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CrossMark
Abstract
We consider the incompressible 3D Navier—Stokes equations subject to a shear
induced by noisy movement of part of the boundary. The effect of the noise
is quantified by upper bounds on the first two moments of the dissipation rate.
The expected value estimate is consistent with the Kolmogorov dissipation law,
recovering an upper bound as in (Doering and Constantin 1992 Phys. Rev. Lett.
69 1648) for the deterministic case. The movement of the boundary is given by
an Ornstein—Uhlenbeck process; a potential for over-dissipation is noted if the
Ornstein—Uhlenbeck process were replaced by the Wiener process.

Keywords: Navier—Stokes equations, shear flows, energy dissipation
Mathematics Subject Classification numbers: 35Q30, 76F10.

(Some figures may appear in colour only in the online journal)

1. Introduction

Noise is added to turbulence models for a variety of reasons, both practical and theoretical.
For example, the onset of turbulence is often related to the randomness of background move-
ment [33]. In any turbulent flow there are unavoidably perturbations in boundary conditions
and material properties; see [38, chapter 3]. The addition of noise in a physical model can be
interpreted as a perturbation from the model. There is considerable evidence supporting the
stabilisation of solutions by noise (see, e.g., [1, 10, 20, 27]). However, the effect of noise in
turbulent flow is far from completely understood.

This paper concerns the Kolmogorov dissipation law associated with the incompressible
Navier—Stokes equations (NSE) in a three-dimensional box D = (0, L)? x (0, /) subject to
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a shear induced by noisy movement of one wall. Specifically, we consider the following
differential equation,

du+ (u-Vu —vAu+ Vp) dt =0,
V-u=0,

(1.1)

with L-periodic boundary condition in the x; and x, directions and a random boundary
condition given by the following: for all time ¢ € R, and (x|, x,) € (0, L),

M(X],XZ,O, t) = (Xh 07 O)T and “(xl»xz,h, t) = (07070)T' (]‘2)

In the above, v > 0 is a fixed real parameter representing the viscosity, and X = (X;),er,
is a given continuous-time, real-valued stochastic process. The stochastic processes u and p
represent respectively the velocity field and the pressure.

The Kolmogorov dissipation law is tied to a phenomenon in turbulence called the energy
cascade, which can be explained in 3 main steps. (1) In the absence of a body force, the kinetic
energy is introduced into the large scales of the fluid between the parallel plates by the effects of
the moving plate. This energy is called energy input. (2) The large eddies break up into smaller
eddies through vortex stretching over an intermediate range, where the energy is transferred
to smaller scales and the energy dissipation due to the viscous force is negligible. (3) At small
enough scales (expected to be ~ Re %4, where Re is the Reynolds number defined in (1.3))
dissipation dominates and the energy in those smallest scales decays to zero exponentially fast.

Based on the above description the dissipation is effective at the end of a sequence of pro-
cesses. Therefore, the rate of dissipation, which measures the amount of energy lost by the
viscous force, is determined by the first process in the sequence, which is the energy input. The
persistent force driving the shear flow is the motion of the bottom wall {(x1, x2,0) : (x1,x7) €
[0, L]*}. The time averaged energy dissipation rate must balance the drag exerted by the walls
on the fluid. In terms of the characteristic speed U, the large eddies have energy of order U?
and time scale 7 = &/ U, so the rate of energy input can be scaled as U?/7 = U3 /h. This sug-
gests the Kolmogorov dissipation law for time-averaged energy dissipation rate € (Kolmogorov
1941) see [24, 27];

U3
E’\’?.

Here a ~ b means a < b and b < a; a < b means a < cb for a nondimensional universal
constant c.

The energy dissipation rate has been widely studied in the literature in the deterministic
case [4, 8, 12, 15-17, 24, 29, 30, 35-37, 42, 43, 46]. Doering and Constantin proved in [13] a
rigorous asymptotic bound directly from the NSE. Their bound is of the form

3
e < U7, as Re —+ oo, where Re= U7h (1.3)
similar estimations have been proven by Kerswell [26], Marchiano [32], and Wang [43] in
more generality.

In this paper we choose X; to be an Ornstein—Uhlenbeck process (OU process) satisfying
(2.1). We derive an upper bound on the expected value of the energy dissipation rate as well
as its second moment in terms of characteristics of the randomly moving bottom wall. Our
estimate recovers (1.3) in the limit as the variance o of the noise tends to 0. The key to the
analysis is the choice of a stochastic background flow and the treatment of a stochastic integral
(with respect to the Wiener process) as a local martingale.
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Since the work of Bensoussan and Temam [3] in 1973, there has been substantial advance

in understanding the stochastic NSE, see for example [2, 5, 7, 33, 34, 41] and the references
therein. Recently in [11], the exact dissipation rate is obtained for the stochastically forced
NSE under an assumption of energy balance. In all those works the equation always contains
noise as a forcing term. Other than the analysis of symmetries of a passive scalar advected
by a shear flow in which a boundary moves as a stochastic process in [9], to the best of our
knowledge, there is no other work concerning the equations of the motion with stochastic
boundary conditions.
Organisation of this paper. In section 2, we will introduce the necessary notation and prelimi-
nary results needed in the proceeding sections. In section 3, we will state the main result of this
work. We will set up an almost sure bound starting from the energy equation in section 4. From
there, we will derive an upper bound on the mean value and variance of the energy dissipation
respectively in sections 5 and 6. The concluding section 7 contains some open problems in this
direction.

2. Definitions and notations

In this paper, we choose X, to be an OU process, which is a diffusion process solving the Itd
stochastic differential equation

dX, = 0(U — X,)dt + o dW,, (2.1)

where W = (W)),cr, is a standard Brownian motion (a.k.a. the Wiener process), and 6 > 0
and o > 0 are parameters. A strong solution to (2.1) is given by

t
X, =Xpe "+ U1l —-e" 40 / e =9 aw,.
Jo
It is well known that X, has stationary distribution given by the normal distribution A/ (U, (2’—;)
with mean U and variance % If the initial distribution satisfies Xy ~ N (U, g—;), then X, ~

N(U, g—;) for all # > 0 and we say X is a stationary OU process.

Intuitively, the OU process is a Wiener process plus a tendency to move towards a location
U, where the tendency is greater when the process is further away from that location. In (2.1), 6
is the decay-rate which measures how strongly the system reacts to perturbations, and o is the
variation or the size of the noise. We will need the following basic properties of the stationary
OU process (for a proof and additional properties see [16]).

Proposition 2.1. Ler X be a stationary OU process satisfying (2.1). The following hold for
allt > 0.

(@) X, ~ N, %),
(b) [X]; = o2 t, where [X), is the quadratic variation of X on [0, 1].

Throughout this manuscript, the Z>(D) norm and inner product will be denoted by || - || and
(-, -) respectively. For the sake of boundary conditions, we consider

H={ve[l’(D): V- v=0,v(x1,x,0) = v(x;,x2,h) = 0,
v periodicin xy,x2},

V={veH'DP: V-v=0,v(x,x,0) = v(x;xh) =0,
v periodicin xj,x,},
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Xe(w)

W

Figure 1. The graph of x3 — ¢(x3, X;(w)), where §, = 0(X;(w)) is the boundary layer
thickness.

Cov={velC*DI: V- v=0,
v(x1, X2,0) = v(xy, X2, h) = 0, v periodicin xy, x5} .

Stochastic background flow. The difficulty in the analysis of the shear flow (1.2) is due to
the effect of the random inhomogeneous boundary condition. We overcome this difficulty by
constructing a carefully chosen stochastic background flow. This construction is based on the
Hopf extension [23].

Our key idea here is to choose the boundary layer thickness J, in the background flow to be
random and time-dependent, namely,

o = 0(Xy(w)) = (2.2)

IX/(w)|*>+ B

where 6 : R — (0, 00) is the function (z) = zzAﬁ. We later choose A = vU and B = U?, so
6, has the dimension of length and §, € (0, k) if Re = %h > 1; see lemma 4.2 for precise
requirements.

We then let ¢ : [0, h] x R — R be the function

¢la,z) = (1 - %) 2 loasiwy-

By definition, we have (see figure 1)

X3 .
11— —= ) X(w) if 0<x3 <6,
B3, X)) = ( 5,) ' PR (2.3)
0 if 6, <x3<h
Finally, we define the stochastic background flow ® = ®,(x;, x5, x3;w) as
Dy(x1, X2, X33 W) == ($(x3, X,(w)), 0, 0)". (2.4)

There can be other choices for the function J,, and our choice in (2.2) is motivated by the
general analysis in (4.18). The boundary layer is denoted by D; = (0, L)? x (0, 5,).
Martingale solutions. We follow the standard notion of martingale solutions for stochastic
Navier—Stokes equations such as Flandoli and Gatarek [19, definition 3.1], and define a mar-
tingale solution for our system (1.1) and (1.2). This notion is a probabilistically weak analogue
of the Leray—Hopf weak solution to the deterministic NSE.

Definition 2.1 (Martingale solution on compact intervals). Let 7 € [0, c0). A mar-
tingale solution to (1.1) and (1.2) on [0, 7] consists of a stochastic basis (Q, (Firero.11» IP’) with
a complete right-continuous filtration (F;),c[o,r}, a stationary OU process (X)c0,7; adapted to

4767



Nonlinearity 34 (2021) 4764 W-T L Fan et al

(F)iero,r)> and with mean U and variance [2’72,, and an JF;-progressively measurable stochastic
process

u: [0,T] x Q — [L*(D)]
such that

e 1 — ® has sample paths in L*([0,T]; V)N L*® ([0, T]; H) that are weakly continuous from
[0, T] into H, almost surely,
e forall 7 € [0,T] and all ¢ € Cg,, the following identity holds almost surely,

(u(t), ) + l//0 (Vu(s), V)ds + /0 (u(s) - Vu(s), p)ds = (u(0), p), (2.5)

e the following holds

T
E [ sup ||u(s)\|2+/ ||Vu(s)|\2dt} < 0. (2.6)
s€[0,T] JO

Remark 2.2. 1In this paper we assume the existence of a martingale solution for (1.1), (1.2)
where X is an OU process, for any ug € L, (D) and T > 0. We expect that this can be proved
by modifying the classical result of Flandoli and Gatarek [19] in the case when X = 0 As in
the deterministic case, the uniqueness of such solutions is an open problem.

Remark 2.3. Note that above solution is independent of the choice of ® and depends only
on the value of ® on the boundary; see for instance [6, chapter 9].

Essentially, a global solution has a fixed stochastic basis over [0, c0) which, when restricted
to [0, 7], yields a solution as in definition 2.1.

Definition 2.2 (Martingale solution). A martingale solution to (1.1) and (1.2) consists
of a stochastic basis (Q, (FDrel0,50)s IP’) with a complete right-continuous filtration (F;).er , ,
a stationary OU process X = (X,),ecr " with mean U and variance ‘2’—;, and an JF;-progressively
measurable stochastic process

u € [0,00) x Q — [LAD)]?
such that { (2, (Fecior1> P) » X)ieqo.rys g 7yeq } is a martingale solution to (1.1) and (1.2)
on [0, T] forall T € [0, c0).
Energy dissipation rate. In experiments, it is natural to take a long, but fixed time interval

[0, T'] and compute the time-average

11

T
(7= ] T/o V|| Vu(t, -, w)|[3» dr. 2.7)

Itis shown in [21] that the effect of T in finite-time averages of physical quantities in turbulence
theory, including the energy dissipation rate, can be controlled by parameters such as Re. In our
setting, this finite-time average in (2.7) is a random variable whose mathematical expectation
can be approximated by taking an average over a number of samples in the experiments.
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Definition 2.3. We take the time-averaged expected energy dissipation rate for a martingale
solution u of (1.1)-(1.2) to be defined by

11
e:=limsupE[(e)7] = limsupE [W ?/ || Vut, -, w)|[;2 de | . (2.8)
Jo

T—o0 T—0o0

Our main result, theorem 3.1 below, is an upper bound for ¢ in terms of the characteristics
of the noise added to the movement of the boundary. The variance Var[ (€)7] is bounded by the
second moment E[(¢)2]. In this work, we obtain an upper bound for the limsup of E[(¢)2]. Our
method can readily be generalised to give an upper bound for the pth moment for all p > 1;
see remark 6.1.

Remark 2.4. We note that by Fatou’s lemma
limsupE[{e)7] < E [Iim sup (e)T] .
T—o0 T—00

Hence our upper bound on ¢ defined in (2.8) does not imply one when the order of the limsup
and expectation are reversed.

3. Statement of the results

Theorem 3.1. Suppose {(Q, (Fiel0,00)s IFD) , X, u} is a martingale solution to (1.1) and
(1.2), where X is a stationary OU process (2.1). Assume that Re = UTh > 1 and that the initial
condition u(0) is such that }E[||u(0)|\2] < 0. Then the energy dissipation rate (2.8) satisfies

=i E S32 A2\ 6po 28 F 1205
€ = lim sup [(e)7] nT < Re "m0 TR U
1 ho? o’
U s + 6, ) o7 !
e U +6hU02>U o

Moreover, the second moment of (€)r satisfies
Uﬁ
limsupE[(e)3] < —

m 7+ PO 3.2)
—00

where P(c) = Py, 9(0) is an explicit polynomial in o whose coefficients are explicit functions
of U,v and 0.

In the above estimate on the mean of the dissipation rate (3.1), as the variance o of the
disturbance from U tends to 0, we recover the upper bound in Kolmogorov’s dissipation law,

U3

lime < —

o0~
which is also consistent with the rate proven for the NSE in [13]. The constants suppressed by
the use of < in (3.2) is explicitly given in (6.13) for the second moment.

Remark 3.2. Since U is the mean velocity of the bottom wall, X, has the dimension of
velocity. Therefore, € scales as ﬁ, and o has dimension Velt‘;ﬁ‘ey Therefore, one can check that
the results in theorem 3.1 are also dimensionally consistent.
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4. An almost sure bound on the energy dissipation

In this section, we prove an almost sure upper bound for the energy dissipation. We will see
that d, in (2.2) is determined so as to absorb a term involving || Vv in (4.18).
We take

A
0@) = 57— 4.1
@ =375 (4.1)
and ¢(x3, Xy(w)) = f(X;(w)) where f : R — R is the smooth function,
X
10 =fo= (125 )2 forxe©.0) @2)
with derivatives
322 +B 6
f@=1-x~" 2 and (@) = *anZ' (4.3)
1t0’s rule asserts that IP-a.s. we have
! 0-2 "
df (X)) = fF[XdX, + 5 F(Xpde
4.4)

2
— FX)[OU — X)dt + o dW,] + % F(X,)dt
= Lf(X)dr + of'(X)dW,

for t > 0, where we used the equation (2.1) of the OU process in the second equality, and

2
Lf) = f'@)0U —2)+ % (). (4.5)

We can extend L to a differential operator which is the infinitesimal generator of the OU
process.

A basic tool in the mathematical understanding of the dissipation rate is the energy inequal-
ity, which is obtained formally by taking the scalar product of the equations by a solution.
However in the case of shear flow here, the viscosity term cannot be handled by integration by
parts due to the effect of the inhomogeneous boundary condition. The key idea is to consider
u — ® which satisfies homogeneous boundary conditions, where ® is the stochastic, incom-
pressible background field (2.4), carrying the inhomogeneities of the problem. One can then
proceed formally by taking the scalar product of the equation (1.1) by u — ® to obtain the
following IP-a.s. energy inequality,

T T T T T
/(du,uH—zx/ \|Vu\|2dz</ (du,@)+/ (u-Vu,(P)dH—V/ (Vu,V®)dr.  (4.6)
0 0 0 0 0

We present the rest of the analysis based on v = u — ® where v is a fluctuating incom-
pressible field which is unforced and hence of arbitrary amplitude. Making the substitution
u = v+ ®in (1.1), we find the stochastic process v satisfies,

dv4+db=—@w-Vo+v-VO+ & -Vo+ & - VO —vAv — vAD + Vp) ds,
4.7
V-v=0,
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in the weak sense. The boundary conditions for v are periodic in the x| and x; directions while
in the x5 direction,

U(xlsx2y Os t) = /U(XI,XZshﬁ t) =0.

From (4.6), the energy-type inequality for v is obtained as,

T T
/ (v,dv) + (v,d®) + z/HVszdtg / w-Vov,v) + - -VP,0) + (P - Vo, v)
Jo SY—~—  —— Jo —_— Y Y
I i il v v 48)

+(®-VP,v) +v(Vo,VO) | dr.
— N——

VI viI

We shall estimate each numbered term in (4.8).
Term L. Using (1.1) and (2.3)

df(X),0,0)" if 0 < x3 <6
dv =du—d® = —(u- Vu — vAu+ Vp)dr — :

otherwise
By (4.4), the quadratic variation of f(X,) is fot a2(f'(X,))*ds. Hence by It&’s product rule,
1 02 / 2
v-dv= Ed(v -v) — 7(f X))-dt, for0 < x3 < 6. 4.9)

Recall that the boundary layer D; = (0, L)?> x (0, d,). Using proposition 2.1 (b) and (4.9)
together with a direct calculation, we have

2
/v dvdx_—dH > - = (f(Xt))zdxdt (4.10)
D

Term II. From (4.4) it follows that

/vd(bdx:/ v df(X,) dx
D Ds

= / v LF(X)dx dr + a/ v f (X)dx dW,.
D

Dj

.11

Term III. Using the incompressibility of v, along with integration by parts, we get
(v-Vov,v)=0

Term IV. Since wv; vanishes on the bottom wall, we can write v(xy,x2,x3) as
f 3 vy (xl,xz, ¢)d¢. Applying the Cauchy—Schwarz inequality (twice), we first estimate as

X’;a
vn v3dx; dxy| = (xl,Xz,E) dE/ —(xl,xz,n)dndxndxz
% %
ax_g aX3
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Using this together with Young’s inequality, we have

0

0 X
|(v- V&, 0)| = / vlv3—¢dx‘ < |2 v1v3 dxg dxs dxs
Ds aX?, (5; 0o Jo
X Or L rL
= = [/ / V103 dX1 dXQ:| dX3
o | 1Jo o Jo
0
< X, / “ % 0v; drs
6t 0 a)C3 8X3
4.12
_ | K] & || 0un ]| 0vs
o (5, (9)63 (9)63
| | 801 1 6”()3 2
! aX3 2 GX3
19
< Vol
Term V. Using a pointwise calculation we have
0
Vv = o3, X)) -
8X1
Therefore, using integration by parts and then the periodicity of v, one can show that,
1 0
(P Vo,v) = —/ B(x3, X)) =—|v|* dx
2 Ds 8x1
1 Lrrto 4.13
=5 d)(xfi’ Xt)/ (/ 7|'U|2 dX1> dx, dxs ( )
2 0 0 0 a.X[
=0.
Term VI. A pointwise calculation leads to ® - V® = 0, hence,
(®-Vo,v)=0
Term VII. Direct calculation shows that d‘*”(“ ) — =55 < for 0 < x3 < 6(z). Hence
0¢ L
—|| = =5 X 4.14
‘ Ox3 ’ 6,1/2| | ( )
Therefore using the Cauchy—Schwarz inequality and Young’s inequality, we find
8¢ le
Vo, Vo) < v
|V( v )| / 8)63 8X3
-l
3l (4.15)
51/2 ‘Xt‘ vaH

<Zrx)?+ Lyvol?
TP+ |0
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Using the estimates for all the seven terms above in (4.8) yields,

1 3
5d||u||2 + fnwnzdz + o/ o f'(X)dx dW,

Ds,

2
<Z / (f'(X))?dx dr + ‘ / o LF(X,)dx| dr (4.16)
2 Ds Dgs

b X2
+ J|X,|\|v«u|\2+yL2Q dr,
4 5

where §; = §(X;) is as in (4.1), and f is as in (4.2) with derivatives as in (4.3).
The second term on the right-hand side of (4.16) can be bounded from above by using the
next lemma, which is proved in the appendix A.

Lemma 4.1. Let G = (G)icr, be a stochastic process defined on the probability space in
the martingale solution to (1.1) and (1.2). Then P-a.s., we have for all t € R,

N 1

Or 2
/le,dx < [Voo)|| 5,L</ |G,|2dx3)
Ds Jo

Applying lemma 4.1 with G, = Lf(X,) and then using Young’s inequality, we have

1

0 2
< |Vol 5,L< / |£f(X,)|2dx3)
0

/ v Lf(X)dx
D;

_ @.17)
v 2 Lo ([ 2
< ZHVUH + =4;L [Lf(X)["dxs ) .
v 0

Hence inserting estimate (4.17) in (4.16), and collecting terms that involve ||Vv||, we have
the following stochastic equation.

1 16X
Ed||v||2 + (5 — —’iy") V|| Vo dr + a/@vlf’(x,)dxdw,

(4.18)

[ 2 2|X,|2 Lo & 2
< {—/ (f'X))ydx + vL*—- + =4, L / |Lf (X)) dx_;] dr.
2 Ds o v 0
All stochastic differential inequalities appearing in this paper should be interpreted in their
corresponding integral forms.
We note that the calculations up to and including (4.18) work for a general C* function
Ot |Xt‘

0 = 0(z). For ¢ as in (2.2) it is crucial to choose A and B such that (% — T) in the second

term of (4.18) to be strictly positive. Such conditions are summarised in the following lemma.

Lemma4.2. Letd, = §(X,), where X, is a stochastic process in R and §(z) = ﬁ'

A and B are positive numbers such that % < hand A < 2v+/B. Then with probability one, for
allt > 0 we have 6, < h and

Suppose

1 1 46X 1
- < = < —. .
42 v T2 (4.19)

These hold if, for instance, A = vU and B = U* and UTh > 1.
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Proof. Note that 6, € (0, h) if % < h. Next, by the inequality ><% < ﬁ forall z € R, we

have
1 A 16X
N g - -
2 8wVB 2 4
The term on the left is at least 1 /4 if A < 2v+/B. O

We summarise the above derivations in the following almost sure upper bound for the energy
dissipation, which is the main result of this section.

Lemma 4.3. Suppose A and B are positive constants such that % < hand A < 2v\/B. Then
with probability one, the following inequality holds for all T > 0.

T
[ vIvelPar s amty < 2@ - 2ec] + v (4.20)
JO
where
T p 2
3X2+ B
MT;:G//U. <1—x3 (Tt >dxdW,. (4.21)
0 Jp; A
and
3A  6(A\ 02 TP 674N
Yr=4L’T |Z=+—-(=) =|0o° 4L2/ L S(2) Alu-X | de
r ZB+1/(B)B oA vt o\E) |

(4.22)

Proof. The stochastic integral term in (4.18) is
' " 3X?+B
0/ v f'(X)dx dW, = O'/ V1 (1 - x;t7+) dx dWw,.
J Ds JDg A

We now estimate terms on the right-hand side of (4.18). For the first term, f Dy (f'(X)*dx =
L2 [} (f'(X,)*dxs and

"6, 0 2 2
t 't X B
(f'(X))2dxs = / (1—x33  F ) dox;
0 0 A

s 230 tB 8 (32 4B
T A 3 A
X24+B 69
<5_52 t e
e e
A
<3Z, 4.23
3 (4.23)

2
where we used the fact that 3X’T+B < (% and 0(z) < % forall z € R.
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Now we consider the term involving L f (X,). By the definition (4.5) of £ and the elementary
inequality (a + b)? < 2(a* + b%),

2
LI = F'EK)BU =X+ T f'(X)
4
ILFC)P < 2|F (K)P6% (U - X)? + %(f”(xg)z.

So using (4.23) and the expression f”(X;) = —6x3 %, we see that in the last term on the right
of (4.18),

-0 0y 4 0
! g 1
/ |Lf(X)Pdxs < 20°(U — X,) / (f'(X))* dxs + 5 / (f"eX)) dxs
JO 0 0
A X2
< 6§92(U - X)* + 6U4A—;5,3
A 52
<6=02(U — X,)? 49
6 S0 -+ 60 "
A A
< 6E92(U —X,)? + 6U4E. (4.24)

In the above, we used the fact that |X,|* < 54[ and 6, < %.
Hence after using §; < %, the right-hand side of (4.18) (ignoring dr) is bounded above by

302 LA X, [2 6/A\° 6 (AN’ o*
2 e 2 (2 () ru—x)r 2 (2) 2 ). @a2s
Lt Tl ) o T o\B) B (4.25)

Applying (4.19) to the second term on the left of (4.18), and (4.25) to the right of (4.18),
we obtain

1 1 1 /7 T 3X% + B
—lo(D]]? = =lvO)|* + = 2d // 1— ! dx dw,
S = 510 + 5 [ vvolfar o [ [ (175 ) axaw,
T 2 3 3 4
3A X2 6/A 6 /A\ o
<L2 -2 e el 92 7X 2 e il e
/0 (230 +v 3, +V 3 v 1) +V 3) B dr
34 6(A\ 0| , TOOXP o 6/AN
il T el B 12 Il kel
ZB+I/(B) BT T /0 " +I/(B)

x 0?|U — X,Z) dr.

=L°T

(4.26)

Condition (2.6) ensures that the process M defined in (4.21) is a martingale.

Lemma 4.4. The process (M,);>o defined in (4.21) is a martingale whose quadratic
variation satisfies

A 3 AT
M7 < 302L2<§> / [Vol|*dt forT > 0. 4.27)
0
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Proof. Applying lemma 4.1 with G, = f/(X,) = 1 — x3+% and then (4.23), we have

O
< HVUH(S,L(/ \f’(X,)|2dx3>
0

/ v f'(Xp) dx
D;

1
2
<Iveloc (%) (4.28)

AN 32
< 31/2||Vv||L<E> :

In the above, we used the fact that d(z) < % forall z € R.
Hence the quadratic variation of M7 is

T 3X2 4+ B :
[M]T:(TZ/ [/Ul (1*)@ s >dx} dr
0 Dgs A

T AN 32 2
< 02/ 31/2\|Vv||L<—) i
0 B

A
< 302<7) Lz/ V|,
B Jo

5. Estimation of the mean value

To construct the estimate on E[(€)r], we shall take the expected value of (4.20) with respect to
P, then average it over [0, T, and finally take the limit superior as 7 — oo. Since u = v + ®,
we obtain

T T T
/HVqudt:/ ||VU+V¢>H2dt<2/ IVl + | Vo|Pd. 5.1)
0 0 0

The second term in the integrand is, from (4.14),

o6 |I* 12 X4 + BX?
VO = ||=—| ==X?=2"1 "1 52
Hence
T 7 TL2
E [/ [Vo|>dt| = —E (X} + BX7| (5.3)
0 ]
which can be evaluated explicitly using (5.4) and (5.5) below. From proposition 2.1,
2 2 o’ 2 o’

E|IX]°| = — E X7 == 4
[IX.*] =U*+ 5 U -X[?] TR (5.4)
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E[[X,[*] = U* + 617 ) 5(2) E[U-X/|]=3 A
' 20 20)° ' 20)
(5.5)

We now estimate the first term on the right of (5.1). From lemma 4.4, M is a martingale
and hence

E[M7] =0 forall T € [0, ). (5.6)

Therefore, taking the expectation E of both sides of (4.20) gives

T
E/ v||Vo|2dr < E [2[[v(0)]]* + Y7] . (5.7)
0

We shall estimate the expectation of the integral term in Y7 defined in (4.22). To this end we
need some standard properties for the stationary OU process and Gaussian random variables
as stated in proposition 2.1. Recall that, X; has normal distribution with mean U and variance

2 . . . . 2
75 forall t € Ry under IP. Hence U — X is a centered normal variable with variance Z;.
Hence we can compute the expectation of the integral of (4.22) as follows.

TXP 6/A\°
E/O (Vét, +;(§) 02U — X, * | dt
T X44BX2 6/AY , )
= HEJK; (l/————;(———“+ Z;(iz;) 0 |l] —-§§,| dr
i (vverr (Z) +3( 2 2+BU2+BU—2 LAV e (5.8)
T A 20 20 20 v\B 20 (- '

Now we continue from (5.7). Divide both sides by T and |D| = L*h, and use (5.8) to obtain

1 T
lim su E [ v|Vov|?ds
msup 22 [ 0] 90]

1
<l ——E[Y;
IITTLiIC}P TI2h (Y7]

_A[3A 607 (AN
“nl2B v B\B) |°

2 2\ 2 2
+ {% U4+6U2<U—) 3<U—> +BU* +BZ

S|~

20 20 20

6 /AN 020
+Z<E) 7} (5.9)
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Finally, by (5.1) and (5.9), one obtains the estimate

T 2 T
IE/ V||Voldt + lim sup —IE/ V||V | 2dt
0 T—00

<li o
° S ISP g, T?h ),
8134 602/A\°| ,
K- |lzs+-——=1 3 o
h|2B v B\B
8 2| 4 , (02 o2\’ ) a2 6 (AN 020
+Z{X + 6U (% +3 29 + BU -‘rB% -‘r; 3) 2 (- (5.10)

Taking A = vU and B = U?, in terms of the Reynolds number Re = UTh the above estimate
can be written as,

U3 1
<R 42(6—+28— +12 u—"7 167
: M ( Re " omo " THRe T T e

U 1 ho 1 ho? o2 ’
h o RS U 7

(5.11)

Remark 5.1 (Large noise regime). While the choice A = vU, B = U? andRe = Uh/v
above is appropriate both from a mathematical and physical point of view when the noise
is small, to investigate the large noise regime one can instead take A = v(U + U) and
B=(U+ l~/)2 and consider the alternative Reynolds number Re = (U + l~]) h/v, where U=
o/ V0. Lemma 4.2 is still satisfied, and our estimate (5.10) gives

773 50 _
WD <1 1 WU 1 o )U26'

h Re Re2(U+U)® Re2U+U
U+ U)>
N% as v—0

U/h ifU>Uasv—0

U/h ifU>Uasv—0

Remark 5.2 (Over-dissipation). If in our analysis, we were to instead take X to be Brow-
nian motion, i.e., X; = W,, this would result in a potential over-dissipation of the model, since,

1 T I 5 1
—E X,[?dt| = — [ E[W/]dt=_-T—o00, as T—oo0.
T Lo T Jo 2

Remark 5.3. If 0 — 0, the estimate in (5.11) tends to infinity. Roughly speaking, this poten-
tial over-dissipation of the model is consistent with remark 5.2. This because as # — 0, the OU
process (2.1) tends to o W which is a Wiener process with a constant time-change.

6. Estimation of higher moments

To estimate higher moments of

117 2
{e)r = DI T Jo V|| Vult, -, 0|72, d,
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we shall need higher moments of the stationary OU process X;. By proposition 2.1,

6 6 4”2 2 o? ? o’ :
E[\X,\ ] =0+ 15U %+45U (@> +15(%) s (6.1)

0'2 O'2 : 0'2 } 0'2 ¢
E [|X|*] :U8+28U6%+210U4<%) +420U2<%> +105(2—6> .
(6.2)

More generally, for all integer k > 1, E [|X;|*] = U* + Pi(U?%, 0 /(20)) for some polyno-

mial Py.
P T P
] <R H/ IVo|? + [ Vo|2dr ]
0

By (5.1), forall p € [1, 00),
T p T
<ar (]E H/ V| Pdr ] +E H/ IV |2de
0 0

T
E H/ 1V 2de
0
To bound the second term on the right of (6.3), from Hoélder’s inequality we have

T
E H/ Vo>t
0

We shall focus on the case p = 2, even though our estimates below can be extended to any
p € [1,00). From (6.4) and (5.2)

T
E U/ |V ®|dt
0

which can be computed explicitly using the moment formulas (5.5) and (6.2) for the OU
process.
For the first term on the right of (6.3), we write

1)

(6.3)

P T
] <ST'E U \|V<I>|\2”dt]~ (6.4)
0

AZ

? T 2721
<TIEU |\V<I>||4dt} < E[X}+BX]] (6.5
0

T
Er ::/ v||Vu|de. (6.6)
0

Lemma 4.3 asserts that
Er < 2||v(0)|]> + Y7 + |M7|. 6.7)
Hence

E [\&ﬂ < 3E [40)| + |¥r 2 + [Mr[] . 6.8)
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6.1 Bounding E[MZ]
By lemma 4.4, Jensen’s inequality and then Young’s inequality, we obtain

3E[M7] = 3E[[M]7] < oE[&r]

o E[|&E)?
< ayEER < & + 24T (6.9)
where o = 9212 (%)3 has the same dimension as that of & when we choose A = vU and
B = U

6.2. Bounding E[|Yr[?]

We apply the elementary inequality (a + b)> < 2(a® + b*) and the Cauchy—Schwarz inequality

to (4.22) and to obtain
2
3A 6(A\ 02
- + — . PR
2B v\B/) B

2
T X 2 A 3
+32L4T/ <u5’ +§<E> 0*|U — X, | dr. (6.10)
0 t

Applying (a + b)? < 2(a® + b?) again, the integrand in the second term is bounded above by

2
X2 674\, 5 ,(X4+ BXY)?2 36 (A\°
2(2) tlu-x <o T 28
(V EAV: U =X v A 2\

x 04U — X,|4>

4

|Y7|? < 32047 o

42 o sea T2(ANC

x 04U — X |*.
Hence

2
34 6<A>302
___|__ —_ —_

E[|Y7[?] < 32 L*T?
[1¥7r|°] 57 5\8) B

412 72 (A\®
+ 32117 (F]E[Xf + B*XH + = (E) O*El|U — X,I“]) )

6.11)

6.3. Summarising
Putting (6.9) into (6.8), we obtain

a?

E[|£T|2] 2
) +T +3EHYT| ]

E[|€7[*] < 12E [[[v(0)]*] + <
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Rearranging terms gives

E[|€r|*] < 24E [||v(0)|]*] + o* + 6E[|Y7[*]. (6.12)

Combining (6.12) with (6.3) (with p = 2) gives

T
E U/ v||Vul|*dt
0

2

<16 <]E [Er]*] + E

T
’/ V||V ®|2dr
JO

< 384E[||v(0)]] + 160° + 96E[|Vr|*]

T 2
‘/ v||V|2dr } :
0

Hence using (6.5) and (6.11), and recalling |D| = L2k, we have

)

+ 16E

lim sup E[{¢)2] < 16 lim sup E[‘iﬂz] + 16lim sup
T—o0 T—o0 |D| TZ T—0
1 T :
——F Vo *dt
< gk || [ vl ]

2
96

< — { 321°
ID[?

34 6/A\ 02 42

S5t Z(E) % ot + 321 (FE[X§+B2Xf]

72/A4\° , . 160220 o s

+ﬁ(é> O*E[U - X, |1 +—|D|2 e E [X} + B°X}]
2
3072 | (34 64\’ 02| ,
77_’_7 o

2B v\B) B

n B) B
42 72 (A\°
+ (FE[Xi‘ + B*X} + o (—)

~

B

4 4 3212 3 24
x O'BIU = X[") ¢ + 75 [X7 + BX/]

322
34 6(AN T 4
28 \B) B|?

72(A\°, . 1232012 8 ot
+E<E)QE[|U_XI|] + h2A2 E[Xf_FBXJ’

3072
<
h2
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Now applying the moment formulas (5.5) and (6.2) and setting A = vU and B = U?, the above
upper bound is

lim sup B[ (€)7]
T—o0
2
3072 | [34  6/AV’ 02| . 216 (A\° , [0*\®
<RS2 (2) T A 2 (2) e (2
h? 2B v\B) B v2 \ B 20
123202 o
+ h2A?

3 6‘72 4 2\’ 2 o’ :
U 28U°— +210U7 [ — 20U —
* 20" (29) * <29>
+B? (

U* + 6U? <"—2> +3
20

0'2 4

105( =
“105(55)
3072 [[3v 6% ? 2, 20600 (o ?

ST Y2ovT e 7T o U\
12320
MR
0'2 4

105( —
“105(35)
24 640U
e

(6.13)

2 2\ 2 2\ 3
8 67 40 2( @
20° + 34U 29+213U (29) + 420U < )

+ 0Py ,0(0)

where Py, ¢(0) is an explicit polynomial in ¢ whose coefficients are explicit functions of
U,v,0.

Remark 6.1 (Higher moments). One can readily obtain estimates for higher moments by
following our method. Note that (6.3) and (6.4) still hold, and for all integer k > 1, E [|X,|2k] =
U + P(U?, 0% /(20)) for some polynomial Py. For the martingale term (6.9), one can apply
Doob’s L? inequality. We expect that for all integer k > 1, the 2kth moment of ()7 satisfies

U6k
lim sup E[ ()] < Y o? P(o) (6.14)
T—o0

where P(0) = Py, 0(0) is an explicit polynomial in o whose coefficients are explicit functions
of U,v, and 6.

7. Conclusion and commentary

In this paper we have derived uniform (in 7') bounds for both the mean and the second moment
of the energy dissipation rate for solutions of the incompressible NSE with a boundary wall
moving as a stationary OU process. As the variance of the OU process tends to 0, we recover an
upper bound for the deterministic case as in [ 13]. A similar argument can be used to find higher
moment bounds. A novelty of our method is the construction of a carefully chosen stochastic
background flow @ that depends on the stochastic forcing, as indicated in (2.2). Our technique
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can be readily generalised to obtain bounds for higher moments and to the case where the OU
process is replaced by a gradient system of the form

dX; = —Vi(X,)dt 4 o dW,, (7.1)

where his a functionand o € R. The OU process (2.1) is the case where h(x) = —0(x — U)?/2.
It is well-known that if

-2
7@ ::/ exp (—2h(x)> dx < oo,
R ag

then the one-dimensional gradient system (7.1) has a unique invariant distribution given by the
Gibbs measure

1 -2
e (Fh(x)) . (72)

The analysis herein would allow for over-dissipation of the model if the noise at the boundary
were taken to be the Wiener process, as noted in remarks 5.2 and 5.3.

Finally, it was crucial to take the limit superior in time after the expectation. Our estimate
does not provide a bound when the operations are taken in the reverse order. It remains to find
a bound in the latter case, or quantify the difference in the two expressions describing the rate
of dissipation.
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Appendix A

39U (xy, x2,()dC, and apply the

Proof of lemma 4.1. we first write v;(x1,x2,X3) as [, o

Cauchy—Schwarz inequality to obtain

L L 6
/ ’UthdX = / / / Gﬂ]l dX3 dXQ dxl
Ds o Jo Jo
L pL 6 3 Oy
= / / / G; ( a—l(xl,xz, n)dn) dx3 dx; dx;
o Jo Jo 0 n
L pL r0; fx3 )
= / / / / Glﬂ(xl, X2, m)dn dxs dx, dx;
o Jo Jo Jo on

L pL 0 X3 %
(/ / / / |G,|*dn dxs dx, dxl)
0o Jo JO 0
LLLL
0o Jo JoO 0
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Now we estimate the terms on the right-hand side of (A.1) as,

L rL 6 x3 3 L fL 8
LS ([ opan) anason) < ([ [ [ (e
o Jo Jo 0 o Jo Jo
v 3
></ ldn) dX3d)€2dX1>
0
1

"0y 2
=L </ |G,|ZX3dX3>
0
1 Or %
62 L ( / |G,|2dx3>
0

2 % Oy L pL px3 2
dn dxs dx, dx; = / / / /
0o Jo Jo Jo

x dndx, dx; dx3>

(LT

x dndx, dx, dx3>

N

and,
v
on

1
2

LI

v
an

2

v
on

1
2

l—

< 02 ||Vl

Plugging the above two estimates in (A.1) yields the desired inequality.
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