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Abstract—This paper proposes a new physics-guided machine
learning approach that incorporates the scientific knowledge in
physics-based models into machine learning models. Physics-
based models are widely used to study dynamical systems
in a variety of scientific and engineering problems. Although
they are built based on general physical laws that govern the
relations from input to output variables, these models often
produce biased simulations due to inaccurate parameterizations
or approximations used to represent the true physics. In this
paper, we aim to build a new data-driven framework to monitor
dynamical systems by extracting general scientific knowledge
embodied in simulation data generated by the physics-based
model. To handle the bias in simulation data caused by imperfect
parameterization, we propose to extract general physical relations
jointly from multiple sets of simulations generated by a physics-
based model under different physical parameters. In particular,
we develop a spatio-temporal network architecture that uses its
gating variables to capture the variation of physical parameters.
We initialize this model using a pre-training strategy that helps
discover common physical patterns shared by different sets of
simulation data. Then we fine-tune it using limited observation
data via a contrastive learning process. By leveraging the com-
plementary strength of machine learning and domain knowledge,
our method has been shown to produce accurate predictions, use
less training samples and generalize to out-of-sample scenarios.
We further show that the method can provide insights about
the variation of physical parameters over space and time in
two domain applications: predicting temperature in streams and
predicting temperature in lakes.

I. INTRODUCTION

Physics-based models have been widely used to study
scientific and engineering systems in domains such as hydrol-
ogy [1], climate science [2], and material science [3]. Even
though physics-based models are based on known physical
laws that govern relations between input and output variables,
most physics-based models are necessarily approximations
of reality due to incomplete knowledge of certain processes
or excessive complexity in modeling these processes. For
example, existing physics-based approaches for predicting
river networks simulate target variables (e.g., streamflow and
temperature) based on general physical relations such as
energy and mass conservation. However, the model predictions
still rely on parameterizations of land surface and subsurface
processes based on soil and surficial geologic classification
along with topography, land cover, and climate input. Hence,
such models have limits of prediction performance even after

parameter calibration due to constraints from the model struc-
ture and simplified representation (e.g., by assuming physical
parameters are static in space and/or time). Furthermore,
calibration of physics-based models often requires extensive
expert knowledge of the system and can be extremely time
intensive due to the complex (sometimes chaotic) dynamics in
the system and uncertainty in observations, initial conditions,
and model error. The limitations of physics-based models cut
across disciplinary boundaries and are well known in the
scientific community.

Machine learning (ML) models, given their tremendous
success in several commercial applications (e.g., computer
vision, and natural language processing), are increasingly
being considered as promising alternatives to physics-based
models by the scientific community. Early results in isolated
and relatively simple scenarios have been promising, and the
expectations are rising for this paradigm to accelerate scientific
discovery and help address some of the biggest challenges
that are facing humanity such as food and water security.
However, direct application of “black-box” ML models has
had limited success in some scientific domains, given that the
data available for many scientific problems are far smaller than
what are needed to effectively train advanced ML models.
Moreover, in the absence of adequate information about the
physical mechanisms of real-world processes, ML approaches
are prone to false discoveries of patterns that cannot generalize
to out-of-sample scenarios.

In recent years, there has been a great interest in developing
new approaches that integrate scientific knowledge into ML
models (e.g., see a recent survey [4]). From the earliest resid-
ual modeling approaches, where an ML model is trained to
predict the discrepancy between observations and simulations
made by a physics-based model [5]–[7], researchers have now
shifted their focus to new methods that leverage knowledge
of physics to guide the learning process of ML models.
This includes new loss functions to preserve consistency with
established physical laws [8]–[13], new model initialization
methods by transferring physics [8], [11], [14], [15], and new
model architectures by encoding specific physical relation-
ships [16]–[20]. In particular, previous work has shown that
ML models can learn more generalizable patterns from limited
observation data by transferring knowledge from simulations
produced by physics-based models [8], [11], [21].



However, there are two major challenges faced by these
methods when applied to real-world problems. First, these
methods can require access to a physics-based model that well
simulates the target system, which is often not feasible given
the high cost of calibration and/or parameterization and the
prediction errors that persist even after these procedures. The
parameters of a physics-based model modulate the transla-
tion of input drivers to predictions of target variables. For
example, given the same meteorological drivers for a lake
system, the physics-based model can simulate different water
temperature profiles by varying the parameter of water clarity,
which controls how much light can penetrate into the water
column and warm deeper waters. When transferring physics
knowledge to an ML model, existing methods are likely to be
affected by the inherent bias due to uncertainties remaining
after parameterization thereby limiting the model’s potential
to extract general physical knowledge from the physics-based
model. Second, existing methods commonly use physical
simulations in a separate training stage [8] or for feature
augmentation [10] without fully exploring the relationships
between simulations and true observations. Learning such
relationships has the potential to identify simulation biases
and variations of physical parameters over space and time.

In this paper, we propose a new framework, SIMulation-
guided LeaRning (SIMLR), which extracts the general phys-
ical knowledge jointly from multiple sets of physical sim-
ulations with imperfect parameterizations. We also explore
the relationship between observation data and simulation data
and identify parameter settings that produce the most accu-
rate predictions over different locations and time periods. In
particular, we first build a spatial-temporal network (STN)
architecture to represent the spatial and temporal relationships
in the dynamical system. Given that most physical parameters
determine specific conditions that control how the system
states react to external changes, we represent such conditioning
factors using a set of gating variables in the ML architecture.
The gating variables are used to filter the information from
the current time step, previous time steps, and the spatial
neighborhood. The filtered information is combined to update
the state of the ML model. Then we propose a new pre-training
strategy that leverages general physical patterns from different
sets of simulation data to inform the initialization of the STN
model. The idea is that this initialized model can be easily
adjusted to fit each set of simulation data by slightly altering
gating variables. After the initialization, we further refine
the model using true observations via a contrastive learning
process. The contrastive learning process aims to explore the
similarity of relations between observations and different sets
of simulation data and further transfer the knowledge from
specific simulations that are closer to the observed reality.

We evaluate the performance in two societally relevant
applications, modeling water temperature in a lake system
and water temperature in river networks. Although predict-
ing the same variable, these two applications have distinct
spatiotemporal drivers of water temperature and focal pa-
rameters for physics-based calibration. We demonstrate the

effectiveness of model initialization using general physical
knowledge and show that our method can achieve good
predictive performance even with very sparse observation
data. We also analyze the similarity relationships learned
from the contrastive loss and provide scientific interpretability.
Our method has shown promise in discovering variations of
physical parameters across space and time while traditional
physics-based model can often take fixed parameter values.
Moreover, we show that our method under the guidance of
general physical relationships can better generalize to different
scenarios. We have released our code and the river dataset in
a temporary Google Drive link1.

II. RELATED WORK

Recently, we have seen an increasing interest of integrating
physics into ML models for improving the predictive perfor-
mance and generalizability in addressing scientific problems.
This is commonly conducted in several ways, including devel-
oping new model architectures [22], [23], and applying addi-
tional loss functions [8], [11]. However, scientific dynamical
system can be driven by complex physical processes that are
difficult to explicitly include in the loss function or model
structure. To overcome this limitation, this paper is focused
on transferring rich physical knowledge from physics-based
models to ML models using the simulation data.

The most common approach for using simulation data is
residual modeling, where an ML model is trained to make
corrections to physical model outputs. Most of the work on
residual modeling going back several decades has used plain
regression models [5], [6], although some recent works [7]
have used Long-Short Term Memory (LSTM). Recently,
Karpatne et al. introduced a hybrid ML and physics model
in which the output of a physics model is fed into an ML
model as additional input [10].

More recently, simulation data have been used for pre-
training ML models with the aim of improving the initializa-
tion of ML models. Intuitively, if physical or other contextual
knowledge can be used to help inform the initialization of the
weights, model training can be accelerated or improved while
also requiring less training samples [8]. One way to inform
the initialization to assist in model training and escaping local
minima is to use an ML technique known as transfer learning.
In transfer learning, a model can be pre-trained on physics-
based model’s simulated data prior to being fine-tuned with
limited training data to fit the desired task. The pre-trained
model serves as an informed initial state that ideally is closer
to the desired parameters for the desired task than random
initialization. For example, Jia et al. used this strategy in
the context of modeling lake temperature dynamics [8]. They
pre-trained their Physics-Guided Recurrent Neural Network
(PGRNN) models for lake temperature modeling on simulated
data generated from a physics-based model and fine tuned
the network with small observed data. They showed that pre-
training, even using data from a physical model with an

1https://drive.google.com/open?id=12l9RhiaGZqwZEp3URFY8GrQ4VAMpRtvy



Fig. 1: The flow chart of the proposed framework. The thickened arrows represent data being fed to the next model. For
example, we feed limited observations to the obtained pre-trained model and fine-tune it to the final model.

incorrect set of parameters, can still reduce the training data
needed for a quality model. In addition, Read et al. [11]
demonstrated that such models are able to generalize better to
unseen scenarios than pure physics-based models. Such pre-
training methods have also been explored in computational
biophysics [15], chemistry [24], and climate science [25].

However, the benefits of pre-training are limited by the
quality of the physics-based simulations, which in turn is
limited by the use of imperfect parameters. In this paper, we
will leverage multiple sets of simulation data produced using
several default physical parameters and develop a new method
to extract general physical relationships from simulation data.
Our work is also relevant to existing work on learning from
multiple noisy annotators [26]. The difference is that we aim
to use physical simulation data only to initialize the ML model
and then use true observations to adjust the model and identify
the gaps and similarities with different parameter settings.
Also, the bias introduced by simulation data are not randomly
generated but caused by the deviation of physical parameters
used in the governing equations.

III. PROBLEM DEFINITION

Our objective is to predict target variables for each location
i ∈ {1, ..., N}, and on each date t ∈ {1, ..., T}, given input
physical variables that drive the dynamics of the physical
system. Specifically, we use xti to represent input features for
each location i on a specific date t, and we aim to predict
the corresponding target variables yti. In aquatic systems, each
location can be a specific depth layer in a lake, or a different
segment in a river network. To fully capture the spatial
dependencies amongst different locations, we also introduce
the neighborhood N (i) and the adjacency matrix A, where
N (i) represents a set of locations that are spatial neighbors of
the location i and Aij represents the adjacency level between
each pair of locations i and j (more details in Section V-A).

In real-world scientific applications, the available observa-
tions (i.e., labels) yti are often sparse due to the substantial
manual labor required to collect the observation data. This
makes it challenging to directly train an ML model using the

limited observation data. To address this issue, we leverage the
simulation data generated by the physics-based model to guide
the learning of ML model. The physics-based model takes the
input features {xti} and simulates target variables based on
known physical theory and a set of physical parameters. For
example, in the context of modeling lake systems, the physics-
based model simulates water temperature based on energy
conservation law, and also requires physical parameters such
as lake geometry and water clarity, which directly affect the
change of temperature in response to external energy fluxes.
In this work, we consider learning from ensemble simulation
data. In particular, we are provided with K different sets
of simulation data generated by using K different parameter
values (that are commonly used by domain scientists) for a
specific physical parameter (e.g., water clarity). We represent
each set of simulated target variables as Ỹk = {ỹti,k} for each
location i on each date t.

To avoid ambiguity, we use “physical parameters” in this
paper to refer to parameters in the physics-based model and
otherwise “parameters” refer to parameters in the ML model.

IV. METHOD

This section presents our proposed SIMLR framework
(Fig. 1). We will first describe the architecture of the spatial
temporal network (STN) and then discuss how to extract
general physical knowledge from simulation data and encode
the knowledge using an initialized STN. Finally, we will
describe how to refine the STN by exploring the relationships
between observation data and simulation data.

A. Spatio-temporal model for scientific systems with different
physical parameters

Physics-based models, e.g., General Lake Model [1] and
PRMS-SNTemp [27], commonly use parameterized governing
equations to represent physical processes that underlie the dy-
namical system. The physical parameters used in these models
have physical definitions and often cannot be easily measured.
These physical parameters determine how the model states
change in response to external inputs. For example, given the
same amount of solar radiation, a lake with higher water clarity



will have a larger increase of water temperature at lower depths
compared with a darker lake because more light can penetrate
to the lower depths of the water column.

To represent these relationships and also to facilitate learn-
ing from multiple sets of simulation data, we build the STN
model architecture. The STN model is essentially an extension
of the Long-Short Term Memory (LSTM) structure. It uses a
set of gating variables to control the influence from different
sources, including the inputs at the current time step, model
states from the previous time step, and the effect from spatial
neighbors.

Similar to the standard LSTM, the STN preserves a model
state cti for each location i at time t, which serves as a memory
and will be updated over time (see Fig. 1). It also outputs a
hidden representation hti at every time step, which encodes the
information about the location i and its spatial and temporal
context. Now we describe the details of computing model
states and hidden representation. First, we generate a candidate
state c̄ti by combining xti and ht−1

i using a tanh(·) function,
as follows:

c̄ti = tanh(Wh
cht−1

i + Wx
cxti + bc), (1)

where {Wh
c , Wx

c , bc} are model parameters.
For each location i, we generate hidden variables qt−1

i by
aggregating the hidden representation from its neighbors based
on their adjacency level with the location i, as follows:

qt−1
i = tanh(Wq

∑
j∈N (i)

Ajiht−1
j + bq), (2)

where {Wq , bq} are model parameters.
Then we generate three sets of gating variables: forget

gating variables fti, input gating variables gti, and spatial gating
variables sti. These gating variables are used to filter the
information passed from the previous time step, the current
time step, and the spatial neighborhood, respectively. Formally,
these gating variables are computed using sigmoid function
σ(·) as follows:

fti = σ(Wh
fht−1

i + Wx
fxti + bf ),

gti = σ(Wh
ght−1

i + Wx
gxti + bg),

sti = σ(Wq
sq
t−1
i + Wx

sxti + bs),
(3)

where Θ={Wh
f , Wx

f , Wh
g , Wx

g , Wq
s, Wx

s , ,bf , bg , bs} are
model parameters.

Once we obtain the gating variables, we can use them
to filter the information from the previous time (ct−1

i ), the
current time step (c̄ti), and the spatial neighborhood (qt−1

i ) via
element-wise product �, and combine the filtered information
to compute the model state at time t. This can be expressed
as follows:

cti = fti � ct−1
i + gti � c̄ti + sti � qt−1

i , (4)

According to this equation, the change of model states given
the inputs over space and time is conditioned on the gating
variables fti, gti, and sti. This is analogous to the evolution of a
dynamical system, which is conditioned on specific physical

parameters. Hence, we can use these gating variables to encode
variations in physical parameters. By varying parameters Θ,
the STN model can represent the dynamical system using
different physical parameters.

After obtaining the model state cti, we generate the output
gating variables oti and use them to filter the model state to
compute the hidden representation ht, as follows:

oti = σ(Wh
oht−1

i + Wx
oxti + bo),

hti = oti � tanh(cti).
(5)

Finally, we generate predicted target variables ŷti using a
linear transformation, as follows:

ŷti = Wyhti + by. (6)

The loss function of STN is defined using true observations
Y = {yti} that are available at certain time steps and certain
locations, as follows:

LSTN(Ŷ,Y) =
1

|Y|
∑

{(i,t)|yti∈Y}

(yti − ŷti)
2. (7)

The model has two sets of parameters. The model pa-
rameters Θ={Wh

f ,Wx
f ,Wh

g ,Wx
g ,Wq

s,W
x
s ,bf ,bg , bs} can cap-

ture the difference in physical processes represented using
different physical parameters and thus they are specific to
each set of simulation data. Later in Section IV-B, we will
create different copies of these parameters Θ for different
sets of simulation data. We represent other parameters using
Φ={Wh

c ,Wx
c ,Wq ,Wh

o ,Wx
o ,Wy ,bc,bq ,bo,by}. The parameters Φ

are shared across different sets of simulation data.

B. Pre-training: Extract knowledge shared across simulations

Although different sets of simulation data are generated
using different physical parameters (some are close to reality
and some are different), the simulations still share some com-
mon patterns of general physical relationships embodied in the
physics-based model. At the same time, each set of simulation
data also shows patterns specific to its own parameter set.
Here we introduce a pre-training strategy for the STN model,
which aims to estimate the initial value of Φ0 and Θ0 by
extracting the general physical relationships. The goal is that
the initial value of Θ0 can later be quickly adjusted to fit
different simulation settings while keeping the Φ0 parameters
the same across different simulations.

Our method is inspired by the Model Agnostic Meta
Learning (MAML) [28]. The original MAML is designed for
learning a model that can be easily adapted to a new task
using limited samples. Although the objective of MAML is
different from our task, we use the similar method to construct
to learning objective so that the pre-trained model can be easily
adapted to each set of simulations after slight fine-tuning. In
particular, we divide each set of simulation data {X, Ỹk} into a
separate training set {Xtr, Ỹ

tr
k} and validation set {Xval, Ỹ

val
k }.

For the kth simulation, we update Θ0 using its training data



{Xtr, Ỹ
tr
k} with a learning rate α while not changing the other

parameters Φ0, as follows:

Θk = Θ0 − α∇ΘLSTN(fSTN(Xtr; Θ0,Φ0), Ỹ
tr
k), (8)

where fSTN(·) represents the mapping relation from input
features to target variables defined by the STN (Eqs. (1)-(6)),
Θk represents the simulation-specific parameters for gating
variables. Here Eq. (8) just shows the adjustment of Θ using
a one-step gradient descent. This can be easily extended to
multiple update steps, which allows more flexible adjustment
of Θ to fit each simulation. In our implementation, we found
the update with no more than five steps can already lead to
good performance. More discussions on the selection of the
number of update steps are in Section V-F.

Once we gather the Θk that are specific to each set of
simulation data, we define the pre-training loss using the kth

simulation’s validation set, as follows:

Lpre =
∑
k

LSTN(fSTN(Xval; Θk,Φ0), Ỹ
val
k )/K. (9)

During the pre-training process, we minimize the loss Lpre
with respect to the initial parameters Φ0 and Θ0. These
estimated parameters are used to initialize the STN model,
which will then be fine-tuned using true observations. We
also collect the obtained intermediate parameters Θk values
for k=1 to K, which encode the information specific to each
set of simulation data. These simulation-specific parameters
will also be used for model fine-tuning.

C. Fine-tuning: Contrastive Learning

After initializing the parameters Φ and Θ using the values
Φ0 and Θ0, we refine these parameters using the available
observed target variables. We will also further leverage the
knowledge extracted from simulation data by exploring the
relationships between the observation data and different sets
of simulation data. Because each set of simulation data can
be considered as an ideal version of real data under certain
physical parameter settings, for each observed sample, it is
possible to find its matched counterpart in the set of simulation
data. Here we will introduce a new loss function for fine-tuning
that captures this relationship.

In particular, we first generate hidden representation for
each location i at time t, as follows:

hti = gSTN(x1:t
i ; Φ,Θ), (10)

where the function gSTN(·) represents the function defined by
the STN model to extract hidden representation hti from input
data by following Eqs. (1)-(5).

Using the collected Θk for kth simulation setting, we also
generate the corresponding hidden representation h̃

t

i,k. It is
noteworthy that these hidden representations are generated
using gating variables that are specific to each set of simulation
data. This process can be expressed as follows:

h̃
t

i,k = gSTN(x1:t
i ; Φ,Θk). (11)

Here the obtained h̃
t

i,k encodes the spatial and temporal
patterns under the specific parameter settings used to generate
kth set of simulation data.

After gathering these hidden representations, we define
a similarity mapping hti → h̃

t

i,k for each k=1 to K using
the inner product of these two vectors. Once we obtain the
similarity values for all sets of simulation data (i.e., k=1 to
K), we normalize the obtained similarity values and convert
them into a distribution Q(hti → h̃

t

i,k) via a softmax function.
More formally, this can be expressed as follows:

Q(hti → h̃
t

i,k) =
exp(hti · h̃

t

i,k)∑′
k exp(hti · h̃

t

i,k′)
(12)

We aim to ensure that the patterns extracted from observa-
tion data are similar to certain sets of simulation data that use
more accurate physical parameters, but are different from other
simulation settings. Specifically, we define a contrastive loss
based on the entropy of the similarity probability, as follows:

Lctr = −
N∑
i=1

T∑
t=1

K∑
k=1

Q(hti → h̃
t

i,k) logQ(hti → h̃
t

i,k)/NT.

(13)
As a side benefit, this method also enables the discovery

of more accurate physical parameters for each location at
each time step. Compared to standard physics-based model
which commonly assumes static parameters in space and/or
time, the proposed method has a better chance at capturing
the variability of underlying physical processes.

Combining the contrastive loss and the standard supervised
loss (Eq. (7)) using the observation data, we get the final fine-
tuning loss, as follows:

Lft = LSTN + λLctr, (14)

where λ is a hyper-parameter.

V. EXPERIMENTS

A. Datasets

We apply our SIMLR model to two different environ-
mental modeling challenges, predicting depth-specific water
temperatures in a lake and predicting water temperatures for
segments in a stream network. Both problems require accu-
rately accounting for variations across space (e.g. lake depth,
stream reaches) and time (e.g. daily weather patterns, seasonal
climate). The problems differ substantially in the nature of the
spatial relationships: lakes exchange heat mostly at the water
surface, and various processes operating at different timescales
act to distribute heat through the lake vertically. In contrast,
because streams are well-mixed, the entire stream warms or
cools primarily due to energy exchange with the atmosphere
and other water sources (e.g., groundwater). In-stream heat
almost exclusively flows downhill along the river network
and at the same pace as the water. The focal parameters are
different in each problem and have very different effects: lake
geometry affects the degree, timing, and duration of thermal
stratification and affects the response of the lake to wind



events, and lake water clarity controls the depths at which
incoming solar energy is absorbed, while the groundwater
residence time in stream reaches controls the temperature of
incoming groundwater.

D1: Predicting water temperature in Lake Mendota. This
dataset was collected from Lake Mendota in Wisconsin,
USA [11]. This lake system is reasonably large (∼40 km2

in area) and the lake has a maximum depth of 25 meters. It
also exhibits large changes in water temperatures in response
to seasonal and sub-seasonal weather patterns and thermally
stratifies during the summertime. Observations of lake temper-
ature were collected from North Temperate Lakes Long-Term
Ecological Research Program [11].

The input features that describe prevailing meteorological
conditions are available on a continuous daily basis from April
02, 1980, to December 30, 2014 (12,690 dates). We used a
set of seven input features, including short-wave and long-
wave radiation, air temperature, relative humidity, wind speed,
frozen and snowing indicators. These were acquired and/or
computed from the North American Land Data Assimilation
System. Temperature observations vary in their distribution
across depths and time, i.e., there are certain days when obser-
vations are available only on a few depths or no observations
are available.

We use the observed data from April 02, 1980, to October
31, 1991, and the data from June 01, 2003, to December
30, 2014, as training data (in total 8,037 observations). Then
we applied the trained model to predict the temperature at
different depths for the period from November 01, 1991, to
May 31, 2003 (in total 5,121 observations).

D2: Predicting water temperature in Delaware River Basin.
The dataset is pulled from U.S. Geological Survey’s National
Water Information System [29] and the Water Quality Por-
tal [30]. The river segments were defined by the network
used for the National Hydrologic Model [31], and the river
segments are split up to have roughly a one day water travel
time. We study a subset of the Delaware River Basin with 42
river segments that feed into the mainstream Delaware River
at Wilmington, Delaware.

We use input features at the daily scale from October 01,
1980, to September 30, 2016 (13,149 dates). The input features
have 10 dimensions which include precipitation, air temper-
ature, day of year, solar radiation, shade fraction, potential
evapotranspiration, and the geometric features of each segment
(e.g., elevation, length, slope, and width). Air temperature,
precipitation, and solar radiation values were derived from
the gridMET dataset [32]. Other input features (e.g., shade
fraction, potential evapotranspiration) are difficult to measure
frequently, and we use values produced by the PRMS-SNTemp
model as its internal variables. Water temperature observations
were available for 32 segments but the temperature was
observed only on certain dates. The number of temperature
observations available for each observed segment ranged from
1 to 9,810 with a total of 51,103 observations across all dates
and segments. We use the observed data from October 01,
1980, to September 30, 1992, and the data from October

01, 2004, to September 30, 2016, as training data (in total
34,985 observations). Then we applied the trained model to
predict the temperature for the period from October 01, 1992,
to September 30, 2004 (in total 16,118 observations).

Simulation data: In D1, we use the physics-based General
Lake Model (GLM) [1] to generate different simulation data
by varying the lake geometry and water clarity. Specifically,
we used “cone,” “barrel,” and “martini” shapes to define the
depth-area parameters in the GLM to generate three sets of
simulation data. Then we fix the geometry as “cone” and
use three different clarity levels “normal” (Kw=0.45), “dark”
(Kw=1.20), and “clear” (Kw=0.25). Water clarity affects the
penetration of solar radiation into the deeper water. In D2, we
use PRMS-SNTemp [27] to generate different simulations by
setting average groundwater residence time (τ ) as 10 days,
45 days, and 100 days. A shorter τ means the groundwater
quickly moves through the groundwater aquifer and enters the
stream at a temperature more similar to recent air temper-
atures, whereas a longer τ means groundwater temperatures
are more seasonally stable. These physical parameter values
represent a range of values observed across lake and stream
systems, but are not tailored to our target systems.

Goals: In D1, we aim to predict water temperature in each
depth of the water column. In D2, we aim to predict water
temperature in each river segment. Here we assume the river
temperature is the same across depth because rivers tend to be
well-mixed and shallower.

Implementation details: We implement STN using Ten-
sorflow and GTX 2080 GPU. All the hidden variables and
gating variables have 20 dimensions. We use five update steps
for obtaining simulation-specific parameters Θk during each
epoch of pre-training. The model is pre-trained for 150 epochs
with learning rate 0.001 before being fine-tuned for 100 epochs
with learning 0.0005. The hyper-parameter λ is set as 0.5.

We generate the adjacency matrix A based on the inverse
relation of the distance between each pair of locations i and
j. We represent the distance as dist(i, j). In D1, we use the
distance between different layers across depth. In D2, this
represents the stream distance between the endpoints of each
pair of river segments and we only consider i as a neighbor
of j when i is anywhere upstream from j (so j is affected
by water flow from i). We standardize the distance and then
compute the adjacency level as Aij = 1/(1 + exp(dist(i, j)))
for each pair of locations (i, j).

B. Evaluation of predictive performance

We compare our method against multiple baselines, i.e., the
physics-based model (GLM in D1 and PRMS-SNTemp in D2);
Recurrent Neural Network (RNN) with the LSTM cell; and
the state-of-the-art methods, PGRNN [8] and PGRGrN [33],
which have shown success in modeling lake temperature and
river temperature, respectively. We also compare to the STN
model that is pre-trained using a specific set of simulation
data (as proxy labels) and then fine-tuned with observed
labels. Such a comparison aims to show the advantage of our
proposed pre-training strategy in extracting general physical



TABLE I: Performance (as measured by root mean squared error (RMSE) in degrees Celsius) using simulations with different
parameters in modeling lake water temperature (D1) and river water temperature (D2). The first three rows for each dataset
represent the simulation data produced by the physics-based model using different parameters. The superscript p(k) means
that the model is first pre-trained using simulations generated using parameter k. Here % columns are percent observations
used during fine-tuning phase. The +/- values represents the range of values across replicates with random starting weights,
and NA’s for the +/- values are for models that did not have multiple model runs. The bolded values are the best performing
models in each dataset and data sparsity level.

Dataset Method 0% 0.2% 2% 20% 100%

D1 - geometry

GLM(cone) 2.664(±NA) - - - -
GLM(barrel) 3.791(±NA) - - - -
GLM(martini) 5.919(±NA) - - - -
RNN - 4.615(±0.173) 2.311(±0.240) 1.531(±0.083) 1.489(±0.091)
STN - 3.349(±3.805) 1.848(±1.997) 1.387(±1.737) 1.393(±0.070)
PGRNNp(cone) 2.469(±0.168) 2.056(±0.184) 1.595(±0.097) 1.452(±0.113) 1.374(±0.074)
STNp(cone) 2.289(±0.175) 2.181 (±0.173) 1.591(±0.107) 1.408(±0.089) 1.368(±0.075)
STNp(barrel) 2.996(±0.102) 2.808(±0.187) 1.642(±0.102) 1.339(±0.084) 1.312(±0.075)
STNp(martini) 5.386(±0.124) 2.955(±0.074) 1.821(±0.071) 1.419(±0.110) 1.402(±0.081)
STNSIMLR 2.914(±0.116) 2.103(±0.076) 1.634(±0.144) 1.411(±0.086) 1.373(±0.045)
STNSIMLR-ctr 2.914(±0.116) 2.431(±0.196) 1.535(±0.132) 1.366(±0.060) 1.248(±0.061)

D1 - clarity

GLM(normal) 2.664(±NA) - - - -
GLM(dark) 3.053(±NA) - - - -
GLM(clear) 1.723(±NA) - - - -
RNN - 4.615(±0.173) 2.311(±0.240) 1.531(±0.083) 1.489(±0.091)
STN - 3.349(±3.805) 1.848(±1.997) 1.387(±1.737) 1.393(±0.070)
PGRNNp(clear) 2.518(±0.135) 2.050(±0.120) 1.648(±0.128) 1.399(±0.088) 1.371(±0.076)
STNp(normal) 2.289(±0.175) 2.179 (±0.206) 1.594(±0.100) 1.416(±0.096) 1.377(±0.074)
STNp(dark) 2.582(±0.164) 2.084(±0.195) 1.634(±0.099) 1.421(±0.047) 1.326(±0.031)
STNp(clear) 2.214(±0.133) 1.847(±0.205) 1.645(±0.116) 1.408(±0.105) 1.308(±0.056)
STNSIMLR 2.425(±0.044) 1.817(±0.049) 1.601(±0.035) 1.415(±0.037) 1.372(±0.034)
STNSIMLR-ctr 2.425(±0.044) 1.806(±0.036) 1.503(±0.029) 1.360(±0.19) 1.263(±0.031)

D2 - τ

PRMS-SNTemp(τ10) 2.618(±NA) - - - -
PRMS-SNTemp(τ45) 3.558(±NA) - - - -
PRMS-SNTemp(τ100) 5.840(±NA) - - - -
RNN - 2.867(±0.147) 1.732(±0.083) 1.479(±0.023) 1.445(±0.027)
STN - 2.356(±0.135) 1.858(±0.105) 1.427(±0.025) 1.397(±0.030)
PGRGrNp(τ10) 2.852(±0.103) 2.362(±0.098) 1.628(±0.063) 1.417(±0.032) 1.396(±0.033)
STNp(τ10) 2.738(±0.094) 2.259(±0.123) 1.697(±0.096) 1.405(±0.023) 1.403(±0.022)
STNp(τ45) 3.632(±0.084) 2.409(±0.124) 1.874(±0.079) 1.499(±0.050) 1.473(±0.029)
STNp(τ100) 5.596(±0.079) 2.480(±0.089) 1.871(±0.092) 1.487(±0.046) 1.457(±0.027)
STNSIMLR 3.235(±0.045) 2.009(±0.130) 1.636(±0.066) 1.416(±0.021) 1.403(±0.014)
STNSIMLR-ctr 3.235(±0.045) 2.103(±0.079) 1.618(±0.058) 1.392(±0.018) 1.362(±0.021)

patterns jointly from multiple sets of simulations. Additionally,
we implement two versions of our proposed method STNSIMLR

and STNSIMLR-ctr. They have the same pre-training process but
STNSIMLR only uses the supervised loss (Eq. (7)) in fine-tuning
while STNSIMLR-ctr uses the contrastive loss (Eq. (14)).

In Table I, we report the performance of different methods
in predicting water temperature in lake systems using different
parameters of lake geometry and clarity, as well as the perfor-
mance in predicting water temperature in river networks using
different parameters for average residence time in groundwater
flow (i.e., τ ). For methods PGRNN and PGRGrN, because
they can only learn from one set of simulation data, we show
the performance of these methods using the simulation data
that produce the best performance (“cone” for lake geometry,
“clear” for lake clarity, and “τ=10 days” in river modeling).

We can observe that our method outperforms other methods
by a considerable margin in both applications. The improve-
ment from RNN to STN shows the effectiveness of incorporat-
ing spatial dependencies in modeling thermodynamic patterns.
The physics-based models (i.e., GLM and PRMS-SNTemp)

perform poorly because of their inherent model bias due to
approximations and imperfect parameterizations. Nevertheless,
the proposed pre-training method (i.e., STNSIMLR) can still
extract useful physical knowledge from the imperfect simula-
tion data and thus performs better than STN, especially when
we are using less training data. The performance is further
improved after we use the contrastive loss in fine-tuning (i.e.,
STNSIMLR-ctr). This is because STNSIMLR-ctr can better learn
from specific sets of simulation data that are closer to the
reality.

As we reduce the amount of training data, all of the methods
produce larger prediction error. However, we can clearly see
that the models that are pre-trained using simulation data
(i.e., methods in the second and third blocks of each dataset)
have much lower error than non-pre-trained models when
we use fewer training samples. These models can learn a
better initialized state from a large amount of simulation data
(available at every day and every location) and thus require less
observation data for fine-tuning. Also, our proposed method
generally performs better than existing methods with the pre-



training process (i.e., PGRNN and PGRGrN) given limited
observation data (e.g., 0% and 0.2%). The pre-training strategy
used in STN jointly learns from multiple sets of simulation
data and updates different components of the model (e.g.,
gating variables and other layers) in a deliberate way to reflect
the difference in physical parameters. Hence, compared to
PGRNN and PGRGrN, STN has a better chance at captur-
ing general physical knowledge while reducing the effect of
imperfect physical settings.

We can also observe that models pre-trained using different
sets of simulation data can have very different performance.
Specifically, the martini shape is very different from the true
shape of Lake Mendota so the model pre-trained with the mar-
tini simulations has relatively poor performance. Similarly, the
river temperature model STNp(τ100) has worse performance
because the residence time for shallow groundwater is thought
to be generally less than 100 days for many segments in the
Delaware River Basin especially during higher stream flows
(Martin Briggs, U.S. Geological Survey, written commun.,
Feb. 8, 2021). However, these pre-trained models (STNp(martini)

and STNp(τ100)) can get much better performance when
refined using even a small amount of data (e.g., 2%), and
predictions can still be much better than the STN model
without pre-training. The methods PGRNN and PGRGrN
show similar results since they are also pre-trained using
simulations.

Moreover, we can observe that some pre-trained models
(e.g., STNp(cone), STNp(clear), and STNp(τ10)) have better per-
formance than our proposed STNSIMLR before fine-tuning (i.e.,
with 0% data for fine-tuning). However, in practice we may not
know the most suitable parameters when training the model.
We can see that our method can still get comparable perfor-
mance even without access to such information. Moreover, our
method (STNSIMLR-ctr) after fine-tuning has better performance
than all the baselines by using the contrastive loss to explore
the relationship between observations and different sets of
simulation data.

C. Pre-training

Here we discuss the effect of pre-training in different
scenarios. In Fig. 2 (rows 1-2), we show the predictions made
by the pre-trained model using our method (SIMLR) and using
each set of simulation data over different depths of Lake
Mendota. Pre-trained models are always biased because they
are trained from simulations with imperfect parameterization.
We can observe that SIMLR predictions are generally in the
middle of predictions made by other pre-trained models and
also follow the similar temporal patterns. This is because
SIMLR extracts general patterns that are shared by all these
different sets of simulation data. Besides, SIMLR is able to
achieve reasonable accuracy compared with observations even
without the awareness of the best parameter setting.

In Fig. 2 (rows 3-4), we show the predictions made by the
pre-trained model using our proposed method and the fine-
tuned model using 2% data. Although the pre-trained model
has bias compared to true observations, it is able to capture

many general physical relationships (e.g., seasonal patterns,
temperature variation across depths), and thus it can be easily
refined to match observations even using just 2% data.

D. Similarity mapping

A goal of this work is to better understand the relation
between observations and simulations through the similarity
learned from the fine-tuning process (i.e., Eq. (12)). In Fig. 3
(a) we show the similarity with different clarity values in
different lake depths (averaged over time). In Fig. 3 (b), we
show the similarity with different geometries (cone, barrel,
and martini) in different months (averaged over depth). We
can see that the model is closer to clear simulations in depths
5-12m but closer to dark simulations in lower depths. As none
of the physics-based models provided accurate predictions
for all depths, SIMLR revealed unaccounted-for or poorly
parameterized processes that could be addressed given these
insights, such as introducing a clarity parameter that varies
with depth (as is common in the natural environment) or mod-
ifying vertical mixing parameters that could alter bottom water
warming rates. We can also see that the model is closer to cone
simulations in the summer and closer to barrel simulations in
the fall and winter, which indicates the fall cooling period and
under ice temperatures were better simulated when cooling
was slowed by using the barrel lake shape.

For the river modeling, SIMLR detects that most segments
are more similar to simulation with groundwater residence
time τ=10 days during March-May. A lower τ value indicates
the groundwater temperature is more similar to recent air
temperatures. Although PRMS-SNTemp encodes a constant
value of τ throughout the year, seasonality in groundwater
residence times has been confirmed in nearby watersheds, with
shallow groundwater (having lower τ ) contributing more in
the spring than in other seasons [34]. The SIMLR approach
transforms a constant physics-based model parameter into a
flexibly time-varying parameter that is more consistent with
observed temperatures and known processes.

E. Generalization test

We expect our method has better generalizability to different
scenarios given its ability to extract and transfer general phys-
ical relationships. Generalizability is important for scientific
problems because most observation data may be collected
from certain periods or locations for which it is easier to
deploy sensors. As a strong test of generalizability for mod-
eling lake temperature, we train the model using observations
from colder seasons in the training period and then test in
the summer time of the testing period. Although real-world
temperate data collection procedures more often provide data
in summer than in winter, training only on cold seasons is
more challenging because Lake Mendota has highly dynamic
patterns in summer and also a unique stratification across
different layers due to the temperature difference between the
surface and the lake bottom.

In Table II, we report the performance in the summer sea-
sons of the test period. We also include the testing performance



Fig. 2: Rows 1-2: Predictions made by models pretrained using our method and using each set of simulations with different
parameters for geometry (first row) and clarity (second row). Rows 3-4: Predictions made by both pretrained and fine-tuned
(using 2% observations) models using simulations with different parameters for geometry (third row) and clarity (fourth row).
All the predictions are shown at 0m depth, 12m depth, and 24m depth (Columns 1-3).

(a) (b)
Fig. 3: (a) The similarity to different clarity settings in different
depths of the Lake Mendota. (b) The similarity to different
geometry settings in different months.
TABLE II: Temperature root mean squared error (RMSE) in
the summer seasons of the testing period using models trained
from spring, fall, and winter in the training period (the first
column) and trained using all the data in the training period
(the second column).

Method Train on cold seasons Train on all the data
GLMclear 2.037(±NA) 2.037(±NA)
RNN 2.587(±0.245) 1.500(±0.035)
STN 2.180(±0.092) 1.389(±0.045)
STNSIMLR 1.724(±0.061) 1.402(±0.037)
STNSIMLR-ctr 1.685(±0.066) 1.325(±0.034)

of the model trained using all observations from the training
period as a baseline in the second column of Table II. We
can see that all the methods have larger errors when they are
trained only on colder seasons. However, our proposed method
still yields better performance than other methods. This is
because our method learns the general physical relationships
that hold in different scenarios.

F. Sensitivity test

Here we test the performance using different settings of
hyper-parameters. First, we test different number of update
steps (iteration of Eq. (8)) and report the predictive perfor-
mance of lake temperature modeling using simulations with
clarity settings. Specifically, we show the performance using
100% data and 0.2% observation data in Fig. 4 (a). We can
see that the model has similar performance when we set the
number of update steps to be greater or equal to five. Although
more update steps can slightly improve the performance, it will
bring additional computational cost to the training process.

We also study the effect of hyper-parameter λ (the weight
for the contrastive loss) on the performance (see Fig. 4 (b)).
As we increase the value from 0, the prediction error decreases
gradually. Such decrease is especially obvious when we use
100% data because the contrastive loss can better explore
the relationship between observation and simulation data. In
particular, if we set a very high value for λ, then the prediction
error becomes larger when we use limited data (i.e., 0.2%
data). This is because the small data may better fit certain
simulations that are not close to reality and thus mislead the
training process.

VI. CONCLUSION

In this paper, we propose a new method for modeling spatial
and temporal patterns in dynamical systems while also accom-
modating uncertainties in physics-based model parameters. We



(a) (b)

Fig. 4: The prediction root mean squared error (RMSE) using
(a) different number of update steps and (b) the value of λ.

extract the general physical relationships over space and time
to inform the initialization of the ML model. Then we fine-tune
the model by exploring the similarity between available ob-
servation data and simulation data. We have demonstrated the
superiority of the proposed method, which is better equipped
to learn from limited observation data, provide insights about
the value of physical parameters, and better generalize to
unseen scenarios. The proposed method can be widely applied
to other dynamical systems simulated by physics-based models
with uncertain parameters. For example, physics-based models
for hydrologic and climate systems commonly also have
bias which stems from the uncertainty in selecting physical
parameters.

While our method has shown the improved predictive per-
formance by considering the variations on certain physical
parameters, we could certainly explore a larger number of
variations in future studies. Moreover, one could explore ways
to learn from variations of multiple physical parameters at the
same time. We anticipate the knowledge discovered by our
method can advance the design of both physics-based models
and machine learning models.
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