X STx A, q(t,x,a;-) : Spy1 —
(0,1] is a transition probability function: Xes,., 4(f,x,4;x) = 1. Let Pi*® denote the probability measure such that

P**(X =;x)=1, and
P ( X4y = x| X=X) = (s, %, a(s,%);x) V s>t, X€S,, x€Sq1.

tx’
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Table 2. Costs of static nonzero-sum games for Remark 2.

J(a) |az=0]a;=1 J(a) |az=0]ay=1
a =01 (1,1) | (4,0) a=01(2,2) | (5,5)
a=1](0,4) | (3,3) a=1| (5,5) | (6,6)

Now fori=1,---,N, let g;: ST >R and fir=Tx ST x A; > R be adapted and measurable in 4; € A; (the measur-
ability in (t,x) is trivial since the space T x S” is finite). The i-th player’s cost function is defined as:

T-1
Jilt,x, @) = EP™ g, (X) + > fi(s, X, s, X)) |.
s=t

We shall always denote

Jit,x,a) == (1(t,x, ), -+, In(t, X, @) € RN,

Definition 1. Fix (¢, x) eTxST. We say that a* € A is a Nash equilibrium of the game at (f,x), denoted as
a* € NE(t,x), if, foreachi=1,---,N,

Jilt,x,a") < Ji(t,x,a" ", ;) for all ; € A;.

As we saw in Example 1, the game could have different values J(¢,x, «*) at different equilibriums a*. Our main
object is the following set value over all equilibriums:

V(t,x):={J(t,x,a") : a" € NE(t,x)} C RN,

which is the counterpart of the value function in the standard control literature. As mentioned in Remark 1,
V(t,x) always exists (with possible value 0) and is by nature unique.

Remark 3. For the ease of presentation in this section, we restrict to the case [S;| < oo, but all of the results can
be easily extended to the case that S; is countable. When S; is uncountable, although intuitively the results
will still hold true, we will encounter some very subtle measurability issue, as we will see in the next section.

Remark 4. For two-person, zero-sum games under the Isaacs condition and other technical conditions, even if
there are multiple equilibriums, their values | will always be the same; namely, V(f,x) = {V(f,x)} is a singleton,
and in the continuous-time setting the value function V would satisfy a (path-dependent) Isaacs equation.

We also remark that, by considering mixed strategies, the Isaacs condition will always hold (under very mild
conditions); see, for example, Mertens et al. [30] for discrete time models and Buckdahn et al. [7] for continuous-
time models, and hence, the set value for these zero-sum games is a singleton. It will be interesting to study the
set value of nonzero-sum games under mixed strategies, which we leave for future research.

We note that, although ST is finite, unless we assume that A is also finite, in general, V(t,x) may not be finite.
The following basic property is interesting in its own right.

Proposition 1. If g and f are continuous in a and A is compact, then V(t,x) is compact.

Proof. Under our assumption, g(x) and f(t,x,a) are bounded, and thus obviously V(t,x) is bounded. Now let
yn=Jt,x,a;) €V(t,x) for some «a), € NE(t,x) and y, —y. Because A is compact, for any (s,X)€T X ST,
{a,(sX)},1 has a convergent subsequence. Note further that S" is finite; then, without loss of generality, we
may assume that there exists a* € A such that ], (s,X) — a*(s,X) for all (s,X) € T X ST. Now, for any i and a; € A,
we have

]i(t/ X, a;) < ]i(t/ X, a;’_i/ ai)'

By the continuity of 4 and f in «, one can easily check that J;(¢,x, &},) = Ji(t,x,a") and Ji(£,x, a:,"i, a;) = Jilt, x, a7, ).
Then, Ji(t,x, ") < Ji(t,x,a*~, ;). This implies that a* € NE(t,x), and thus y = J(t,x,a") € V(t,x). So V(t,x) is closed
and hence, compact. Q.E.D.



Feinstein, Rudloff, and Zhang: Dynamic Values for Games with Multiple Equilibriums
620 Mathematics of Operations Research, 2022, vol. 47, no. 1, pp. 616-642, © 2021 INFORMS

2.3. Dynamic Programming Principle for the Set Value
Given an F-stopping time 7 and an J;-measurable function 1 : ST 5 RN (namely §(x) = (Xy(x)A-)), consider the
game with terminal time 7 and terminal condition 1:

Ji(T, vt x, @) = EF

-1
U, (X)+ > fi(s, X, ails, X))
s=t
Define the equilibrium at (7, {;¢,x) in the obvious way, and denote its set NE(7,; f,x). Our main result of this
section is the following dynamic programming principle.

Theorem 1. For any (t,x) € T x S™ and any F-stopping time T with t(x) > t,
V(t,x) = {](T, Y;t,x,a°) : for all  and a satisfying (%) € V(T(f(),i), Vx €Sy and o' € NE(t,i;t, x)}. (1)

tx’
Proof. Let V(t,x) denote the right side of (1).
Step 1. We first prove C. For any y = J(¢,x, ") € V(t,x) with a* € NE(¢,x), denote
(%) :=J(1(%),%,a"), forall X €S},.

Now for any i and a; € A;, denote &; := a1l + aj1>r € Ai. Then

La;

. -1
JiT, gt a ™, a) = EP T UX) + D) fi (s, X, auls, X))
s=t

X, P~
EPF ' = ]i(t, x, a7, a,').

T-1
gi(X)+ D fi(s, X, ai(s, X))
s=t

By setting a;=a;, we also have Ji(t,;t,x,a*) =]i(t,x,a"). Because a*€ NE(tx), then Ji(t,¢;t,x,a" ", a;) >
Ji(t,¥;t,x,a"). That is, a* € NE(7, y; t,x).

Moreover, for any X € SEX, denote
&i(s’ X) = (s, ﬁ)l{szr(i)}ﬂ{i =) X} + a;(s, )A()l({szr(f()}ﬂ{ﬁ =) i})c € A;. 2)

Similarly, we have

0< ]i(t/ X, a*'_ir&i) _]l'(t/ X, a*) = Pt,x,a* (X:T(i)i)[ i(T(;()/ 7~(/ a*’_i/ 0(,‘) - 1/’1(;()]

Note that g >0 and thus Pt”"”‘*(){a(g)i) > 0. This implies that &* € NE(17(X),X), and then ¢(X) € V(t(X),X). There-
fore, it follows from (1) that y € V(¢,x).

Step 2. On the other hand, let y =J(7,¢;t,x,a") € V(t,x) for some desired Y and a”. For each X € SEX, we have
Y(x) € V(1(X),X), and thus there exists a, € NE(1(X), X) such that ¢(x) = J(z(x), X, ax"). Define

a*(s,x):= a*(s’&)l{s<7(f<)} + ZT ay (5’2)1{527()2)}0{)'(3(,;)%} e A
xes

Note that 7(X) = 7(X) when X=,x)X. Then, for any i and any a; € A;, denoting &; := a;1sry + & 1> € A;,
]i(t/x/ &*,_i/ ai) _]i(t/x/ &*

= ]i(tl X, é\(*,_l’/ ai) - ]i(t/ X, &*,_i/ &1) + ]i(t/ X, &*,_i/ 5‘1) - ]i(t/ X, &*)

= 3 PO (X %) 2R), K 0, ) = (e (R), % )|
xes”
+ ]i(T/ ll)/ t/ X, a*,_l’/ ai) - ]i(T/ ljl)/ t/ X, a*)
>0.

This implies &@" € NE(t,x), and thus y = Ji(f,x,a") e V(t,x). Q.E.D.
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Remark 5. The condition g > 0, implying that P"** are all equivalent for different @, seems crucial in the proof of
Theorem 1. This condition is also used in [1] and is interpreted as that no player can infer the other players’ con-
trols through the observed state process.

When g is only nonnegative, we can prove the partial DPP: V(t,x) C V(t,x), where V(t,x) again denotes the
right side of (1), and the inclusion could be strict. However, when the measures are singular, it is too strong to re-
quire ¢(X) € V(t,X) for all X € SEX. It will be very interesting to see whether it is possible to weaken this require-
ment in an appropriate way so that the DPP will hold true.

Remark 6. It is crucial that the control is a closed loop: @ = a(X.). If one uses open-loop controls, then DPP typic-
ally fails even for zero-sum games. See Buckdahn’s counterexample in Pham and Zhang [32] in a continuous-
time setting; see also remark 4.4.(ii) in Possamai et al. [33]. Below, we present a counterexample in the discrete
time setting.

We recall that open-loop controls do not depend on the state X. In this case, the value of X, instead of its distri-
bution, will depend on the control.

Example 2. Consider a two-player game with open-loop controls as follows. Fix a probability space (Q2, F, ). Set
T :={to,t1, 2} :={0,1,2} and &3, &, are independent one-dimensional random variables with E[&;] =0, Var(&;) =1,
the filtration is F = {F}},.1, with Fy, :={0,Q}, Fy, := 0(&), and Fy, == 0(£1,&,), the controls a = (al,a?) are
F-adapted and take values in A; = A, := R, the state process is for some constant ¢ >0,

X =0, X i=al +a} +o&, Xp:=|a} +ad|X, +0&,
and the cost functions are g;(x) := —x, fi(t1,a) := §|a|2, and f(to,a) := 4laf* + 2a; that is,

i=1,2.

1 . . .
Ji(to,0,a) = ]E[E gy |* +4latj |+ 2af - X7 |,

We note that the game is symmetric for the two players. However, DPP fails for this game:

Vito,0) = {(—% lof +1], =311 + 1])},
|

We first show that the two-period game has a unique equilibrium: ato =-1 actl =0&1—1,and i =1,2. Then,
Ji(to,0,a) = =32 [Ial + 1], and thus we obtain the V(ty,0) in (3). Indeed, assume that a” is an arbitrary equilibrium.
Fix a2. Note that

®)

3
- [§|0|2 +4

V(t,0) = {(—E lof* + 4/,

We note that, when ¢ = 0, the above game is deterministic.

* 1 2 2 *,2 *2
]1(t0,0,a1,0¢ ,2) =E E|o¢}1| +4|0¢}0| +20zt10 - [a}l +ay ][a}o +ay +051] .

One can easily see that the unique optimal o, satisfies azl =aj + a)? “+0&;. Then,

1 1 %2
]1(f0,0,0ét010ét1 a” ) >

I, e ST DU
4|ozt0| +2at —5la, T+ oél] —-ay [octo +ay + 051] .
This is strictly convex in aj . By the first-order condition, we have
0=E|8a; +2-|ay! +aj? +0& | - ai?| = 77 +2 - 472 =B}

Similarly, we have aZz = oz:(’)z + a;(’)l +0&;1. Then, E[azz] = a’[(’)z + a:(’)l, and thus

2 2 1| o el 2
0= 7at +2-ay - [ato +ay ] =6y —2a," +2.
Similarly we have 601;’)2 - Za:(’]l +2=0. Then one can easily obtain &}/ 1= a:z = —1. This implies that a: =a;" = 2=

061 -1.
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We next compute V (t,0). Note that

=E

1 . 2 1 2
Jilt,x, an) = E|Slaj, | - [a}l + octzl]x -& Sl - [a}l + ai]x

For fixed x, one can easily see that the unique equilibrium is (5(:11 = Ezzz = x (which, for fixed x, is deterministic

and hence, is an open-loop control for the game at the second period). Then, ]i(tl,x,&’;l) = —%xz, and thus

V(ty,x) ={(-3x?, —3x?)}. Now consider the game at the first period with terminal i(x) := (=32, —3x?):

. . 3 2
]i(tl/ l/J/ tO/ 0/ (Xt[)) = E|:4|0(;0|2 + 2“;0 - E ai}o + 0(%0 + Uél:l

By first-order conditions, we see that the equilibrium satisfies
say +2-3fay + a2 =0, i=12
This implies that 5[[(’)1 = 5[[’2 = -1, and then Ji(t1,¢;t0,0,a; ) = —[%|o|2 +4].

Remark 7. Motivated by the mean field equilibriums, we call an equilibrium a* at (t,x) symmetric if a*! =
- =a*N. Denote

Veymmetric(t,X) := {J(t,x,a") : for all symmetric equilibriums a'}.
Then, following the same arguments Vymerric also satisfies DPP:
Vsymmetric(t,X) = {](T, Y;t,x,a"): for all P and a* such that a* is a symmetric

equilibrium at (7,1;t,x) and (%) € Veyumerric((X), %) for all x € SEX}.

2.4. The State-Dependent Case
In this subsection, we consider a state-dependent (i.e., Markovian) model:

q(t/ X, 4;X) = q(t/ Xt, @; X), g(X) = 8(x1), fz’(t/ X, a) = fi(tr X, @). 4)
We shall call a function ¢ on T X ST state dependent if ¢(t,x) = @(t,X) whenever x; = X;, and in this case it is nat-
ural to abuse the notation and denote it as @(f, x;).

We first remark that in this case we may still have path-dependent equilibriums, whose value is different from
those of state-dependent equilibriums.

Example 3. Set T=3,N =2, and A; = A, = {0,1}, and S” takes values as in Figure 1.
That is, Sg = {so}, S1 = {510,511}, S2 = {52}, and S3 = {530, 531}. For the first two periods and for g, we set
1
f(OI ) = f(lr) = 0/ Q(Or) = E/ Q(lr ) = 1/ g(s30) = (1/1)/ 8(531) = (0/ O)/
Then, the game at (0, sp) does not depend on (0, ) and a(1, ). Indeed,

J(0,50,) = %[7(“(2/ (50,510,52))) + J((2, (50/511,52)))], ®)
where [;(a) =£i(2,5,a:) + (2,9,8;83), i=1,2.

Let us assume that the game for J(a), which corresponds to the last period of the original game, has two equili-
briums 4* and a". Then, we may construct a path-dependent equilibrium, noting that Xy = sp and X, = s, are de-
terministic,

0(*(2, X) = u*l{xlzslo} + Zl*l{Xlst}. (6)

Figure 1. States for Example 3.

1 1

Si: so/ \52/
\Sl / \83

0 0



Feinstein, Rudloff, and Zhang: Dynamic Values for Games with Multiple Equilibriums
Mathematics of Operations Research, 2022, vol. 47, no. 1, pp. 616-642, © 2021 INFORMS 623

Table 3. Cost matrices and transition probabilities for Example 3.

f(2,89,a) | az=0 as, =1 q(2,82,a;830) | aa=0]a; =1
CL1:O (—%,0) (—%,—%) CL1:0 % %
a; =1 (0,0) ( 7_31) ar=1 % %

For this purpose, we set f(2,s,4) and 4(2,s;,4; 530) forae A as in Table 3. Then by (5) we see that 4] is the same as
Table 1, and thus there are two equilibriums, a* = (0,0) and &* = (1, 1), with corresponding values J(a*) = (0,1/4)
and J(@*) = (1/4,0).

We now come back to the original game (0, so, @). Note that, by (5), the only relevant control is a(2, (so, X1, 52)).
If a is state dependent, then a(2, (so, X1,52)) = (2, s2) is deterministic. This implies J(0, s, @) = J(2(2,s2)), and thus
there are only two equilibriums with values (0,1/4) and (1/4,0). However, we can construct a path-dependent
equilibrium &* by (6), whose corresponding value is J(0,s0,a*) = J(a*)/2 +](@") /2 = (1/8,1/8).

In view of Example 3, nevertheless, V is still state dependent if we restrict to the state dependent model (4).

Proposition 2. Under (4), V(t,x) = V(¢,x;) is state dependent.

Proof Assume that x; = x{. For any a € A and X’ € St - introduce &’ by a’(s,X’) := a(s,X), where X, := X, 1<+
X 1{5>t} Then, one can easily check that J(¢,x,a) = J(t,x’,a’). Such correspondence is one to one, and thus it is clear
that V(t,x) = V(t,x’). Q.E.D.

From now on, in the state-dependent case, we may write the set value as V(t,x). The following DPP is an im-
mediate consequence of Theorem 1.

Corollary 1. Under (4), for any (t,x) € T x ST and F-stopping time T with T(x) > t,
V(t,x) = { (T, ¥;t,x,a") : for all Y, a*, x such that x;= x,
Y(x) € V(T(X) T(x))for all x € Sy, and a* € NE(t, ;t, x)}

We emphasize that, although our model is state dependent here, the DPP above involves path-dependent ¢y and
a*. In fact, if we restrict to state-dependent functions ¢ and/or a*, then the DPP may fail, as we explain next. For
simplicity, below we consider only deterministic time: t = Ty, for some Ty > £.

We first investigate the case that 1) is state dependent but that a* can be still path dependent. In this case, by
Corollary 1, the following partial DPP is obvious:

V(t,x)> {](T(), Y;t,x,a"): for all state dependent ) and a* € A, x € st

)
such that x; =x, (%) € V(Ty, %), VX €Sr,, and a* € NE(Ty, ¢; t,x)}.

However, the above inclusion can be strict.

Example 4. Consider Example 3 and set T = 2. By Example 3, we see that

V(2,5) ={](a"),]@)} = {(o %) (30)}

If ¢ is state dependent, then there are only two possible functions: 1, (s2) = (0,1/4) and ,(s2) = (1/4,0). Recalling
that f(0,-) =f(1,-) =0, then J(To,¢;0,s0, @) = Y(s7) for all a. Thus the right side of (7) is {(0,1/4),(1/4,0)}. How-
ever, by Example 3, we know that V(0,sy) contains at least one more value, (1/8,1/8).

We next investigate the case that both i and a € A are state dependent; then, obviously J(t,x, &) and J(To, ;t,
x, @) are also state dependent. Define

Astate = {a € A: v is state dependent};
Vtate(t, x) := {] (t,x,a%): a" € Aggae is an equilibrium among all a € .Asmte}.

We emphasize that here all controls are required to be state dependent; in particular, the above a* € Ay, may
not be an equilibrium among all controls « € A. Consequently, V.(f,x) may not be a subset of V(t,x). Again,
Vstate does not satisfy the DPP.
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Proposition 3. Under (4), Vs satisfies a partial DPP,

Vetate(£,x) C {](To,lp; t,x,a) : for all state dependent ¢ and o € Agyare 5.t @
8

V(%) € Vigare(To, %), VX € St,, and o is an equilibrium in Asgae at (To, ¥ t,x)},
but the inclusion could be strict.
We remark that the inclusions in (7) and (8) have opposite directions.

Proof. Let Vate(t,x) denote the right side of (8). We shall prove Vs, C Vtate, and see in Example 5 below that
Vstate # Vstare. We follow the arguments in Theorem 1, Step 1 and proceed in two steps.
Step 1. Let a* € Agare be an equilibrium in Ay, at (¢, x). Denote

Y(x) :=](To,%,a"), forall X €Sr,.

For any i and a; € Agaei, note that &; := a;1scr) + @ 1>,y i also in Agyre ;. Then, following the same arguments
as in Theorem 1, Step 1 we see that o* is an equilibrium in Ay at (To, 5 ¢, x).
Step 2. It remains to show that () € Ve(To, %) for all ¥ € St,. That s,

Ji(To, %, ;) > Ji(To, %, "), foralli,all X € St,, and all o; € Astae ;- )

We emphasize that the &; constructed in 2 is not in A ;, even when the a* and «; there are state dependent,
so a more careful argument is required. We shall prove (9) by backward induction on Ty.
First, if To = T — 1, then the counterpart of 2 becomes, for any fixed X € St,,

ai(s,X) := ai(8, %) Lsmryyniz=r) T & (5, X)L s<rjuia2i)

which is in Agtei. Then, (9) follows from the same arguments in Theorem 1, Step 1.
Assume that (9) holds true for Ty + 1. Now, for Ty, note that

]i(TO/ 52'/ a*’_i/ ai)

=fi(To, %, ai(To, X))+ >, q(To, %, (", a:)(To, %), 2)To + 1,3, a"", ;)
JA(ESTO.H (10)

> fi(To, %, 0:(To, X))+ > q(To, %, (", a;)(To,%),2)i(To + 1,%,a"),

XeStyn
where the last inequality is due to the induction assumption. Fix X € St, and define
(s, %) := ai(s, %) Lseryyniz=ry + & (S, X)Ls2ro)u 25},
which is again state dependent. Then, denoting P in the obvious way,
0 <Jilt,x,a"™, &) = Jilt, x,a") = P"* (X, = X)
[ FTo,%,a(To,®)+ > 4(To, &, (@, a;)(To, &), 2)Ji(To +1,%, )

%ESTOH
_ﬁ(TO/ 56/ (X:(TO,J?)) - Z Q(TO/ EC/ (X*(TO, 56)/ J,e)]'I(TO +1, 52:/ Oé*)] .
2€Styn

Note that IP’t”"‘AX*(XT0 =X) > 0. Then, together with 10, the above implies
JiTo, %, 7 i) > fi(To, %, @i(To, %)) = D, q(To, % & (To, %), %)i(To+1,% )

2€Srym
ZL‘(TQ,J?,OZ*).

This proves (9), hence (8). Q.E.D.

We now construct a counterexample such that the inclusion in (8) is strict. This is again due to the nonunique-
ness of equilibriums.

Example 5. Let T=4, N =2, and A; = A, = {0,1}, and ST takes values as in Figure 2.
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Figure 2. States for Example 5.

_— \53/
T _— \34

S10 ——> S20

1
Si: so

0

We shall construct an equilibrium whose value is in Vstate(0,50)\ Vitare (0, 50). Set
1
To=1, ¢(0,")= 5 f(0,)=0.
Given a desired ¢, for any & € Agye, clearly J(1,1);0,s0, a) = %[1,[1(510) + tp(sn)], and thus
~ 1
Vistate(0,80) = {E [U(s10) +(s11)] : for all P s.t. Y (s511) € Vitare (1,511),1=0, 1;- (11)

Note that Ve(1,510) and Ve (1,511) are two different three-period games. Let the (3-period) subgames at branch
X1 =519 and at branch X; = 511 be exactly as in Example 3. Becayse we consider only a € A, by (5) we have

](1,51,‘,&) = f(a(3,53)), i= 0, 1.

1\ (1
Vstate(lr 510) = Vsmte(ll Sll) = {(0/ Z)/ (Z/ 0)}/

with corresponding equilibriums «(3,s3) = (0,0) and a(3,s3) = (1,1) (the other values of a(t,x) are irrelevant or,

say, can be arbitrary). Then, by (11),
~ 1M1 11
Vstut@(or SO) - {(0/ 4)/ (4/ 0)/ (8/ 8)}

On the other hand, because 4(0, ) = % and f(0,-) =0, for any & € Asqre, we have

Then, by Example 3,

](OISO/ (1) = %[I(l/sloz CY) + ](1,511,0[)] = 7(“(3153))'

S0, Vstate(0,50) = {(0,1/4),(1/4,0)}; therefore, (1/8,1/8) € Vtate(0, 50)\ Vitate (0, 50)-

2.5. Pareto Equilibriums

For y,i7 € RN, we say that y </ if y; <7, fori=1,---,N, and y < 7 if we assume further that y; < 7, for some i. As
we saw in Remark 2 (ii), for a nonzero-sum game, typically the comparison principle fails in the sense: for equili-
briums a*, &, for games | j, respectively,

J(a) <J(a) for all o, but J(a*) > J(&).
A consequence of the above property is that DPP would fail, in general, if one restricts to the so called Pareto
equilibriums.
Definition 2. We say that a" € NE(t,x) is a Pareto equilibrium if there does not exist another equilibrium & €
NE(t,x) such that J(t,x,&) < J(t,x, &*).
Define
Vpareto(t, X) := {J(t,x,a") : for all Pareto equilibriums a" € NE(t, x)}.
As the following example shows, even the partial DPPs fail in general:

Vpareto(t, X) # {](To, Y;t,x,a) : for all ¢ and a* such that 12
12
V(%) € Vpareto(To, X), VX € ST . and a* is a Pareto equilibrium at (T, 1;t, x)}

tx’
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Figure 3. States for Example 6.
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e

S12 S21
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Example 6. As usual, let V1 (t,x) denote the right side of 12. Let T =2, N =2, and A; = A; ={0,1}, and ST takes
values as in Figure 3.
We first consider the subgame V(1,x). Set

8(X)|xy=s,, = (0,0).

Let f(1,x) :=f(1,(s0,x),a) (independent of a), g(x) := g(so, %, 520), and q(1,x,a) := q(1,x,a;52) (independent of x) be
as in Table 4. Then J(1,x,a) := J(1, (so,x),a) is as in Table 5. This implies that

V(LX) = {0 0, )} Veano(1,%0) = {97 0a)},

where ¢ and ¢* are given in Table 6. 3
We now consider J(1,1;0,sp,a) for ¢ = ¢, ¢". Fix some € > 0 to be small enough. Set

f(0,)=1(0,0), ¢(0,50,a;51;)=1-3¢ if j=1(a) and ¢q(0,s0,a;51;) = ¢ if j # I(a),
where
1(0,0)=0, I(1,00=1, 1(0,1)=2, I(1,1)=3.
and all other g(0, s, 4; x) = €. Then,

3
J(1,4;0,50,a) = Zol q(0,50,a;51)1(51/) = P (S11)) + O(€).
i=

That is, J(1,1;0,50,a) is approximately equal to 1(s15)), and, when ¢ is small enough, the two subgames have the
same equilibrium. In particular, recalling the ] and | in Example 6, we see that

J(1,750,50,4) = (@) + O(e), J(1,4730,50,) = J(@) + O(e).
Then, by Theorem 1,
T paretol0,50) = {(4,4) + O(e)},  V(0,50) = {(3,3) + O(e), (4, 4) + O()},

and thus Vpget(0,50) = {(3,3) + O(¢)}. This implies that V pareto(0,50) and Vparero(0,50) do not include each other;
namely, partial DPP fails in both directions.

Table 4. Cost and transition functions for Example 6.

X S10 S11 S12 S13 Q<1aa) az;=0]a,=1

fLo) (44 @9 @ a =0
g(x) | (4.4)] (20,4) | (4, 20) | (12, 12) a =1

B [N
L E SN
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Table 5. Cost matrices for Example 6.

J(1,510,a) | azg=0]a;=1 J(1,s811,a) |az=0]ay;=1
a; =0 (3,3) | (4,4) a; =0 (6,6) | (11,7)
a=1 | (4,4 ] (22 a=1 |@11,7)] (1,5

J(1,819,a) | aa=0|ay= J(1,811,a) | az=0 | az=
a; =0 (6,6) | (7,11) a; =0 (7,7) |(10,10)
a=1 [(1,11)] (5,1) a=1 |(10,10)] (4,4)

Remark 8. We emphasize that in Definition 2, a Pareto equilibrium a* is compared only with other equilibriums.
In general, it is possible that there exists another control @ € A (not an equilibrium) such that J(t,x,a) <J(t,x, a*);
see Remark 2 (i). We may call an equilibrium a” € A a strong Pareto equilibrium if there is no such control a € A.
Denote

Vo (t,x) := {J(t,x,a’) : for all strong Pare to equilibriums a'}.

In general, DPP fails for V3% too.

Pareto’

2.6. Optimal Equilibriums
We now fix xg € Sp and consider V(0, xp). In practice, it is important to determine which equilibrium to implement.
For this purpose, we introduce a central planner and assume the central planner is interested in minimizing

yGV(O XQ) i=1

Vo:= inf ZAI% mf{z AiJi(0,x0,a") : a* € NE(O, xo)} (13)

where A; > 0 with ¥, A; = 1. Such problems are natural, say, for social welfares. By Proposition 1, the problem
(13) has an optimizer y* € V(0, xp), and correspondingly there exists a* € NE(0, xo). Note that, when A; > 0 for all i,
such " is automatically a Pareto equilibrium. We remark that in general neither y* nor a* is unique; however, the
central planer is indifferent to them and thus can pick an arbitrary one. More importantly, in practice it is quite
easy to implement such an equilibrium, as we explain below.

Remark 9.

i. Assume that the central planner picks an optimal equilibrium «*, and recommend it to the players. As long as
each player believes that the others would follow the recommended one, it is in the player’s best interest to follow
the same «a”, since it is an equilibrium. Moreover, because o is a Pareto optimal one (assuming A; > 0 for all i), the
players are unlikely to make a collective decision to choose a different equilibrium.

ii. The problem is quite different from a “dictatorship” scenario, where the dictator wants to minimize

N
= inf ; AiJi(0, xo, ).
Assume that the problem V has an optimal argument &* and the dictator forces the players to follow it. How-

ever, because &" is (in general) not an equilibrium, the individual players have no incentive to follow it, even if

Table 6. Values of the game in Example 6 at time 1.
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they believe the others would do so. Consequently, the dictator has to use regulation/penalty (or other means)
to force them to implement this strategy, which adds to the social cost.

Remark 10. Because DPP fails for the Pareto equilibriums, as detailed in Section 2.5, the dynamic version of (13)
will generally be time inconsistent. In particular, this implies that there need not, and typically will not, exist a
moving scalarization (a moving objective parameterized by an adapted process A), as in Feinstein and Rudloff
[16], so that a” is a consistent equilibrium for this problem. Therefore, time inconsistency implies that although a
central planner may dictate a socially beneficial equilibrium at time 0, at some time f this may no longer be an op-
timal equilibrium for the subgame over [, T].

3. The Continuous-Time Model

In this section, we extend our results to a continuous time setting. We shall consider a diffusion model with drift
controls only. In this case, all of the involved probability measures are equivalent. The case with volatility con-
trols may require new insights, especially in light of Remark 5, and is left for future research.

3.1. The Nonzero-Sum Game

Let [0, T] be the time horizon, (Q, F = {F}o,<r, Po) a filtered probability space, and B a d-dimensional Py-Brown-
ian motion. Consider a game with N players. Let A = A; X --- X Ay be a convex domain in a Euclidean space and
A=A X X Ay the set of F-progressively measurable A-valued processes. The data of the game satisfy the fol-
lowing basic properties, where the boundedness assumption is mainly for simplicity.

Assumption 1. (b,f):[0,T]xQ XA — R xRN is F-progressively measurable and bounded, and &:Q — RN s
Fr-measurable and bounded.

As usual, we omit the variable w in b, f, £. For each a € A, define

@-—Ma-— Tbs 4B, -+ les [*ds
Py - T.—exp/O (8, a5) s 2‘/0 (S, ) .

At time t, each player has the value defined through the conditional expectation

£i+/tTfi(s,a;)dsl, i=1,---,N.

We remark that we may replace the above expectation with some nonlinear operator through BSDEs; see Remark
15 (ii) below. We say that a* € A is a Nash equilibrium at ¢# if

],’(i’,O() = EEM

Jit,a) < Jilt, ", af), Py—a.s. for all i and all &' € A,;,
and we introduce the set value
Vi:={J(t,a"): for all Nash equilibrium a’at t}.
We remark that the elements of V; are F;-measurable, RN-valued random variables, and we shall consider the
localization in RY in the next subsection.
Given Ty and nn € L™(Fr, ;RY), denote

Ji(To, mit, @) :=Ef" . i=1,--- N,

n+ /tTOﬁ(s,aé)ds

and we define Nash equilibrium at (Ty, 7; ) in the obvious way. As such, we then have the following DPP. We re-
mark that this result does not even require the right continuity of F.

Theorem 2. Under Assumption 1, forany 0 <t < Ty < T, it holds
Vi :={J(To,n;t,a") : for all n € Vx, all Nash equilibrium & at (To, n;t)}. (1)

Proof. Let V; denote the right side of (1). First, for J(t,a*) € V;, denote 1:=J(Tp,a"). For any i and o' € A;, denote
a':= a1y 1) + a*L(r, 1) It is clear that

]i(TOI 1 t, a*’_ir ai) = ]i(tl a*’_i/ &l) 2 ]i(t/ a*) = ]i(T0/ 1n; £ OC*).
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That is, a* is a Nash equilibrium at (T, 7;¢). Moreover, assume by contradiction that 7 ¢ Vr,, and then there exist
i and a' € A; such that Py(E;) >0, where E;:={]i(To,a",a') < Ji(To,a’)}. Denote &' := a0, + 1z, [’ 1, +
a1 ]. Then,

Jilt, &) = B

T
/ Ofi(sl a;/i)ds +]i(T0/ a*/_ir ai)lEi +]i(T0/ a*)lEfl
t

< EEFW

ZIi(t/a*)'

/tTofi(Sf “:’i)ds +Ji(To, ")

This contradicts with the assumption that o is an equilibrium at ¢. Thus 1 € Vy,, and therefore, J(t,a*) € Vi
Next, let [(To,n;t,a*) € V; with desired (1,a"). Because 1 € Vr,, 1=](To,&") for some equilibrium &" at Tp. De-
note &" := a*1jy 1, + & 1(r, 1), and for any i and o € A;, denote &' := a'ljg 1, + & L1, 7. Then,

=[Ji(t, a7, af) = Jlt, a7 &) + [ Jilt, a7, &f) - Ju(t, &)

=K " [JTo,a", &) = J(To, @) + [ J(To, m:t, a ", &) = J(To, m;t, ).
The second term above is nonnegative by the requirement of a*. Moreover, note that Ji(To, &, a') > Ji(To,&"),
Pp-a.s., and P¥% are equivalent to Py, and then Ji(To,& ™, &) > J(To,a"), P*"“-as. This implies
Ji(t, &7, a') > Ji(t,&"). So & is an equilibrium at t, and thus J(To, n;t,a*) = J(t,a") € V. Q.E.D.

3.2. The Localization
While Theorem 2 is quite simple, as mentioned, V; is a set of random variables rather than value sets in RN asin
Section 2, which is not desirable in applications. In this subsection, we localize the random variables in a point-
wise sense. For this purpose, it is more convenient to use the canonical space.

For the rest of this section, let Q := {w € C([0, T|;RY) : o = 0} be the canonical space, B the canonical process,
Bi(w) = wt, Py the Wiener measure, and F = {F}(,.r := F? the Pp-augmented filtration generated by B. Denote

ol = sup i, d((t@), (@) = It = F+ g — oI
0<t<T
Then (Q,|| - ||) is a Polish space. For t € [0, T], w,& € Q, and & € L%(F7), C € L°(F), denote

(w®td))s = wsl[olt] (S) + [a)t + d)s—t]l[t,T] (S),
(@) = E(w@), (@) = Cus(w@@).

Let A, A,b,f,& be as in the previous subsection. For (t,w) € [0, T] X Q and a € A, define

dlpt,m,a T—t 1 T—t
T M4 = exp / b"“(s,B.,as) - dBs — E/ " (s, B., as)[*ds |;
0 0 0

)
Ji(t, w,a) == EP""

Tt .
£9B) + / f2(s,B.al)ds|, i=1,1,N.
0

We say that a* € A is a Nash equilibrium at (t, w), denoted as a* € NE(t, w), if
Ji(t,w,a) < Jilt,w, 0", af), foralliand all o€ A;,
and we introduce the set value
Vo(t,w) :={J(t,w,a") : " € NE(t,w)} c RN.

Intuitively, n € V; means n(w) € Vo(t, w) for Pg-a.e. . This is indeed true in the setting of Section 2 if we introduce
the corresponding V;. However, in the continuous time model, we encounter some serious measurability issues.
Because the state space (1 is uncountable, the measurability or even certain regularity of the set value will be re-
quired. Note that A is typically not compact, so the arguments in Proposition 1 do not work here. In fact, in this
case neither the (Borel or analytic) measurability of the set Vy(t, w) cRN for fixed (t,w) nor the F-progressive
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measurability of the mapping (f,w) — Vy(t, w) is clear to us. To get around of this difficulty, we relax the equili-
briums to approximating ones, which are usually sufficient in practice.

Definition 3. We say that a® € A is an e-equilibrium at (¢, ), denoted as a® € NE.(t, w), if
Ji(t,w,at) <J(t,w,a®7,a') + ¢, foralliandalla’ € A,.
Denote O,(y) := {§ € RN : | —y| < ¢} ¢ RY, and define
V(t,w) = Q()Vé-(t, w) where V.(t,w) :={y € O.(J(t,w;a")) : a* € NE.(t, w)}.

Clearly Vy(t, w) C V(t,w). Moreover, we have the following simple but important properties.

Proposition 4. Let Assumption 1 hold.
i. V,(t, w) is bounded and open;
ii. For any &’ < ¢, the closure cl(V (t, w)) C V. (t, w);
iii. V(t, w) is compact. Moreover, V(t, w) # 0 whenever NE(t,w) # 0 for all € > 0.

Proof.

i. This result is obvious.

ii. One can easily see that (V. (t,w)) C{y € Oc—e' () : 1 € Ve (t,w)} C V(t, w).

iii. Because V,(t,w) is bounded, the cl(V.(f,w)) is compact. By (ii), we see that V(t,w) = Neocl(V(t, w)) is also
compact. Moreover, again because each cl(V,(t, w)) is compact, we see that V(t,w) # @ whenever cl(V.(t,w)) # 0 for
alle >0. Q.E.D.

Remark 11.

i. It is obvious that cl(Vo(t, w)) € V(t, w); however, the inclusion could be strict. Note that V(f, w) # 0 if and only
if the game has a true equilibrium, whereas V(t,w) # 0 can occur even if no equilibrium exists. Such a relaxation
could be useful for more general games where a true equilibrium may not exist; see for example, Frei and dos Reis
[17], Buckdahn et al. [6], and Lin [26] for some results in this direction (the latter two use strategies instead of
closed-loop controls, though).

ii. When we view a stochastic control problem as a game with one player and denote its (standard) value func-
tion as v(t, w), then we always have V(t,w) = {v(t,w)}, but Vo(t,w) could be empty. Similarly for a two-person,
zero-sum game, the standard value function corresponds to V, not V.

For the rest of the properties, we impose the following regularities.

Assumption 2.

i. b,f are uniformly continuous in (t, w) under d, and & is uniformly continuous in w under || - ||, with a common modulus
of continuity function p,,.

ii. b, f are uniformly continuous in a.

We then have the regularity and stability of V in the spirit of Feinstein [15]. However, we note that Feinstein
[15] considers the set of equilibriums, whereas we consider the set of values. Given D, cRN, we define the set
valued limits as in Aubin and Frankowska [2]:

h'mDnz{yeRN: lim inf |y—yn|=0}

n—oo n—ooy,eD,

n—oo n—oo ynEDn

lim D, :{yERN: lim inf |y—yn|:0}‘

That is, the limit inferior (superior) denotes the set of y € RY such that there exists y, € D, (resp. subsequence),
satisfying lim,, .o ¥ = .

Theorem 3. Let Assumptions 1 and 2 (i) hold.
i. For any €1 < €3, there exists 6 > 0 such that

Ve, (f,@0) C Vo, (t,w) forall (t,w),(E,d) satisfying d((t, a)),(f,d))) <. 3)

ii. Ifd((ty, @), (t, @) — 0, then V(t,w) = N[Lm V,(ty, @")] = N[HEm Ve(t, @")].

>0 500 e>0 n—oo
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iii. Assume that (b",f",&") satisfies Assumption 2 uniformly, and define V(t,w) in the obvious way. If (b",f",&") —

(b,f, &) uniformly, then
V(t,w) =N [ lim V"(t, a))] =N [ Tim VI(t, a))].

n—oo

Proof.
i. We first claim that there exists a modulus of continuity function p such that

It w,0) ~ I @,0)| < p(d((t, ), (,0)),  V(t,w), (), Va.

@)

Then, let d((t,w), (f,@)) < 6 and y € O, (J(t,@,a)) C V,, (t,&), where a®* € NE,, (f,®). For any i and &, by 4 we have

]i(t/ w, agl) < ]i(E/CD/aEI) + P(é) < ]i(i:/d)/a&’_ir ai) +é&1+ P(é)
<Jilt,w, a7, al) + &1 +2p(5).

Choose 6 > 0 small enough such that 2p(0) < €, — €1, we see that a®* € NE,, (t, w). Moreover, by (4) again we have

ly = Ji(t,w,a)| <y = JiE, @,a%)| + p(8) < 1 + p(6) < e

So y € V,(t,w), and hence 3 holds.
We next prove (4). By (2) we have

Ji(t, w,a) = EP | ML

EX(B)+ /OT_t f’“’(s,B.,a;)dsH.

Similarly, we have the representation for Ji(t, @, ). Denote

OSCs(B) := sup |Bs—Bs|, p'(6):= E[pg(é + oscé(B))].
Assume without loss of generality that ¢ < . Then,

[s—5]<6
[ o) [ m ]
0 T AR A

T—f , - , T—t ,
<CE / |flffw(s,B.,a§) —f(s,B ,oc’s)|2ds + |/ i f’“’(s,B.,a’s) ds[?
0 T-1

E

<CE /O T_Zpg(d((t+s,a)®tB.),(f+s,d)®;B.)))ds +Co?

<CE /0 T_Zpg(d((t,w), (,@))+0SC;_(B))ds| +Co?

+C6* < Cp' () + C&™.

2]
T—t

-1 N
< CE™ [ / b — b (s, B ) ds + / b (s, B., ) Pds
0 T-1
2]

—

Tt 0 Tt 2
/ ot — 5o | (s,B.,as)ds+/ b (s B. v, 2ds
0

Tt
<CE / p5(6+ OSCs(B))ds
|/0

Similarly,
EP1ek(B) - £ (B)P] < p (0)
T—t T-t

b (s, B., as) dBs — b9 (s, B., as)dBs
0 0

E™0

<Cp’(6) + Co;

T—t T-f
EPo / (s, B., . Bdls — / b2 (s, B, a,)2ds
0 0

< CEPM

T—t

< Cp'(6) + Co%.

©)
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We note that, because b is bounded, for any p > 1,
sup B [(M3) + (M) 7] G < oo, ©
acA

Moreover, note that |¢* —eX| < [¢* + eX]|x — X|. Then

B M| 1€ () - €7 8| < c(EPD[w?“’(B.) & (B)F])% <CVp'@);
M| / o it/w(s,Bi,oci)ds— / Tﬁzﬁ_’~’(s,B.,ai)ds|
0 0

| /0 T_tf,-tf“’(S,B.,aé)ds - /o T_Zﬁﬁ) (S’B"a;)dﬂzl)E
<cC \/M;

Py twa _ aghda Py tw,a 0,
BP0 Mgt — M2 | < B[ M + M |

EPo

<C (]EPO

Tt T-f _
| / B4 (s, B., t,)dB. — / B (s, B., o )dBd|
0 0
1 pT-t T-F
+ / I (s, B., cto)Pels — / (s, B., o) s
0 0

<Cyp' () +6;

It ,0) = J(E, @, )] < ™Ml (B) - &7 (B)
T—t ) T-f . )
+MtT’“jf‘|'£ ff’“’(s,B.,a;)ds _./o ff’“’(s,B.,a;)dsl

T-t

+ M = MO |EY (B + / ﬁ'@(s,B.,a;)dql
0

< CyJp’(6) +6 =: p(o).

Clearly p’ and hence, p are modulus of continuity functions, we thus obtain (4).
ii. Denote 6, := d((t,, @"), (f,w)) — 0. For any ¢ < &;, by (3) and its proof we have

Ve, (,w) C Vg, (ty, "), Vg (ty, @") C V., (t,w), whenever 2p(5,) < €2 — €. (7)

Now fix e and set p(6,) <% we see that (7) holds for all & <%. This implies immediately that
V(t,w)C Ve, (t,@") and N so[lim, e Ve, (t,@")] C Ve, (t,w). Now send & —0, and we have M5
[1im e Vg, (t,0™)] CV(t ) CNeso[lim,,_,, Ve(t,0™")]. Because the limit inferior is always contained in the limit
superior, hence they are all equal.

iii. Let J" be defined by (5), but corresponding to (0", f",&"). It is clear that ¢, := SUp; 4, o [[J" = J1(t,w,a)] = 0. Then
the result follows similar arguments to (ii). Q.E.D.

To study the measurability of the mapping (¢, w) — V(t, w), we introduce

Ve(t,w):= Q_Vé,/(t,a)).

It is clear that
Ve(t,w) c Ve(t,w) c Ve(t,w), Ve<E hence V(t,w)= ﬂO Vet w).
>
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We then have the following result, which will be quite useful for the DPP below.

Theorem 4. Let Assumptions 1 and 2 (i) hold. For any € > 0, any F-stopping time t, and any n € LO(F ), the events {w €
Q:n(w) e V(t(w), w)} and {w € Q : n(w) € V(t(w), w)} are F r-measurable.

Proof. First, note that {w : n(w) € V(1(w),w)} = Nys1{w : n(w) € \'A /m(1(w), w)}; then the measurability for V clearly
follows from the measurability for Vi. We now prove the claimed measurability for V. in three steps.

Step 1. We first show that, for any ¢ and any compact set KC CRN, the event {w € Q: K c V.(t,w)} is open (in
terms of w under || ||) and thus is obviously F;-measurable. Indeed, fix @ such that K c Vg(t, w)=Ug Vo (tw).
Because K C RN is compact and V. (t,w)CRN is open and increasing in ¢, there exists ¢; <¢ such that
KcV,(t,w). Now by (3) we see that there exists 0>0 such that KCV, . ,(td) cV.(t,®) whenever
[@¢x. = winll < 0.

Step 2. We next show the result when 7 =t is a constant. Note that the set of closed balls in RN with rational cen-
ters and rational radii is countable, numerated as {Ki}; » ;. Because V.(t,w) is open, for n € L°(F;), one can easily
verify that

{a) :n(w) € Vé-(t,a))} = iLZJl(Ei N {w: n(w) € K;}),where E;:= {w:K cV.(tw)}

Clearly, {n € K;} is F;-measurable, and by Step 1 the events E; are also F;-measurable, and then so is the event
{w: n(w) € Ve(t,w)}.

Step 3. We now consider stopping times 7. If 7 is discrete, namely, taking only finitely many values, ti,---,t,,
then

n

{a) in(w) € VE(T(a)),a))} = ZU ({a) :n(w) € Ve(ty, cu)} N{r= ti}),

=1

By Step 2, {w: n(w) € Vi(t;,w)} € F, for each i, and then the above clearly implies {w : n(w) € V.(t(w), w)} € F.
Now, for general 7, there exist stopping times 7, | 7 such that each 7, is discrete and 0<t,—-7<27"T.
Choose an arbitrary sequence ¢,, T ¢. By (3), for any m we have

{a) N(w) eV,  (1(w), a))} ' 1}1_)_rr010 {a) n(w) € V&,,(Tn(a)), a))}

c Iim {o: (@) € Vo, (14(@), @)} < {0 (@) € Ve, (1(@), @)},

Send m — oo and note that the first and the last terms above have the same limit, and then the middle two
terms have to converge to the same limit, namely

im_{w: () € V., (1,(0), )} = {01 1(0) € u(t(@), w)}. 8)

M, n—oo

We already have {w:n(w) € Ve, (ta(w), )} € Fr,. Because F is right continuous and 7, | 7, then limy, s cof{w :
N(w) €V, (tp(w), w)} € Fr, and thus {w : n(w) € Ve(1(w),w)} € F;. Q.E.D.

3.3. Dynamic Programming Principle
Given an F-stopping time 7 and 1 € L*(F;R"), one may consider the game on [0, 7] with terminal condition 7.
In particular,

Pt,w,a

b g
N + / fl.t'“’(s,B.,als)ds
0

and we can define equilibrium and ¢-equilibrium at (7, 7; ¢, ) in the obvious sense. We now state our main result
of this section, extending Theorem 1 to the continuous time model.

Ji(t, it w,a) =E , t<t(w), i=1,---,N, 9)
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Theorem 5. Let Assumptions 1 and 2 hold. For any (¢, w) and any F-stopping time T with t(w) > t, we have

V(t,w)= ﬂo {y €O:(J(t,m;t,w,a%)): forallne L¥(F;RN) and af € A
&>
such that a® € NE.(t,n;t,w) and Po(nt'“’ ¢V, (Tt'“’,BF"")) < e}.

To prove the theorem, we first need a lemma.

Lemma 1.
i. Let T be an F-stopping time and 1 € L™(F;RYN). For any 6 > 0, there exists a discrete F-stopping time 5 with 0 <
T — T < 6 and an 1y € L¥(F,; RY) with the same bound as ) such that

E™(ln, —nl] <6, and ng is uniformly continuous in w. (11)

ii. For any e € Aand 6 > 0, there exists a discrete o® = Y7o} a1y, 141y € A such that

/OT[WE — oy Al]di’

Proof. i. The case 7 =t follows the same approximations in Theorem 2.5.2, Steps 1-4 of Zhang [40], and in this case
we actually have 75 =t as well. We now prove (i) for general stopping time 7. First, clearly there exists discrete 75
such that 0 < 75 — 7 < 0. Assume that 75 takes values ty,---,t,. Because the space (Q,||-||) is Polish and thus Py is
tight, see for example, Billingsley [5]; then, for each i there exists a compact set' K;C c{ts =t;} such that K; € F 1’
and Po({ts = t; }\K ) < 6/3Con, where Cy is the bound of 1. Then, one may easily construct uniformly continuous
functions I; € L°(F;[0,1]) such that E™*[|I; - 1k |] < 6/3Con. Next, note that 1 € }L‘X’(]—"T,,R ), and then nlg, _y, is
Fi-measurable. Apply (11) for the deterministic time case; there exists 1, € L™(F,; R") with the same bound as 7
such that

EP <0, and each ag is uniformly continuous in w.

0
EP[In; = e, 1] <z and 7, is uniformly continuous in w.

Denote 7, := X/_; n,I;. Then one can easily verify that 1, is F;, measurable, uniformly continuous, and

EPO [ Ms = nl] ZEPO [|771 =N, =fi}|]

EPO [lni[lf -1 ]I+ |Th[11<i - 1{15:1‘1}]| + |’71 - nl{TFti}ll{TFfi}]

f I 0 o
Co C —|=
— 3C0n 3Con O 3Con * 3n

IA

This proves (11) for the general stopping time .
ii. First, denote af := ay1y, < r)- Then, limg_, E / [laR — a;| A1]dt| = 0. By otherwise choosing an a®, without

loss of generality we assume that « is bounded. Next, for each n, denote t; :=iT/n and i =0,---,n. Denote a} :=0,

te[to,t1], al := %f:i aeds, t € (t,tis1],andi=1,---,n—1. Then, E /OT|at” — ay|dt| < 6/2 for n large. Now, fix such an
i-1

n. For each a}, by (i) we may construct uniformly continuous af{ such that E[lag —a}|] <6/2. Then, clearly a?® satis-

fies all the claimed properties. Q.E.D.
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Proof of Theorem 5. For notational simplicity, we assume that ¢ = 0; then, (10) becomes
V(0,0)=V(0,0):= (1 V(0,0) where
V:(0,0):= {y €0.(J(t,n;0,0,a%)): forallne L™(F;RY)and a € A (12)
such that a® € NE,(t,7; 0,0) and [FD()(T] ¢ VS(T,B.)) < s}.

Step 1. We first prove the C part. Fix an arbitrary y € V(0,0). To show y € V(0,0), we fix an arbitrary ¢ > 0. Let 6 > 0
be a small number that will be specified later.

Because y € V;(0,0), there exists @° € NEs(0,0) such that [y —J(0,0,&°)| < 6. For any &; > 0, apply Lemma 1 (ii) on
a’; there exists a® = =/ al 1, 1,.,) € A such that a? is uniformly continuous in w and E[ ./0 T[la?j5 — | A1]dt] < 6.
By Assumption 2 (ii) and (5), for 61 small enough (depending on 6), we see that

a® € NE»;(0,0) and |y -7 (0,0,a°)| < 26. (13)

Define
(w):=] (T(w), w, (aé)f(w)'w). (14)

By (4) and Assumption 2 (ii) again, it is clear that 1° is F.-measurable. Note that, for any a € A, J(7,1°0,0,a) =
J(0,0,&), where @ := aljp) + a1, 7. Then, (13) implies a® € NExs(t,1°,0,0) and |y —J(t,1°;0,0,a°)| < 26. We shall
always set 26 < . Moreover, set ¢, T ¢ and 7, | 7 as in Theorem 4, Step 3. We claim that, for any m,

fim Tim Py({w : 7 (@) & Ve, (2u(@),)}) = 0. (15)

6—0n—oo

Then, by (8) and noting that V. is increasing in ¢, we can easily see that
lim Po({w : n°(w) ¢ Ve(t(w), @)}) =Tim Tim Po({w:n’(@) & Ve, (ta(@), )})

< g@ Po({a) : T]b(a)) ¢ vsl (Tn(w)/ O))}) =0.

This verifies all the requirements in (12) and thus y € V.(0,0).
We now prove (15) for m = 1. Because a® is uniformly continuous in @, by (9) and Assumption 2 (ii), similar
to (4), we have

lim E [|172 - nbl] =0, where 1n°(w):=] (T,,(a)),a), (aé)T"((‘))'(u). (16)

n—o0

Note that
fo: @) € Ty (@), 0)] o 2 1(@) € Ve (Ta(w), )}
CEyU{w:In’ (@) = nh(@)] > &2},

where, assuming that 7, takes values ¢;,i=0,---,2",
2)1

Ed:= L_JO E;, Ei:={t,= t,}ﬂ{w ()" ¢ NEEZ(ti,a))}. (17)
Then,
- 1
Po({w: 1) & Ve, (0,(@), @) < PoED) + B, @)l
By (16), it suffices to show that
Tim im o) =
iy 0 ) =0 o
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Now, fix ,n. Let " > 0 be another small number that will be specified later. Note that Q is separable, and we
may have a decomposition E; = U;>1E;; on F, such that, for some fixed W' € E;j, sup,_, <t lws —wd| <& for all

w € E;j. Now, for each (i,j), because (a‘s)t"’“i’j ¢ NE,,(t;,w"), there exists k=1,---,N and a** € A such that
.. .. o .. -l ..
(1), (@) = (1,07, @) > g (1,07, (000" @i14) 4 5, (19)

Again, by (9) and Assumption 2 (ii), and because al is uniformly continuous in w, then wit— Ji(t;, @, (aé)t"’“’)

and > Ji(t;, w, (@> %), a'7*) are uniformly continuous. Thus, for & small enough,

i (t,«, , (aé)t"’“’) > Ji (ti, , (aﬁf—k)t"’“’,a'?f/k) + % Vo € Ey;. (20)

Denote Ef; := {w € E;;: 19 holds}. Then, E = UpL, Ef, where EF := Ulzn: 0Uj = 1EL. One can easily construct a* € Ay

such that (ak)i”w = for (t,w) € [, T] X Ef;, and of = (a®) for all other (£, ). Then, by (20) we have

el Th(w), @, (a2)" ) 5 W To(w), 0, (a‘s’_k)rn(w)'w,(ak)T"(w)'w +2, Yw € EX;
2

Ti (20,0, @)™ ) = I (ta@), @, (@2 (@), v e B

Note that af = (a®)} for t < 1,. Then, because a® € NEys(0,0),
26> (0,0,a°) - Ji (0,0,a°7*, a¥)

ad ), n(w),w n(w),w
=EP"” []k (Tn(cu),w,(aé)ma )'a)—]k (Tn(a)),a),(a@*k)u e (g™ )]

> 2p00e’ (F) = 2P MO 1|

Thus, by (6),

k) _ P 0,0,a K 0,0,a0 : Po 3 £0,0,a0 : ﬁ
Pl = 57| (00 (M99 10 < € (e |00 1 < 0 2
Then, Py(E2) < CN+/6/¢>. This implies (18) and hence, (15) immediately.
Step 2. To see the opposite inclusion, we fix y € V(0,0) and € > 0. Let 6 > 0 be a small number that will be specified

later. Because y € V;5(0,0), let , a® be the corresponding terms in (12) corresponding to 6. Moreover, set 6, | 0 and let
(tn,1n,) be the approximations of (7,7) as in Lemma 1 (i) with error 0,. Note that, for any k=1,---,N and any

ak € Ak,

(0, 1,;0,0,0%7%, %) = Ji(z,1;0,0,a7*, ak)|

Ty 21
EPo[M?:rk,ak[[mn)k_nk] +/ fk(S,B,afr—k,o/s‘)ds (1)

< (E%[Jn, ~l)) + 2" <5,

when 7 is large enough. Thus

Ip (Tn,nn;O,O,oc‘S) Ik (Tn,T]n,‘0,0, ab"k,ak)

(22)
<Je (7,1:0,0,0°) = Ji(7,1:0,0,007,at) + 20 <35, Vo€ Ay

That is, @® € NEzs(ty,1,;0,0) and y € O2(J(14,7,;0,0,a?)) for n large enough.
Next, by (8) and noting that Vj is increasing in 6, we have

Tim Po(i1€7a(t, B)) < Po(n € Va(z, B)) <.
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Note that {n € Vs(t,,, B)} N {ln, - nl < 8} C {n, € Vas(t,, B)}; then,

hm Po(nn ¢ Vas(T,, B. )) < hm [Po(n ¢ Vs(t,,B. )) E”%“nn ]| <

Thus, for n large enough,
PO((EZ) ) <26, where E°:= {nn c @5(1,1,3.)}. (23)

Now fix 6, n. Denote E; := EXN{t, = t;}. Let &’ > 0 be another small number that will be specified later. Similar to
Step 1, we have decomposmon Ei=Uj»1E; j on F, such that, for some fixed w" € E; s SUPY <5 <, lws —wd| <8 for
all w € E;j. Now, for each (i, ), because nn(w’] ) e VZb(t,,a)” ) C Vos(t;, ™), there exists a’/ € A such that

al e NEjs (ti,a) ])), | n(w']) —](ti,w’],a’])l <26.
Because 17, and J(t;, w, al) are uniformly continuous in w, for 6" small enough we have

(@) =1, <8, supl] (t,w,a)—] (t,w”,a) <5, YweE;;.
Denote

(@) = 316, @) (t,0,0%) + 1 (@) ] (Tn(a)) , (a 6)”‘(“’)“’) (24)
l,]
Then,

| nn| < ZIEU((‘)) | I(tl/ W, 1]) T]n(a)) | + Cl(Eg)C

< Zlg,](w) H] ti, w,a) =] (ti,a)”f,ai'f)’ +1J (t, 0™, ) = nn(a)i’f)‘
ij
+ 1, (@) = 0, (@) + Clgyy <40+ C1 -

Similar to (21) and (22), by (23), one can easily show that

o € NEq5(t0,7,70,0) and v € Opyg (7 (2 7,/0,0,0°)). (25)
We now define
a?n = al‘ [0,7,] (t) + 1(7r1 T](t) Z 1Ex]at]’[ + at (E‘)) :| (26)
i,j

Then, 7, (w) = J(th(w), @, (a5m)" @) for all w € Q. Fork =1,---, N and for a* € Ay,
Jic(0,0,00) = Ji (i, 7,0,0,0) < Jo (Tn,f;n,-o, 0, ab"-k,ak) +CVo

B |7, () + / i (s,0,087, o )as|| + C VB
(V‘S”k,ak : P Tn
<E? Zlgw.]k (ti,w,a1'1)+C1(Eb)c +/ fr (s w, a" -k, ’S‘)ds + CVo
7,7 "
(V‘S”k,ak [ .. .
<EP D1, Jk (B0, ) + / f (s w, a7, 's‘)ds +CVo
Li,] 0

ao"k,ak [ : : s i,
<EP Zlgw.]k (ti,a)"],al']’ k (ak)t “ + fk S, @, a ,af)ds + CVo
17,7 0
a:‘»,—k,ak ” n
<E” ZIE,]];( (tl,a) i (o k)t “ +/ fi |5, w, a ,o/s‘)ds + CVo
I 0
<E™ o ]k (Tn(a))/a)l( o,k kT"(“’) + fk S, w, a ,a’s‘)ds + CVo
0

=7 (0,0, a®™7% o¥) + CVb.
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That is, a®" € NE5(0,0), and y € O 5(J(Tn,7,;0,0,a°)) = O 5(J(0,0,a°")). Then, y € V. 5(0,0), and thus y €
V.(0,0) when CV6 <e. Q.E.D.
Remark 12. In the state-dependent setting, namely

b=b(t,w,a), f=f(tw,a), &=gwr), (27)
as in Section 2.4, we can show that V(t,w) = V(t,w;) is also state dependent, but the DPP still involves path-
dependent n and a°.

3.4. A Duality Result
In this subsection, we provide an alternative characterization for the set value V(t,w). The idea is similar to the
level set or nodal set approach; see, for example, Barles et al. [3], Ma and Yong [27], and Karnam et al. [25]. In
particular, this method could be efficient for numerical purposes.

We first note that, for any (f,w) and a € 4, J(t, w, @) = Yé’“”“, where (Y"@#, ZL@a) i the solution to the following
(linear) BSDE on [0, T — ¢]:

Tt T—t
Yyl = 5?&(13) * / fit/m(r’ B,ay, Zi’m’a/i) dr = / Zi’w’alldB” (28)
s s

where fi(t,w,a,z;) = fi(t,w,a;) + b(t,w,a)z;.
Foreachianda™ = (ay,---,a,-1,4i+1, - -, an), denote

flt,w,a7,z;) := inf £t w,a7",a;,2).
=i a; €A

Because b is bounded, f is uniformly Lipschitz continuous in z;. Introduce the following multidimensional
BSDE:i=1,---,N,

A T—t ‘ . T—t .
Yo = ghe(p) 4 / £4(r, B, a7, Z0) dr - / Ztwidp,. (29)
S S
It is clear that (see, e.g., El-Karoui and Hamadene [13]) a* € NE(t, w) if and only if
£, By, 26 ) = g1, B,a, Z49), 05,0 <r ST =t i=1,-,N. (30)

Our main idea of the duality approach is to rewrite (29) as a forward diffusion by viewing the component Z as a
control. To be precise, fix (t,w,y) € [0,T] x Q x RN. Forany a € Aand Z = (Z',---,ZV), denote

. S . . S .
Yiosa L=y, — /O Ii’“’(r,B,ar_’,Z;)dr+ /0 ZdB,. (31)

We then introduce an auxiliary control problem:

N .
W(t,wy):=  inf EP|&(B) - Y7o F
( Y) acA, ZeL2(F, Po); | l ™

T—t 3
N / [ Aﬁt,m(slBlaS,Zi)]z ds]/ (32)
0 .
where Afi(t,w,a,z) :=fi(t, w,a,z;) - f(t, w,a",zi).

2
Here, the power 3/2 (between 1 and 2) for the f-term is for some technical reasons on which we will elaborate lat-
er. By (29) and (30), it is obvious that W(t,w,y) = 0 for all y € Vy(t, ).
Our main result of this subsection is that the set value agrees with the nodal set of W.

Theorem 6. Let Assumptions 1 and 2 hold. Then, for any (¢, w),
V(t,w) =N(t,w) := {y eRV:W twy)= 0}.
Proof. Without loss of generality, we assume that (t,w) = (0,0), and for notational simplicity we may omit (0, 0)

when there is no confusion, for example J(«) :=J(0,0, @).
i. We first show that N(0,0) c V(0,0). Fix y € N(0,0). For any ¢ >0, there exist a° and Z¢ such that, denoting

Y = Yy,a*,Z*’ T 3
- . NFAN V)
EP||g, - Y1 + / [Aﬁ(s,B,a;,zgﬂ)] dsl <é, i>1. (33)
0
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Let (Y, Z") solve the following BSDE:

& T e SEL T~s,i
Y, =&B)+ | flsBai,Z )ds— [ Z,dB,.
i

t t
Note that

Yo=Y+ / fl(s B,af lZ“)ds— [ ZE'dB;. (34)

Then, denoting AY' := Y - Y and AZ = 7 - 7 we have

. . T . T . T .
AY = &(B) - Y4 + / A (5B a8, Z2 ) ds + / b(s, B,at) AZids / AZ!dB,.
t t t

Thus, recalling (2) for M,

AY) =EP|M§

T
£(B) - Yo + / o, 5,B,at, 25 dsH.

By (6) and (33) (m artlcular noting the power 3/2 for the f-term is greater than 1), it is clear that |Y -Yy | < Ce.
Moreover, let (Y Z ) solve the following BSDE:

L C oAl T, i
Y &(B) + / Jf,-(s,B,a‘;’_’,Zz')dr— / 24B,. (35)

Comparing (34) and (35), it follows from (33) again that |Yg'i - Yg'i| < Cg¢, and thus |Yé'i -Yy | < Ce.
On the other hand, for any o', applying the comparison principle on BSDEs (28) and (35), we see that
Ji(at=, al) > Y . Then,

Jila®) = Yg’i < Yg'i +Ce < Jila® ™, a) + Ce,
and thus a® € NE¢,(0,0). Recall J(a®) = Y = y; then, y € V.(0,0). Because ¢ is arbitrary, we obtain y € V(0,0).

ii. We next show that V(0,0) c N(0,0). Fix y€V(0,0). For any ¢ >0, there exists a® € NE.(0,0) such that
ly—J(a®)| < e. Recall that J(a?) = Y3, where (Y*, Z*) is defined by (28). Let (Y, Z°) be defined by (35). For each i,
there exists a such that

£ (r Bz, 0, 27) < i 1,057 2 )+ e (36)
Let (Yg'i, 7 é"1‘) solve the following BSDE:

. T v T, i
V' =B+ / £, Bac ", at, 722 )ar - / 2,"dB,. (37)
S

Compare BSDEs (35) and (37), it follows from (36) that YO < YO + Ce. Moreover, because af e NE (0, 0) then

Y& < ¥y +e <Y, +Ce. By the comparison principle of BSDEs, we know that Y > ¥,". Thus |Y} - Y;'| < Ce.
This, together with |y — Y2 | < ¢, implies that [y — Y;| < Ce.

Finally, note that
Yy¥a£,2 A fsl(B) Yya A i Y AN =yi— Yéi (39)

A&l

Moreover, note that f; is uniformly Lipschitz in z. Then, denotmg VARV AEE VAN
Ce> Yy - Yg’i
T & 5 ;A€ 1 T i
- / [f (5.B,as, z2) - £ (s,B,a577,2° )] ds — f AZidB,
o pei T ' O 1 '
- / Af: (s,B,a2,2") s + / b (s, B,at)AZ: ds - / AZidB,.
0 0 0
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This implies that

T o
EPo| M2 / Af: (s,B,a,25") ds| < ce. (39)
0

Because & and f are bounded, by standard BSDE estimates we have E™ [ /o T|Z§'i|2ds] < C. Note further that
0<Af; (t,w,a,z) <C[1+[z]].
One can easily derive from (6) and (39) that (thanks to the fact that 3/2 < 2)

3

/ T[Aﬁ(s, B, a;, Z; i)rdsl

0

() (g ) /0 T[Aﬁ (s B az 2 )] ds /0 T[l 1z
1 1

< C(Epo[(Mgf)_z])g (Eﬂ% 4 (Eu% /0 T[1 + |Z§'i|z]

< Cei.
. e T AT
1E(B) - Y2 7 TP 4 / [Aﬁ(s, B, af, Z;’l)]zds
0

|

€ T . A&
M%/ Af,-(s, B,ag,Zs’)ds
0

This, together with (38), implies that

EP < Céh,

Then, by (32) we have W(0,0,y) < CNet. Because ¢ is arbitrary, we get W(0,0,y) =0, thatis, y e N(0,0). Q.E.D.
Note that (32) is a standard path-dependent control problem. Following Section 11.3.3 in Zhang [40], we have
the following result, whose proof is omitted.

Proposition 5. Let Assumptions 1 and 2 hold. Then, W € C([0, T x Q x RY) is a viscosity solution of the following path-
dependent PDE:

L (85,“) W) oLy (zT&ijz) +tr (ZT&W W)

8tW+ inf 5 5

a€A, zeRN*

4 i[[ﬁfz (t,w,a,zi)]% —_f (t, w,a_i,Zi) ayiw]:l =0;
i=1 1

W(T, w,y) = &(w) =y (40)

Remark 13.

i. The path derivatives d,, W, 83WW are introduced by Dupire [10], and we refer to section 9.4 in Zhang [40] for
more details. Note that this path-dependent PDE is always degenerate, and the control is unbounded, so the
uniqueness of viscosity solution is not completely covered by Ekren et al. [11, 12] and Ren et al. [35]. This problem
is in general challenging and is left for future research.

ii. In the state-dependent case as in Remark 12, W = W(t,x,y) also becomes state dependent, and the path-de-
pendent PDE 40 reduces to a standard HJB equation:

atW + inf

a€A, zeRN*4

1tr(az W)+1tr T Wz) +tr(27 9, W +ZN][A«(t I - £t a7, 209, W] | = o;

5\ 5 (z y z) r(z e ) i=1[ﬁ xaz) | =filt,x,a”,2)dy, =0;
W(T,x,y) = [8(x) - yI"

This PDE is also degenerate and with unbounded controls, though.

ifi. In light of Theorem 6, PPDE 40, especially PDE (41) in the state-dependent case, is quite useful for numerical
computation of the set value V(t, w).

Remark 14. Roughly speaking (modulus the existence of optimal controls in (32)), y is in the nodal set N (¢, w) if and
only if there exists a,Z such that Y*“¥* in (31) hits the target £“(B) at T —t. This is in the spirit of Cardaliaguet
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et al. [9]. However, we note that Cardaliaguet et al. [9] use strategy versus controls, whereas we use closed-loop con-
trols for all players.

Remark 15. In this remark, we make a further connection between the game and BSDEs.

i. In the literature, one may indeed use (30) to find equilibriums, especially in the state-dependent setting (27);
see, for example, Hamadene et al. [23], Hamadene and Mu [21, 22], and Espinosa and Youzi [14]. To be precise, as-
sume there exists a measurable function ¢ : [0, T] X RY x (Rd)N — A such that, fori=1,---,N,

/fz' (t, X, (p_i(t,x,z),zi) =f; (t,x,(p (t,x, z),zi), (41)
and the following BSDEs have a strong solution (setting (¢, x) = (0,0) for simplicity):
T T
Yi=gB0+ [ fi(nBoo70 B, 20, 2) dr- [ Zias, @)

and then a; := @(t, By, Z;) is a Nash equilibrium at (0,0). However, we should note that the function ¢, assuming
its existence, may not be continuous, and thus the well-posedness of (42) may not be easy. Even worse, in order
to obtain the whole set V((0,0), as we noted before, we need to consider path-dependent ¢ : [0, T] X QO X (]Rd)N —
A, which will make the well-posedness of (42) even harder. Nevertheless, by (30), it is true that the set V can be
constructed by first finding all path-dependent functions ¢ satisfying (41) and then finding all strong solutions of
the multidimensional BSDE (42), where both (41) and (42) should be extended to the path-dependent setting.

ii. One may replace the linear BSDE (28) with nonlinear BSDEs:

T—t T—t
t,w,ai _ ctw t,@ t,w,a,i t,w,o,i t,w,a,i
Yhoai = gbo(B) + / [ R G A / Ztonigp,
s

s

where f;:[0,T] x Q x A x R x RY — R is nonlinear in (y,z). Still, define J(t, w, @) := Y, and then one can show
without significant difficulties that all the results in this section hold true after obvious modifications.
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Endnote

1 More rigorously, we should first get an F E -measurable set E; C {15 = t;} with Po({ts =t}\E;) = 0 and then apply (5) to obtain the desired
K;CcCE,.
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