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Abstract

We discuss the phenomenon of energization of relativistic charged particles in three-dimensional incompressible
MHD turbulence and the diffusive properties of the motion of the same particles. We show that the random electric
field induced by turbulent plasma motion leads test particles moving in a simulated box to be accelerated in a
stochastic way, a second-order Fermi process. A small fraction of these particles happen to be trapped in large-
scale structures, most likely formed due to the interaction of islands in the turbulence. Such particles get
accelerated exponentially, provided their pitch angle satisfies some conditions. We discuss at length the
characterization of the accelerating structure and the physical processes responsible for rapid acceleration. We also
comment on the applicability of the results to realistic astrophysical turbulence.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Cosmic rays (329); Particle

astrophysics (96)

1. Introduction

The fact that the cosmic-ray (CR) spectrum extends up to
extremely high energies, as well as the difficulties encountered
by standard acceleration mechanisms to energize particles up to
such energies, has led to a wide search for ways to boost the
maximum energy and/or alternative acceleration mechanisms.
While we can safely say that CR acceleration at the shocks
associated with supernova (SN) explosions is now confirmed
experimentally, it is also true that convincing observational
proof that SN remnants (SNRs) can accelerate protons to
energies in excess of ~100 TeV is, thus far, missing. Even
from the theoretical point of view, SNRs associated with Type
Ia and ordinary core-collapse SNe may be connected to CR
acceleration up to ~100 TeV, while higher energies require
much more extreme conditions, perhaps to be found in rare and
very energetic SN explosions (Cristofari et al. 2020).

While standard acceleration processes, such as the second-
order Fermi process (Fermi 1949) and diffusive shock
acceleration (Axford et al. 1977; Krymskii 1977; Blandford
& Ostriker 1978), have received a lot of attention throughout
the years, more recently, the acceleration of charged particles in
realistic MHD turbulence has been attracting an increasing
level of attention (e.g., Lazarian et al. 2020 and references
therein), with special emphasis on magnetic reconnection.
Early on, attention focused on contributions to energization by
MHD activity in special regions within a dynamic plasma
(Giovanelli 1947; Dungey 1953). Examination of diverse
scenarios for energization has over time become increasingly
varied and complex (Ambrosiano et al. 1988; Dmitruk et al.
2004; Drake et al. 2006, 2009; Kowal et al. 2012), suggesting
that a more general perspective may be led by a simpler view of
the physical principles at work.
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In 2D configurations, there exist simple conservation laws
that define and constrain particle orbits (Sonnerup 1971;
Matthaeus et al. 1984) so that when turbulent fluctuations are
present, charged test particles can be confined and accelerated
(Ambrosiano et al. 1988; Drake et al. 2006) in secondary
magnetic flux structures or ‘“islands.” Initially applied to
smaller-gyroradius particles such as electrons in the context
of magnetic reconnection geometries, this idea was further
developed by Oka et al. (2010), who noted that coalescence in
a multiple-island context can efficiently accelerate electrons
due to “antireconnection” electric fields associated with such
mergers. Furthermore, when applied to “pickup” protons in
reconnection jets (Drake et al. 2009) that subsequently feed
into a Fermi process as multiple magnetic islands contract and
merge, a more complex proton energization process may be
developed involving multiple islands (Drake et al. 2010). More
recently, Trotta et al. (2020b) showed that transrelativistic
electrons can be significantly accelerated while trapped in
turbulent structures and experiencing curvature drift. Such a
behavior, obtained in a 2D configuration where the background
turbulent plasma is modeled with a hybrid particle-in-cell
method while energetic electrons are treated as test particles,
has also been verified at different intensities of the turbulent
fluctuations. The basic physical elements of these models were
formalized in transport theories (Zank 2014; le Roux et al.
2015, 2018; Le Roux et al. 2019) that facilitate applications
(see also the recent reviews by Khabarova et al. 2021; Pezzi
et al. 2021b).

Complementary to these developments, there has been a
parallel line of studies that begin with the premise that charged
particle energization might be treated as being due to plasma
dynamics that from the onset is complex and, in fact, turbulent.
Early efforts demonstrated the feasibility of efficient turbulent
acceleration (Dmitruk et al. 2003) in three dimensions,
although numerical limitations such as small system size and
lack of resonant power at numerical grid scales (however see
Lehe et al. 2009) cast doubt on conclusions concerning
scaling laws.
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Numerical experiments have improved ever since (Dmitruk
et al. 2004; Kowal et al. 2012; Dalena et al. 2014), including
turbulence effects associated with current sheets and reconnec-
tion, contracting islands, and proliferation of plasmoids and/or
secondary islands (Kowal et al. 2011, 2012). Similar effects
have been characterized in relativistic plasmas (Hoshino 2012;
Zhdankin et al. 2017, 2019; Comisso & Sironi 2018; Guo et al.
2020; Kilian et al. 2020).

Most important, it has been understood that the initial efforts
to characterize acceleration in or around reconnection regions
focused on the physical processes responsible for extracting
particles from the thermal background and injecting them into
some energization process at work on larger scales. Yet, the
particle velocity, the thermal velocity, and the Alfvén speed
were of the same order of magnitude, making it very difficult to
identify the nature of the acceleration mechanism (first or
second order) and the scaling laws that could be used for
higher-energy particles.

Injecting test particles in a 2D or 3D simulation box of MHD
turbulence has been an independent method to investigate both
the transport of such particles and their energization, although
in some previous articles (e.g., Kowal et al. 2011, 2012) the
Larmor radius of the particles at the beginning of the simulation
was chosen to be much smaller than the grid spatial spacing,
which makes transport unrealistic, due to the lack of resonance
with turbulence and thereby unreliable diffusive transport.

When self-consistent broadband turbulence is involved,
particle energization becomes complex due to interactions
with the internal structure of large- and small-scale flux tubes,
as well as the current sheets, vortices, and reconnection sites
that typify flux-tube boundaries and their mutual interactions.
Common to a number of these treatments of energization
including turbulence is the role of direct acceleration for
particles of smaller Larmor radii, transitioning to the involve-
ment of perpendicular acceleration at larger energy (Dmitruk
et al. 2004; Dalena et al. 2014; Comisso & Sironi 2018, 2021;
Trotta et al. 2020b).

Although some works indicated that high energies can be
also attained by second-order processes (e.g., Arzner et al.
2006; Sioulas et al. 2020), the role of temporary trapping has
been highlighted in various contexts as it can dramatically
influence both transport and acceleration (Kowal et al.
2011, 2012; Dalena et al. 2014; Tooprakai et al. 2016). Indeed,
the ubiquity of turbulent coherent structures and islands/
plasmoids/flux ropes produced by magnetic reconnection
makes the potential of the trapping mechanism significant for
different systems. In solar and stellar coronae, magnetic loops
may provide sufficient conditions to entrap particles (Vlahos &
Isliker 2018). In the interplanetary medium, there are observa-
tions supporting the idea that particles are locally accelerated
when trapped in merging or coalescing islands (Khabarova &
Zank 2017; Malandraki et al. 2019). Particle trapping may also
provide a source for particle reacceleration downstream of
shocks (Zank et al. 2015; Nakanotani et al. 2021). Other
systems, e.g., the intracluster medium, could also encompass
such a mechanism although observations are usually explained
in terms of second-order processes (Vazza et al. 2016; Brunetti
& Vazza 2020). The importance of trapping for accelerating
particles has been also recently highlighted by Lemoine (2021)
in the context of strong and intermittent turbulence by relating
the energization process and the gradients of the bulk velocity
and magnetic fields.
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Intuitively, trapping can enhance acceleration when appro-
priate electric fields are encountered, but it can also inhibit
stochastic acceleration when the required transport is thwarted.
The full range of possibilities for such effects remains to be
exhaustively explored. The study of Kowal et al. (2011; see
also Kowal et al. 2012) is instructive on several salient features.
In these numerical experiments, the authors observe two small
magnetic islands merging with a central elongated island. A
selected particle gains considerable energy after entering the
system by following field lines through one small island,
eventually becoming trapped within the large island, circuiting
it numerous times, and gaining energy exponentially and
mainly when passing near the region of merger with the small
island.

These conclusions were illustrated in detail only for 2D
turbulence in a configuration that was optimized to create
reconnecting islands. However, the test particles injected in a
snapshot of the simulation were initially subgrid, which means
that their transport could not be described in a realistic way.
Eventually, the energy of the particles, after an exponential
increase, reaches the regime in which resonances could in
principle be relevant for particle transport, but this phenomenon
was not discussed. Despite these shortcomings, this approach
demonstrates clearly the complex interplay between the
transport effects that entrain the particle within the island and
near the acceleration region, along with the special circum-
stances that support the electric field responsible for the
energization itself.

In the present paper, we advance such a scenario for strong
turbulence and particle energization in the highly relativistic
particle regime, having in mind the implications that the
process may have for the acceleration of very-high-energy CRs.
In particular, we continue the examination of these complex
interactions of charged particles with turbulence by performing
relativistic test-particle simulations with a turbulent electro-
magnetic field produced by means of 3D MHD simulations, not
specifically devised to produce reconnection regions. Our focus
is on clarifying the nature of the trapping or entrainment that
leads particles to rapid acceleration to the highest energies.

We find that the bulk of the test particles injected in the
simulation box went through a secular second-order accelera-
tion due to the random plasma motions, which in turn induced
random electric fields. The interaction of the particles with
these plasma motions leads to stochastic energy change, which
we characterize in terms of plasma properties and manage to
associate with diffusive motion in momentum space. The
transport of the same particles in physical space is also found to
be well described through a diffusive motion. The latter is in a
range of scales where the anisotropic cascade of the turbulence
with respect to the local magnetic field does not seem to have a
visible effect as yet.

In addition to this acceleration process that is clearly at the
second order in the quantity v, /c < 1, we also identify a small
fraction of particles that manage to get trapped in selected
regions associated with the interaction between flux tubes.
These particles all have pitch-angle cosine very close to zero, a
necessary condition for trapping, and go through an exponen-
tial phase of energy increase. We provide a characterization of
these regions in terms of physical observables that could be
measured in the simulation. We also build a simple model of
the region where this phenomenon occurs and manage to
reproduce the main properties of the acceleration process and
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the timescales involved. The acceleration process is similar to a
first-order mechanism in which the particle trajectory in the
plane perpendicular to the local magnetic field encounters a
gradient of plasma velocity (i.e., of the induced electric field).

The paper is structured as follows. In Section 2 we present
the MHD simulations adopted in the present work, while in
Section 3 we describe the test-particle code and the first results
obtained in terms of physical space transport. Then, in
Section 4 we focus on the main numerical outcomes of the
work concerning particle energization. Section 5 discusses a
simple model of the acceleration region and derives the main
properties of the acceleration mechanism and the main
timescales involved. Moreover, we discuss the implication of
our findings for astrophysical systems. Finally, in Section 6 we
conclude by summarizing our results and illustrating future
developments.

2. MHD Simulation Background

In order to study the transport and acceleration of charged
test particles, we follow particle evolution in electromagnetic
fields obtained through incompressible three-dimensional
MHD simulations. These simulations solve the following set
of equations:

8—“+(u-V)u=—lwurlijJrz/Wu, (1)
ot p p
g—lj +(-V)B=B-Vu+nVB, )

V-u=V-B=0, 3)

where u(r, t) is the magnetofluid speed composed only of its
fluctuating part, and B(r, f) is the magnetic field that is
decomposed into a uniform mean By, and a zero-mean
fluctuation b, B(r, ©) =By + b(r, t) = Boe, + b(r, t). Further-
more, P is the thermal pressure, and p is the magnetofluid
density. The current density isj = V x B, while v and n are the
viscosity and resistivity, respectively. The flow is incompres-
sible V -u =0, and the density is uniform p = const.

Lengths, time, and velocities in Equations (1)-(3) are
respectively normalized to a typical length L,, time z4, and to
the Alfvén speed vy = L4 / th =B / J4mmyi, where B and 7
are reference values for the magnetic field and for the
background number density. We here adopt L, =81.5 pc,
corresponding to Lo, =512 pc, while B = 1uG and 77 =
1 cm™3. Unless specified, hereafter we assume normalized
variables.

Equations (1)—(3) are solved in a 3D Cartesian periodic box
of size Lyox = 27, with spatial resolution N, =N, = N_= 1024
adopting a pseudo-spectral method in a Fourier basis. The time
advancement is performed with a second-order Runge—Kutta
scheme and the 2/3 rule for spatial dealiasing is chosen
(Patterson & Orszag 1971). Small values of resistivity and
viscosity n=v=2 x 10~* are introduced to define the well-
resolved spectral domain. The dissipative wavenumber kg;gq
(the reciprocal of the Kolmogorov length scale) for the
considered runs is always smaller by a factor 2 than the
maximum resolved wavenumber k., (for further details, see
Bandyopadhyay et al. 2018).

Large-scale uncorrelated fluctuations of # and b are
introduced at =0 and turbulence develops, producing small-
scale fluctuations. We focused here on the case with
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Figure 1. Rendering of the current density j2(r) shows a plethora of intermittent
coherent structures. Such structures form a template for the possibility of rare
acceleration events.

Ey(k)/(B3LaA)

10—+

10—5 n n T S S W) L L L PR
100 10! 102

kLA

Figure 2. Omnidirectional spectrum of the magnetic energy. The green dashed
(orange dotted—dashed) line shows the Kolmogorov (Kraichnan) prediction.
The small inset displays the magnetic energy spectrum compensated by the
Kolmogorov (green dashed) and the Kraichnan (orange dotted—dashed) slope.
The gray dashed vertical lines indicate the wavenumber associated with the
initial particle gyroradius.

Urms = bims = 1 and By =0. The role of a finite background
magnetic field and compressibility will be discussed in a
separate forthcoming work. We then selected the time instant at
which the turbulent activity is strongest (i.e., highest dissipa-
tion). The complex and highly structured pattern of the
turbulence is displayed in Figure 1, showing the contour plot
of j in the 3D domain. Vortices and magnetic islands, as well as
intense current sheets where magnetic reconnection may be at
work, naturally emerge as elementary structures of the
turbulent flow. The omnidirectional spectrum of magnetic
energy (Figure 2) indicates that an inertial range, whose length
is about a decade in wavenumber space, develops before
dissipative effects steepen the spectrum at higher wavenumber
k. In the inertial range, the slope is rather compatible with either
the Kolmogorov or Kraichnan predictions; these are respec-
tively displayed in green and orange dashed lines in Figure 2
(see also the inset in the same figure). By numerically
evaluating the correlation length /. of the magnetic field, we
find /.=0.218 (I.=17.7 pc in physical units), corresponding
to protons with energy E ~ 16 PeV in the typical field B.
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3. Methods: Test-particle Propagation Details

We numerically integrate the motion equations of N, = 10°
relativistic test particles of positive charge e and mass m,
moving in the turbulent electromagnetic field obtained by
means of the incompressible MHD simulations described
above. The normalized particle equations of motion are

dx
— =, 4
5 “4)
d—p:a(E+va), ®))
dt
where x = (x, y, z), v, and p =~ are the particle position,
velocity, and momentum, while E and B are the electric and

magnetic fields. Equations (4)—(5) are scaled analogously to
MHD simulations. In normalized units, the Lorentz factor reads

v = 1/\/1 — (Byv)? = \/1 + (Bap)?, where B4 =vs/c. The
electric field in Equation (5) is derived through Ohm’s law:
E=—uxB+uy.

The parameter o = £4$), where Qg = eB/m,c is the proton
cyclotron frequency, can be easily rewritten as o = L4 /d,,, with
d,, the proton skin depth of the background plasma. « is thus
connected to the extension of the inertial range of the
turbulence with respect to kinetic, dissipative scales (Dmitruk
et al. 2004; Gonzélez et al. 2016). In a 3, ~ 1 plasma (with 3,
the thermal to magnetic pressure ratio), the parameter «
corresponds to the inverse of the normalized gyroradius of
nonrelativistic particles moving with speed ~v,. Previous
works considering the injection of thermal particles into the
acceleration region were hence forced to reduce o to much
smaller and computationally feasible values. Such a require-
ment provides particles with a gyroradius at least larger than
the grid size, so that resonant scattering might be properly
taken into account. On the other hand, relativistic particles
moving at the speed of light have a much larger gyroradius
because v > 1, thus removing the constraint on the value of a.
For the parameters described above, o ~ 10'? and Ba~ 1073,
To save computational resources, we only artificially increase
Ba=5x10"2

Because we are interested in the energization of relativistic
particles moving in a nonrelativistic environment, we assume
stationary electromagnetic fields, i.e., OB/0t=0E/0t=0
(magnetostatic approximation), and we consider a static
snapshot of these fields when turbulence is fully developed.

Equations (4)—(5) are integrated by adopting the relativistic
Boris method (Ripperda et al. 2018; Dundovic et al. 2020). The
electric and magnetic fields are interpolated at the particle
position through a trilinear interpolation method (Birdsall &
Langdon 2004). We verified that the results presented here are
not affected by adopting a more accurate yet significantly
slower 3D cubic spline method (not shown here). Particles are
injected homogeneously throughout the computational box at a
given energy and with isotropic velocity direction on the unit
3D sphere. The time step is set to 1/50 of the initial gyroperiod.

Most of the results here adopt the initial gyroradius to be
¥g0~20.1l.=0.02, corresponding to E;~ 1.6 PeV. The reso-
nant wavenumber k, = 1/r, = 50, reported in Figure 2 with a
vertical dashed gray line, resides in the inertial range of
turbulence, and it is also quite far from the dissipative scales
where the resistive electric field is expected to become
important. This ensures that the acceleration process studied
here is mainly driven by the inductive electric field, this being
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Figure 3. Mean free path )\, as a function of the particle gyroradius. The
vertical dashed and dotted—dashed gray lines correspond to the particle
gyroradius adopted here and to the gyroradius corresponding to the dissipative
scale, respectively. The blue dotted—dashed line refers to the QLT prediction

Diso ~ rg2 obtained for r, 2 I.. The red dashed line reports the prediction of

Subedi et al. (2017) (Equation (53) of Dundovic et al. (2020)).

the most relevant term for analyzing the energization of
relativistic particles whose gyroradius is much larger than the
typical length where dissipative and resistive effects are
expected to steepen the magnetic spectrum. To double-check,
we also verified that our results are not affected by the resistive
field, in that if we exclude the resistive component from the
computation of the electric field, the energization process is
basically unchanged. This shows that for the high-energy
particles we are interested in, namely when the Larmor radius
exceeds the thickness of the reconnection regions, the
energization is not due to the resistive fields but rather to the
induced electric fields due to the plasma motion.

Although here we are most interested in how particles react
to electric fields in the simulation box, it is first worth studying
how particles move in the magnetic field, especially to confirm
that we find diffusive motion and to identify possible
differences with respect to cases where turbulence is synthetic
rather being the result of an MHD simulation.

In order to study particle transport in physical space, we
performed a subset of test-particle simulations by excluding the
electric field. A diffusive regime after a ballistic transient is
always recovered. When reaching the diffusive plateau, the
isotropic diffusion coefficient is computed as Dj,, = (D, +
Dy, + D..)/3 with

_ ((Ax(Any*)
Dy (A1) = oA (6)

Figure 3 shows the isotropic mean free path A\, = 3Djs./c as
a function of the particle gyroradius r,, normalized in the usual
way to the correlation scale /.. The typical behavior of the path
length as a function of energy is the same as that found in
synthetic turbulence, with a low-energy trend that reflects the
shape expected from a given isotropic power spectrum (Subedi
et al. 2017; Dundovic et al. 2020). In particular, the dotted—
dashed red line in Figure 3 implements Equation (53) of
Dundovic et al. (2020) for the Kolmogorov case, where I, is
the bend-over scale of the synthetic model in Dundovic et al.
(2020), being [, ~ 21.. At variance with synthetic models of
the turbulent field, the slope of the isotropic power spectrum is
not very well defined here because of the limited dynamical
range (see Figure 2).
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At high energies, when the gyroradius satisfies the condition
rg > l., the diffusion coefficient becomes weakly dependent
upon the power spectrum, Djs, ~ rg2 (blue dotted—dashed line).
For gyroradii r,/I. < 0.01, several numerical effects, especially
dissipation, limit the validity of the approach by reducing the
power available in the form of modes that the particle gyration
can resonate with. As a result, the numerically computed path
length departs from the dotted—dashed red line at such low
energies. The vertical dashed gray line identifies the energy of
the particles used below for our investigation of energization.

This correspondence to the isotropic spatial diffusion theory
is itself a result of some significance: on one hand, it validates
the approach of Subedi et al. (2017) and Dundovic et al. (2020)
with a “realistic” turbulent and intermittent magnetic field
obtained from the numerical evolution of MHD equations. On
the other hand, this may be considered somewhat surprising
because the anisotropic cascade development with respect to
the local magnetic field, expected in MHD (Sridhar &
Goldreich 1994), seems to have little effect on the diffusion
properties. It is likely that the effects of the anisotropic cascade
are not fully developed as yet, due to the limited dynamical
range imposed by the numerical constraints. These results
seem to be in good agreement with those of Cohet & Marcowith
(2016).

4. Results on Particle Energization

The turbulent motion of the plasma in the simulation box
leads to the unavoidable creation of inductive electric fields,
which are expected to have random orientations. As such, their
presence is expected to lead to changes in the energy of the
particles, due to the presence of such inductive electric fields in
the Lorentz force. This effect is expected to cause the energy of
a particle to increase or decrease depending on the relative
orientation of the particle momentum and the local electric
field, namely a typical second-order phenomenon. On the other
hand, the complex structure of MHD turbulence is known to
trigger additional phenomena that may lead to more rapid
energization of the particles (see for instance Kowal et al.
2011). Here we investigate all these phenomena in great detail,
stressing that the simulation was not carried out to maximize
the formation of reconnection regions or other peculiar
structures. The phenomena we see are, in this sense, very
generic.

We find that in, addition to an overall second-order
stochastic acceleration mechanism, a first-order process is at
work as well, due to the temporary trapping of particles in
coherent structures.

4.1. Stochastic Energization

Figure 4 displays the running energy diffusion coefficient as

a function of energy, assuming that in fact the motion of the

particles can be described in terms of a random walk in
momentum space:

((AEANY)

Dgg AL : (7N

It is evident that after a transient, the energy diffusion

coefficient saturates at a roughly constant value. This implies

the presence of diffusion in energy space, thus revealing the

typical nature of a second-order process (Ostrowski &

Siemieniec-Oziebllo 1997). The energy diffusion coefficient
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Figure 4. Running energy diffusion coefficient Dgy as a function of At.
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Figure 5. Probability density functions (PDFs) of AE/E with At = 0.05l./va
(blue) and Az = 0.51,./v4 (black). The red and orange dashed curves correspond
to the associated Gaussian distributions. Dotted—dashed and dashed gray lines
indicate the values of 33 and $3,, respectively.

Dgg = 0.01v,EZ /1. implies a characteristic time for the energy
diffusion process Tairg = E°/Dgg ~ 10%1./v4 that is consistent
with the large timescale for growth of the average energy that
occurs at late times in our simulations (not shown here). The
slight increase recovered in Dgg for very large Ar may be due
to the fact that the average gyroradius starts to increase on this
timescale due to other processes (see below), thus making Dgg
move away from the plateau.

Another signature of an active stochastic energization
mechanism comes by looking at the probability density
functions (PDFs) of the relative energy gain AE(A?f)/E,
displayed in Figure 5 for Ar=0.05/./v4 (blue) and Ar=
0.51./v, (black). The PDFs have been computed averaging on
the initial time instants z up to t = ty.x = 221./v4. Particles are
likely to undergo both increases and decreases in energy.
Although the distribution is peaked at small values, larger
changes of energy up to 2 3, (dashed gray lines in Figure 5)
are allowed. The distribution functions are skewed toward the
positive value of energy changes because the standardized
skewness is § = 0.20 for Ar=0.05/./v4 and § = 0.12 for
At=10.51./v4, where § = s/o3. Here, o and s are, respectively,
the standard deviation and the skewness (third-order moment)
of the distribution function. The distribution function of the
relative energy gains is manifestly non-Maxwellian for small
At and tends to recover the Maxwellian shape for larger At.
Indeed, the kurtosis x—defined as the fourth-order moment of
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Figure 6. Particle PDFs at different time instants showing the energization
process. The vertical dotted—dashed gray line highlights r,=[., while the orange
dotted—dashed line displays the —5/2 power-law slope.

the PDF normalized by o*—is x=4.84 and x=3.69 for
At=0.05./vs and Ar=0.51./v,, respectively.

The presence of positively skewed PDFs indicates that
energy increase is more favorable than energy decrease. This
provides the secular direction of the process, leading to a net
energy gain.

Clearly, all acceleration processes are at work simulta-
neously, and it is not trivial to discriminate among them by
looking at a collection of particles: What we can say is that
basically all test particles launched in the simulation box suffer
from the second-order process illustrated above. As we discuss
below, a small fraction of particles happen to be trapped in
selected structures and get energized through a first-order
process. It is not clear to what extent these few particles can
affect the shape of the high-energy-gain tail of the PDF shown
in Figure 5. As a consequence of the fact that only a few
particles experience trapping, it is in general rather difficult to
evaluate statistical properties of the population of trapped
particles, such as the transport coefficients. In future work, we
plan to explore the potential of novel methods, for instance,
those commonly adopted in biophysics and based on single-
particle trajectories (Golding & Cox 2004; Saxton 2012; Trotta
et al. 2020a).

4.2. Particle Trapping in Coherent Structures: First-order
Acceleration

In Figure 6 we show the spectra of particles in the simulation
box, after a time ¢ indicated in the figure. A few comments are
in order: (1) Particles are injected at energy E,, which, for the
natural units adopted here, corresponds to Ey = 1.6 PeV. (2) As
time evolves, the second-order process leads to a broadening of
the distribution function, namely there are both particles losing
energy and particles gaining energy. On average, however, the
particle energy increases as one can see by noticing that the
peak of the distribution moves toward higher energies. (3)
Contemporaneously, an approximate power law is created at
high energies that eventually extends to particles with energies
such that r, ~ .. This typically happens at times ¢ 2> 101./v4.

For the sake of comparison, we also report in Figure 6 a line
indicating the spectrum xE~%2, which was predicted and
observed by different groups, although for very different
systems and with different qualitative premises.

The pioneering numerical simulations of Ambrosiano
et al. (1988) found evidence for accelerated particles with a
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power-law tail with a slope compatible with —5/2 using two-
dimensional simulations. As we discuss below, the dimension-
ality of the problem is very important in assessing the
efficiency of trapping processes that are responsible for particle
energization. Moreover, Ambrosiano et al. (1988) focused on
the extraction of particles from the thermal bath, for which the
particle velocity remains close to that of the background
thermal particles. As we discuss below, the acceleration,
trapping, and escape from the acceleration region work in
somewhat different ways for relativistic particles. Moreover, as
it is well known, the slope in energy should not be the same in
any case for relativistic and nonrelativistic particles: This is so
even for particles accelerated at a strong shock, for which the
spectrum of accelerated particles in momentum is f(p) o< p %,
but when expressed in terms of energy, it is N(E) x E = for
relativistic particles and «E /2 for nonrelativistic particles.

The slope —5/2 was also predicted by de Gouveia dal Pino
& Lazarian (2005) and del Valle et al. (2016), where a shock-
like toy model was introduced to describe a reconnection
region: The particles would be advected into the reconnection
region with the inflowing plasma and would be expelled (the
analog of escape to downstream in the case of a shock) at the
speed of the reconnection exhaust. This determines a sort of
universal spectrum for the accelerated particles. Such univers-
ality was later criticized by Drury (2012). In fact, for particles
that are being energized, it is unlikely that the velocity of the
exhaust plays any role in the shaping of the spectrum of
accelerated particles because the particles’ Larmor radius
quickly becomes larger than the thickness of the current sheet.
As we mentioned above, the spectrum E>/? is shown in
Figure 6 only as a reference, while it appears to be
asymptotically reached in our simulations only for exceedingly
long times compared with the dynamical time of the MHD
turbulence.

In the perspective of understanding the nature of the
acceleration processes at work, in the top panel of Figure 7,
we show the temporal evolution of the gyroradius averaged on
the full particle ensemble (red dashed line), while the red
shadowed area corresponds to the standard deviation of the
averaged gyroradius. We clearly see that there is a secular
increase in the particles’ energy, which we attribute to the
random interaction with the inductive electric fields in the
simulation box. The black curve shows the temporal evolution
of the particle gyroradius that, after a time T ~ 221./v4, turns
out to be the most energetic particle in the simulation. It is
worth noticing that for early times, namely on the left side of
the first vertical dashed line (¢t ~ 81./v,), the fluctuations in the
particle gyroradius (or its energy) are compatible with the
fluctuations expected based on the bulk of the particles in the
simulation (shaded area). Moreover, the particle energy is
clearly carrying out a random walk, in that it increases and
decreases, a typical feature of a second-order process.

At a time 7= 8l./v, an exponential increase of the particle
energy starts (the plot is in lin-log scale) and lasts for
about ~10l./v4. The end of this period is marked by the
rightmost vertical dashed line (¢#=217.51./v4). This period of
rapid energization suggests that a small number of particles
experience some new phenomenon. This number must be small
because the energy gained by such particles is visibly larger
than the typical deviation from the mean (shadowed area).

We notice that, superposed on the main regular energy
growth, there remain visible small-scale oscillations of the
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Figure 7. Typical behavior of a trapped particle showing exponential growth of
energy that occurs within the two vertical green dashed lines. The particle
gyroradius for the trapped particles increases exponentially over a timescale
72> 10l./v4. This growth is much faster than the growth of the averaged
gyroradius, where the average is performed on the full ensemble of test
particles (red dashed line). The dashed red area represents the standard
deviation of the averaged gyroradius. The bottom panel shows the particle
trajectory illustrating that the particle is trapped.

particle energy (see inset in Figure 7). In particular, we visually
identify a smaller-scale oscillation whose period is 7~ 5 x
10721, /v4, which corresponds to the particle gyromotion
Ty =2m/Q =27ry/c. A larger-scale modulation with period
T~5x 10711(, /va is also observed, and this may be correlated
with fluctuations of the magnetic field intensity on this
timescale. This is suggestive of the simultaneous presence of
additional processes, such as mixing of second-/first-order
processes and the role of mirroring or drifts. The multiscale
complexity of the overall energization dynamics is evidenced
by the appearance of at least four timescales in Figure 7—the
exponential timescale, the gyromotion, the modulation seen in
the inset, and the second-order energy gain seen to the left and
right sides of the exponential phase.

The peculiar behavior of the particles during the exponential
phase is best illustrated in the bottom panel of Figure 7, where
we show the particle’s trajectory. One can see that, during the
stage of exponential energy growth, the particle is trapped in a
small region of the computational domain of size ~0.5/.. In
fact, the spatial excursion per unit /./v4 is about 10 times
smaller between the dashed lines than outside that region. The
particle escapes from the trapping region when its gyroradius
becomes comparable with the island size /g ~ /.

The phenomenology of this trapping can be also appreciated
by looking at the particle trajectory in the 3D domain. Figure 8
shows the particle trajectory as dots colored with the particle
energy, where the color scale goes from blue to red as particle
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energy increases. Magnetic field lines near the trapping region
are also displayed, colored with the amplitude of the field itself
(again going from blue to red as the magnetic field amplitude
increases). When the particle is not trapped, it carries out an
erratic motion in the whole computational domain, akin to an
unconstrained random walk. The trapping is associated with a
spherical-like motion constrained within a flux-tube-like
structure. The energization occurs when the flux tube is
perturbed by another large-scale structure, more easily
appreciated in the right panel of Figure 8. This confirms the
scenario that an intense acceleration can occur when magnetic
islands and, more in general, large-scale plasma structures, are
interacting (collapsing, merging, etc) with other similar
structures (Drake et al. 2006; Kowal et al. 2011), leading to a
locally strong magnetic field gradient.

It is important to point out here that there is no evident
association of the structure responsible for the exponential
growth of the particle energy with the process of magnetic
reconnection. Magnetic reconnection is a sufficient condition
for generating large-scale islands where particles can be
trapped. Indeed, it can be expected that when the magnetic
field reconnects in a turbulent environment, the magnetic
islands produced by reconnection interact, thus allowing an
intense and fast energization process. However, it is apparently
not necessary that reconnection be present during the
energization process itself. Other configurations without the
explicit invocation of magnetic reconnection, such as the
interaction of two large-scale turbulent structures (e.g., flux
ropes, as recently reported in recent Parker Solar Probe
observations by Pecora et al. 2021), may provide a similar
behavior, provided that the magnetic geometry of the
interaction region favors particle trapping. We remark that
the direct acceleration due to the electric field at the
reconnection site is negligible for the relativistic particles
considered in the present work, given that such particles have a
gyroradius much larger than the typical width of current sheets.

4.3. Characterization of Trapping and Concomitant
Energy Gain

In order to characterize the coherent structure that entraps
and gives a significant boost to the particle energy, we calculate
the current density j =V x B and the normalized magnetic
helicity h,, =a - B/(|a||B|), with B=V X a, interpolated at the
particle position. The current density is a direct proxy of the
small-scale gradients of the magnetic field, and an intense
current density is expected to highlight small-scale structures
and current sheets where magnetic reconnection and, in
general, dissipative processes may occur (see Pezzi et al.
2021a and references therein). On the other hand, magnetic
helicity measures the topology of the magnetic field: In
particular, a nonnull magnetic helicity indicates twisted, helical
magnetic structures.

The values of these variables at the particle position are
displayed in Figure 9. The exponential phase is limited by the
green dashed vertical lines. The structure responsible for the
exponential growth of the particle energy is a relatively quiet
region in which the current density is relatively smooth. In
comparison, the current outside the structure easily reaches
intense values j 2 4j.,s, but such intense peaks are not evident
within the structure. The magnetic fluctuations are also less
intense within the structure, as the rms value of magnetic
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Figure 8. Particle trajectory in the 3D domain, with the points colored with the particle energy, where the color scale goes from blue to red as the particle energy
increases. Magnetic field lines, colored with the magnitude of the magnetic field itself (again from blue to red as the magnetic field magnitude increases), indicate that
the particle is trapped in a flux tube and that it is accelerated when the flux tube is feeling the gradients associated with the interaction with another large-scale
structure. The right panel shows an inset of the left plot zoomed in the trapping region and limited in time to a few particle gyrations. The green line in each panel

corresponds to the correlation length /...

fluctuations is reduced there by a factor of 3—4 with respect to
the global value.

The structure is furthermore characterized by a finite
magnetic helicity, suggesting a flux-tube and/or plasmoid-like
shape where magnetic field lines wrap helically on themselves.
A finite magnetic helicity also suggests that the structure tends
to be force free as a||b — j||b, i.e., it may be a large-scale quasi-
equilibrium structure typical of intermittent plasma turbulence,
where nonlinearities are depleted (Matthaeus et al. 2015).

The properties of the particle trapped in the accelerating
coherent structure are also remarkable. The top panel of Figure 10
illustrates the pitch-angle cosine of the particle, here defined as

Hoe = cos O,p, (8)

Bllv|

because the regular field is absent.

Concurrently with the period when the particle is trapped, its
pitch-angle cosine displays reduced oscillations around the
mean zero value. In fact, gy, oscillations, estimated as
(At )rms, are weaker by a factor of 3—4 inside the structure
with respect to outside.

The trapped particle has a peculiar motion configuration,
with a pitch angle almost perpendicular to the local field. This
indicates that the particle is trapped within an elongated 2D-
like flux tube and, in particular, it moves in the plane
perpendicular to the tube axis. As a consequence, within this
period, the particle mainly experiences a perpendicular
energization. The evolution of the particle magnetic moment
(not shown here) also supports this view because it shows
secular growth on the same timescale as the exponential energy
growth of the particle, while the magnetic field is roughly
constant within the same time window. Similar observations
have been pointed out in the different contexts of the so-called
“second stage” of acceleration of nonrelativistic particles
(Dalena et al. 2014) and, more recently, of electron acceleration

10

‘j‘/jrmb
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Figure 9. Current density j =V x B (top), scaled to its rms value, and
normalized magnetic helicity ,, =a - B/(|a||B|) (bottom), computed at the
particle position, as a function of time. The red dashed line corresponds to a
large-scale current average performed over Ar >~ 0.51./v,.

in nonrelativistic plasma turbulence (Trotta et al. 2020b) and
particle acceleration in relativistic plasma turbulence including
radiative losses (Comisso & Sironi 2021).
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Figure 10. Top: time evolution of the pitch-angle cosine (.. The time window
associated with trapping is limited by the vertical green dashed lines. The red
dashed line is the large-scale current average performed over At~ 0.51./v,.
Bottom: time spectrum of the 4., when the particle is trapped. The yellow
shaded area corresponds to the gyroradius range experienced by the particle
during this time window.

To get insights into the nature of 1. oscillations in the time
period corresponding to trapping, the bottom panel of
Figure 10 displays the Fourier time spectrum of 14, performed
in such a window. The dashed yellow area corresponds to the
frequencies associated with the particle gyroradius, which
changes within the period due to the particle energization.
High-frequency pu. oscillations, associated with the particle
gyromotion, are combined with lower-frequency fluctuations,
possibly related to smaller-scale turbulent fluctuations or other
effects, such as mirroring and drifts.

To demonstrate that the most intense energization is
statistically associated with a small pitch-angle cosine,
Figure 11 displays the PDFs of the pitch-angle cosine
conditioned to the particle energy. In particular, we computed
the PDFs by considering the full ensemble of particles up to the
time T~ 22I./v, and by setting the threshold E,, = 70%E,x
(blue) and Ey, = 95%E .« (red), where E . = 24.4PeV (i.e.,
Fgmax /lc = 2.2). Particles below the threshold show a distribu-
tion compatible with isotropy, with a mean pitch-angle value of
1/2, reported in Figure 11 with a gray dashed line. On the other
hand, the most energetic particles display a strongly anisotropic
distribution, peaked at small .., becoming more evident for
larger thresholds.

This confirms that the most energetic particles preferentially
have a small local pitch-angle cosine, i.e., that they move
perpendicular to the local magnetic field. As we discuss in
Section 5, this may be the very cause of the trapping: The
velocity of the particles parallel to the local field is such that the
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Figure 11. PDFs of 14, conditioned with the particle energy for the top 30% of
the most energetic particles (blue) and for the top 5% (red), with the maximum
energy being Enax = 24.4PeV (1 max /lc = 2.2). The horizontal dashed gray
line displays the 1/2 value, corresponding to isotropic distribution. The
exponential acceleration responsible for the high-energy tail is associated with
a small pitch-angle cosine p. Because we are not removing particles once they
enter the exponential phase, they consequently undergo the standard pitch-
angle process, thus producing the observed spreading in the jy,. distribution.

particle stays in the structure long enough to be energized
(while possibly drifting) by gradients in the magnetic field.
During this process, the particle pitch angle changes gradually,
as would be expected due to the quasi-conservation of the
adiabatic invariant: Because the field changes along the
trajectory (at most by the 8B/B.y calculated at the scale of
the Larmor radius of the particles) and v p, /B must stay
constant, then p, must change, hence the pitch angle changes
(Voelk 1975) by about éB/Bns. This leads to a spread in the
PDF of the pitch-angle distribution of the most energetic
particles.

5. Discussion of the Physical Processes at Work

Here we discuss our results and their implications for
astrophysical systems. It has been found that relativistic
particles moving in stationary turbulent electric and magnetic
fields, constituted by a snapshot in time of the incompressible
MHD simulations, experience a complex energization process
owing to the turbulent inductive electric field. The character of
the process reveals at least a twofold nature. The second-order,
stochastic acceleration affecting the whole ensemble of
particles goes hand in hand with a first-order mechanism,
impacting only a few particles that are trapped in large-scale
coherent structures of turbulence. These trapped particles
experience exponential energy growth until the time when
the gyroradius becomes comparable with the transverse size of
the structure.

The phase of exponential increase in particle energy is of
special interest for its potential implications for astrophysical
systems. As discussed in previous sections, this stage is rather
complex: It requires that a particle enter a region where two
large-scale structures seem to be interacting, thereby leading to
gradients in the induced electric field and most likely in the
magnetic field as well. The number of particles showing
evidence of this exponential energy increase is very small, only
a few out of 10° (0.001%). All these particles seem to have a
very small pitch-angle cosine, namely p ~ 0. They also exhibit
a similar phenomenology in terms of characteristic times: The
trapping time is quite large (~5-10l./v4), and various
oscillations, as described in the previous section, are recovered.



THE ASTROPHYSICAL JOURNAL, 928:25 (14pp), 2022 March 20

The formation of such structure in a generic turbulence box is
difficult to characterize in a quantitative way, also due to
intermittency: The standard Kolmogorov scalings could be
locally violated due to spatial inhomogeneities (Matthaeus et al.
2015). In particular, magnetic fluctuations could become
weaker in large-scale coherent structures with respect to the
globally averaged values because nonlinearities could be
partially suppressed within large-scale structures, and perhaps
elevated near flux-tube boundaries. In fact, as discussed earlier
in this article, the structure in which the exponential
acceleration takes place does not show evidence for special
activity: it might have originated from a reconnection event,
but it is not a site of reconnection. Indeed, reconnection plays
no role in causing the rapid energy increase that we observe in
the simulations.

Figure 8 illustrates very clearly how complex the region is
where the particle energy is seen to increase exponentially. The
only properties that we can confidently associate with this
region are (1) the presence of a rather organized large-scale flux
tube that seems to be interacting with another structure, and (2)
a gradient in the local electric field, due to plasma motion.
Moreover, it is reasonable to speculate that there may be a
gradient in the magnetic field due to the interaction between
structures.

Given the complexity of the situation, it may be helpful to
use a toy model to illustrate the different effects and check
whether the qualitative picture is reproduced. The toy model
gives us the opportunity to comment on the different physical
processes at work.

We show the geometry of our toy model in Figure 12: The
magnetic field B in that region is assumed to be oriented in the
Z direction, but it is assumed to have a gradient in the direction
of the center of the tube, within a ring (green region) of size
Lgrag. We also assume that at least on a fraction of the surface
of the tube, the plasma velocity has a gradient along the X
direction (see zoom-in in the lower part of Figure 12). In the
figure, this gradient is shown in the form of a sign reversal of
the velocity but this is not required. We will comment below on
the implications of a fluid velocity crossing the value u = 0.

Let us start by discussing the role of a gradient in the
magnetic field, although the existence of a strong gradient does
not emerge in an evident way from the simulations: A magnetic
field, with or without gradients, cannot make work on charged
particles. Hence, the exponential energy increase is certainly
not related to such a gradient. On the other hand, the gradient
introduces a drift, whose direction depends on the direction of
the gradient. With reference to the situation illustrated in the
lower part of Figure 12, this grad-B drift leads the particle to
move in the y direction, namely to stay in the green-colored
region. The drift velocity is proportional to the gradient:

N&B x VB N lrL(p)vA

VD ~ 0
2g B? 2 Lga

)
namely, the lower the gradient, the lower the drift velocity, so
that the particle can stay longer in the island. Note that
Equation (9) includes the grad-B drift, while the curvature drift
is subdominant because we showed that the motion occurs at
u~0,1ie., Pperp = p.

Inspired by the results of our simulations, we first assume
that the particle has a very small pitch-angle cosine p, namely,
its motion is constrained to be in the x—y plane (blue curve in
Figure 12). A small value of i means that the particle can travel
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Figure 12. Sketch of the geometry of the flux tube interacting with another
structure (top part). At the bottom is shown a zoom-in into the region where the
gradient of plasma velocity is present.

in the Z direction with velocity ~ cp (all of the particles in the
simulation are relativistic) and will eventually leave the island
in a time ~L;y/cp. For p~1 (red curve in Figure 12), the
escape time would be exceedingly fast and no appreciable
acceleration can take place (see below).

At the same time that the particle rotates in the x—y plane, it
is advected with the local plasma, which is expected to move at
speeds close to the local Alfvén speed v4. The region of the
gradient in the plasma speed (which corresponds to the gradient
in the induced electric field) can then be crossed in a time
Lgrag /va ~ MLis1/va, where we assumed that the gradient
develops on a fraction 7 of the size of the island,
Lgrag ~ mLig. The time to escape the island along Z exceeds
the timescale of advection if un < V?A This apparently simple
and rather constraining conclusion on the pitch angle of the
particles in the acceleration region is in fact affected by several
phenomena that can possibly enhance the trapping: one such
phenomenon is diffusion, but it is hard to imagine that it may
be effective. In fact, the particles that we are considering have
an initial Larmor radius of only one order of magnitude smaller
than the coherence scale, which in turn is of the same order as
the size of the island, L;;. Hence, the escape time is a fraction
of lc2 /(cl./3) ~ 3l./c, where we assumed that the diffusion
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coefficient is not too far from that expected at rp ~ 1. (see
Figure 3). The time estimated in this way is very close to the
ballistic timescale (within an order of magnitude), too short to
be of any relevance for CR trapping. Moreover, the fact that the
pitch angle is close to zero makes diffusion ineffective, because
the resonance condition would require modes with a very large
wavenumber k, which is not accessible in our simulations, and
not abundant in the standard turbulence spectrum anyway,
especially after accounting for anisotropy in the cascade.

A second phenomenon that is instead expected to be more
effective is associated with the existence of perturbations in the
magnetic field along the £ direction: Because on the scale of a
few gyrations it is a good approximation to assume that the
quantity v, p, /B is conserved, if there are fluctuations of order
A =6B(1/r)/6B(1/Lig) in the local field, the conservation of
this quantity also implies that p, must be changing, namely p
must be changing. Osc1llat10ns 1n B imply oscillations in the
pitch angle of magnitude o AY? (Voelk 1975). Unfonunately,
for the parameters of our simulation, the quantities A'Y? and
va/c are too close to identify this effect unambiguously.
However, for more realistic values of the ratio v4/c, the effect
of oscillations associated with longitudinal gradients in the
magnetic field should dominate and force particle trapping
provided that p is smaller than A.

We finally come to the effect of the gradient in the plasma
velocity. If there were a homogeneous plasma velocity u in the
x direc(ti)on, this would result in an induced electric field
Ey — ux

. B, directed in the y direction. Notice that as long as
the plasma speed is spatially constant, one can always move
into a reference frame in which this velocity is absent: Hence,
the presence of this induced electric field only introduces a drift
velocity in the £ direction and no net increase in the energy of
the particles can exist. In other words this drift is only the
E x B drift and leads to the particle advection with the
background plasma in the % direction. The case where the
velocity of the plasma is not constant in the x direction is more
interesting. Notice that the simulations used here are incom-
pressible, hence V -u = 0. This does not contradict the
assumption that a gradient du/dx = 0 exists, for instance, if two
structures are moving against each other at u ~ va4.

Below we show that the existence of this drift is the very
source of particle acceleration. We will reach this conclusion in
two independent ways.

The evolution in time of the particle distribution function f of
the particles, under the effect of the du/dx gradient alone, can
be written as

of  1dudf

ot 3dx 0¢

where £ = In(p), and we used du/dx = vj [Lgrqg. If the two
structures are moving against each other, a more likely estimate
for the gradient would be 2vy /Lgr,q4, but the difference is only
quantitative, not qualitative. Using the method of character-

istics, one gets
Vat
. 11
3Lgrad :I ( )

The particle momentum is expected to grow exponentially due
to the presence of a difference in velocity felt by particles
during gyration around the magnetic field. One can look at this
phenomenon in at least two independent ways: One way is to

=0, (10)

dp 1du
p T 3dx

—dt — p(t) x exp[
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imagine that in each particle orbit the electric field in one half is
not exactly compensated by the second half, hence there is a
net electric field that can energize the particle. The second way
to look at this as a first-order Fermi process, in which the
particle bounces (each half-orbit) on a fluid moving with a
different speed, qualitatively similar to what happens close to a
shock front, where however the gradient is much larger. The
acceleration has to come to an end when the gyroradius
becomes comparable with the size of the trapping region unless
more constraining phenomena occur on shorter timescales.

Notice that the factor of 1/3 in Equation (10) is derived
under the assumption of particle isotropy, which clearly does
not apply here. We expect that the timescale of acceleration of
particles with £~ 0 must be somewhat shorter than the
3Lgraq /v4 suggested by Equation (11).

In order to prove that our conclusion is solid, we also derive
an analogous result in a more formal way, starting from the
equation of motion of a particle moving in a setup as in
Figure 12. In this derivation, we ignore the effect of particle
drift due to the gradient of the magnetic field, hence

d
L4y p (12)
dt c
dp, q u(x)
=—-—=nB+gqg B (13)
dt c c

where we used the expression for the local induced electric
field derived above. Recalling now that p = mv-y, where - is the
Lorentz factor of the particle, and multiplying Equation (12) by
v, and Equation (13) by v,, we can deduce that

1 av? 2dy g

—my—= + mv; — = Zv,»,B, 14

2" a (19
1 dvf 2 dy a,
—my—— + mv; — = — =y, B+—uxv 15
2" ar Yar T e (B (1)

Summing all terms and recalling some basic relations of
relativistic kinematics, one obtains

dap

dt
At this point we assume that the particle velocity is already
relativistic, v~ ¢, and that the particle trajectory is weakly
modified by the gradient in u(x). This means that the gradient is
assumed to be weak on the scale of the Larmor gyration of the
particles. In this case, Equation (16) can be averaged over
many gyrations and recalling that x(z) o sin(€2¢) and
vy (1) o< sin(€2¢), the average leads to

dp> 1
= = —ap,
<dt 2

where a & vy /Lgraq is the gradient of u(x). It follows that

<d—p> L o xexp| L] sy
P 2 Lgrad 2 Lgrad

This result is formally the same as in Equation (11), but it
correctly shows that the time for exponential increase of the
momentum is slightly shorter than expected for an isotropic

particle distribution. In the absence of escape mechanisms, the
trapping is expected to cease when the particle gyroradius

_4 va u(x). (16)

a7
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becomes comparable with the island size, r; ~ Liy. This
provides a characteristic time for the duration of the
energization process,

2Lgrad

~
~

A, 19)

VA
where r;0=poc/eB is the initial particle Larmor radius

and A = In(Z2).
Lo

In order to have effective acceleration, the acceleration time
must be shorter than all the timescales of escape parallel to B
and due to drifts. By imposing that the time of escape along Z,
Teross.|| = Lisl /cu, be longer than the acceleration time, we
obtain the constraint

. 20
fe C 2Lgrad A ( )

This result provides us with a simple explanation of the reason
why only particles with a small value of p actually show
evidence of exponential momentum increase.

The issue of drifts is more subtle: The E x B drift, as
discussed above, simply leads to particle advection along the x
direction. The region of the gradient is then crossed in a time of
order Tese v ~ Lgrad /4, comparable to, though shorter than, the
acceleration time. However, if the two islands move against
each other with roughly the same speed, ~v,, the guiding
center of the particle may be advected at speeds much smaller
than v4, as a result of the fact that u(x) crosses zero.

The drift along the y direction is due to the gradient in the
magnetic field and in principle can be very fast because the drift
velocity is given by Equation (9), so that the time to drift out of
the region where the gradient exists is of order

2
 Laa | 31%Lig
Tesc.y = 7 =
Eer 0.1c

ey

where we assumed that r; ~ 0.1L;. For the parameters adopted
in the simulation, this time is Tesc,y~0.3Lisl/ ¢, much shorter
than all other times scales. In the presence of such an effect, no
appreciable acceleration should be expected. The evidence of
an exponential increase in particle energy suggests that either
the gradient in the magnetic field is a small fraction of B/Lgp,q
or that it is present all along the surface of the flux tube (green
region in the top part of Figure 12), so that the particle drifts
around the tube while retaining its pitch angle, as discussed
above.

It would be very useful to investigate further the phenomena
discussed above, but because in our simulations v, = ¢/20,
such timescales are too close to each other to reach a definitive
conclusion on the hierarchy of drift timescales.

We conclude our in-depth discussion of the physical
processes at work in the acceleration region by commenting
on the role of reconnection. As we discussed in Section 4.3, our
simulations suggest that the region where particle energization
is fast is not very active: It may be the result of a reconnection
event, but it is not a reconnection region. This is also to be
expected: The current sheet is very thin compared with the
Larmor radius of the relativistic particles considered here,
hence the resistive electric fields cannot be responsible for
particle acceleration. In this sense, a model like the one of de
Gouveia dal Pino & Lazarian (2005), in which the escape from
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the region is regulated by the speed of the exhaust of the
reconnection phenomenon, appears to be not well justified. On
the other hand, Kowal et al. (2011) correctly pointed out that
interacting islands away from reconnection events can energize
particles, even exponentially. This result was, however,
obtained in simulations that were optimized to -create
reconnection regions. We show that even in a generic 3D
MHD simulation box there are structures that lead to the same
physical phenomenon, and we provide a physical explanation
of the phenomenon and a recipe of the conditions required for
the acceleration to take place. It is also worth noticing that a
first-order particle acceleration in converging islands in
relativistic turbulence was also found by Comisso & Sironi
(2018). The case of relativistic particles moving in a relativistic
plasma v4 ~c may be considerably different from the one
described above.

The final part of this section is devoted to a discussion of the
possible relevance of these phenomena for astrophysical
turbulence, for instance, in the Galaxy as a whole.

In principle the exponential increase associated with the
phenomenon of particle trapping in interacting islands may be
of great importance: For instance, if we take the turbulence in
the Galaxy as our laboratory, one would expect vy ~ 10 km s~
and L ~ few tens of parsec, with a typical magnetic field of
3 uG. If a CR particle enters one such structure and suffers an
exponential increase in energy up to the point where the
Larmor radius equals Lig, a maximum energy of ~20 PeV
would be reached, which is tantalizingly close to the energy of
the knee. This simple numerical estimate stimulates some
additional questions: What is the timescale for such accelera-
tion? And what is the probability that a CR particle may
encounter such a peculiar structure before escaping the Galaxy?

The timescale for exponential increase is as in Equation (19):
One can see that for realistic values of the parameters, the
acceleration time is ~(1-10)l./v,, where we assumed that
L ~ I.. This seems to be in accordance with the numerical
results shown in Figure 7 (top panel). The fact that this time is
comparable to or exceeds the eddy turnaround time /./v, is a
source of concern because both the simulations and the toy
model discussed above assume that the turbulence is static (the
propagation of test particles was carried out in a snapshot at a
given time of the MHD simulation).

For turbulence in the Galaxy, the acceleration time estimated
above is of order ~1 million years. For particles at the knee, the
escape time from the Galaxy can be deduced from an
extrapolation to high energies of the low-energy (<1 TeV)
confinement time as inferred from secondary/primary ratios
(Evoli et al. 2019) and from the Be/B ratio, as discussed
recently by Evoli et al. (2020), using AMS-02 data. A
reasonable estimate for such escape time at E~ PeV is of
~0.5 Myr, comparable with the acceleration time. The situation
can be considered somewhat more promising if one thinks that
lower-energy particles (with longer confinement time) are the
ones required to be trapped in the interacting islands and
eventually getting energized.

Assuming that in a time of the order of the confinement time
a CR particle can probe the statistical properties of the
turbulence, the question arises of how many particles can
potentially interact with a region where trapping occurs and
particle energy increases exponentially. In the simulations we
ran, only a few particles out of the 10° (0.001%) experienced
exponential energy increase. The probability of order
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107>+ 10~* that one of the particles, while carrying out a
diffusive motion, may encounter a region of size ~ [. in which
there are the right conditions for trapping to occur is hard to
quantify in that it is the convolution of turbulence properties
(volume filling factor of islands that interact in the right way, in
the presence of intermittency) and properties of the particle
trajectory at the time of entering the island: As we discussed
above, only particles that approach the region with very small p
can be trapped in the region for long enough to experience the
exponential energy increase.

Because diffusion isotropizes the particle distribution
function (outside the island), the fraction of particles that at
any point in the box have a pitch-angle cosine p~va/c is
~lvA / ¢ = 0.025, where the numerical value refers to the
conditions of the simulation, while in the Galaxy that number
would be ~1.7 x 10~°. The fact that only a few particles out of
10° suffer exponential energy increase implies that, in the
simulation, the filling factor of the island that allows such
phenomenon is very small, of the order of ~10>.

A dedicated investigation of these issues would be most
important as a future development of the concepts discussed in
the present article and is crucial to assess the importance of
these phenomena for particle acceleration in nature.

6. Conclusions

The use of high-resolution magnetohydrodynamic simula-
tion data in conjunction with orbit calculations of a large
number of charged test particles enables detailed examination
of both spatial transport and energization in a generic 3D
incompressible turbulence simulation not specifically devised
to study reconnection.

The limited number of scales that can be simulated in 3D at
this time makes it difficult to go much beyond the state of the
art in terms of investigating particle transport: Nevertheless, we
determined the diffusion coefficient of relativistic particles in a
range of scales where resonances are numerically accessible in
the simulation. This bounds us to about one decade in energy
below the energy for which the Larmor radius equals the
correlation length /. of the turbulence. At such energies, it is
difficult to spot the effect of anisotropic cascade with respect to
the local magnetic field, typical of MHD, although such
anisotropy is certainly visible when studied in terms of
statistical indicators (Matthaeus et al. 2012). In this sense,
our results on the diffusion coefficient are compatible with
those of Cohet & Marcowith (2016) but do not add to it. They
are also compatible with the results previously obtained by
Subedi et al. (2017) and Dundovic et al. (2020) using synthetic
isotropic turbulence, rather than MHD turbulence. This latter
result confirms that the effects of anisotropic cascades are not
yet visible on the scales accessible to particles.

Our results on particle energization are much more
interesting: We find that the bulk of the test particles simulated
here are subject to a secular, second-order acceleration process,
due to the interaction of the particles with the random electric
fields induced through plasma motion in the simulation. A few
out of the 10° test particles for which we simulate the
trajectories happen to suffer very fast acceleration—in fact,
exponential in time. This process is seen to end when the
Larmor radius becomes comparable with the size of the
magnetic structure in which the particles reside.

The second-order stochastic acceleration process has
been analyzed by employing standard techniques including
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computation of the running diffusion coefficient in energy
space. We find empirical values for energy diffusion
Dgr ~ O.OlvAEO2 / I, and for the associated characteristic time
TAfE.E ~ 1021, /va. These quantities are in qualitative agreement
with naive expectations: The energy of a particle is expected to
change in a random way (increase or decrease) due to the
interaction with induced electric fields, so that their energy
changes as (%)2& with ¢<1, in a time that is
approximately ~ [./c (see Figure 3). It follows that the
diffusion coefficient in energy can be estimated as
Dgg = (%)ing—? For the v4/c=1/20 adopted in our
calculations Dz ~ £20.05E%/1..

We characterize further the second-order acceleration
process by evaluating the time-dependent probability distribu-
tion functions, for both particle energy and time increments of
particle energy. These additional tests show the second-order
nature of the phenomenon.

As mentioned above, a few of the test particles in the
simulation appear to have quite different behavior, in that in
addition to the slow second-order process, they happen to
encounter special locations in the box where the energy is seen
to increase exponentially, for times exceeding or about 10
Alfvén crossing times of the magnetic coherence length.

Closer examination reveals that these particles maintain a
pitch angle not far from 90° during this period, while their spatial
trajectory is highly confined and differs greatly from its more
typical random walk nature. In essence, these particles have
become temporarily trapped within particular turbulence struc-
tures that are characterized by strong gradients. The structures
are not directly associated with regions of activity in the plasma,
and in fact, if any, they show less than normal activity, although
visual inspection of these regions suggests the existence of
extended interaction areas with at least another structure.

We built a toy model that includes in a simplified way the
main drifts and gradients in the local electric fields. The toy
model shows that the main reason for rapid particle energiza-
tion is a sort of first-order Fermi process in which the energy of
the particles grows due to a local gradient in the plasma
velocity field. Both the temporal evolution of the energization
process and the typical timescales for particle acceleration, as
well as the maximum energy, are qualitatively reproduced in a
correct way.
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