
Marine Pollution Bulletin 173 (2021) 112930

0025-326X/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Insights from barium variability in a Siderastrea siderea coral in the 
northwestern Gulf of Mexico 

Mudith M. Weerabaddana a,b, Kristine L. DeLong a,c,*, Amy J. Wagner d, Deborah W.Y. Loke a, 
K. Halimeda Kilbourne e, Niall Slowey f, Hsun-Ming Hu g, Chuan-Chou Shen g 

a Department of Geography and Anthropology, Louisiana State University, 227 Howe-Russell Geoscience Complex, Baton Rouge, LA 70803, USA 
b Plentzia Marine Station, University of the Basque Country, 48620 Plentzia, Bizkaia, Basque Country, Spain 
c Coastal Studies Institute, Louisiana State University, 331 Howe-Russell Geoscience Complex, Baton Rouge, LA 70803, USA 
d Department of Geology, California State University, 6000 J. Street, Sacramento, CA 95819, USA 
e Chesapeake Bay Marine Laboratory, University of Maryland, P.O. Box 775, Cambridge, MD 21613, USA 
f Texas A&M University, College Station, TX 77843-3146, USA 
g High-precision Mass Spectrometry and Environment Change Laboratory (HISPEC) and Research Center for Future Earth, Department of Geosciences, National Taiwan 
University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC   

A R T I C L E  I N F O   

Keywords: 
Coral Ba/Ca 
Coral Sr/Ca 
Barite 
Drilling mud 
Productivity 
Flower Garden Banks 

A B S T R A C T   

Coral Ba/Ca is a proxy for seawater barium concentration that varies with upwelling, terrigenous input, and 
marine productivity whereas coral Sr/Ca varies with temperature. We examine monthly coral Ba/Ca and Sr/Ca 
before and during offshore oil exploration in a Siderastrea siderea coral from West Flower Garden Bank located on 
the continental shelf edge in the Gulf of Mexico. Coral Ba/Ca variations lack pulses driven by upwelling or river 
outflow and are not in sync with coral Sr/Ca that exhibit a different seasonal pattern. Seasonal variations in 
chlorophyll-a concentration negatively correlate with coral Ba/Ca explaining 25% of that variability. A signif
icant increase in mean coral Ba/Ca of 1.76 μmol/mol between 1931–1944 and 1976–2004 corresponds to the 
increase in the United States barite production and consumption primarily used in offshore oil drilling, which 
escalated in the 1970s, suggesting oil drilling operations are increasing seawater Ba concentration in the Gulf of 
Mexico.   

1. Introduction 

The Gulf of Mexico is the most explored, drilled, and developed 
offshore oil province in the world (Priest, 2007) (Fig. 1a). Oil discovery 
in coastal Louisiana in 1938 led to the first oil platform in the northern 
Gulf of Mexico in 1947 followed by an offshore oil production boom into 
the 1970s (Priest, 2007). Oil exploration moved from coastal waters to 
deeper ocean sites and by the end of the twentieth century with more 
than 70% of the Gulf of Mexico's oil production coming from wells (more 
than 40,000) in water depths greater than 300 m (Turner et al., 2004). 

Flower Garden Banks National Marine Sanctuary in the northern 
Gulf of Mexico is a unique location for coral reefs because they are 
located in the open ocean on rising submerged salt domes at the edge of 
the wide continental shelf, ~185 km to the closest landmass (Fig. 1a). 
The sanctuary has two coral reefs (East and West) (Fig. 1b) and these 

reefs are in deeper water (18–40 m) than other coral reefs in the 
southern Gulf of Mexico, are located far from river runoff and coastal 
upwelling, and thus these two coral reefs are some of the healthiest in 
the United States (US) waters with 50% live coral coverage (Schmahl 
et al., 2008). Additionally, there are several oil platforms in close vi
cinity to Flower Garden Banks accessing the petroleum deposits under 
the salt domes. The unique geographic location of the Flower Garden 
Banks is ideal for evaluating the impact of oil drilling operations and 
marine environmental forcing on corals in this economically important 
part of the Gulf of Mexico. 

Massive long-lived scleractinian corals are environmental archives 
that contain geochemical proxies (e.g., Sr/Ca, Ba/Ca, Mg/Ca) of past 
environmental and climatic changes (Corrège, 2006; Guzmán and 
Tudhope, 1998; Lough and Cooper, 2011; Sadler et al., 2014). Corals 
construct an aragonite exoskeleton, a mineral form of calcium carbonate 
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(CaCO3), and exhibit annual density bands where a couplet of high and 
low-density bands represent approximately one year of growth (Bud
demeier and Maragos, 1974; Knutson et al., 1972). Annual density bands 
allow for the time assignment of the geochemical variations in the coral 
skeleton obtained from samples extracted along the growth trajectory in 
the coral that can be sampled with subannual resolution. Corals incor
porate barium (Ba) in their skeleton as a function of seawater concen
tration (LaVigne et al., 2016; Lea et al., 1989; Livingston and Thompson, 
1971; Montaggioni et al., 2006). Strontium (Sr) and magnesium (Mg) 
tend to vary in the coral skeleton as a function of temperature because 
their seawater concentrations are generally conservative on 1000-year 
time scales (Mitsuguchi et al., 1996; Smith et al., 1979; Weber, 1973; 
Weber, 1974). The calibration equations for coral Sr/Ca to temperature 
vary with geographical location, species, and water depth (Alibert and 
McCulloch, 1997; Corrège, 2006; DeLong et al., 2011; Goodkin et al., 
2007; Sadler et al., 2014; Swart et al., 2002). However, studies with the 
Atlantic coral Siderastrea siderea have shown that when monthly- 
resolved coral Sr/Ca is calibrated with in situ or local temperature re
cords, the slopes and intercepts are virtually identical, within uncer
tainty estimates (DeLong et al., 2014; Flannery et al., 2017; Kuffner 
et al., 2017). S. siderea is relatively easy to micro-sample at monthly 
intervals compared to Montastraea corals that have a more complex 
skeletal structure with a deeper calyx that leads to mixing time intervals 
when micro-sampling (Leder et al., 1996; Sadler et al., 2014) resulting in 
a noisier geochemical signal (DeLong et al., 2011; Flannery et al., 2017). 

The main source of Ba in seawater is river discharge that carries fine- 
grained suspended sediments with Ba attached that desorb at the river- 
seawater mixing zone (Edmond et al., 1978; Li and Chan, 1979; 
McCulloch et al., 2003; Moyer et al., 2012). Groundwater seepage in 
coastal environments can also contribute to Ba enrichment near the 
coast (Moore, 1997; Shaw et al., 1998). Barium concentration in coastal 
waters is, therefore, generally higher than in the open ocean. In the 
surface ocean, Ba concentration can increase in upwelling regions where 
colder nutrient-rich water comes to the surface increasing primary 
productivity (Carter et al., 2020; Lea et al., 1989; Reuer et al., 2003; 
Tudhope et al., 1996). Barium is not a nutrient but is removed from 
surface waters by adsorbing onto sinking organic matter that results in 
Ba depletion in the surface waters that is recycled at depth. Hence, 
barium in seawater reflects surface oceanic productivity resulting in a 
nutrient-like depth profile (Carter et al., 2020; Chow and Goldberg, 
1960). Anthropogenic activities, such as catchment clearing, agricul
tural practices, and oil exploration, also affect Ba concentration in 
seawater depending on the source and location where these activities 
take place (Carriquiry and Horta-Puga, 2010; Deslarzes et al., 1995; 
McCulloch et al., 2003; Saha et al., 2018). 

Several studies have used coral Ba/Ca as a proxy to reconstruct 
seawater Ba changes due to upwelling (up to 50 μmol/mol), river 
discharge and precipitation (up to 15 μmol/mol), land-use changes, 
mining, and oil drilling pollution (up to 9 μmol/mol; Table 1). The 
location of the coral is crucial to determine the environmental factors 
that influence the intensity and timing of the coral Ba/Ca signal. Existing 
measurements of coral Ba/Ca in the Pacific Ocean range from 2.5 to 15 
μmol/mol whereas Caribbean Sea corals have a range of 3 to 11 μmol/ 
mol. The higher values in the Caribbean are generally associated with 
upwelling (Reuer et al., 2003), yet coral Ba/Ca in the Gulf of Mexico has 
some of the highest coral Ba/Ca values published (Table 1). The study of 

Deslarzes et al. (1995) examined annually-resolved coral Ba/Ca 
(1910–1989) in a Montastraea annularis colony from WFGB that revealed 
a slight increase in coral Ba/Ca after the 1960s (range of 6 to 9.5 μmol/ 
mol; Table 1). Those authors found a possible link to oil drilling muds 
that include barite (BaSO4) but they suggest further evaluation with 
higher sampling resolution and better analytical precision are needed. A 
similar study conducted offshore of Veracruz, Mexico in the south
western Gulf of Mexico (Fig. 1) examined annually-resolved coral Ba/Ca 
(1835–2000) in a Montastraea faveolata colony (Carriquiry and Horta- 
Puga, 2010). They found a similar mean shift in coral Ba/Ca (1.03 
μmol/mol) occurring in 1965 when offshore Mexican oil exploration 
started along with land-use changes that increased sediment transport 
offshore. Both of those studies sampled their corals with annual reso
lution whereas seasonal or higher variability in coral Ba/Ca possibly 
driven by seasonal upwelling and freshwater floods are under-explored 
in the Atlantic region (Table 1). Understanding the seasonal variability 
coral Ba/Ca is important to ensure annually-resolved records are not 
biased by their sampling method and are not missing subannual envi
ronmental factors (e.g., productivity, upwelling, river discharge) driving 
coral Ba/Ca changes. 

This study will examine subannual variations of coral Ba/Ca in a 
WFGB S. siderea colony for two-time intervals (1931–1944 and 
1976–2004) before and during oil exploration and production. We 
explore the fidelity of the coral Ba/Ca determinations including 
analytical methodology, reproducibility, and coral sampling resolution. 
Monthly resolution allows us to investigate possible seasonal environ
mental forcing of coral Ba/Ca variability not previously detected with 
annual sampling resolution. The reproducibility of coral Ba/Ca within 
S. siderea corals has not been assessed in earlier studies whereas coral Sr/ 
Ca reproducibility has been (DeLong et al., 2011; DeLong et al., 2016; 
DeLong et al., 2013; Flannery et al., 2017). In comparison to the pre
vious Gulf of Mexico coral Ba/Ca studies (Deslarzes et al., 1995; Carri
quiry and Horta-Puga, 2010), our study aims to provide insight into the 
environmental factors driving seawater Ba variability in the northern 
Gulf of Mexico and explore the extent oil exploration impacts on 
seawater Ba concentration. Our study design has selected an open ocean 
location far from river runoff and with little to no upwelling to isolate 
environmental factors in order to better understand changes in coral Ba/ 
Ca and barium in seawater. 

1.1. Study location 

The Gulf of Mexico is a semi-enclosed ocean basin with a wide 
continental shelf where water depth is less than 200 m (Fig. 1). The 
Mississippi River system is the dominant source of freshwater to the Gulf 
of Mexico, which accounts for 64% of the total discharge into the Gulf 
(Darnell and Defenbaugh, 1990). Nutrient loading in the northern Gulf 
of Mexico leads to eutrophication and increased primary production in 
surface waters resulting in carbon loading on the seabed and hypoxia 
zones on the shelf (Rabalais et al., 2002). The mid-summer hypoxic zone 
west of the Mississippi River delta (>300 km away from the WFGB; 
Fig. 1) is among the largest in the world where bottom water anoxia 
leads to releasing toxic hydrogen sulfide from the sediments (Rabalais 
and Turner, 2001). The Loop Current brings warm and salty Caribbean 
water into the Gulf of Mexico and exits through the Straits of Florida to 
form the Gulf Stream (Walker, 2005). In the northwestern Gulf of 

Fig. 1. The locations of West Flower Garden Bank (WFGB) and the oil and gas platforms in the Gulf of Mexico (a). Shapefiles for the United States and Mexican oil 
platforms are from the Bureau of Ocean Energy Management (www.boem.gov) and the Centro Nacional de Información de Hidrocarburos (mapa.hidrocarburos.gob. 
mx), respectively. The approximate locations of predominant currents are shown including the Caribbean Current entering the Gulf (red line), the Loop Current 
(black line) that leaves the Gulf of Mexico through the Straits of Florida becoming the Florida Current (blue line). Northern Gulf of Mexico coastal currents that 
transport Mississippi and Atchafalaya rivers' discharge (Walker, 2005) are shown for winter (cyan arrow) and summer (orange arrow). The grey area is the 
approximate area of the hypoxia zone (>75% chance of occurrence) that develops west of the mouth of the Mississippi River (Rabalais et al., 2002). Bathymetry of 
WFGB from https://pubs.usgs.gov/of/2002/0411/data.html (b). The S. siderea colony sampled in this study is located on the north side of WFGB at a water depth of 
23.8 m (black dot). Other nearby Atlantic coral locations are noted (Table 1). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 

M.M. Weerabaddana et al.                                                                                                                                                                                                                   

http://www.boem.gov
http://mapa.hidrocarburos.gob.mx
http://mapa.hidrocarburos.gob.mx
https://pubs.usgs.gov/of/2002/0411/data.html


Marine Pollution Bulletin 173 (2021) 112930

4

Table 1 
Summary of coral Ba/Ca studies.  

Species Location(s) Coral Ba/Caa 

(μmol/mol) 
Local processes Resolution Instrumentb Precisionc Reference 

Porites spp. Northeast Madagascar ~7.5 – ~monthly ICP-MS 2.2% Nagtegaal et al., 2012 
Porites spp. Antongil Bay, Madagascar 6.75 ± 0.78 Runoff Monthly HR-ICP-MS 6% Grove et al., 2013, 

2012 6.05 ± 0.75 Runoff Subweekly LA-ICP-MS 4.3% 
Porites Malindi Coral Reef, Kenya ~3 to 50 Runoff Subweekly LA-ICP-MS ** Fleitmann et al., 2007 
Porites Sodwana Bay, South Africa <0.003 no units – Biweekly Ion 

microprobe 
1.5% Ba Hart and Cohen, 1996 

Porites spp. Coral Gardens Reef, Red Sea ~4.1 to 10.7 Wind driven dust ~2 weeks ICP-MS 2.4% Bryan et al., 2019 
Porites Marbat and Wadi Ayn, Oman up to 17 Upwelling Monthly ICP-MS 0.8% Tudhope et al., 1996 
Porites spp. Cygnet Bay, Kimberley region, 

Northwestern Australia 
4.1 to 7.0 Runoff Subannual Q-ICP-MS ±0.205 Chen et al., 2020 

Porites spp. Thailand, Singapore, and Taiwan 1.8 to 161.8 
includes tissue 
layer 

Runoff and typhoons Weekly LA-ICP-MS ** Moynihan et al., 2021 

Porites lutea Pulau Kusu and Pulau Hantu, 
Singapore 

~2 to 14 Runoff Monthly LA-ICP-MS 3.7% Tanzil et al., 2019 

Porites sp. Kusu Island, Singapore ~2.5 to 15 – ~2 weeks ICP-OES ±0.38 Cantarero et al., 2017 
ICP-MS ±0.33 

Porites spp. Luzon Strait, South China Sea 2 to 3.5 Runoff Annual MC-ICP-MS 3% Liu et al., 2019 
P. lutea Hainan Island, South China Sea ~3 to 10 Runoff ~2 per 

year 
ICP-OES 3% Jiang et al., 2017 

Porites Daya Bay, South China Sea ~6 to 15 Stress-low SST ~2 months ICP-AES 3% Chen et al., 2011 
Porites lobata Lanyu Islet, Taiwan 1.71 to 4.28 Runoff ~3 months SF-ICP-MS 0.6% Yu et al., 2015 
Porites sp. (modern) Shiraho Reef, Ishigaki Island, 

Japan 
3.39 to 4.16 Runoff ~2 months ICP-AES 0.3% Sowa et al., 2014 

Porites sp. (fossil) Nagura Bay, Ishigaki Island, 
Japan 

1.78 to 11.5 Runoff Monthly ICP-AES 0.3% 

Porites sp. 
JCp-1 

Ishigaki Island, Ryukyu Islands, 
Japan 

7.465 ± 0.655 NA NA multiple 
instruments 

NA Hathorne et al., 2013 

P. lobata Okinotori Island, Japan 5 to 14 Upwelling ~10 days LA-ICP-MS ** Yamazaki et al., 2011 
Porites Sumiyo Bay, Japan ~4 Runoff 0.3 month ICP-OES ±0.18 

(2.24%) 
Ito et al., 2020 

P. lobata Shirigai Bay, Japan ~4 to 5.5 Upwelling Subweekly LA-ICP-MS 4.3% Fallon et al., 1999 
Porites Papua New Guinea 3.5 to 4.5 Runoff ~2 months ICP-MS 0.8% Tudhope et al., 1997 
Porites New Ireland, Papua New Guinea ~4 to 50 Upwelling Monthly LA-ICP-MS ** Alibert and Kinsley, 

2008 
P. lutea Cow and Calf Island, Orpheus 

Island, King Reef and Pandora 
Reef, Australia 

~3 to 18 Runoff ~Weekly LA-ICP-MS 3.7% Sinclair, 2005; Sinclair 
and McCulloch, 2004 

Porites sp. Great Keppel Island, Australia ~3.5 to 7.0 Runoff Subannual ICP-MS 0.46%, 
1.0% 

Saha et al., 2018, 2019 

Porites spp. Pandora Reef, Australia 3 to 12 Runoff Subannual LA-ICP-MS ±0.04 (2σ, 
Ba) 

Alibert et al., 2003 

Porites spp. Great Barrier Reef, Australia 4 to 13 Runoff Subannual LA-ICP-MS ** Lewis et al., 2018 
Porites spp. Frankland Islands, Great Barrier 

Reef, Australia 
1.90 to 10.10 Runoff Subannual ICP-MS <5% Leonard et al., 2019 

Porites Great Barrier Reef, Australia 4.3 ± 1.9 Runoff, upwelling Subannual LA-ICP-MS 4.3% Walther et al., 2013 
Porites Great Barrier Reef, Australia ~4 to 20 Runoff ~Weekly LA-ICP-MS ** Wyndham et al., 2004 
Porites Southern Great Barrier Reef, 

Australia 
4.98 ± 0.63 Runoff ~Weekly LA-ICP-MS ** Jupiter et al., 2008 

Porites spp. Havannah Reef, Australia 3 to 15 Runoff ~Weekly LA-ICP-MS ** McCulloch et al., 2003 
Porites sp. Arlington Reef, Australia ~2.3 to 6.8 Runoff Annual ICP-AES 1–3% Wei et al., 2009 
P. lutea Amédee Island, New Caledonia 3.6 to 9.5 – Monthly ICP-MS 0.60% Quinn and Sampson, 

2002 
P. lobata (fossil) Vata-Ricaudy, New Caledonia 1.3 to 5.2 Upwelling Monthly ICP-MS ±0.18 (2σ) Montaggioni et al., 

2006 
Porites spp. Uitoé, New Caledonia ~2.5 to 12 Upwelling Subannual ICP-MS <2% Ourbak et al., 2006 
P. lobata One Ali'I reef, Moloka'i, Hawai'i 4.19 to 10.19 Groundwater 

discharge, runoff 
~Weekly LA-ICP-MS 4–13% Prouty et al., 2010 

Pavona clavus Punta Pitt, Galapagos ~3.9 to 4.9 Upwelling ~3 months ICP-MS 1% Lea et al., 1989; Shen 
et al., 1992 

P. lobata Gulf of Panama 4 to 8 Upwelling <1 year HR-ICP-MS 5.8% LaVigne et al., 2016 
Pavona gigantea Gulf of Panama 4.8 to 6.5 
P. clavus Gulf of Panama 4 to 6.5 
Pocillopora damicornis Gulf of Panama ~1 to 9.5 Upwelling ~1–2 years ICP-OES 0.19% Toth et al., 2015 
Montastraea annularis Barbados ~5 Runoff ~3 months GF-AAS 5–10% Shen and Sanford, 

1990 Diploria strigosa Buccoo Reef, Tobago ~5 Annual 
M. annularis Barbados 6.4 ± 0.4 Ba 

only  
Bulk DCP 3% Pingitore et al., 1989 

Acropora palmata 9.3 ± 2.10 Ba 
only 

M. annularis Isla Tortuga, Venezuela ~4.2 to 5.8 Upwelling ~2 months ICP-MS ** Reuer et al., 2003 
Siderastrea siderea Isla Tortuga, Venezuela ~6.5 to 11 Upwelling ~6 months ICP-MS ** 
Montastraea faveolata Fajardo, Puerto Rico 3.87 to ~5.20 Runoff Subannual LA-ICP-MS 10% Moyer et al., 2012 

(continued on next page) 
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Mexico, northeasterly winds prevail in the winter and are replaced by 
southwesterly winds in the summer. The wind reversal that occurs in the 
springtime generates shallow coastal upwelling (~180 km away from 
the WFGB) along the southern Texas and northern Mexican coasts 
(Walker, 2005). The Gulf of Mexico frequently experiences hurricanes 
that can mix colder deep water with the surface water resulting in sur
face enrichment of nutrients days to a week after a storm's passage 
(Walker et al., 2005). 

2. Methods 

A 1.74 m long cylindrical core (in five sections) from a S. siderea coral 
colony in WFGB (27◦ 52′ N, 93◦ 49′ W) was collected in May 2005 at a 
depth of 23.8 m by a team of divers from Flower Garden Banks National 
Marine Sanctuary and Texas A&M University. The team used an un
derwater hydraulic drill with a 4-inch diameter diamond-tipped drill bit 
and drilled vertically down from the top center of the coral colony. Slabs 
of ~8 mm thickness were cut from the core along lines that produced 
transects of the extending corallites along their growth trajectories with 
their synapticulothecal walls parallel to the slab surface; the optimal 
sampling location for developing geochemical histories for this coral 
species (DeLong et al., 2016). Core section 05WFGB3-1-A was cut into 
quarter sections to achieve suitable slabs for geochemical sampling. The 
slabs were cleaned with a Branson 400 sonifier digital ultrasonic cell 
disruptor using deionized water to remove organic matter, dust, and 
cuttings. This study focuses on the top core section 05WFGB3-1-A that 
broke into two pieces after slabbing (labeled 05WFGB3-1-A1 and 
05WFGB3-1-A2; Fig. 2). Digital X-radiographs of the coral slabs were 
taken at the Louisiana State University (LSU) Forensic Anthropology and 
Computer Enhancement Services Laboratory and were exposed at 48 kV 
for 0.4 s and then processed by an Agfa CR35-X digital processor (Fig. 2). 
Coral slabs were scanned on an Epson Expression 10000 XL scanner at 
1200 dpi and then overlaid with X-radiographs in Adobe Photoshop. The 
distance between growth band couplets in the X-radiographs were 
measured for each year to determine the micro-sampling interval (0.4 
mm) for monthly sampling resolution. 

An automated tri-axial micromill system (Taig Micromill with 
SuperCAM software from Supertech and Associates, Phoenix, Arizona) 
was used to extract continuous micro-samples from the coral slab sur
face using a box (0.4 mm × 0.4 mm) milling path with a 0.4 mm forward 
increment and a 1.0 mm sampling depth using a 1.0 mm diameter dental 
drill bit producing ~500 μg of coral powder (Fig. 2). Divots (1.5 mm 
deep) were made at every 12th sample as markers to assist in assigning 
time to the coral geochemistry. To assess reproducibility, three parallel 
sampling paths were micro-milled (2015, 2018, and 2019 paths; Fig. 2) 
and a fourth path on the opposing side (2020 path) in 05WFGB3-1-A1. 
All paths in 05WFGB3-1-A2 were micro-milled on the same side. Sam
pling paths were shifted purposely to avoid the columella or when the 
synapticulothecal wall structure was suboptimal or discontinuous due to 
the synapticulothecal walls bifurcating, or corallites were found to be at 
an angle to the slab surface (DeLong et al., 2016). New paths were 
overlapped at least by a year with the previous path to align them with 
each other and to check reproducibility. 

A PerkinElmer 8300 inductively coupled plasma optical emission 
spectrometer (ICP-OES) in the LSU PAST Laboratory was used to 
determine coral elemental ratios (Sr/Ca, Mg/Ca, and Ba/Ca) for all 
paths except path 2015 (Sr/Ca and Mg/Ca) that was measured at the 
University of Maryland Center for Environmental Science Chesapeake 
Biological Laboratory campus (UMCES-CBL) with the same ICP-OES 
model and methods. An aliquot of each micro-sample was weighed 
using a microbalance (±1 μg) so that the final calcium concentration 
was ~20 mg/L when dissolved in 2% trace metal grade HNO3. The ICP- 
OES was optimized to measure the peak intensity area of spectral 
wavelengths for each element (Sr 421.552 nm; Ca 315.887 nm, 317.933 
nm, and 422.673 nm; Mg 279.553 nm; Ba: 455.403 nm and 493.408 
nm). The less sensitive radial torch view was used for Ca 422.673 nm 
and Sr 421.552 nm and the other wavelengths used the axial window for 
analytes with a lower concentration in corals (Mg and Ba). An internal 
gravimetric standard (IGS) was prepared by mixing aliquots of ultrapure 
solution standards (Ca, Sr, Mg, and Ba) to produce a typical coral con
centration and was measured before and after each sample to correct for 
instrumental drift (Schrag, 1999). A homogenized powder from a Porites 

Table 1 (continued ) 

Species Location(s) Coral Ba/Caa 

(μmol/mol) 
Local processes Resolution Instrumentb Precisionc Reference 

Ceratoporella 
nicholsoni 
(sclerosponge) 

Tongue of the Ocean, Bahamas 3.4 ± 0.25 Open ocean ~10 per 
year 

LA-ICP-MS ** Rosenheim et al., 2005 

3.72 ± 0.27 Open ocean 8 per year ICP-OES ** 
C. nicholsoni 

(sclerosponge) 
Pear Tree Bottom, Jamaica 1.29 ± 0.034 Groundwater? ~7 per 

year 
LA-ICP-MS ** 

3.87 ± 0.27 Groundwater? ~yearly ICP-OES ** 
M. faveolata Mesoamerican Reef 3.43 ± 0.226 Runoff Annual HR-SF-ICP-MS ** Carilli et al., 2009 
M. annularis Punta Nizuc Reef, Mexico 5.90 ± 0.56 Coastal runoff, 

ground water 
Annual ICP-OES ~4.0% Horta-Puga and 

Carriquiry, 2012 
A. palmata Puerto Morelos Reef, Yucatan 

Peninsula, Mexico 
18 ± 13.9 Ba 
only 

Groundwater 
seepage 

Bulk ICP-MS <1% Ba Kasper-Zubillaga 
et al., 2014 

Acropora cervicornis 14.33 ± 5.22 Ba 
only 

Gorgonia ventalina 11.33 ± 3.63 Ba 
only 

Siderastrea radians Florida Bay, Florida ~5.48 Runoff 4–6 months ICP-MS ** Swart et al., 1999 
M. faveolata Veracruz, Gulf of Mexico 7.76 ± 0.83 Upwelling, runoff, 

and oil production 
Annual ICP-OES ~4.0% Carriquiry and Horta- 

Puga, 2010 
M. annularis West Flower Garden Bank, Gulf 

of Mexico 
7.6 ± 0.1 (~6.0 
to 9.1) 

Oil production Annual DCP 8% Ba, 7% 
Ca 

Deslarzes et al., 1995;  
Deslarzes, 1992 

S. siderea West Flower Garden Bank, Gulf 
of Mexico 

11.97 ± 0.21 
(4.46 to 28.52) 

Oil production Subannual ICP-OES ±0.12 
(1.51%) 

This study  

a Reported as range and/or mean with ±1σ unless otherwise noted. 
b Instrument abbreviations are inductively coupled plasma optical emission spectrometer (ICP-OES), inductively coupled plasma atomic emission spectrometer (ICP- 

AES), inductively coupled plasma mass spectrometer (ICP-MS), high resolution ICP-MS (HR-ICP-MS), quadrupole ICP-MS (Q-ICP-MS), multi-collector ICP-MS (MC- 
ICP-MS), laser ablation ICP-MS (LA-ICP-MS), sector field ICP-MS (SF-ICP-MS), graphite furnace atomic absorption spectroscopy (GF-AAS), and directly coupled plasma 
(DCP). 

c Ba/Ca precision as reported by original authors is ± μmol/mol or % relative standard deviation (RSD) 1σ unless otherwise noted. 
** Indicates precision was not reported in the publication. 
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lutea coral (PL) was dissolved in bulk and used as a matrix-match 
external standard analyzed after every fifth coral sample. Highly accu
rate and precise values for Sr/Ca, Mg/Ca, and Ba/Ca for PL and IGS were 
determined by multi-collector inductively coupled plasma mass spec
trometer (MC-ICP-MS) in the High-Precision Mass Spectrometry and 
Environmental Change (HISPEC) Laboratory in the Department of 
Geosciences at National Taiwan University (Lo et al., 2014). The inter
national coral reference JCp-1 (Hathorne et al., 2013; Okai et al., 2002) 
is a coral powder that is weighed out for each run and was measured as a 
second external matrix-match reference at the beginning and end of an 
analysis run with 100 coral samples and the beginning of an analysis run 
with 50 coral samples. Precision and accuracy for the LSU laboratory are 

reported in Fig. 3 and for LSU and UMCES-CBL laboratories in Supple
mentary Tables 1 and 2. 

Time assignment for each coral Sr/Ca path was performed using 
Analyseries software (Paillard et al., 1996) with a monthly sea surface 
temperature (SST) time series (ERSST version 3b for the 2◦ grid box 
centered on WFGB, 28◦N, 94◦W; WFGB-SST) (Reynolds et al., 2002; 
Reynolds and Smith, 1994). Coral Sr/Ca maxima and minima were 
assigned to the coldest (i.e., winter) and warmest (i.e., summer) months 
of the annual sea surface temperature (SST) cycle, respectively. Corals 
may grow faster in summer when compared with winter; therefore, time 
assignment using only summer and winter months may be biased to
wards the season with more growth. Therefore, additional ties were 
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Fig. 2. X-radiographs and scans of the S. siderea coral slabs. Years are noted starting from the core top (2005) with sampling paths locations. Scale bar is 50 mm with 
10 mm intervals. 
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placed in mid-spring and mid-autumn in Analyseries to further constrain 
the annual coral Sr/Ca cycles to SST. The time assigned to the coral Sr/ 
Ca paths were applied to the respective coral Mg/Ca and Ba/Ca records 
and each was linearly interpolated to even monthly time intervals in 
Analyseries to facilitate comparison with monthly climatological re
cords. The master chronology for 05WFGB3-1-A was developed by 
counting Sr/Ca annual cycles from the top of the core (2005) that were 
cross-checked with density bands in the X-radiographs (Fig. 2). A coral 
sample taken below the 05WFGB3-1-A2 core section was dated by using 
high precision 230Th dating technique (Shen et al., 2003; Shen et al., 
2008) to confirm the chronology. The uranium‑thorium analysis was 
conducted with a Thermo Electron Neptune MC-ICP-MS (Cheng et al., 
2013; Shen et al., 2012) in the HISPEC Laboratory. To generate the 
master geochemical time series, contemporaneous samples from each 
path were averaged together and the standard error of the mean was 
determined for each master monthly coral Sr/Ca value that will be used 
to determine the weights for weighted least-squares linear regression 
(Section 3.2). The annual linear extension (mm) was determined by the 
distance between coral Sr/Ca maxima (i.e., winter values). A 5% sig
nificance level was assumed for all statistical analyses. 

3. Results 

Core section 05WFGB3-1-A1 spans 60 years from 1945 to 2005.04 
and 05WFGB3-1-A2 spans 12.58 years from 1931.71 to 1944.29 (Fig. 2). 
Coral Sr/Ca from 1931.71 to 2005 was used to build a continuous 
chronology; however, this study will focus on the two intervals for 
which coral Ba/Ca measurements were completed. Years determined by 
coral Sr/Ca cycles and the X-radiographs agree with the 230Th dating 
results (±2.4 years, 2σ; Supplementary Table 3). 

All six Ba/Ca wavelength combinations are evaluated and compared 
for precision and accuracy for IGS, PL, and JCp-1 (Fig. 3, Supplementary 
Table 2). The average precision value for the three Ba 455 nm/Ca 

combinations are ~25% lower for IGS, ~16% lower for PL, and ~6% 
lower for JCp-1 (i.e., more precise) when compared with the precisions 
determined for the three Ba 493 nm/Ca combinations. Out of all 
wavelength combinations, Ba 455 nm/Ca 317 nm has the smallest IGS 
precision value whereas Ba 455 nm/Ca 422 nm has the smallest JCp-1 
precision. The average accuracy value for the three combinations of 
Ba 493 nm/Ca is ~12% lower for PL and ~65% lower for JCp-1 (i.e., 
more accurate) when compared with the average accuracy of three Ba 
455 nm/Ca combinations. Out of all wavelength combinations, JCp-1 
accuracy for Ba 493 nm/Ca 317 nm has the smallest value. This study 
will use Ba 455 nm/Ca 317 nm since this wavelength combination had 
an acceptable accuracy and precision and we have a complete Ba/Ca 
record. Discrepancies among the six Ba/Ca wavelengths combinations 
for all coral determinations are less than the lowest analytical precision 
(<±0.24 μmol/mol, 2σ; Supplementary Table 2). The previous WFGB 
study (Deslarzes et al., 1995) used a Directly Coupled Plasma Spec
trometer with an analytical precision almost as large as their coral Ba/Ca 
signal (Table 1). One of the earliest coral Ba/Ca studies to use an ICP- 
OES was in the Gulf of Mexico (Carriquiry and Horta-Puga, 2010) 
(Table 1) and that study demonstrated improved analytical precision. 

A summary of the geochemical results for the two-time intervals is 
provided in Table 2. In the tissue layer at the top of the core (0–12 mm; 
Fig. 4), monthly coral Ba/Ca values range from ~50 to 800 μmol/mol 
and coral Mg/Ca is anomalously high due to the presence of organic 
matter in the tissue layer and therefore samples in the tissue layer are 
excluded from the rest of this study, which is standard practice. The 
average monthly coral Sr/Ca for 05WFGB3-1-A1 and 05WFGB3-1-A2 
differ by 0.026 mmol/mol or ~0.6 ◦C, which is close to the observed 
SST difference for WFGB-SST (Reynolds and Smith, 1994) for these two- 
time intervals. Monthly coral Sr/Ca negatively correlates with monthly 
coral Mg/Ca (r = −0.87, n = 332) and monthly coral Ba/Ca (r = −0.42, 
n = 333). Coral Mg/Ca data are included for completeness but will not 
be discussed further. Correlation is not significant between annual linear 
extension and annual average coral Sr/Ca or coral Ba/Ca for 05WFGB3- 
1 (Supplementary Table 4). 

3.1. Reproducibility 

Intra-coral reproducibility for coral Sr/Ca and coral Ba/Ca variations 
are assessed by pairwise comparison among the sampling paths in 
05WFGB3-1-A1 (Figs. 2 and 4). Monthly coral Sr/Ca significantly cor
relates among all paths (Table 3). The average differences in contem
poraneous coral Sr/Ca values between path 2019 and path 2015 is less 
than analytical precision, but the differences between path 2019 and 
path 2020, and path 2015 and path 2020 are greater than the ±2σ 
analytical precision. Path 2018 is just four years long and agrees with 
path 2020 (Fig. 4). Microscopic examination of the beginning of path 
2015 and path 2019 (2000–2005) reveals suboptimal corallite orienta
tion (DeLong et al., 2016). Both paths agree within ±2σ analytical 
precision with path 2020 before the year 2000 when the corallites are 
optimally aligned in the sampling path (Fig. 4). These suboptimal sec
tions are excluded from further analysis and from the master 
geochemical time series (Fig. 5). The average of the absolute differences, 
which is the discrepancy between two values for any given month 
(DeLong et al., 2014; DeLong et al., 2016; DeLong et al., 2007), for coral 
Sr/Ca is 0.050 mmol/mol for 1977.63 to 2000.13 and is close to the IGS 
2σ precision range (0.048 mmol/mol), similar to other reproducibility 
studies for S. siderea (DeLong et al., 2011; DeLong et al., 2016). The coral 
Sr/Ca values determined by different labs (LSU path 2018, path 2019, 
and path 2020) and (UMCES-CBL path 2015) similarly agree within ±2σ 
analytical precision for optimally sampled portions (1977.63–2000.13) 
of those paths. Coral Ba/Ca from path 2019 and path 2020 are signifi
cantly correlated and the mean difference of 0.29 μmol/mol is not sig
nificant (Table 3). The coral Ba/Ca variations are generally well- 
reproduced in mean value and variability, even when sampling 
opposing sides of the coral slab, with the largest differences occurring in 
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the seasonally higher coral Ba/Ca values (Fig. 4). This result suggests 
intra-coral Ba/Ca is reproducible similar to coral Sr/Ca. 

3.2. Coral Sr/Ca-temperature calibration 

The monthly master coral Sr/Ca is calibrated to the monthly mean 
temperature determined from daily reef temperatures (20 m water 
depth) reporteded by Johnston et al. (2020) at WFGB spanning 
1986–2004 (Fig. 6). The master coral Sr/Ca and reef temperature are 

significantly correlated (r = −0.89, n = 140). Weighted least square 
regression (DeLong et al., 2014; York and Evensen, 2004) was used to 
determine the calibration equation (Eq. (1)) using the standard error of 
the mean for each month as weights for reef temperature and coral Sr/Ca 
resulting in a root mean square error of ±0.58 ◦C (1σ). 

Coral Sr/Ca (mmol/mol) = −0.042 ( ± 0.0002) × SST (
◦C) + 9.945 ( ± 0.005)

(1)  

Table 2 
Summary of monthly-resolved elemental ratios for 05WFGB3-1.   

05WFGB3-1-A1 (1976–2004)a 05WFGB3-1-A2 (1931–1944) 

Sr/Ca (mmol/mol) Mg/Ca (mmol/mol) Ba/Ca (μmol/mol) Sr/Ca (mmol/mol) Mg/Ca (mmol/mol) Ba/Ca (μmol/mol) 

Average 8.912 4.646 12.52 8.938 4.540 10.76 
Median 8.909 4.644 11.46 8.931 4.538 9.56 
Standard deviation 0.139 0.372 4.98 0.134 0.325 3.79 
Variance 0.019 0.138 24.83 0.018 0.106 14.35 
Maximum 9.210 6.438 28.52 9.194 5.832 27.62 
Minimum 8.618 3.744 4.46 8.667 3.967 6.07 
# of observations 343 332 333 153 153 153 
Average annual linear extension 5.4 ± 0.3 mm 6.2 ± 0.3 mm  

a Values from the tissue layer (0–12 mm) are excluded for Mg/Ca and Ba/Ca. 

Fig. 4. Reproducibility of monthly coral Sr/Ca (top) and coral Ba/Ca (bottom) variations. Coral Sr/Ca is inverted to depict warmer temperatures as up. The shaded 
area denotes the tissue layer where coral Ba/Ca values >32 μmol/mol are not plotted. Dashed portions of paths are suboptimal and are excluded from further 
analysis. Error bars are analytical precision (2σ). 
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3.3. Coral Ba/Ca variability 

There is a significant increase in the mean coral Ba/Ca of 1.76 μmol/ 
mol between the time intervals examined (1931–1944 and 1976–2004; 
Fig. 7). The average coral Ba/Ca difference between June and August 
(summer increase) is 6.52 μmol/mol in 1931–1944 and 5.00 μmol/mol 
in 1976–2004, which is a less pronounced summer increase in the 
1976–2004 interval. Additionally, coral Ba/Ca seasonality has increased 
by 2.42 μmol/mol (~18%) between these time intervals. For 
1976–2004, the mean coral Ba/Ca winter minima have increased by 
6.2%, and the mean summer maxima have increased by 13.75% when 
compared to the 1931–1944 time interval. Subannual variations in coral 

Ba/Ca reveal different annual cycles for each time interval with summer 
maxima and winter minima that are ~180◦ out of phase with coral Sr/ 
Ca (Fig. 7). 

4. Discussion 

4.1. Assessing coral Ba/Ca precision and accuracy 

The wavelength combination we selected, Ba 455 nm/Ca 317 nm, 
based on a combination of precision and accuracy assessments (Sup
plementary Table 2), are the same wavelengths used by Cantarero et al. 
(2017) and our precision is comparatively better although we did not 

Table 3 
Summary of reproducibility tests for coral Sr/Ca and coral Ba/Ca (1977.63–2000.13).  

Paths Elemental ratio Correlation t-test 

ra p-value Mean difference t t critical nb 

Paths 2015 & 2019 Sr/Ca  0.91 7.59 × 10−83 0.003 mmol/mol  0.221  1.966  205 
Paths 2019 & 2020 Sr/Ca  0.93 5.97 × 10−39 0.043 mmol/mol  2.166  1.973  90 
Paths 2015 & 2020 Sr/Ca  0.95 3.65 × 10−80 0.051 mmol/mol  2.985  1.968  144 
Paths 2019 & 2020 Ba/Ca  0.80 2.09 × 10−21 0.29 μmol/mol  0.306  1.973  90  

a Pearson's correlation coefficient r. 
b Number of contemporaneous observations in paths. 

Fig. 5. Master time series for monthly coral Sr/Ca (blue), Mg/Ca (aqua), and Ba/Ca (orange) for 1931.71 to 1944.29 and 1976.46–2004.96. Coral Sr/Ca is inverted 
to depict warmer temperatures as up. Error bars are analytical precision (2σ). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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have as many JCp-1 measurements (n = 13). An interlaboratory study 
(Hathorne et al., 2013) reported element/Ca values for JCp-1 measured 
by 21 laboratories and 10 of those laboratories returned values for coral 
Ba/Ca with at least three of those laboratories using an ICP-OES or ICP- 
AES (both use the same technology). That study reports an interlabor
atory robust standard deviation for coral Ba/Ca as ±0.655 μmol/mol 
(1σ), which is about five times greater than our JCp-1 Ba/Ca precision. 
One ICP-OES laboratory returned a JCp-1 Ba/Ca value that was lower 
than the rest and was excluded whereas the other ICP-OES laboratories 

had Ba/Ca standard deviations values similar to the ICP-MS labora
tories, which are presumably more precise and accurate. The study of 
Cantarero et al. (2017) compared their internal coral standard results for 
coral Ba/Ca determined with ICP-OES and ICP-MS and found an offset 
(1.14 ratio factor). Similar differences between ICP-OES and ICP-MS 
were noted for coral Sr/Ca (Ourbak et al., 2006) and sclerosponge Ba/ 
Ca (Rosenheim et al., 2005) yet the interlaboratory experiment of 
Hathorne et al. (2013) does not show evidence of an instrumental bias. 
Furthermore, our study and Cantarero et al. (2017) both have average 
JCp-1 Ba/Ca values less than the Hathorne et al. (2013) reported robust 
average of 7.465 μmol/mol that is based on nine laboratories with 
analytical precisions varying by an order of magnitude (±1.30 to ±0.1 
μmol/mol, 2σ). We suggest this interlaboratory average may not reflect 
the “true” Ba/Ca value for JCp-1. As more laboratories analyze coral Ba/ 
Ca, especially with ICP-OES (Table 1), a reassessment of JCp-1 for Ba/Ca 
may be warranted. We further suggest accuracy assessment for coral Ba/ 
Ca should use two or more external coral references for comparison (e. 
g., PL and JCp-1). Some studies may use the Hathorne et al. (2013) JCp-1 
robust average for their instrumental drift correction (de Villiers et al., 
2002; Schrag, 1999) and we advise against this practice for coral Ba/Ca 
determinations since the interlaboratory study's average value may not 
be the true value. 

4.2. Coral geochemistry fidelity 

The linear extension per year is greater than 2.0 mm, the growth 
effect threshold for S. siderea (DeLong et al., 2016; Kuffner et al., 2017), 
thus no growth effects for coral Sr/Ca or sampling artifacts resulting in 
reduced seasonal cycles were found. The average annual linear exten
sion for this study (Supplementary Table 4) is comparable to that of 
observed in other S. siderea in the Gulf of Mexico (DeLong et al., 2014; 

Fig. 7. Monthly coral Ba/Ca for 1931–1944 and 1976–2004 (top). The dotted orange lines are the means for each time interval. Error bar is analytical precision (2σ). 
Black and grey lines indicate major flood events in the lower Mississippi River (National Weather Service, 2019) and hurricanes passing near the WFGB (Landsea and 
Franklin, 2013), respectively. Average monthly coral Ba/Ca and Sr/Ca for the two-time intervals (bottom left) where the grey box indicates a springtime slight 
increase in coral Ba/Ca. Error bars are standard error of the mean. Average river discharge by months and coral Ba/Ca (bottom right); adapted from Wagner and 
Slowey (2011). 

Fig. 6. Scatter plot of monthly coral Sr/Ca and monthly reef temperatures 
(black circles). The solid red line is the linear regression line and the dashed 
blue line is the 95% confidence belt. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Flannery et al., 2017; Kuffner et al., 2017) and the Caribbean (Reich 
et al., 2013). Conversely, Saenger et al. (2009) had a S. siderea coral with 
an annual linear extension averaging 2.0 mm, thus ~50% of the years 
were below the growth effect threshold (DeLong et al., 2016; Kuffner 
et al., 2017) and perhaps the slower growth in that coral explains their 
annual linear extension correlation to SST. The growth effect threshold 
for coral Ba/Ca has not been evaluated for any coral species to date; 
however, the study Reuer et al. (2003), who compare S. siderea and 
M. annularis offshore of Venezuela (Table 1), report no evidence for a 
growth effect in coral Ba/Ca. The lack of correlation between annual 
linear extension and coral Sr/Ca and Ba/Ca in 05WFGB3-1-A (Supple
mentary Table 4) suggests there is no growth-related effect in this study, 
thus our coral elemental ratios reflect environmental forcing. 

The study of DeLong et al. (2016) found sampling artifacts for 
S. siderea in coral Sr/Ca when extracting coral micro-samples off the 
synapticulothecal wall and in the columella that results in a cold bias, or 
an increase in coral Sr/Ca. The four paths in 05WFGB3-1-A1 were micro- 
milled by four people with varying skill levels in coral micro-sampling, 
resulting in suboptimal sampling for two paths in the top 40 mm of the 
coral (2000–2005; Section 3.1). However, coral Ba/Ca does not exhibit 
the same suboptimal sampling artifact (Fig. 4), thus barium is likely 
deposited more homogeneously in the S. siderea skeleton along a growth 
interval than strontium. Similarly, coral δ18O in S. siderea is not sensitive 
to sampling path location in the coral skeleton whereas coral δ13C is 
generally not as reproducible (DeLong et al., 2016). Sampling path 
sensitivities for coral Sr/Ca are reported in other massive coral species 
(Alibert et al., 2003; DeLong et al., 2013; Giry et al., 2010; Smith et al., 
2006) and for coral Ba/Ca (Alibert and Kinsley, 2008). Since there is 
more oxygen in the coral CaCO3 skeleton, the result for δ18O is logical; 
however, there is ~600 times less barium in the coral skeleton than 
strontium thus the result for barium is not easily explained and warrants 
further investigation. 

4.3. Coral Sr/Ca to temperature calibration 

The slope of the calibration equation (−0.042 mmol/mol/◦C; Eq. (1)) 
is similar to the slopes reported for S. siderea (−0.041 to −0.047 mmol/ 
mol/◦C) sampled with monthly resolution (DeLong et al., 2011; DeLong 

et al., 2014; Kuffner et al., 2017) with the slope of −0.043 mmol/mol/◦C 
assessed as the best-performing slope for 37 corals (DeLong et al., 2014; 
Flannery et al., 2017; Kuffner et al., 2017). It is promising to see that a 
S. siderea coral growing in deeper water (23.8 m) results in approxi
mately the same slope as S. siderea colonies growing at depths less than 
4.0 m (DeLong et al., 2011; Kuffner et al., 2017). 

The intercept of the calibration equation (9.945 mmol/mol; Eq. (1)) 
is less than (10.063–10.25 mmol/mol) other S. siderea studies (DeLong 
et al., 2011; DeLong et al., 2014). This could be attributed to the dif
ference between SST and reef temperature at 23.8 m depth, which is 0.8 
◦C colder on average than WFGB-SST (1986–2005) and has a reduced 
temperature range by 1.6 ◦C. In situ temperature is the preferred tem
perature source for calibrating coral geochemistry (Jones et al., 2009), 
and this study used in situ temperature as did the other S. siderea studies 
(DeLong et al., 2011; DeLong et al., 2014; Kuffner et al., 2017). Alter
natively, differences in seawater Sr/Ca could cause intercept differences 
(Corrège, 2006), but little seawater data have been collected on coral 
reefs to properly understand the potential for Sr/Ca variability impact 
on calibration equations (de Villiers et al., 1994; Lebrato et al., 2020). 

4.4. Oil drilling and coral Ba/Ca in the northern Gulf of Mexico 

The greatest coral Ba/Ca values in our study occur in 1983–1985 
(Fig. 7) including winter minima and summer maxima. Annual minima 
in coral Ba/Ca follows the trends in annual barite production in the US 
(Kelly and Matos, 2014) (Fig. 8) after expansion of oil drilling in late 
1970s suggesting a contemporaneous relationship between oil drilling in 
the northern Gulf of Mexico and coral Ba/Ca from WFGB. Annual barite 
production and consumption leads annual coral Ba/Ca by approximately 
two to three years and barite production is significantly correlated with 
the lags (r = 0.52 for a 3-year lag; Supplementary Table 5) because 
barite stockpiles take time to be shipped to the offshore drilling plat
forms to be used as drilling mud and dissolving in seawater after being 
released into the marine sediments. The use of barite increases with oil 
production until 1983 when oil prices dropped and the coral Ba/Ca 
captures this peak and decline. The sharp decrease in annual coral Ba/Ca 
after 1983 could be due to the reduction of new offshore oil wells where 
barite is used. The increased range of the coral Ba/Ca annual cycles for 
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1976–2004 compared to the pre-oil industry interval 1931–1944 (Fig. 7) 
is the result of Ba enrichment in seawater increasing the monthly mean 
coral Ba/Ca and thus seasonal range. 

The other coral Ba/Ca study in the Gulf of Mexico has a mean shift 
occurring ~1966 offshore of Veracruz Mexico (Carriquiry and Horta- 
Puga, 2010) when offshore oil exploration and drilling began in 1974 
in the Campeche Sound (García-Cuéllar et al., 2004). Furthermore, that 
study noted the coral Ba/Ca lost correlation to the local river discharge 
signal after ~1975, suggesting the oil drilling barite signal overwhelmed 
the fluvial Ba signal. The other Ba/Ca studies in Caribbean (Table 1) do 
not have the mean shift seen in the Gulf of Mexico corals. Those sites are 
not near oil fields and they are upstream from WFGB in the prevailing 
currents, namely the Caribbean Current as it enters the Gulf of Mexico 
becoming the Loop Current (Fig. 1). Furthermore, the coral Ba/Ca values 
for other studies (Table 1) are generally less than those observed in the 
Gulf of Mexico regardless of coral species even those in upwelling zones. 
The exceptions are two sites with maximum coral Ba/Ca reaching 50 
μmol/mol, Malindi Reef, Kenya (Fleitmann et al., 2007) where runoff 
dominates and New Ireland, Papua New Guinea (Alibert and Kinsley, 
2008) where upwelling dominates; however, both of those studies used 
laser ablation ICP-MS with ~weekly resolution whereas the Gulf of 
Mexico studies use annual or monthly resolution that may not capture 
daily to weekly events. 

The estimated increase in mean Ba concentration in seawater from 
1931–1944 to 1976–2004 using the LaVigne et al. (2016) calibration for 
Porites lobata is ~13 nmol/kg (Fig. 8); however, this calibration is 
species-specific and may differ for S. siderea. The equation for P. lobata 
was used because it provided the most conservative Ba seawater esti
mate. Dissolved Ba concentration in the Gulf of Mexico is ~73 nmol/kg 
in open water to ~357 nmol/kg in coastal Louisiana (Boothe and 
Presley, 1987; Chan and Hanor, 1982). The saturation of barite in 
seawater occurs at approximately ~150 nmol/kg (Church and Wolge
muth, 1972) and thus it is commonly undersaturated in the Gulf of 
Mexico (Deslarzes et al., 1995) as in the rest of the ocean (Carter et al., 
2020). However, the study of Chan and Hanor (1982) found Ba con
centrations above the level of saturation in the northern Gulf of Mexico 
in the late 1970s, when the US barite production and consumption 
escalated (Fig. 8), thus provides evidence of increased Ba in the seawater 
during times of increased offshore oil drilling operations. The previously 
estimated increase in seawater Ba concentration due to barite dissolu
tion by Deslarzes et al. (1995) was ~109 nmol/kg, which is much higher 
than our increase estimate. That study assumed dissolved Ba does not 
transport away from the drilling area; therefore, their higher estimation 
may not be realistic. Some early studies found seawater barium con
centration decreases with time and distance from a drill site because 
most of the drilling muds released onto the seafloor are transported 
away by currents (Boothe and Presley, 1987). The amount of Ba retained 
in the sediment near a drill site after one year is ~1% of the total Ba used 
in drilling (Boothe and Presley, 1987). Additionally, surface seawater Ba 
concentration is further reduced through primary production where 
barite attaches to sinking organic matter further reducing the surface Ba 
seawater concentration with time. In order to better estimate the his
torical changes in seawater Ba in the Gulf of Mexico, a species-specific 
Ba seawater calibration is needed along with seawater barium mea
surements spanning at least one year, similar to the study of LaVigne 
et al. (2016). 

Oil drilling operations use barite (BaSO4) as a densifying material in 
the drilling mud and accounts for 90% of the US barite consumption 
(Crecelius et al., 2007). Barite contains trace metals such as mercury 
(Hg) and cadmium (Cd) as impurities. The US Environment Protection 
Agency has imposed regulations for discharging barite in drilling fluids 
into the Gulf of Mexico such that the maximum concentrations should be 
below 1 μg/g for Hg and 3 μg/g for Cd, which are found in barite used in 
oil drilling mud (Crecelius et al., 2007). Barite is insoluble in normal 
seawater pH (7.9–8.1) and oxidizing conditions; however, the solubility 
increases with more acidic pH and in anoxic-reducing environments 

(Carbonell et al., 1999; Crecelius et al., 2007). The study of Trefry et al. 
(2007) revealed elevated total Hg levels in sediments near six drilling 
sites in the Gulf of Mexico east of WFGB that were associated with barite 
from drilling mud. They found less methyl-Hg due to the formation of 
insoluble metal sulfides indicating anoxic, highly reducing conditions in 
sediments near drill sites. Therefore, the presence of anoxic conditions at 
drill sites could be favorable to dissolving Ba from barite at offshore oil 
drilling sites. Mid-summer hypoxia in the northern Gulf of Mexico oc
curs because of enhanced surface production forming excess organic 
matter that sinks to the bottom and decay, causing hypoxia below the 
pycnocline (Rabalais et al., 2002), which could also promote barite to 
dissolve. Bottom water hypoxia can persist throughout the year due to 
the stability of the density difference between surface and bottom water 
(Rabalais et al., 1991; Wiseman et al., 1997). Benthic organisms are 
vulnerable to ingesting barite that can dissolve inside their gut (acidic) 
and release heavy metals such as Hg, Cd, Zn, and Cu (Crecelius et al., 
2007). The bioavailability of these metals can lead to bioaccumulation 
along food chains and cause health risks to local fish consumers as well. 

4.5. Coral Ba/Ca in S. siderea 

The study of LaVigne et al. (2016) examined coral Ba/Ca in multiple 
Pacific coral taxa in the Gulf of Panama and found inconsistencies in 
distribution coefficients, linear regression slopes, and intercepts that 
provided robust evidence for a species effect in coral Ba/Ca. The mean 
coral Ba/Ca measured in S. siderea from WFGB is ~50% greater than the 
means reported for Montastraea corals (~8.0 μmol/mol) in the Gulf of 
Mexico (Table 1) (Carriquiry and Horta-Puga, 2010; Deslarzes et al., 
1995) with a maximum value of 28.52 μmol/mol (Table 2), which is 
280% greater than those previous studies. The M. annularis sampled in 
the study of Deslarzes et al. (1995) and the S. siderea sampled in this 
study are from the same reef and water depth providing evidence for a 
species effect for coral Ba/Ca at WFGB. A study in the southern Carib
bean Sea also found greater coral Ba/Ca values in S. siderea when 
compared with co-located M. annularis (Reuer et al., 2003). Similar 
species effects have been reported for coral Sr/Ca and δ18O (Bagnato 
et al., 2005; Dassié and Linsley, 2015; DeLong et al., 2011; Ross et al., 
2019; Weber, 1973). Regardless of the species differences in coral Ba/ 
Ca, this study and the study of Carriquiry and Horta-Puga (2010) 
document a mean shift in coral Ba/Ca of 1.76 and 1.03 μmol/mol, 
respectively, for the interval before and during oil exploration in the 
Gulf. 

Coral Ba/Ca annual cycles are ~180◦ out of phase with coral Sr/Ca 
annual cycles and differ (Fig. 7), thus indicating the coral Ba/Ca annual 
cycles are driven by a different seasonally-varying environmental factor 
than temperature. Possible factors driving variations in coral Ba/Ca 
include (1) river discharge, (2) extreme events such as hurricanes, (3) 
upwelling driven by winds, and (4) sea surface productivity, thus we will 
investigate each of these further. 

The Mississippi, Atchafalaya, Trinity, and Rio Grande Rivers are the 
main rivers bringing water and sediments into the northwestern Gulf of 
Mexico (Fig. 1). Barium is desorbed from sediment particles and dis
solves in seawater increasing Ba concentrations in the river mixing zones 
and coastal waters (Bishop, 1988; Ganeshram et al., 2003). The Mis
sissippi River discharge (average 16,792 m3/s) varies seasonally with a 
maximum in April due to snowmelt and spring floods in the US with a 
minimum in August to September (Fig. 7) (Wagner and Slowey, 2011). 
Wind-driven coastal currents over the continental shelf in the northern 
Gulf of Mexico flow eastward in summer and westward in winter along 
the coastline (Fig. 1) (Walker, 2005). Mississippi River plumes are car
ried westward during the winter through a low salinity band that is 
confined to the coastline by onshore Ekman transport (Schiller et al., 
2011). When the wind reversal brings westerly winds in March and 
April, the low salinity band broadens offshore but the river plume is 
transported towards the east from the Mississippi River delta (Schiller 
et al., 2011). The average discharge of Atchafalaya (6185.5 m3/s), 
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Trinity (177.5 m3/s and closest river to WFGB), and Rio Grande (82 m3/ 
s) Rivers is much lower than the Mississippi River and their waters are 
also distributed from the north to the south along the Texas coast away 
from WFGB. Salinity measurements in the summer do not indicate 
freshening at WFGB (Li et al., 1997; Wagner and Slowey, 2011; Johnston 
et al., 2020). The variability of seawater δ18O (1.0‰–1.2‰) and salinity 
(35.7–36.6) has a narrow range throughout the year at WFGB when 
compared with the inner shelf waters (Wagner and Slowey, 2011) sug
gesting Mississippi River waters are not reaching WFGB with seasonal 
regularity. Furthermore, the coral Ba/Ca maxima are not synchronous 
with major Mississippi River flood events (April 1979, May 1983, March 
1997, and April 2002; Fig. 7) (National Weather Service, 2019). 
Therefore, river plumes are kept away from the WFGB throughout the 
year, thus the probability of river discharge manifesting as regular coral 
Ba/Ca annual cycles is not likely. A study of the inner shelf and outer 
shelf corals in the Great Barrier Reef (Walther et al., 2013) found the 
inner shelf coral Ba/Ca variability was driven by river runoff whereas 
the outer shelf (~100 km away from the coast) coral Ba/Ca variability 
was dominated by seasonal and interannual oceanographic variability 
such as upwelling. Another Great Barrier Reef study measured coral Ba/ 
Ca from the river mixing zones along the coast (~200 km) and they 
found coral Ba/Ca is driven by river discharge only in corals in close 
proximity to river mouths (Lewis et al., 2018). If Mississippi River wa
ters were regularly reaching WFGB, these coral reefs would probably not 
exist since corals need clear water for photosynthesis (Veron, 1995). 
Flower Garden Banks' coral reefs are in a special place, on rising salt 
domes at the edge of the continental shelf far from land, thus why they 
are the only coral reefs in the northern Gulf of Mexico. This holds true 
for submerged fossil reefs in the Gulf, they are all far from the Mississippi 
River, such as the southern Texas Coast (Khanna et al., 2017). 

Hurricanes can produce vertical mixing and rapid ventilation of the 
thermocline due to high wind speeds that mix nutrient-rich colder wa
ters to the surface (Walker et al., 2005). These events are short-lived but 
can produce phytoplankton blooms that peak three to four days after a 
tropical cyclone passes (Walker et al., 2005). There have been four 
category one hurricanes (wind speed 119–153 km/h): Alicia August 17, 
1983, Bonnie June 26, 1986, Chantal August 1, 1989, and Jerry October 
15, 1989, passing over and near WFGB from 1976 to 2004 (Landsea and 
Franklin, 2013) that could bring barium-enriched colder water to the 
surface. The coral Ba/Ca record does not reveal anomalously high peak 
values that coincide with the timing of any of these four hurricanes 
(Fig. 7). These extreme events are short-lived (a few days) and they do 
not occur with enough regularity to explain the coral Ba/Ca annual 
cycles. Lastly, a monthly-resolved coral geochemical record would not 

record an event that spans a few days (Kilbourne et al., 2010). 
Reef temperature measured instrumentally at WFGB (Johnston et al., 

2020) and reconstructed via coral Sr/Ca (Fig. 4) do not provide evidence 
for cold-water upwelling. The S. siderea coral sampled in this study is 
located at a depth of 23.8 m at the edge of the continental shelf that 
slopes down to deeper waters (Fig. 1). The continental shelf edge could 
experience weak springtime upwelling when the winds reverse in March 
and April (Murray et al., 1998; Teague et al., 2013), thus explaining the 
small springtime (March–April) coral Ba/Ca increase that is prominent 
in both time intervals but this does not explain the subsequent summer 
increase of coral Ba/Ca (Fig. 7). 

The biogeochemical cycle of barium in seawater reflects surface 
oceanic depletion of barium that is recycled at depth resulting in a 
nutrient-like depth profile (Carter et al., 2020; Chow and Goldberg, 
1960). The removal of Ba at the ocean surface is associated with the 
precipitation of Ba as BaSO4 (barite) crystals, especially in micro- 
environments such as decaying organic matter (Chow and Goldberg, 
1960) at times of enhanced surface productivity. Sinking organic matter 
from the surface recycles below the thermocline where BaSO4 crystals 
dissolve to make Ba available at depth (Chan et al., 1977). This mech
anism explains the relationship between Ba depletion and biological 
productivity at the ocean surface, and the annual cycles in coral Ba/Ca, 
although Ba is not actively involved in productivity. 

Satellite-derived estimates of chlorophyll-a every eight days from the 
Sea Viewing Wide Field of View Sensor (SeaWiFS) are a productivity 
indicator that is limited temporally (1997–2010; Fig. 9). The SeaWiFS 
chlorophyll-a data was linearly interpolated to monthly intervals for 
correlation with monthly-resolved coral Ba/Ca (r = −0.50; n = 76; 
Fig. 9). Winter months have a higher chlorophyll-a concentration in the 
Gulf of Mexico due to increased depth of the mixed layer by wind-driven 
mixing (Müller-Karger et al., 1991) that corresponds with the coral Ba/ 
Ca minima thus increase in chlorophyll-a concentration and produc
tivity drive the coral Ba/Ca to lower values and when productivity de
creases in the summer the coral Ba/Ca increases (Fig. 9). The regular 
seasonal changes in surface productivity at WFGB explains 25% of the 
variance in the monthly coral Ba/Ca for 1997.5–2003.96. Time assign
ment with coral Sr/Ca to WFGB-SST may result in minor month-to- 
month dating discrepancies (±2–3 months) that are difficult to resolve 
(DeLong et al., 2016) but may partially explain the lower than expected 
correlation between monthly coral Ba/Ca and chlorophyll-a yet the 
monthly coral Ba/Ca does capture some of the chlorophyll-a 8-day 
variability (Fig. 9). Micro-sampling the coral at weekly resolution may 
provide better results with chlorophyll-a but would still be subject to 
subannual dating uncertainties. Regardless, the connection between 

Fig. 9. Monthly-resolved coral Ba/Ca and eight-day chlorophyll-a concentration for WFGB area linearly resampled to monthly intervals (light green and green, 
respectively). Error bar is analytical precision (2σ). Satellite-derived chlorophyll-a is plotted inversed from SeaWiFS for the area 27.4◦N to 28.1◦N and 94◦W to 
93.25◦W (https://oceancolor.gsfc.nasa.gov/SeaWiFS/). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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coral Ba/Ca and ocean surface productivity should be explored further 
and WFGB is an ideal location for such a study since it is located far from 
the coast, river discharge, and is submerged with minimal upwelling 
occurring. 

5. Conclusions 

Coral Ba/Ca is a complex proxy that is affected by multiple envi
ronmental factors, depending on the location and time scale of mea
surement. S. siderea incorporates more Ba into its coral skeleton than 
other coral species in the Gulf of Mexico and exhibits distinct annual 
coral Ba/Ca cycles likely driven by interactions of productivity and 
spring-time upwelling. Interannual variability and long-term mean 
changes in coral Ba/Ca appear to be associated with barite used in 
offshore oil drilling in the northern Gulf of Mexico. Barite ingestion by 
benthic organisms may enhance bioavailability of heavy metals such as 
Hg and Cd that can lead to potential biomagnification towards the high 
end of the food chains. Coral Ba/Ca can be used as a tracer to determine 
marine environment pollution associated with oil drilling in the Gulf of 
Mexico. 
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Supplementary Table 1  
Summary of accuracy and precision for Sr/Ca and Mg/Ca determinations. 
LSU Sr 421 nm/Ca 422 nm Mg 279 nm/Ca 315 nm 
Reference a IGS PL JCp-1 IGS PL JCp-1 
RSD (%) b 0.14 0.274 0.18 1.12 1.58 1.14 
Precision (mmol/mol, 1σ) ±0.012 ±0.025 ±0.007 ±0.038 ±0.071 ±0.082 
Accuracy (%) c –0.005 0.092 –0.150 0.015 0.859 3.518 
Number of observations 115 201 13 115 201 13 
UMCES-CBL  
RSD (%) b 0.04% 0.17% 0.18% 0.83% 1.35% - 
Precision (mmol/mol, 1σ) ±0.003 ±0.015 ±0.016 ±0.026 ±0.069 - 
Accuracy (%) c 0.00 –0.13 +0.294 0.02 –1.81 - 
Number of observations 80 116 25 80 116 - 
a IGS is an internal gravimetric standard whereas JCp-1 and PL are external coral references. 
b Residual standard deviation (%) = (standard deviation (1σ)/average) x100. 
c Accuracy (%) = ((average–known value)/known value) x100. 
 
  



Supplementary Table 2  
Summary of accuracy and precision for Ba/Ca wavelength combinations. 
Reference a IGS PL JCp-1 IGS PL JCp-1 IGS PL JCp-1 
 Ba 455 nm/Ca 317 nm Ba 455 nm/Ca 315 nm Ba 455 nm/Ca 422 nm 
RSD (%) b 1.51 4.67 6.91 1.54 4.65 6.80 1.69 4.61 6.54 
Precision c ±0.12 ±0.16 ±0.15 ±0.12 ±0.16 ±0.15 ±0.14 ±0.16 ±0.14 
Accuracy (%) d –0.03 2.26 –1.25 0.03 2.14 –1.65 –0.01 2.01 –2.01 
Number e 115 201 13 115 201 13 115 201 13 
 Ba 493 nm/Ca 317 nm Ba 493 nm/Ca 315 nm Ba 493 nm/Ca 422 nm 
RSD (%) b 2.07 5.53 7.40 2.09 5.52 7.34 2.09 5.58 6.80 
Precision c ±0.17 ±0.19 ±0.16 ±0.17 ±0.19 ±0.16 ±0.17 ±0.19 ±0.15 
Accuracy (%) d –0.06 2.00 –0.19 –0.06 1.87 –0.58 –0.04 1.75 –0.96 
Number e 115 201 13 115 201 13 115 201 13 
a IGS is an internal gravimetric standard whereas JCp-1 and PL are external coral references. 
b Residual standard deviation (%) = (standard deviation (1σ)/average) x100. 
c Precision in μmol/mol (1σ). 
d Accuracy (%) = ((average–known value)/known value) x100. 
e Number of observations. 

 



Supplementary Table 3 
Uranium and thorium isotopic compositions and 230Th ages for corals determined by MC-ICP-MS. 
Sample Weight 

238
U 

232
Th δ

234
U [

230
Th/

238
U] [

230
Th/

232
Th] Age Age δ

234
Uinitial Year 

ID g ppb
a
 ppt measured 

a
 activity 

c
 ppm 

d
 uncorrected corrected 

c,e
 corrected 

b
  

WFGB 3-2 

top 0.33396 2511.4 ±2.2 430.6 ±1.6 146.0 ±1.7 0.001026 ±0.000014 98.6 ±1.4 97.7 ±1.3 93.7 ±2.4 146.0 ±1.7 1921.54 

Analytical errors are ±2σ of the mean. 
a [238U] = [235U] x 137.77 (±0.11‰) (Hiess et al., 2012); δ234U = ([234U/238U]activity – 1) x 1000.  
b δ234Uinitial corrected was calculated based on 230Th age (T), i.e., δ234Uinitial = δ234Umeasured x eλ234*T, and T is corrected age. 
c [230Th/238U]activity = 1 – e-λ230T + (δ234Umeasured/1000)[λ230/(λ230 – λ234)](1 – e–(λ230 - λ234)T), where T is the age. 
Decay constants are 9.1705 x 10-6 year-1 for 230Th, 2.8221 x 10-6 year-1 for 234U (Cheng et al., 2013), and 1.55125 x 10-10 year-1 for 
238U (Jaffey et al., 1971). 
d The degree of detrital 230Th contamination is indicated by the [230Th/232Th] atomic ratio instead of the activity ratio. 
e Age corrections, relative to chemistry date on 11 March 2015, were calculated using an estimated atomic 230Th/232Th ratio of 4 ± 2 
ppm (Shen et al., 2008).



Supplementary Table 4  
Correlation between annual linear extension rate and coral Sr/Ca and coral Ba/Ca. 

  

  

05WFGB3-1-A 
05WFGB3-1-A1  

(1977–2003) 

05WFGB3-1-A2  

(1932–1943) 

Sr/Ca Ba/Ca Sr/Ca Ba/Ca Sr/Ca Ba/Ca 

Pearson’s r 0.09 0.10 0.11 0.23 –0.30 0.59 

p-value 0.61 0.55 0.57 0.3 0.35 0.05 

Number 
a
 39 39 27 27 12 12 

Annual linear extension for suboptimal paths were not considered, only the master time series.
 

a
 Number of paired observations used to determine correlation and significance. 

  



Supplementary Table 5  
Correlation between US Barite and coral Ba/Ca. 

1977–2003 Minimum coral 

Ba/Ca 

Average coral 

Ba/Ca 

Maximum coral 

Ba/Ca 

Barite 

production 

0.48 2-year lag 
0.52 3-year lag 

0.44 2-year lag 
0.47 3-year lag 

0.32 2-year lag 

0.36 3-year lag 

Barite 

consumption 

0.34 2-year lag 

0.37 3-year lag 

0.35 2-year lag 

0.30 3-year lag 

0.24 2-year lag 

0.20 3-year lag 

Items in italics are significant at the 5% level, n = 25 for a 2-year lag, and n = 24 for a 3-year lag. 
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