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Abstract
The persistence diagram is an increasingly useful tool from Topological Data Analy-
sis, but its use alongside typical machine learning techniques requires mathematical
finesse. The most success to date has come from methods that map persistence dia-
grams into vector spaces, in a way which maximizes the structure preserved. This
process is commonly referred to as featurization. In this paper, we describe a math-
ematical framework for featurization called template functions, and we show that it
addresses the problem of approximating continuous functions on compact subsets of
the space of persistence diagrams. Specifically, we begin by characterizing relative
compactness with respect to the bottleneck distance, and then provide explicit theo-
retical methods for constructing compact-open dense subsets of continuous functions
on persistence diagrams. These dense subsets—obtained via template functions—are
leveraged for supervised learning taskswith persistence diagrams. Specifically, we test
the method for classification and regression algorithms on several examples including
shape data and dynamical systems.
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1 Introduction

Many machine learning tasks can be reduced to the following problem: Approximate
a continuous function defined on a topological space, the “ground truth,” given the
function values (or approximations thereof) on some subset of the points. This task
has been studied extensively for data in Euclidean space, but more work is necessary
to extend these ideas to arbitrary topological spaces. In this paper, we focus on the
task of learning continuous functions on the spaceD of persistence diagrams endowed
with the bottleneck distance dB , as input to supervised learning (e.g., regression and
classification) on D.

Persistence diagrams are mathematical objects arising in the field of Topological
Data Analysis (TDA). They are signatures giving insight into the underlying structure
of data sets, and typically arise in the following pipeline.Given a sequence of simplicial
complexes K1 ⊆ K2 ⊆ · · · ⊆ Kn obtained, for example, by connecting the points in
a data set at increasing proximity scales (e.g., as in the Vietoris-Rips filtration), then
their homology with coefficients in a field and the maps induced by the inclusions
Ki ↪→ Ki+1 yield a sequence Hp(K1) → Hp(K2) → · · · → Hp(Kn) of vector
spaces and linear transformations. One can then interrogate this sequence to determine
when homological features appear (are born) and disappear (die), and encode each
such feature as a point (birth, death) in a so-called persistence diagram. It is possible
to weaken the implicit finiteness assumptions of the input data and instead start with
a family {Ka | a ∈ R} of spaces with Ka ⊆ Kb for a ≤ b, giving rise to a so-called
persistence module {Hp(Ka) | a ∈ R} with linear maps φb

a : Hp(Ka) → Hp(Kb)

such that φa
a is the identity map of Hp(Ka) and φc

bφ
b
a = φc

a for a ≤ b ≤ c. To simplify
definitions, we will assume that our input diagrams are defined over positive indices
a ≥ 0. There has been extensive study on the various niceness restrictions that can be
placed on a persistence module [12]. With enough assumptions, a persistence module
can be represented up to isomorphism as a persistence diagram, which is simply a
collection of points with multiplicity in the “wedge”W = {(x, y) ∈ R

2 | 0 ≤ x < y}.
Persistence diagrams are particularly useful for data analysis due to the availability of
metrics, and their stability [45].

The downside of all this mathematical structure is that the geometry of the space
of persistence diagrams (D, dB) is not directly amenable to the application of existing
machine learning methodologies. Thus, methods for utilizing persistence diagrams
in statistics and machine learning contexts have taken two basic forms. The first are
attempts atworkingwith the persistence diagrams directly; however, the issueswith the
geometry (particularly the lack of unique means) mean that the work in this direction
is rather limited.More recently, a great deal of success has been found in featurization;
that is, transforming each persistence diagram into a point in a vector space, in a way
that preserves as much of the structure as possible. The work in this paper is part of
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the latter category, and provides a new method for featurization which sits on a solid
mathematical foundation with respect to the structure of (D, dB).

Mathematically, we are working with the following framework. Suppose one has a
set S ⊂ D, typically compact, and a continuous function F : S −→ R encoding the
ground truth of the phenomenon under study. Our goal is to devise provably-correct
and computationally feasible approaches to approximating F , given a finite sample
D1, . . . , Dn ∈ S and their values F(D1), . . . , F(Dn) ∈ R. This encompasses, for
instance, supervised learning tasks such as regression and classification. The problem
at hand is thus (1) to characterize compactness in (D, dB), for these are the sets where
sequential approximations are guaranteed to converge, (2) to construct dense subsets
of the space of continuous functions from D to R, for these will be the search space
for approximation (i.e., supervised learning) tasks, and (3) to devise algorithms using
said families to approximate real valued functions on compact subsets of D.

1.1 Our Contribution

The first contribution of this paper is a characterization of (relative) compactness for
subsets of D with respect to dB (see Fig. 2 and Theorem 3.7). These results can
be viewed in parallel to the characterization in [48] of relative compactness with
respect to the Wasserstein distance, though our results are shown to capture different
phenomena (see Sect. 3.6). Our characterization also comes with some unexpected
consequences for the topology of (D, dB): (1) Every compact subset of D has empty
interior (henceD is not locally compact); (2)D cannot be written as a countable union
of compact subsets; and if C(D, R) denotes the set of continuous functions fromD to
R, then (3) the compact-open topology on C(D, R)—which captures approximations
on compact subsets of D—is not metrizable. The main consequence of this last point
is the impossibility of purely metric-based objective functions for approximations
(e.g., supervised learning) in C(D, R) with respect to the topology of convergence on
compact sets.

To circumvent this, we turn our attention to the problem of finding compact-open
dense subsets of C(D, R). Ideally, the elements of these sets should be succinctly
represented (e.g., with a few parameters) and efficiently searched (e.g., via appro-
priate optimization routines), in order to devise general computational schemes. Our
second contribution is a methodology for constructing infinitely many examples of
said families. The strategy goes as follows: First, we continuously embed D in an
appropriate topological vector space V—consistent with the monoidal structure of D
given by disjoint union � of multisets—and then restrict the continuousR-linear maps
on V to yield elements in C(D, R). Specifically, let Cc(W) denote the set of com-
pactly supported continuous functions fromW toR, endowed with the strict inductive
limit topology (see Sect. 4.3). Let Cc(W)′ be its topological dual, endowed with the
corresponding weak-* topology, and let

ν : D −→ Cc(W)′
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be the function which assigns to each D ∈ D the Radon measure on W consisting of a
Dirac deltamass at each x ∈ D.We show in Theorem 4.9 that ν is continuous, injective
and satisfies ν(D � D′) = ν(D) + ν(D′) for all D, D′ ∈ D, providing the aforemen-
tioned linear embedding. Hence, each bounded linear operator T : Cc(W)′ −→ R

yields a map T ◦ ν ∈ C(D, R)—a feature, in machine learning parlance—which
respects the monoidal structure � of D.

We show (see Theorem 5.1 and discussion thereafter) that each such T uniquely
determines an f ∈ Cc(W), and viceversa, so that T ◦ ν(D) is exactly the same
as integrating f against the Radon measure ν(D). We then show how to construct
compact-open dense subsets ofC(D, R) by taking countablymany dilations and trans-
lations of any nonzero f ∈ Cc(W) (Theorems 5.3 and 5.4). This is why we refer to
the elements of Cc(W) as template functions.

As the final contribution of this paper, we provide two explicit families of tem-
plate functions—called respectively tent functions and interpolating polynomials (see
Sect. 6)—so that the algebras they generate in C(D, R) are compact-open dense. We
then provide algorithms to perform regularized regression and classification using tem-
plate functions (in Sect. 7), and finally, we compare tent functions and interpolating
polynomials in several tasks including shape classification and inference in dynamical
systems (Sect. 8).

1.2 RelatedWork

Existing methods for applying statistics and machine learning methods to persistence
diagrams can be loosely divided into two categories. The first attempts to work in the
space of persistence diagrams directly. This can be done by studying the Fréchet mean
for collections of diagrams [48, 49, 62], confidence sets for persistence diagrams [33],
or simply passing the Wasserstein or bottleneck distance matrix to metric learning
methods for classification tasks (e.g. [46]). The main issue with this viewpoint is
that the geometry of the space of persistence diagrams is ill-behaved [64], so directly
working with these objects is often not advisable.

The second collection of methods maps the space of persistence diagrams into
another, more well-behaved space where available mathematical machinery can be
readily applied. Our work on approximating continuous functions of persistence dia-
grams with templates fits into this category. These approaches take inspiration from
different viewpoints including algebraic geometry [2, 14, 28, 39], functional represen-
tations [8, 10, 20, 51], image encodings [1, 21, 31, 34, 56], path representations [22],
kernel methods [3, 15–17, 26, 40–44, 55, 67, 68], and other more ad hoc methodolo-
gies [5, 18, 23, 50, 59, 69, 70]. Our work is most closely related to the persistence
images of [1], where each point in a persistence diagram contributes to a Gaussian
bump, and the sum of these Gaussians provides a function on the upper half plane.
Our work is, in some sense, dual to this idea, where we start with bump functions and
evaluate this function at the points of the persistence diagram.
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1.3 Outline

We go over the background needed for understanding persistence diagrams in Sect. 2.
In Sect. 3, we give a full characterization of compact sets in persistence diagram space
with the bottleneck distance (Sect. 3.7); the reader more interested in the featurization
method than in its mathematical justification may safely skip this section. We provide
the mathematical justification for the template functions in Sect. 4, and fit this into a
function approximation scheme in Sect. 5. In Sect. 6 we give two options for template
functions: tent functions and (Chebyshev) interpolating polynomials. In Sect. 7 we fit
these into a regression framework. We give results of our experiments in Sect. 8 and
discuss implications and future directions in Sect. 9.

2 Basics

Traditionally, persistence diagrams arise in the course of the following procedure.
Given a function f : X → R on a topological space X, denote the sublevel set
by Xa = f −1(−∞, a]. For example, given a point cloud X ⊆ R

d , one can define
f : R

d → R as f (y) = inf
x∈X ‖x − y‖. Such a function induces a filtration Xa ⊆ Xb,

a ≤ b, on X and applying k-dimensional homology yields the persistence module
(Hk(Xa), φ

b
a ). Namely, the collection of vector spaces1 Hk(Xa) with induced maps

φb
a : Hk(Xa) → Hk(Xb) for all a ≤ b. In full generality, persistence modules can

simply be viewed as a collection of vector spaces and linear maps V = (Va, φb
a )where

φb
a : Va → Vb, φa

a = 1Va , and φc
bφ

b
a = φc

a .
Under appropriate tameness conditions, a persistence module can be decomposed

uniquely. The pieces of the decomposition are called interval modules; these are per-
sistencemodulesIU = (Ia, iba )whereU ⊂ R is an (open, closed or half-open) interval
with end-points−∞ ≤ r ≤ s ≤ ∞, Ia = k if a ∈ U and 0 otherwise. Themaps iba are
identities whenever possible. A persistence module V = (Va, φb

a ) is called pointwise-
finite if Va is finite dimensional for every a. Every pointwise-finite persistence module
decomposes uniquely as a direct sum of interval modules, V = ⊕

U∈A IU [27]. This
decomposition is often visualized as a persistence diagram as seen in the center panel
of Fig. 1. The diagram consists of a point at (r , s) ∈ (R∪{±∞})2 for the endpoints of
each U ∈ A. We remark that diagonal points (r , r) will be discarded as they encode
non-persistent features (these are called ephemeral modules), and are not detected by
our template functions f ∈ Cc(W) for in this case supp( f ) ⊂ W does not intersect
the diagonal. For the same reason, points (r , s) with {r , s} ∩ {±∞} �= ∅ (i.e., with
infinite persistence) will also be discarded.

For simplicity of notation and definitions, we will be working with positive dia-
grams: those with r ≥ 0 for each point (r , s) in the persistence diagram. Note that
we can always convert a finite set of persistence diagrams to have this assumption by
shifting the index by adding the minimum birth value. For infinite sets, we can reindex
using any positive, monotone increasing function of the original index parameter to
achieve the same results.

1 Homology is computed with coefficients in a field k.

123



Foundations of Computational Mathematics

Fig. 1 An example point cloud is shown at left, with its persistence diagram shown in the middle. At right,
we show the conversion of the persistence diagram into the birth-lifetime plane which is used throughout
this paper

Certain visualizations will be on birth-lifetime coordinates, consisting of a point
at (r , s − r) ∈ R

2 for each interval U ∈ A with endpoints (either closed or open)
r ≤ s. See the right of Fig. 1 for an example. We note that the methods here developed
also apply to zigzag persistence modules. These consist of vector spaces Va and linear
maps between them that can point in either direction: i.e., Va → Vb or Va ← Vb for
a ≤ b. It turns out that Zigzag modules can also be decomposed as sums of (zigzag)
intervals modules [13], which in turn can be represented as persistence diagrams.

2.1 The Space of Persistence Diagrams

A persistence diagram D, then, can be thought of as a collection of points

S ⊂ {(x, y) ∈ R
2 | 0 ≤ x < y}

with a notion of multiplicity, which we write as a function

μ : S → N = {1, 2, . . .}.

We will often write D = (S, μ). In order to make statements about the structure of
the space of persistence diagrams we will need a few notions.

Definition 2.1 Given D = (S, μ) and U ⊂ R
2, the multiplicity of D in U is

Mult(D,U ) =
⎧
⎨

⎩

∑

x∈S∩U
μ(x) if this is finite, or

∞ else.

Other common notions we will use repeatedly are as follows. The diagonal is denoted
� := {(x, x) ∈ R

2 | x ≥ 0}, and the wedge is

W :=
{
(x, y) ∈ R

2 | 0 ≤ x < y
}

.
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Note that the boundary of W is �, but it is not included in W. The persistence of a
point x = (x, y) ∈ W is pers(x) = y − x , and the portion of W where persistence is
greater than ε is

W
ε := {x ∈ W | pers(x) > ε}.

Note that the (ε-diagonal) lower boundary is not included; in order to do so we write

Wε = {x ∈ W | pers(x) ≥ ε}.

If we want to work with the portion of points in D = (S, μ) in a region U ⊆ R
2, we

write

D ∩U := (S ∩U , μ|S∩U ).

We further abuse notation by writing D ⊂ U if S ⊂ U . If S = ∅, we follow the set-
theoretic conventionμ = ∅ anddenote by∅ = (∅,∅) the resulting (empty) persistence
diagram. For the sake of figures, we sometimes plot persistence diagrams in the birth-
lifetime plane. That is, we plot x = (x, y) at the point (x, y−x) = (x,pers(x)). In this
representation,� gets mapped to the x-axis. It should be noted that this transformation
is different from the rotation used by [10] and [1]. With these notions we define the
space of persistence diagrams as follows.

Definition 2.2 The space of persistence diagrams, denoted D, is the collection of
pairs D = (S, μ) where:

1. S ⊂ W is the underlying set of D, and μ : S → N = {1, 2, . . .} encodes the
multiplicity μ(x) ∈ N of each x ∈ S.

2. Mult(D, W
ε) < ∞ for any ε > 0.

The space of finite persistence diagrams is D0 := {(S, μ) ∈ D | S is finite}.

Finite persistence diagrams were the first to appear in the literature, and many current
papers implicitly assume finiteness. We do not do so here, as diagrams with infinitely
many points can be used to encode fractal behavior—e.g., in attractors from dynam-
ical systems. Since we will be interested in studying subsets of D, we will extend
Definition 2.1 as follows.

Definition 2.3 Given S ⊂ D and U ⊂ R
2, then the total multiplicity of S in U is

Mult(S,U ) =
⎧
⎨

⎩

∑

D∈S
Mult(D,U ) if this is finite, or

∞ else.

In particular, for each D ∈ D we write Mult(D,U ) instead of Mult({D},U ).
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2.2 The Bottleneck Distance

The space of persistence diagrams can be endowed with a distance, which we now
define. To each persistence diagram D = (S, μ) one can associate a set

Sμ := {
(x, k) | x ∈ S and 1 ≤ k ≤ μ(x)

}
(1)

obtained by replicating the elements of S and decorating them with integer labels
according to their multiplicity. A partial matching between two persistence diagrams
(S, μ), (T , α) is a bijection (with notation as in Eq.1)

M : A −→ B⊆ ⊆
Sμ Tα

between a subset A of Sμ and a subset B of Tα . If (y, n) = M(x, k) we say that (x, k)
is matched with (y, n) and, conversely, that (y, n) is matched with (x, k). If (z,m) is
in either Sμ \ A or Tα \ B, then we call it unmatched. Given δ > 0, a partial matching
M between (S, μ) and (T , α) is a δ-matching if two things happen:

1. If (x, k) ∈ Sμ and (y, n) = M(x, k) are matched, then ‖x − y‖∞ < δ, where
‖(x1, x2)‖∞ = max{|x1|, |x2|} denotes the L∞ norm on R

2.

2. If (z,m) ∈ Sμ ∪ Tα is unmatched, then pers(z) < 2δ.

Definition 2.4 The bottleneck distance, dB : D × D −→ [0,∞), is given by

dB(D, D′) := inf
{
δ > 0 | there is a δ-matching between D and D′}

It has been shown thatdB defines ametric onD [24], and thatD is themetric completion
of D0 [9].

For simplicity (though without loss of generality) we assume in this paper that all
persistence points are finite; i.e. for each point (b, d) in the diagram, the lifetime d−b
is finite. That is, we discount homological features with infinite lifetime which occur
when d = ∞. The assumptions on D make it so that the bottleneck distance is still
finite between diagrams in D. In particular, this comes from the triangular inequality
and the fact that

dB(D, ∅) = 1
2 max{pers(x) | x ∈ S}, for all D = (S, μ) ∈ D.

3 Compactness inD
Our first contribution is Thm. 3.7, which gives a criterion for characterizing (rela-
tively) compact sets in (D, dB). This work can be viewed in parallel to Theorem 21 of
[48], which does the same using the related Wasserstein distance dWp for persistence
diagrams. For other structural properties of families of persistence modules see [12].
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Definition 3.1 A subspace of a topological space is relatively compact if its closure
is compact.

In what follows we will provide a criterion to check whether a subset S ⊆ D is
relatively compact. Specifically, we will show that a set is relatively compact if it
satisfies the following three properties.

3.1 Bounded

The first property of interest is boundedness. A subset of a metric space is said to be
bounded if it is contained in an open ball of finite radius. Let

BC (D) := {D′ ∈ D | dB(D, D′) < C}

denote the ball of radius C > 0 about the diagram D. In particular, it can be seen
from the definition that S ⊂ D is bounded if and only if there exists C > 0 so that
S ⊆ BC (∅).

Proposition 3.2 Relatively compact subsets of (D, dB) are bounded.

Proof Let S ⊆ D be relatively compact. To see that S is in fact bounded, consider
the cover

{
B1(D) | D ∈ S

}
by open balls of radius 1 and let {B1(Di )}Ni=1 be a finite

subcover. If

C > 1 + max{dB(Dj , ∅) | 1 ≤ j ≤ N }

then it follows that S ⊂ S ⊂ BC (∅), as claimed.
��

Note that this proof works for a general metric space, but we work in D for clarity.

3.2 Off-Diagonally Birth Bounded

The second property of interest controls persistence diagrams with unbounded birth.

Definition 3.3 A setS ⊂ D is said to be off-diagonally birth bounded (ODBB) if for
every ε > 0 there exists a constant Cε ≥ 0 so that if x ∈ S ∩ Wε (i.e., pers(x)) ≥ ε)
for (S, μ) ∈ S, then birth(x) ≤ Cε.

See Fig. 2 for a visualization of the notation.

Proposition 3.4 Relatively compact subsets of (D, dB) are ODBB.

Proof By way of contradiction, assume S ⊆ D is relatively compact but not ODBB.
Then there exist (i) ε > 0; (ii) a sequence {Dn}n∈N ⊆ S with Dn = (Sn, μn); (iii) a
fixed diagram D = (S, μ) ∈ D such that

lim
n→∞ Dn = D,
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Fig. 2 The three criterion for
compact sets with examples
given on intersections

which exists because S ⊂ D is compact; and (iv) a chosen point in each diagram Dn ,
namely xn ∈ Sn , with pers(xn) ≥ ε for all n ∈ N, and lim

n→∞birth(xn) = ∞.

Let δ < ε
2 and let N ∈ N be large enough so that dB(Dn, D) < δ for all n ≥ N .

For each n ≥ N fix a δ-matching

γn : An −→ Bn⊆ ⊆

(Sn)μn Sμ

Since xn ∈ Sn has pers(xn) ≥ ε and δ < ε/2, then (xn, 1) ∈ An . Let yn ∈ S be
such that γn(xn, 1) = (yn, kn). As γn is a δ-matching, then ‖xn − yn‖∞ < δ which
means, in particular, that pers(yn) ≥ δ. Hence {yn}n∈N ⊆ S is an infinite set in W

δ ,
contradicting D ∈ D. ��

3.3 Uniformly Off-Diagonally Finite

The final property of interest controls the multiplicity of points across all diagrams:

Definition 3.5 A set S ⊂ D is said to be uniformly off-diagonally finite (UODF) if
for every ε > 0 there exists Mε ∈ N so that

Mult
(
D, Wε

)
≤ Mε

for all D ∈ S.

Again, see Fig. 2 for a visualization of the notation.

Proposition 3.6 Relatively compact subsets of D are uniformly off-diagonally finite.
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Proof By the contrapositive, if S ⊂ D is not UODF, then there exist ε > 0 and a
sequence {Dn}n∈N ⊂ S so that

Mult
(
Dn, Wε

)
< Mult

(
Dn+1, Wε

)

for all n ∈ N. In particular, using the pigeonhole principle, any partial matching
between Dn and Dn+1 must have at least one point in Dn+1 unmatched. As this point
has persistence greater than ε, it follows that dB(Dn, Dn+1) ≥ ε for every n ∈ N and
therefore {Dn}n∈N cannot have a convergent subsequence. This shows that S is not
compact. ��

3.4 Helpful Counterexamples

The three conditions bounded, off-diagonally birth bounded and uniformly off-
diagonally finite are independent. Indeed, here are three examples of sets S =
{(Sn, μn) | n ∈ N} which satisfy only two out of the three conditions. See Fig. 2.

1. Bounded and ODBB, but not UODF.
Sn = {(0, 1)} with μn(0, 1) = n.

2. Bounded and UODF, but not ODBB.
Sn = {(n, n + 1)} with μn(n, n + 1) = 1.

3. UODF and ODBB, but not bounded.
Sn = {(0, n)} with μn(0, n) = 1.

3.5 Characterizing Compactness in (D, dB)

With these definitions, we can now state our main compactness theorem.

Theorem 3.7 (Characterization of compactness in (D, dB)) A set S ⊂ D is relatively
compact in (D, dB) if and only if it is bounded, off-diagonally birth bounded (ODBB)
and uniformly off-diagonally finite (UODF).

Note that one direction is already provided by Propositions 3.2, 3.4 and 3.6, so our
main job is to show that a set which satisfies the three conditions is relatively compact.
Before we prove this, however, we will need to build a bit of machinery. First, notice
that if S ⊂ D is bounded (S ⊂ BC (∅)) and ODBB, then there exist a collection of
finite “boxes” Bk in W whose union contain all points in the diagrams. Specifically, if
S is bounded and ODBB, then there is a C > 0 and {Ck}k∈N ⊂ R>0 non-decreasing,
so that if

Bk =
{

x ∈ W | 0 ≤ birth(x) ≤ Ck and
C

k + 1
< pers(x) ≤ C

k

}

(2)

then for all D ∈ S , D ⊂ ⋃

k∈N
Bk . While these are parallelograms in the birth-death

plane, they become rectangles in the birth-lifetime plane, hence the moniker “box”,
see Fig. 3.

123



Foundations of Computational Mathematics

Fig. 3 An example to show the
notation used in Eq. 2

Second, we can control the multiplicity of the diagrams in these boxes. Indeed, if
S ⊂ D is simultaneously bounded, ODBB, and UODF, then there exists a sequence
{Mk}k∈N ⊂ N so that for every D ∈ S and every k ∈ N we have that

Mult(D, Bk) ≤ Mk (3)

We can use this to prove the following useful, technical lemma:

Lemma 3.8 Let R ⊂ W be a relatively compact subset of R
2. If {Dn}n∈N ⊂ D is so

that

sup
n∈N

Mult(Dn, R) < ∞

then the restricted sequence {Dn ∩ R}n∈N has a convergent subsequence. Specifically,
there exists a diagram D ∈ D with D ⊂ R and a strictly increasing function ϕ : N →
N so that

lim
n→∞

(
Dϕ(n) ∩ R

) = D.

Proof Let M ∈ N be so that

Mult(Dn, R) ≤ M

for every n ∈ N, which exists by hypothesis. For each n ∈ N, let mn ∈ {0, . . . , M}M
be the vector having as entries the integersμn(x) for x ∈ Dn ∩ R, sorted in descending
order and padded with zeros at the end as necessary. The pigeonhole principle implies
that there is a vector m ∈ {0, . . . , M}M which repeats infinitely often. That is, there
is a strictly increasing function φ : N −→ N such that m = mφ(n) for all n ∈ N.

If m is the zero vector, then Dφ(n) ∩ R = ∅ for all n ∈ N, and thus we can let
ϕ = φ, D = ∅, which trivially satisfy
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lim
n→∞(Dϕ(n) ∩ R) = ∅.

If on the other hand m is nonzero, then let J ≥ 1 be so that

m = (m1, . . . ,mJ , 0, . . . , 0)

andM ≥ m1 ≥ m2 ≥ · · · ≥ mJ > 0. For n ∈ N, order the underlying set of Dφ(n)∩R
as {xn1, · · · , xnJ } in such a way that μφ(n)(xnj ) = m j for all j = 1, . . . , J . Then the

collection {(xn1, . . . , xnJ )}n∈N is an infinite sequence in RJ which, by compactness of

R, has an accumulation point (x1, . . . , xJ ) ∈ R
J
. Thus, let ψ : N −→ N be strictly

increasing with the property that

lim
n→∞

(
xψ(n)
1 , . . . , xψ(n)

J

)
= (x1, . . . , xJ ).

Define D as the disjoint union

D =
J⊔

j=1

({
x j
}
,m j

)

where ({x j },m j ) is the persistence diagram having one off-diagonal point at x j ∈ R
with multiplicity m j .

We contend that the subsequence of {Dn ∩ R}n∈N defined by ϕ = φ ◦ ψ converges
to D. Indeed, given ε > 0, let N ∈ N be so that n ≥ N implies

max
1≤ j≤J

∥
∥
∥xψ(n)

j − x j

∥
∥
∥∞ < ε. (4)

Since the diagram Dϕ(n) ∩ R has the collection
{
xψ(n)
1 , . . . , xψ(n)

J

}
as underlying set,

then

γn : Dϕ(n) ∩ R −→ D

xψ(n)
j �→ x j

defines a bijection (of multisets). As no points are unmatched, Eq. 4 implies that
this is an ε-matching. Thus dB(Dϕ(n) ∩ R, D) ≤ ε for all n ≥ N , and convergence
follows. ��

With this lemma in place, we can return to the proof of the main theorem.

Thm. 3.7 (⇒) If S ⊂ D is relatively compact, then it being bounded, ODBB and
UODF follow from Propositions 3.2, 3.4 and 3.6, respectively.

(⇐) Let S ⊂ D be bounded, ODBB, and UODF. Fix {Mk}k∈N ⊂ N and Bk ⊂ W,
k ∈ N, as in Eqs. 2 and 3, and let {Dn}n∈N ⊂ S be arbitrary. We will use Lemma 3.8
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inductively to construct a sequence ϕ1, ϕ2, . . . , ϕk, . . . of strictly increasing functions
ϕk : N −→ N so that if
k = ϕ1◦· · ·◦ϕk , then the subsequence of restricted diagrams

{
D
k(n) ∩ Bk

}
n∈N

converges to a diagram Dk ⊂ Bk , for each k ≥ 1. Once we have built this, we will let

ϕ : N −→ N

n �→ 
n(n)

and the main task for the proof is to show that {Dϕ(n)}n∈N converges to the diagram

D =
∞⊔

k=1

Dk .

We now proceed inductively in k. The base case follows from applying Lemma 3.8
to the sequence {Dn}n∈N and the relatively compact set B1. This results in a strictly
increasing function ϕ1 : N → N and a diagram D1 ⊂ B1, so that

lim
n→∞ Dϕ1(n) ∩ B1 = D1.

Now the inductive step. Let k ≥ 1 and assume that ϕ j : N → N and D j ⊂ B j ,
1 ≤ j ≤ k, have been constructed in such a way that if 
 j = ϕ1 ◦ · · · ◦ ϕ j , then

lim
n→∞ D
 j (n) ∩ B j = D j .

The sequence {D
k (n)}n∈N and the setBk+1 satisfy the hypotheses ofLemma3.8.Thus,
there exist a strictly increasing function ϕk+1 : N −→ N and a diagram Dk+1 ⊂ Bk+1
so that if 
k+1 = 
k ◦ ϕk+1, then

lim
n→∞ D
k+1(n) ∩ Bk+1 = Dk+1.

Now, let ϕ(n) = 
n(n), and let us show that {Dϕ(n)}n∈N converges to D =
∞⊔
k=1

Dk .

To this end, fix ε > 0 and let K ∈ N be large enough so that C
K < ε

2 . For each
1 ≤ k ≤ K , let Nk ∈ N be so that n ≥ Nk implies

dB
(
D
k(n) ∩ Bk, D

k
)

<
ε

2

and let N = max{K , N1, . . . , NK }. Note that if n > N and 1 ≤ k ≤ K , then

ϕ(n) = 
k(ϕk+1 ◦ · · · ◦ ϕn(n)).
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Moreover, since ϕk+1 ◦ · · · ◦ ϕn(n) ≥ n > Nk , then dB
(
Dϕ(n) ∩ Bk, Dk

)
< ε

2 . Thus,
we can assume we have an ε/2-matching

γ k
n : Dϕ(n) ∩ Bk −→ Dk .

As the Bk’s are disjoint, then the union of the γ k
n ’s yields a bijection (of multisets)

�K
n : Dϕ(n) ∩

⋃

k≤K

Bk −→
⊔

k≤K

Dk

Moreover, since all points in Dϕ(n) ∩ ⋃

k>K
Bk have persistence at most ε/2, then �K

n

defines an ε/2-matching between Dϕ(n) and D, and hence dB(Dϕ(n), D) < ε for all
n > N . ��

3.6 Bottleneck versusWasserstein Compactness

The Wasserstein distance dWp , for p ∈ N, is another common measure of similarity
between persistence diagrams. It is given by

dWp (D, D′) := inf
M

⎛

⎜
⎝
∑

x,x′
matched

‖x − x′‖p∞ +
∑

z
unmatched

(
pers(z)

2

)p

⎞

⎟
⎠

1/p

(5)

where the infimum ranges over all partial matchings M between D and D′. One can
show that dWp defines a metric on the set

Dp := {
D ∈ D | dWp (D, ∅) < ∞}

and that (Dp, dWp ) is a complete separable metric space [48]. Moreover,

D1 ⊂ D2 ⊂ · · · ⊂ Dp ⊂ · · · ⊂ D (6)

and all inclusions can be shown to be continuous with respect to the appropriate
metrics. In particular, if ιp : Dp ↪→ D is the inclusion map and S ⊂ Dp is relatively-
compact with respect to dWp , then ιp

(
S
)
is compact (hence closed) with respect to

dB , and the equality

ιp
(
S
) = ιp

(
S
) = ιp(S)

shows that relatively-compact subsets of (Dp, dWp ) are also relatively compact in
(D, dB). This implies that relatively-compact subsets of (Dp, dWp ) also satisfy the
three conditions of Theorem 3.7. The characterization of relative-compactness in
(Dp, dWp ) is work of [48], and we will describe it next.
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Definition 3.9 A set S ⊂ Dp is uniform if for every ε > 0 there exists α > 0 so that

∑

x∈S
pers(x)<α

μ(x)pers(x)p ≤ ε

for all (S, μ) ∈ S.
The relevant characterization is as follows:

Theorem 3.10 ([48]) A set S ⊂ Dp is relatively compact in (Dp, dWp ) if and only
if it is bounded (with respect to dWp ), off-diagonally birth bounded (in the sense of
Definition 3.3) and uniform.

The next two examples illustrate how relative compactness in (D, dB) and
(Dp, dWp ) can exhibit very different behaviors, even if Theorems 3.7 and 3.10 seem
similar at first glance.

Examples:

1. Let S be the set of persistence diagrams Djk = (S jk, μ jk), for j, k ∈ N, with

S jk =
{(

0,
1

kn1/k

) ∣
∣
∣ 1 ≤ n ≤ j

}

and multiplicity function μ jk

(
0, 1

kn1/k

)
= 1. Notice that each S jk is finite, and

hence S ⊂ Dp for all p ∈ N. However, for k = p the set {Djp} j∈N ⊂ S is not
bounded with respect to dWp , and thus S is not relatively compact in (Dp, dWp ) for
any p ∈ N.
On the other hand, dB(Djk, ∅) ≤ 1 for every j, k ∈ N, soS is boundedwith respect
to dB , and it is clearly birth-bounded (henceODBB). In order to see thatS is UODF,
fix ε > 0 and let k0 ∈ N be so that 1

ε
< k0. It follows that Djk ∩Wε = ∅ for k ≥ k0

and every j ∈ N, so assume 1 ≤ k < k0, j ∈ N, and let
(
0, 1

kn1/k

)
∈ S jk ∩ Wε .

Hence

n ≤ 1

(kε)k
≤ 1

εk
< kk00

and therefore Mult
(
D, Wε

)
< kk00 for every D ∈ S. This shows that S is UODF

and thus relatively compact in (D,dB).
2. Let S be the set of persistence diagrams Dk = (Sk, μk), for k ∈ N, with

Sk =
{
(0, 1),

(
0, n−1/k

) ∣
∣
∣ n ≥ 2

}

and multiplicity function μk(0, 1) = k, μk
(
0, n−1/k

) = 1. The first thing to note

is that S ⊂ D, and thatMult
(
Dk, W0.5

)
> k for every k ∈ N. Therefore, S is not

UODF, and thus—by Theorem 3.7—it is not relatively compact in (D, dB).
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On the other hand, for each p ∈ N we have that S ∩Dp = {Dk | 1 ≤ k < p}, and
thus

S =
⋃

p∈N
S ∩ Dp.

Since S ∩ Dp is finite, then it is compact in (Dp, dWp ) for every p ∈ N.

In summary, in order to understand relative compactness in (D, dB) it is not enough
to do so at each (Dp, dWp ); the class of relatively compact subsets of (D, dB) is in
fact larger than the union over p ∈ N of those in (Dp, dWp ).

3.7 Consequences of Thm. 3.7

Wenote a fewconsequences of our characterization of relative compactness in (D, dB ).

Theorem 3.11 Relatively compact subsets of (D, dB) have empty interior.

Proof Let S ⊂ D be relatively compact, and let

Bk =
{

x ∈ W

∣
∣
∣ 0 ≤ birth(x) < Ck and

C

k + 1
≤ pers(x) <

C

k

}

, k ∈ N

be a sequence of boxes (as defined in Eq. 2) so that D ⊂ ⋃
k Bk for every D ∈ S. Fix

D ∈ S. We will show that any open ball around D contains a persistence diagram D′
whose underlying set is not in the union of these boxes. Indeed, given ε > 0, there
exists k0 ∈ N so that C

k0
< ε

2 , and if D
′ is the persistence diagram obtained from D by

adding the point
(
Ck0 + 1,Ck0 + 1 + C

k0

)
with multiplicity one, then dB(D, D′) < ε,

but D′ �⊂ ⋃
k Bk . ��

Recall that a topological space is locally compact if every point has an open neigh-
borhood contained in a compact set; said open set is called a compact neighborhood
of the point. The following corollary is a direct consequence of Theorem 3.11.

Corollary 3.12 The space of persistence diagrams (D, dB) is not locally compact.
Moreover, no diagram D ∈ D has a compact neighborhood.

Proof Let D ∈ D and suppose, by way of contradiction, that D has a compact neigh-
borhood. That is, that there exist an open set U ⊂ D and a compact set S ⊂ D so that
D ∈ U ⊂ S. Since taking interiors preserves the order of inclusions, then

U = int(U) ⊂ int(S) = ∅

which contradicts D ∈ U . ��

123



Foundations of Computational Mathematics

As we will see next, the lack of enough compact regions in the space of persistence
diagrams also has global implications for learning tasks. Recall that a subset of a
topological space is called nowhere dense if its closure has empty interior. It follows
from Corollary 3.12 that in the space of persistence diagrams all compact sets are
nowhere dense. Moreover, since (D, dB) is complete [9], then the Baire Category
Theorem [4]—which contends that no complete metric space can be written as the
countable union of nowhere dense subsets—implies the following.

Corollary 3.13 D cannot be written as the countable union of compact subsets.

Many optimization tasks (e.g., gradient descent) leverage the compactness of a
space to argue that solutions can be found as limits to sequential processes. The fact
that (D, dB) cannot be written as the countable union of compact subsets, implies that
non-convex global optimization problems in D cannot be guaranteed to be solvable
via this type of local decompositions. As we will see below, this also implies that
it is not possible to find a metric in C(D, R) that characterizes approximations with
respect to the topology of uniform convergence on compact sets.

Definition 3.14 Let X ,Y be topological spaces and let C(X ,Y ) denote the set of
continuous functions from X to Y . Given K ⊂ X compact and V ⊂ Y open, let

U (K , V ) = { f ∈ C(X ,Y ) | f (K ) ⊂ V }.

The collection

{U (K , V ) | K ⊂ X compact, V ⊂ Y open}

forms a subbase for a topology on C(X ,Y ), called the compact-open topology. When
Y is a metric space, a sequence of continuous functions fn : X −→ Y , n ∈ N,
converges to f in the compact-open topology, if and only if { fn|K }n∈N converges
uniformly to f |K for each compact set K ⊂ X .

Since D cannot be written as a countable union of compact sets, then we have the
following.

Corollary 3.15 The compact-open topology on C(D, R) is not metrizable.

Proof See Example 2.2, Chapter IV, of [25]. ��
Sequential optimization tasks inmachine learning typically proceed by updating the

current solution until no further progress is made. Solutions are often functions (e.g., a
classifier) and progress in the optimization is measured through loss functionals (e.g.,
like mean-squared error) and/or the distance between the current and prior state. The
latter being particularly useful in convex optimization. Since compact-open sequential
convergence inC(D, R) cannot bemeasuredwith ametric (Corollary 3.15), then other
alternatives are needed. We describe such methodologies in the next sections.
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4 LinearizingD
The fact that the compact-open topology on C(D, R) is not metrizable, implies that
optimization with respect to compact convergence needs to be handled with care. The
goal of this section is to provide methods for doing this. We begin with a definition.

Definition 4.1 A coordinate system for D is a collection F ⊂ C(D, R) which sep-
arates points. That is, if D, D′ ∈ D are distinct then there exists F ∈ F for which
F(D) �= F(D′).

Of course one could take F to be the space of all real-valued continuous functions
on D, but this is an extreme case; the quality of a coordinate system is determined
by its size—the smaller the better. The metaphor to keep in mind is Euclidean space,
R
n . In this case, an oblique coordinate system (e.g. Cartesian coordinates) is uniquely

determined by a linear basis for the spaceL(Rn) of (continuous) linear functions from
R
n to R.
Our goal is to coordinatize the space of persistence diagrams by finding a con-

tinuous embedding of D into an appropriate topological vector space V , and taking
the restriction to D of elements from L(V ). The problem of embedding persistence
diagrams into topological vector spaces has received considerable recent attention.
For instance, it is known that (Dp, dWp ) does not admit an inner product compatible
with dWp for any p > 2, and that (Dp, dWp ) does not admit a coarse embedding (this
is weaker than being bi-Lipschitz) into any Hilbert space for any p > 2 [64].

In order to choose V we will use two principles. First, that persistence diagrams
can be interpreted as Radon measures on W [19, 30], which suggests embedding D
into the dual space of some set of continuous real-valued functions onW. Second, that
D is a topological monoid: the sum of two persistence diagrams D, D′ ∈ D is their
disjoint union D�D′ asmultisets, the empty diagram∅ is the identity, i.e. D�∅ = D,
and the operation � : D × D −→ D is associative and continuous (see also [11]).
In what follows we will construct an embedding ν : D ↪→ V which recovers the
measure-theoretic interpretation of persistence diagrams, and preserves the monoidal
structure of D (see Theorem 4.9). In addition, we will show that appropriate subsets
of L(V ) will yield coordinate systems forD (see Theorem 5.4), and these in turn will
generate dense subsets of C(D, R) with respect to the compact-open topology (see
Theorem 5.3).

4.1 Topological Vector Spaces, Duals and Their Topologies

We will first review some basics of topological vector spaces, following [25]. Let V
be a topological vector space; that is, a vector space endowed with a topology so that
addition and scalar multiplication are continuous functions. Its (topological) dual is
the vector space

V ′ = {T : V −→ R , so that T is linear and continuous}
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In particular, if the topology on V comes from a norm ‖ ·‖V , then we write V ∗ instead
of V ′. If V ∗ is endowed with the operator norm

‖T ‖∗ = sup
‖v‖V =1

|T (v)|,

then V ∗ is in fact a Banach space. There are three standard topologies on V ∗:

Strong: The strong topology is the one generated by the operator norm ‖·‖∗. A basis
for open neighborhoods of a point T ∈ V ∗ is given by sets of the form

Bε(T ) =
{

T ′ ∈ V ∗
∣
∣
∣ sup

‖v‖V =1
|T (v) − T ′(v)| < ε

}

where ε > 0. In particular, a sequence {Tn}n∈N ⊂ V ∗ converges to T ∈ V ∗
in the strong topology if and only if {Tn(v)}n∈N converges to T (v) uniformly
in v ∈ V .

Weak: If V ∗∗ denotes the dual of the normed space (V ∗, ‖ · ‖∗), then the weak
topology on V ∗ is the smallest topology so that everyT ∈ V ∗∗ is continuous.
A basis for open neighborhoods of a point T ∈ V ∗ is given by sets of the
form

N (T1, . . . , TI ; ε)(T ) =
{

T ′ ∈ V ∗
∣
∣
∣ max

1≤i≤I
|Ti
(
T ′)− Ti (T )| < ε

}

where T1, . . . , TI ∈ V ∗∗ and ε > 0. In particular, {Tn}n∈N ⊂ V ∗ converges
to T ∈ V ∗ in the weak topology if and only if {T (Tn)}n∈N converges to
T (T ) for all T ∈ V ∗∗.

Weak-*: The weak-* topology is the smallest topology so that for each v ∈ V , the
resulting evaluation function

ev : V ∗ −→ R

T �→ T (v)

is continuous. A basis for open neighborhoods of T ∈ V ∗ is given by sets
of the form

N (v1, . . . , vI ; ε)(T ) =
{

T ′ ∈ V ∗
∣
∣
∣ max

1≤i≤I
|T ′(vi ) − T (vi )| < ε

}

where v1, . . . , vI ∈ V and ε > 0. A sequence {Tn}n∈N ⊂ V ∗ converges to
T ∈ V ∗ in the weak-* topology if and only if {Tn(v)}n∈N converges to T (v)
for each v ∈ V . The convergence, however, need not be uniform in v.

One can check that the weak-* topology is weaker than the weak topology, which in
turn is weaker than the strong topology.
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4.2 Linearizing the Set of Finite Diagrams

It is useful to first illustrate some of the difficulties associated to finding embeddings
for the set of finite diagramsD0. In what follows we will prove several negative results
which will inform the choices in embeddingD. Indeed, the first thing to notice is that
the set of compactly supported continuous functions from W to R, denoted Cc(W), is
a normed vector space if endowed with the sup norm ‖ · ‖∞.

The Dirac mass centered at x ∈ W is the linear function

δx : Cc(W) −→ R

f �→ f (x)

and since |δx( f )| ≤ ‖ f ‖∞ for each f ∈ Cc(W), it follows that δx ∈ Cc(W)∗. Let

ν0 : D0 −→ Cc(W)∗
∅ �→ 0

∅ �= (S, μ) �→ ∑

x∈S
μ(x)δx.

It is not hard to see that

Proposition 4.2 ν0 : D0 −→ Cc(W)∗ is injective, and satisfies ν0(D�D′) = ν0(D)+
ν0(D′) for every D, D′ ∈ D0.

Whether ν0 is continuous or not depends on the topology with which Cc(W)∗ is
endowed. We start with the coarser topologies, but immediately have the following
negative results.

Proposition 4.3 IfCc(W)∗ is endowedwith theweak topology, then ν0 is discontinuous
at every point.

Proof Fix D ∈ D0, and let Dn ∈ D0 be the diagram obtained from D by adding the
point (1, 1+1/n)withmultiplicity n. It follows that {Dn}n converges to Dwith respect
to the bottleneck distance. We contend that ν0(Dn) does not converge to ν0(D) with
respect to the weak topology; in other words, we will show that there exist ε0 > 0 and
a linear operator T : Cc(W)∗ −→ R, continuous with respect to the strong topology,
so that |T (ν0(Dn)) − T (ν0(D))| ≥ ε0 for infinitely many values of n.

Indeed, the first thing to notice is that since W is not compact, Cc(W) is not
complete. Its completion is the space C0(W) of continuous functions on W which
vanish at the diagonal � and at infinity. More explicitly, f ∈ C0(W) if and only
if it is continuous, and f (x, y) → 0 whenever y − x → 0 or x + y → ∞. Let
ι : Cc(W) ↪→ C0(W) be the inclusion and let ι∗ : C0(W)∗ −→ Cc(W)∗ be the
induced homomorphism. Since Cc(W) is dense in C0(W), then ι∗ is an isometric
isomorphism; its inverse j∗ : Cc(W)∗ −→ C0(W)∗ sends a continuous linear map
T : Cc(W) −→ R to its unique continuous linear extension j∗(T ) : C0(W) −→ R.

Now, let ϕ : R
2 −→ [0, 1] be a continuous (bump) function so that

ϕ(x, y) =
{
1 if max{x, y − x} < 2
0 if max{x, y − x} ≥ 3.
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It follows that f (x, y) = (y−x)·ϕ(x, y) ∈ C0(W), and hence the evaluation function
e f : C0(W)∗ −→ R is a bounded linear operator. Let T : Cc(W)∗ −→ R be the
composition e f ◦ j∗. Then, for each n > 1 we have that

T (ν0(Dn)) = T (ν0(D)) + 1,

and letting ε0 = 1 completes the proof. ��
Corollary 4.4 If Cc(W)∗ is endowed with the strong topology, then ν0 is discontinuous
at every point.

Proof Indeed, the strong topology contains the weak topology. ��
It is not until we pass to the weakest of the three standard topologies that we

approach a useful result.

Proposition 4.5 If Cc(W)∗ is endowed with the weak-* topology, then ν0 : D0 −→
Cc(W)∗ is continuous.

Before presenting the proof, we have the following useful lemma.

Lemma 4.6 For each f ∈ Cc(W), the function

ν f : D −→ R

(S, μ) �→ ∑

x∈S
μ(x) f (x) (7)

is continuous.

Proof The first observation is that the sum defining ν f is always finite, since the
support of f ∈ Cc(W) intersects the underlying set of any persistence diagram at
only finitely many points. Let D = (S, μ) ∈ D and fix ε > 0. Since supp( f ) ⊂ W

is compact, then f is uniformly continuous. Further, there exists δ > 0 for which
supp( f ) ⊂ W

2δ , and

| f (x) − f (y)| <
ε

∑

z∈S∩Wδ

μ(z)
(8)

whenever ‖x − y‖∞ < δ.
Let D′ = (T , α) ∈ D be given with dB(D, D′) < δ. We will show that |ν f (D) −

ν f (D′)| < ε. Fix a δ-matching

M : A
∼=−→ B⊆ ⊆

Sμ Tα.
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This means that if (x, k) ∈ A and (y, n) = M(x, k) are matched, then ‖x − y‖∞ < δ;
and if (z,m) ∈ (

Sμ � A
) ∪ (Tα � B) is unmatched, then pers(z) < 2δ. In this case

z /∈ supp( f ), which implies f (z) = 0. Hence

ν f (D) =
∑

x∈S
μ(x) f (x)

=
∑

(x,k)∈A

f (x)

and similarly,

ν f (D
′) =

∑

(y,n)∈B
f (y).

Therefore,

|ν f (D) − ν f (D
′)| =

∣
∣
∣
∣
∣
∣

∑

(x,k)∈A

f (x) −
∑

(y,n)∈B
f (y)

∣
∣
∣
∣
∣
∣

≤
∑

(y,n)=M(x,k)
(x,k)∈A

| f (x) − f (y)|

where each term | f (x) − f (y)| is potentially nonzero only when x or y are in
supp( f ) ⊂ W

2δ . Since in this case ‖x − y‖∞ < δ, we would get x, y ∈ W
δ .

Combining this observation with Eq. (8) completes the proof. ��
Proposition 4.5 Let D ∈ D0, and fix a weak-* basic neighborhood N ( f1, . . . , f I ; ε)

for ν0(D). Notice that for each i = 1, . . . , I we have ν0(D)( fi ) = ν fi (D). Since ν fi is
continuous at D, then given ε > 0 there exists δi > 0 so that dB(D, D′) < δi implies
|ν fi (D) − ν fi (D

′)| < ε. If we let δ = min{δ1, . . . , δI }, it follows that whenever
dB(D, D′) < δ then for all i = 1, . . . , I

|ν0(D)( fi ) − ν0(D
′)( fi )| = |ν fi (D) − ν fi (D

′)| < ε.

This shows that ν0(D′) ∈ N ( f1, . . . , f I ; ε) and hence ν0 is continuous. ��
These results imply that out of the three standard topologies on Cc(W)∗, the weak-

* topology is the only one for which ν0 yields a continuous embedding of D0 into
Cc(W)∗. The question now is whether this embedding can be extended to D. The
answer, as it turns out, is negative.

Proposition 4.7 If Cc(W)∗ is endowed with the weak-* topology, then ν0 : D0 −→
Cc(W)∗ cannot be continuously extended to any D ∈ D � D0.

Proof Assume, by way of contradiction, that ν0 extends continuously to some D =
(S, μ) ∈ D � D0. If for each n ∈ N we let Dn be the restriction of D to W

1/n , then
Dn ∈ D0 for all n ∈ N, and the sequence {Dn}n∈N converges to D with respect to the
bottleneck distance. By the continuity assumption of ν0 at D, we have that
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ν0(D) = lim
n→∞ ν0(Dn)

where convergence is with respect to the weak-* topology. In other words,

ν0(D)( f ) = lim
n→∞ ν0(Dn)( f )

for every f ∈ Cc(W). It follows that, given f ∈ Cc(W), there exists N f ∈ N so that
supp( f ) ⊂ W

1/n for all n ≥ N f , and therefore the sequence ν0(Dn)( f ) becomes
constant and equal to

∑

x∈S
μ(x) f (x). (9)

We claim that if Cc(W) is endowed with the sup norm ‖ · ‖∞, then the linear function

ν0(D) : Cc(W) −→ R

f �→ ∑

x∈S
μ(x) f (x)

is discontinuous at every point. To this end, we will show that given f ∈ Cc(W) there
exists a sequence { fn}n∈N ⊂ Cc(W) which converges to f with respect to ‖ · ‖∞,
but for which {ν0(D)( fn)}n∈N does not converge to ν0(D)( f ). This would contradict
ν0(D) ∈ Cc(W)∗.

Indeed, since (S, μ) = D /∈ D0, then there exists a sequence {xn}n∈N ⊂ S �

supp( f ) so that pers(xn) is strictly decreasing as n goes to infinity. Therefore, it is
possible to construct a sequence {rn}n∈N of positive real numbers, so that the balls
Brn (xn) ⊂ W are all disjoint and disjoint with the support of f . Let φn : R

2 −→
[0,∞) be the bump function

φn(x) = max{0 , rn − 2‖x − xn‖}
rn

supported on the closure of Brn
2
(xn), and let

fn = f + φ1 + · · · + φn

n
.

It follows that { fn}n∈N is a sequence of continuous and compactly supported functions
on W, so that ‖ fn − f ‖∞ < 1

n for all n ∈ N, and for which

ν0(D)( fn) − ν0(D)( f ) = 1

n
ν0(D)(φ1 + · · · + φn)

≥ 1

n

(
μ(x1)φ1(x1) + · · · + μ(xn)φn(xn)

)

≥ 1.
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Hence {ν0(D)( fn)}n∈N does not converge to ν0(D)( f ), and ν0(D) is discontinuous
at f . ��

4.3 Linearizing Infinite Diagrams

There are two main lessons to draw from the previous results: First, that even though
there is a candidate for extending ν0 to infinite diagrams, namely Eq. 9, the topology
on Cc(W) induced by the sup norm is inadequate as it does not have enough open
sets. The second lesson is that a weak-* topology on the dual of Cc(W) is the most
likely to ensure continuity when embedding D. In what follows we will describe a
(locally convex) topology on Cc(W), and a corresponding weak-* topology on the
topological dual Cc(W)′ with the required properties. We will utilize the theory of
locally convex topological vector spaces, which generalizeBanach spaces, and provide
a rich framework in which to study weak topologies. For a more detailed account we
direct the interested reader to Chapters IV and V of [25].

Let {Kn}n∈N be a sequence of compact subsets of W so that Kn ⊂ Kn+1 for all
n ∈ N, and for which

W =
⋃

n∈N
Kn .

It follows that each vector space

Cc(Kn) = { f ∈ C(W) | supp( f ) ⊂ Kn}

is a Banach space if endowed with the sup norm ‖ · ‖∞; in particular it is a locally
convex space.

Definition 4.8 A locally convex space is a topological vector space V , whose topol-
ogy is generated by a family P of seminorms on V which separate points. More
specifically,P is a collection {ρα}α∈� of continuous functions ρα : V −→ [0,∞) so
that

1. ρα(u + v) ≤ ρα(u) + ρα(v) for all u, v ∈ V ,
2. ρα(λu) = |λ|ρα(u) for all scalars λ,
3. ρα(u) = 0 for all α ∈ � implies u = 0

and the topology of V is the weakest for which all the ρα’s are continuous.

In particular, all normed spaces are locally convex: any norm is a seminorm, and
the norm topology is the smallest for which the norm is a continuous function. Notice
also that each inclusion

Cc(Kn) ⊂ Cc(Kn+1) n ∈ N

is continuous and that

Cc(W) =
⋃

n∈N
Cc(Kn).
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The strict inductive limit topology on Cc(W) is the finest locally convex topology
so that each inclusion Cc(Kn) ↪→ Cc(W) is continuous. In this topology, a linear
map T : Cc(W) −→ Y to a locally convex space Y is continuous if and only if the
restriction of T to each Cc(Kn) is continuous. Moreover, this topology is independent
of the choice of compact sets {Kn}n∈N filtering W.

LetCc(W)′ denote the topological dual ofCc(W)with respect to the strict inductive
limit topology, and endow Cc(W)′ with the weakest topology so that for each f ∈
Cc(W) the resulting evaluation function

e f : Cc(W)′ −→ R

T �→ T ( f )

is continuous. This is the corresponding weak-* topology. It follows that a basis for
neighborhoods of a point T ∈ Cc(W)′ is given by sets of the form

N ( f1, . . . , f I ; ε)(T ) =
{
T̃ ∈ Cc(W)′ : |(T − T̃ )( fi )| < ε , i = 1, . . . , I

}

where f1, . . . , f I ∈ Cc(W) and ε > 0. Here is the main theorem of this section.

Theorem 4.9 Given a persistence diagram D = (S, μ) ∈ D and a function f ∈
Cc(W), define

νD( f ) :=
∑

x∈S
μ(x) f (x). (10)

If Cc(W) is endowed with the strict inductive limit topology, and Cc(W)′ is its topo-
logical dual endowed with the corresponding weak-* topology, then

ν : D −→ Cc(W)′
D �→ νD

is continuous, injective and satisfies ν(D � D′) = ν(D) + ν(D′) for all D, D′ ∈ D.

Proof First, we ensure that νD is well defined. Fix D = (S, μ) ∈ D and n ∈ N. Then
S ∩ Kn is a finite set and hence for each f ∈ Cc(Kn) it follows that

νD( f ) =
∑

x∈S
μ(x) f (x) < ∞.

As for continuity of νD , fix f0 ∈ Cc(Kn), let ε > 0, and let

δ <
ε

∑

z∈S∩Kn

μ(z)
.
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If f ∈ Cc(Kn) is so that ‖ f − f0‖∞ < δ, then

|νD( f ) − νD( f0)| =
∣
∣
∣
∣
∣

∑

x∈S
μ(x)

(
f (x) − f0(x)

)
∣
∣
∣
∣
∣

≤
∑

z∈S∩Kn

μ(z)‖ f − f0‖∞

< ε.

Therefore, νD is a real-valued continuous linear function on Cc(Kn) for each n. This
shows that ν(D) = νD ∈ Cc(W)′ for all D ∈ D.

To see that ν : D −→ Cc(W)′ is continuous, we proceed exactly as in the proof
of Proposition 4.5. Indeed, let D ∈ D, and fix a basic neighborhood N ( f1, . . . , f I ; ε)

for ν(D). For each i = 1, . . . , I the function ν fi : D −→ R, ν fi (D) = νD( fi ), is
continuous by Lemma 4.6, and hence there exists δ > 0 such that

|ν(D)( fi ) − ν(D′)( fi )| = |ν fi (D) − ν fi (D
′)| < ε

for all i = 1, . . . , I , whenever dB(D, D′) < δ.
Injectivity of ν is deduced from the following observation. If (S, μ), (T , α) ∈ D

are distinct, then we can assume without loss of generality that there exists x ∈ S
such that either: x /∈ T , or x ∈ T and μ(x) �= α(x). Let f ∈ Cc(W) be such that
supp( f ) ∩ (S ∪ T ) = {x}, and for which f (x) = 1. If x /∈ T , then

ν(S, μ)( f ) = μ(x) �= 0 = ν(T , α)( f ).

Similarly, for the case where x ∈ T we have

ν(S, μ)( f ) = μ(x) �= α(x) = ν(T , α)( f ),

which completes the proof. ��
The Riesz-Markov representation theorem—see for instance Theorem 2.14 and

Theorem 2.17 of [57]—contends that if T : Cc(W) −→ R is linear and satisfies
T ( f ) ≥ 0 whenever f (x) ≥ 0 for all x ∈ W, then there exists a unique positive
Radon measure η on W so that

∫

W

f dη = T ( f )

for all f ∈ Cc(W). Specifically, η is Borel regular and η(K ) < ∞ for every compact
set K ⊂ W. Applying this theorem to elements in the image of ν : D −→ Cc(W)′
implies that ν(D) is a Radon measure on W for each D ∈ D. This, of course, can
be derived directly from the definition of ν(D) by writing it (see Eq. 10) as a sum of
Dirac delta masses

123



Foundations of Computational Mathematics

ν(S, μ) =
∑

x∈S
μ(x)δx (11)

The representation-theoretic view, however, has the following advantages. The first
is that it recovers the interpretation of persistence diagrams as rectangular measures
introduced by Chazal et. al. in [19]. Indeed, Eq. 11 yields exactly the counting mea-
sure (Theorem 3.19, Eq. 3.6) from [19]. The second advantage is that it provides a
natural framework in which to generalize persistence diagrams: from those in Eq. 11,
to general Radon measures on W. This viewpoint has been recently studied by Divol
and Lacombe in [30]. As they show, it allows one to apply the mature theoretical
and computational tools from (partial) optimal transport, to problems in the space of
persistence diagrams endowed with the Wasserstein distance. It would be interesting
to see—though outside the scope of this work—if the approximation methods pre-
sented here, in particularly those in the next section, apply in the greater generality of
persistence diagrams as Radon measures.

5 Approximating Continuous Functions on Persistence Diagrams

As we saw in Theorem 4.9, the function ν : D −→ Cc(W)′ provides a continuous
embedding so that ν(D�D′) = ν(D)+ν(D′) for all D, D′ ∈ D. We can now proceed
to the task of finding coordinate systems for D (see Definition 4.1). The first thing to
note is that composing ν with elements fromCc(W)′′, the topological dual ofCc(W)′,
yields continuous real-valued functions on D. By construction, these functions also
respect the monoidal structure � of D. The elements of Cc(W)′′ can be characterized
as follows.

Theorem 5.1 Let V be a locally convex space, and endow its topological dual V ′
with the associated weak-* topology. That is, the smallest topology such that all the
evaluations

ev V ′ −→ R

T �→ T (v)

for v ∈ V , are continuous. Then the function

e : V −→ V ′′
v �→ ev

is an isomorphism of locally convex spaces.

Proof See Theorem 1.3 in Chapter V of [25]. ��
Applying this theorem to the locally convex space Cc(W), topologized with the strict
inductive limit topology, implies that the elements ofCc(W)′′ are evaluations e f , with
f ∈ Cc(W) uniquely determined. Composing e f with ν yields a continuous function
e f ◦ ν : D −→ R which preserves the monoidal structure � of D. Moreover, given
D ∈ D we have that
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e f ◦ ν(D) = νD( f ) = ν f (D)

where ν f : D −→ R is defined by Eq. 7. We saw in Lem. 4.6 that these types of
functions are indeed continuous, but now we have the full picture: they arise exactly
as the continuous linear functions on a linearization ofD. The goal now is to construct
coordinate systems for D by selecting appropriate subsets of Cc(W). The sets of
interest are defined next.

Definition 5.2 A template system for D is a collection T ⊂ Cc(W) so that

FT = {ν f | f ∈ T }

is a coordinate system (see Defn. 4.1) for D. The elements of T are called template
functions.

The point of working with these template systems is that they can be used to
approximate continuous functions on persistence diagrams, as given by the following
theorem.

Theorem 5.3 Let T ⊂ Cc(W) be a template system forD, let C ⊂ D be compact, and
let F : C −→ R be continuous. Then for every ε > 0 there exist N ∈ N, a polynomial
p ∈ R[x1, . . . , xN ] and template functions f1, . . . , fN ∈ T so that

∣
∣p
(
ν f1(D), . . . , ν fN (D)

)− F(D)
∣
∣ < ε

for every D ∈ C. That is, the collection of functions of the form

D �→ p
(
ν f1(D), . . . , ν fN (D)

)
(12)

is dense in C(D, R) with respect to the compact-open topology.

Proof Let T ⊂ Cc(W) be a template system for D and let

F = {ν f | f ∈ T } ⊂ C(D, R)

be the corresponding coordinate system. Let A ⊂ C(D, R) denote the algebra gen-
erated by F ∪ {1}. In other words, A is the set of finite linear combinations of finite
products of elements from F ∪ {1}. It follows that every element of A can be written
as

p(ν f1 , . . . , ν fN )

for some collection of templates f1, . . . , fN ∈ T and some polynomial p ∈
R[x1, . . . , xN ]. Let ι : C ↪→ D be the inclusion and ι∗ : C(D, R) −→ C(C, R)

the corresponding restriction homomorphism. Now, sinceF separates points inD and
F ⊂ A, then ι∗(A) is an algebra which separates points in C(C, R) and contains the
nonzero constant functions. The result follows from the Stone-Weierstrass theorem,
which contends that any such algebra is dense with respect to the sup norm. ��
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Themain question now is how to go about constructing template systems in practice.
The next theorem elucidates a method for producing countable template systems for
D by translating and re-scaling the support of any nonzero f ∈ Cc(W). This shows,
in particular, that there are plenty of coordinate systems for the space of persistence
diagrams, and helps explain why we refer to nonzero elements inCc(W) as templates.

Theorem 5.4 Let f ∈ Cc(W), n ∈ N,m ∈ Z
2 and define the re-scales and translates

fn,m(x) = f
(
nx + m

n

)
.

If f is nonzero, then

T =
{
fn,m | n ∈ N,m ∈ Z

2
}

∩ Cc(W)

is a template system for D. Moreover, if f is Lipschitz, then the elements of the
associated coordinate system

{
ν fn,m = fn,m ◦ ν | fn,m ∈ T

} = FT

are Lipschitz on any relatively compact set S ⊂ D. That is, the coordinate system
associated to a nonzero Lipschitz template function is stable on relatively compact
subsets of D.

Proof In order to show thatFT separates points inD, let (S, μ), (T , α) ∈ D be distinct
diagrams, and assume without loss of generality that there exists y = (y1, y2) ∈ S so
that either: y /∈ T ; or y ∈ T and μ(y) �= α(y). Our strategy will be to find an element
fn,m ∈ T so that fn,m(y) �= 0, and fn,m(x) = 0 for all other x ∈ S ∪ T .
To begin, let z = (z1, z2) ∈ W be so that f (z) �= 0. By continuity of f with respect

to the Euclidean norm ‖ · ‖, which is equivalent to the sup norm ‖ · ‖∞, there exists
r > 0 so that

B∞
r (z) :=

{
x ∈ R

2 | ‖x − z‖∞ < r
}

⊂ supp( f ).

Moreover, since supp( f ) ⊂ W is compact, then there exists s > r so that supp( f ) ⊂
B∞
s (z). Putting this together, we have r < s so that

B∞
r (z) ⊂ supp( f ) ⊂ B∞

s (z).

Fix ε > 0 small enough so that B∞
ε (y) ⊂ W and B∞

ε (y)∩ (T ∪ S) = {y}. Also, let
n ∈ N be large enough so that n ≥ max

{ 1
r ,

2s
ε

}
. What we will show now is that it is

possible to find m ∈ Z
2 for which ny + m

n ∈ B∞
r (z), and so that x /∈ B∞

ε (y) implies
nx + m

n /∈ B∞
s (z). Indeed, define

L j (t) = nt + (z j − ny j )

for j = 1, 2 with z = (z1, z2) and y = (y1, y2). This function has the property that
L j (y j ) = z j . Further, if |t − y j | > ε, then
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|L j (t) − z j | = |(nt + z j ) − (ny j + z j )| = n|t − y j | >
2s

ε
ε = 2s.

Let k j ∈ Z be the unique integer so that

k j ≤ z j − ny j < k j + 1.

By dividing the interval [k j , k j +1) into n subintervals of length 1
n , we have that there

exists a unique integer 0 ≤ � j < n so that

k j + � j

n
≤ z j − ny j < k j + � j + 1

n
.

Let m j = nk j + � j , and m = (m1,m2). It follows that

∥
∥
∥z −

(
ny + m

n

)∥
∥
∥

∞
<

1

n
≤ r

and therefore fn,m(y) = f
(
ny + m

n

) �= 0. Moreover, if x /∈ B∞
ε (y) and j ∈ {1, 2} is

so that |x j − y j | ≥ ε, then

|nx j − ny j | = |L j (x j ) − z j | > 2s,

and therefore
∥
∥
∥
(
nx + m

n

)
− z

∥
∥
∥

∞
≥
∣
∣
∣
(
nx j + m j

n

)
− z j

∣
∣
∣

=
∣
∣
∣nx j − ny j −

(
z j −

(
ny j + m j

n

))∣
∣
∣

≥ |nx j − ny j | −
∣
∣
∣z j −

(
ny j + m j

n

)∣
∣
∣

> 2s − r

≥ s,

showing that nx + m
n /∈ B∞

s (z), which in turn implies fn,m(x) = 0.
Let us see that the support of fn,m is a bounded subset of W. To this end, let

x ∈ supp( fn,m). Hence nx + m
n ∈ supp( f ), and ‖(nx + m

n ) − z‖∞ < s. Then for
j = 1, 2,

|nx j − ny j | ≤
∣
∣
∣(nx j − ny j ) + z j −

(
ny j + m j

n

)∣
∣
∣+

∣
∣
∣z j −

(
ny j + m j

n

)∣
∣
∣

=
∣
∣
∣nx j + z j − m j

n

∣
∣
∣+

∣
∣
∣z j −

(
ny j + m j

n

)∣
∣
∣

≤ s + r < 2s,

and thus |x j − y j | < 2s
n < ε. Therefore, x ∈ B∞

ε (y) ⊂ W, and so fn,m ∈ Cc(W).
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Thus far we have that fn,m(y) �= 0, and that if x /∈ B∞
ε (y) then fn,m(x) = 0. This

observation, paired with B∞
ε (y) ∩ (S ∪ T ) = {y}, implies that

ν fn,m(S, μ) = μ(y) fn,m(y) �= 0.

If y /∈ T then we have that ν fn,m(T , α) = 0; and if y ∈ T then

ν fn,m(T , α) = α(y) fn,m(y) �= μ(y) fn,m(y) = ν fn,m(S, μ),

showing that FT separates points in D.
Let us now show that if f is Lipschitz and S ⊂ D is relatively compact, then

the elements of FT are Lipschitz on S. Indeed, let D, D′ ∈ S, and let δ > 0 be so
that dB(D, D′) < δ. Moreover, fix a δ-matching between D and D′. Recall that this
means that if x, x′ are matched, then ‖x− x′‖∞ < δ, and that if for z = (z1, z2) ∈ W

unmatched we let

z̄ =
(
z1 + z2

2
,
z1 + z2

2

)

then ‖z − z̄‖∞ < δ.
SinceS is relatively compact, then it is uniformly off-diagonallyfinite (seeDef. 3.5),

and hence there exists a uniform upper bound β > 0 for the multiplicity in supp( f )
of any diagram in S—see Definition 2.1. Now, if L > 0 is the Lipschitz constant of f
with respect to the sup norm ‖·‖∞ onW, and n ∈ N,m ∈ Z

2 are so that fn,m ∈ T , then
fn,m ∈ Cc(W) is also Lipschitz with constant nL . Moreover, if z ∈ W is unmatched,
then fn,m(z̄) = 0 and

|ν fn,m(D) − ν fn,m(D′)| ≤
∑

x,x′
matched

| fn,m(x) − fn,m(x′)| +
∑

z
unmatched

| fn,m(z)|

≤
∑

x or x′∈ supp( f )
matched

nLδ +
∑

z∈ supp( f )
unmatched

| fn,m(z) − fn,m(z̄)|

≤ 2nβLδ.

Since this inequality holds for any δ > dB(D, D′), it readily follows that

|ν fn,m(D) − ν fn,m(D′)| ≤ 2nβLdB(D, D′),

and hence ν fn,m is Lipschitz on S. ��
Remark 1 Recall that if S ⊂ D is relatively-compact, then there exist boxes Bk ⊂ W,
k ∈ N, so that D ⊂ ⋃

k∈N Bk for every D ∈ S (see Eq. 2 and Fig. 3). This implies that
in order to find approximations to a continuous function F : S −→ R, it suffices to
start with a nonzero f ∈ Cc(W) and take only the re-scaled translates fn,m for which

supp( fn,m) ∩
⋃

k∈N
Bk �= ∅.
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Remark 2 Let us say a few words on aligning the approximation methodologies out-
lined in Theorems 5.3 and 5.4—where one has access to infinitely many template
functions—with practical algorithmic implementations that are inherently finite. A
useful point of reference is the implementation of generalized linear models of a real
variable x , in order to approximate a continuous function F : I ⊂ R −→ R on a
compact interval I . The Stone-Weierstrass theorem implies that F can be uniformly
approximated in I via polynomials, or equivalently, via linear combinations of the
monomials 1, x, x2, . . . , xn for n ∈ N arbitrary. In theory, one would need infinitely
many monomials for arbitrary approximations, but in reality with finite training data,
only finitely many monomials are relevant and even advisable. Indeed, this is the com-
mon bias-variance tradeoff where tools like cross validation can be used. The same
view applies to learning with template functions on persistence diagrams. Given finite
training data D1, . . . , DN ∈ S ⊂ D and F(D1), . . . , F(DN ), then only finitely many
re-scaled translates fn,m of f ∈ Cc(W) are relevant to the problem at hand. These
can be interpreted as a user-provided hyperparameter for the model—like the maxi-
mum degree of monomials in linear regression—or they can be derived from adaptive
methods as described in [63] or [54]. The main idea being that one can identify those
compact regions in W which are most relevant to the learning task at hand.

5.1 The Need for Compactness

In Sect. 3.4 we provided examples of non-relatively-compact sets S ⊂ D which
satisfied only two out of the three conditions from Theorem 3.7. We will revisit these
examples next to see how the approximation strategy described in Theorem 5.3 can fail
in the absence of compactness. Specifically, we will construct continuous functions
F : S −→ R on the closure of S ⊂ D, which cannot be uniformly approximated by
functions of the form (12). Indeed, let S = {Dn = (Sn, μn) | n ∈ N} be:
1. Not Uniformly Off-Diagonally Finite: Sn = {(0, 1)} with μn(0, 1) = n. Let f ∈

Cc(W) be so that f (0, 1) = 1, and let F : D −→ R be defined as F(D) = eν f (D).
Note that F is continuous on D, and that F(Dn) = en for every n ∈ N.
Let f1, . . . , fN ∈ Cc(W) and let p ∈ R[x1, . . . , xN ] be a polynomial of degree
k ≥ 0. Since

|ν f j (Dn)| = n| f j (0, 1)| ≤ n‖ f j‖∞

for every 1 ≤ j ≤ N and every n ∈ N, then

lim
n→∞

∣
∣p
(
ν f1(Dn), . . . , ν fN (Dn)

)∣
∣

nk+1 = 0.

If we had the uniform bound

∣
∣F(Dn) − p

(
ν f1(Dn), . . . , ν fN (Dn)

)∣
∣ < ε
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for some 0 < ε < ∞ and every n ∈ N, then dividing both sides of the inequality
by nk+1 and taking the limit as n → ∞ would imply that

lim
n→∞

en

nk+1 = 0.

This is a contradiction since the above limit is ∞, and therefore the restriction of
F to S cannot be uniformly approximated by functions of the form (12).

2. Not Off-Diagonally Birth Bounded: Sn = {(n, n+ 1)} with μn(n, n+ 1) = 1. The
first thing to note is that dB(Dn, Dm) = 1

2 for every n �= m ∈ N, and thus S has no
accumulation points. This implies that S = S, and that any real-valued function
on S is continuous. Let F : S −→ R be defined as

F(Dn) = n , n ∈ N.

If f1, . . . , fN ∈ Cc(W) and p ∈ R[x1, . . . , xN ], then

ν f1(Dn) = · · · = ν fN (Dn) = 0

for all n large enough, and thus there exists N0 ∈ N so that

p
(
ν f1(Dn), . . . , ν fN (Dn)

) = p(0, . . . , 0)

for every n ≥ N0. It follows that

lim
n→∞

∣
∣F(Dn) − p

(
ν f1(Dn), . . . , ν fN (Dn)

)∣
∣ = ∞

and thus F cannot be uniformly approximated in S by functions of the form (12).
3. Not Bounded: Sn = {(0, n)} with μn(0, n) = 1. Let F : D −→ R be

F(D) = 2dB(D, ∅).

It follows that F is continuous and that F(Dn) = n for every n ∈ N. The argument
now proceeds exactly as in (2) above.

5.2 Compact Approximations with theWasserstein Distance

Thus far we have established that ν : D −→ Cc(W)′ is a linearization of (D, dB) (see
Theorem 4.9), and that the rescales/translates of any nonzero f ∈ Cc(W) can be used
to construct compact-open dense subsets of C(D, R) (see Theorems 5.4 and 5.3).
A natural question is whether similar results hold for (Dp, dWp )—i.e., for the p-
Wasserstein distance, p ≥ 1. We will see next that this is indeed the case.

Recall that Dp ⊂ D for every p ∈ N, and that this inclusion is (uniformly) contin-
uous. It follows that,
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Corollary 5.5 ν restricts to a dWp -continuous function ν : Dp −→ Cc(W)′ with the
same properties as in Theorem 4.9

This implies that ν f : Dp −→ R is continuous for every f ∈ Cc(W), and thus any
template system T ⊂ Cc(W) for D is also a template system for Dp. Using the first
half of Theorem 5.4, and following the same proof as in Theorem 5.3, we have that

Corollary 5.6 Let f ∈ Cc(W) be nonzero, and let

T =
{
fn,m | n ∈ N,m ∈ Z

2
}

∩ Cc(W).

Then the set of functions of the form

D �→ P
(
ν f1(D), . . . , ν fN (D)

)

for N ∈ N, P ∈ R[x1, . . . , xN ] and f1, . . . , fN ∈ T , is compact-open dense in
C(Dp, R).

6 Example Template Functions

At this point in the story, we shift our view from theory to practice, as the mathemat-
ical framework built to this point leaves open the choice of template system. In our
experiments, we use two collections of functions, but we have no reason to suspect
that these are the only or even the best available options. The first, which we call
tent functions, are described in Sect. 6.1. The second are interpolating polynomials,
traditionally used for approximating functions, which are described in Sect. 6.2.

For the entirety of this section, we will define functions on the birth-lifetime plane
as this simplifies notation substantially. We use the tilde to denote the portions that
are defined in this plane to emphasize the change from the birth-lifetime plane. So,
let W̃ = {(x, y) | x ≥ 0, y > 0}; that is, the conversion of W to the birth-lifetime
plane. Likewise, let W̃ε = {(x, y) ∈ W̃ | y > ε} so that it is the conversion of W

ε

to the birth-lifetime plane. Given x = (a, b) ∈ W, we write x̃ = (a, b − a) ∈ W̃

for the converted point. Given a diagram D = (S, μ), we write D̃ = (S̃, μ̃) where
S̃ = {x̃ | x ∈ S} and μ̃(̃x) = μ(x).

6.1 Tent Functions

We first define a template system in the birth-lifetime plane which we call tent func-
tions. Given a = (a, b) ∈ W̃ and a radius 0 < δ < b, define the tent function on W̃

to be

ga,δ(x, y) =
∣
∣
∣
∣1 − 1

δ
max{|x − a|, |y − b|}

∣
∣
∣
∣+

where |r |+ = max{r , 0} for r ∈ R. As δ < b, this function has support in the compact
box [a − δ, a + δ] × [b − δ, b + δ] ⊂ W̃.
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Given a persistence diagram D = (S, μ), the tent function is defined to be the sum
over the evaluation on the points in the diagram, namely

Ga,δ(D) = G̃a,δ(D̃) =
∑

x̃∈S̃
μ̃(x) · ga,δ(x̃).

We use G or G̃ depending on whether we want our input to be a diagram in the birth-
death or birth-lifetime plane, respectively, but all subscript notation is written in the
birth-lifetime plane for ease of notation.

We then have the following theorem.

Theorem 6.1 The collection of tent functions

{
Ga,δ | a = (a, b) ∈ W̃, 0 < δ < b

}

separates points in D.

Proof Let D1 = (S1, μ1) and D2 = (S2, μ2) ∈ D be distinct. WLOG there is an
x ∈ S1 for which either (i) x /∈ S2 or (ii) x ∈ S2 but μ1(x) > μ2(x). For ease of
notation, assume in case (ii) that x ∈ S2 and μ2(x) = 0. Then we always have x ∈ S2
and μ1(x) > μ2(x).

Let x̃ = (a, b). For any δ, define B̃δ = [a − δ, a + δ] × [b − δ, b + δ] and note
that this is the support of gx,δ . As D1 and D2 are in D, both diagrams have finite

multiplicity in W̃b/2. So, there exists a δ < b/2 so that S̃1 ∩ B̃δ = {x} = S̃2 ∩ B. As
x is the only point in either diagram in the support of gx,δ ,

Gx,δ(D1) = μ1(x) > μ2(x) = Ga,δ(D2).

Thus, the collection of tent functions separates points.
��

For practical purposes, we pick a subset of these tent functions. Let δ > 0 be the
partition scale, let d the number of subdivisions along the diagonal (resp. y axis), and
let ε > 0 be the upward shift. In our experiments described in Sect. 8, we use the
collection of tent functions given by

{
G(δi,δ j+ε),δ | 0 ≤ i ≤ d, 1 ≤ j ≤ d

}
. (13)

That is, these are the tent functions centered at a regular grid shifted up by ε to ensure
that g is supported on a compact set in W̃. See Fig. 4 for an example.

6.2 Interpolating Polynomials

Say we are given a nonempty, finite set of distinct mesh valuesA = {ai }mi=0 ⊂ R and
a collection of evaluation values {ci ∈ R}, the first goal is to build a polynomial such
that f (ai ) = ci for all i . The Lagrange polynomial �Aj (x) corresponding to node a j

is defined as
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Fig. 4 Tent function g(4,6),2 drawn in the birth-death plane (left) and in the birth-lifetime plane (right) for
the grid determined by d = 5, δ = 2, and ε = 0. Note that the template system for tent functions require
ε > 0, which would shift this function up by ε

�Aj (x) =
∏

i �= j

x − ai
a j − ai

. (14)

Note that this function satisfies

�Aj (ak) =
{
1, j = k,

0, otherwise,
and

m∑

j=0

�Aj (x) = 1.

The Lagrange interpolation polynomial is then simply f (x) = ∑m
j=0 c j�

A
j (x). Note

that for numerical stability, one must work with the barycentric form of Lagrange
interpolation formula described by [7] and shown in Appendix A.

We will now use these polynomials to create functions on W̃. Assume we have two
collections ofmeshpointsA = {ai }mi=0 ⊂ R andB = {bi }ni=0 ⊂ R>0 so that (ai , b j ) ∈
W̃ for all i, j . Then, given a collection of evaluation points C = {ci, j }i, j ⊂ R, wewant
to build a polynomial for which f (ai , b j ) = ci, j . Note that in general the evaluation
points C are not part of the persistence diagrams to be evaluated; nevertheless, these
values are not needed in our construction but we do keep track of their coefficients.
We define the 2D interpolating polynomial for the collection A,B, C to be

f (x, y) =
m∑

i=0

n∑

j=0

ci, j · g
(
�Ai (x) · �Bj (y)

)
. (15)

where g(·) is either the identity function or g(·) = |·|; in our experiments we used the
latter for the simple reason that it seemed to give better results. We now evaluate f
at each of the N query points which are the points of a persistence diagram in W̃ to
obtain N equations that we can write as

f = L c, (16)
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where L is an ((m + 1) × (n + 1)) × N matrix, and f is an (m + 1) × (n + 1)
vector obtained by concatenating a 2D mesh, similar to the one shown in Fig. 6, row-
wise. Note that this representation implies an ordering of the points of the persistence
diagram, but after the next step, the order will not matter.

Each column of matrixL in Eq. (16) represents a vector that describes the contribu-
tions of all the query points to the corresponding entry in f . Renumbering the entries in
vector f according to (i, j) �→ i(n+1)+ j+1 = r where r ∈ {0, . . . , (m+1)(n+1)},
we can now assign a score for each point in the mesh using the map Sr : R

N → R,
i.e., by operating on the rows of matrix L according to

Sr =
N−1∑

j=0

L j,r . (17)

Choosing a larger base mesh implies using a higher degree polynomial in the inter-
polation. Therefore, the role of increasing the degree of the polynomial is similar
to the role of increasing the number of tent functions. A larger mesh leads to more
features which gives a tool for either increasing or reducing the number of features.
The former improves the fit to the training set, while the latter reduces the number of
features which allows mitigating overfitting effects. While any class of interpolating
polynomials can be used, in this study we chose Chebyshev interpolating polynomials
due to their excellent approximation properties, see [61]. Appendix A describes how
to use the interpolation matrices separately obtained for each of the birth times and
lifetimes of a given persistence diagram to construct L j,r .

Fix a compact region K ⊂ W̃, an ε > 0 such that

K ε = {x ∈ R
2 | dK (x) ≤ ε} ⊂ W̃ where dK (x) = inf

y∈K ‖x − y‖

and a collection of mesh points {(ai , b j )} ⊂ K given by A and B as above. Define
hK ,ε to be a continuous function on W̃ such that

hK ,ε(x) =
{
1 x ∈ K

0 dK (x) ≥ ε

For instance, one can let hK ,ε(x) = max
{
0 , 1 − 1

ε
dK (x)

}
. Note that the support of

this function is contained in the compact set K ε ⊂ W̃.
Let Ci, j be the collection of evaluation values which are entirely 0 except for

ci, j = 1. Define f A,B
i, j = fi, j to be the interpolating polynomial (Eq. 15) for this

setup. Then the function on diagrams is defined to be

FA,B,K ,ε
i, j (D) = F̃A,B,K ,ε

i, j (D̃) :=
∑

x̃∈S̃
μ(x̃) · f A,B

i, j (x̃) · hK ,ε(x̃).
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Fig. 5 An example of interpolating polynomials for the mesh A = B = {1, 2, 3} for evaluation values

Ci, j = {ci, j = 1, c = 0 else}. Viewing the grid of images, fA,B
i, j is drawn at location (i, j) in the figure,

with (1, 1) at the bottom left

See Fig. 5 for examples of these functions for different parameter choices. We have
the following theorem to show that these interpolating polynomials can be used as
template functions.

Theorem 6.2 The collection of interpolating polynomials

{
FA,B,K ,ε
i, j

}

separates points, where the collection varies over all choices of compact K ⊂ W̃,
δ ∈ R>0, and of mesh A, B as specified above.

Proof We are given two persistence diagrams D1 = (S1, μ1) and D2 = (S2, μ2) ∈ D,
with D1 �= D2. WLOG there is an x = (a, b) ∈ S1 for which either (i) x /∈ S2 or
(ii) x ∈ S2 but μ1(x) > μ2(x). To avoid case checking, we assume as before that
x ∈ S2 with μ2(x) = 0 in the later case. This way, in both cases have x ∈ S2 and
μ1(x) > μ2(x).

Choose a compact set K � x and ε both small enough so that K ε ∩ S1 = x
and K ε ∩ S2 = x. If x̃ = (a, b), set A = {a} and B = {b}. Note that in this overly
simplistic setup, �A(x) = x/a and �B(y) = y/b, so the only interpolating polynomial
is f (x, y) = g((xy)/(ab)). Whether g is the identity or the absolute value function, f
evaluates to 1 at x̃. Because the only point in either diagram inside K ε is x, hK ,ε(x̃) = 1
and hK ,ε(ỹ) = 0 for every other y ∈ S1 ∪ S2, so

F(Di ) =
∑

x̃∈S̃
μ(x̃) · f (x̃) · hK ,ε(x̃) = μi (x)

for i = 1, 2. Thus F separates the two diagrams. ��
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Fig. 6 An example 11 × 11 2D
grid with m = n = 10 defined
using the Chebyshev points of
the second kind

In our experiments, we set K to be a box [A, A′] × [B, B ′] with B > 0, ε to be
either machine precision or B/2, and use the non-uniform Chebyshev mesh as seen
in Fig. 6 ([61]). Our naieve implementation of this featurization was quite slow; see
Sect. A for an explanation of the vectorization used to implement and speed up the
code.

7 Implementing Regularized Regression/Classification with
Templates

The results thus far imply that template systems on D can be used to featurize persis-
tence diagrams; these vectorizations, in turn, can be used as inputs to machine learning
algorithms for classification and regression tasks. We describe next one avenue for
implementing these ideas in practice. Indeed, given a finite collection of labeled per-
sistence diagrams

{(Dm, �m)}Mm=1 ⊂ D × L

with L ⊂ R, and a template system T ⊂ Cc(W), the goal is to find N ∈ N, tem-
plate functions f1, . . . , fN ∈ T , and a polynomial p ∈ R[x1, . . . , xN ], such that the
function

P : D −→ R

D �→ p
(
ν f1(D), . . . , ν fN (D)

)

satisfies P(Dm) ≈ �m for m = 1, . . . , M . It follows from Thm. 5.3 that this process
results in arbitrarily accurate approximations on compact subsets of D, provided the
labels �m vary continuously. In practice the template functions f1, . . . , fN can be
either provided by the user from a specific class, like tents or interpolating polynomi-
als (Sect. 6), or can be derived from adaptive and data-driven strategies as described
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in related work of the authors; please refer to [63] or [54] for several adaptive strate-
gies and comparisons. Given template functions f1, . . . , fN ∈ Cc(W), the optimal
polynomial p ∈ R[x1, . . . , xN ] is uniquely determined by its vector of coefficients,
a ∈ R

k . We will make this explicit with the notations pa and Pa, and an optimization
will be set up in order to determine a ∈ R

k from the available labeled data.
The error of fit Pa(Dm) ≈ �m is measured in the usual way via a loss function

E : R × L −→ R

where common choices include:

Square is given byEsq(t, �) = (t−�)2, L = R, and yields a least-squares regression.
Can handle multi-class classification.

Hinge is given by Ehg(t, �) = max{0, 1 − � · t}, with L = {−1, 1}, and appears in
the soft-margin classifier of support vector machine.

Logistic is given by the log-loss Elog(t, �) = ln
(
1 + e−�·t), with L = {−1, 1}, and

yields logistic regression.

Meanwhile, the complexity of the model can be measured, for instance, via a regular-
ization function

� : R
k −→ [0,∞).

The regularized optimization scheme looking to minimize the regularized mean loss
is

a = argmin
v∈Rk

1

M

M∑

m=1

E
(
Pv
(
Dm
)
, �m

)+ α�(v)

where α > 0 is the regularization parameter, often chosen from the set {10n}n∈Z.

Visualization of Coefficients.
Our collections of template functions have a uniquely 2d geometric flavor. In particular,
for both tent functions and Lagrange polynomials on our formulation, we have a
function for each ai , b j location on amesh. Thismeans that we can pull the coefficients
v determined in the optimization back to the grid which built them for visualization
by drawing a heat map with vi, j drawn at (i, j) to more fully understand the model.
Examples of this are shown in Figs. 10 and 12. We can use these heat maps can be
used to help localize the important features in the learning task. However, since we did
not put a sparsity penalization term (e.g., L1 regularization or lasso) in the regression
problem, the highlighted pixels may be more than what is needed to localize the
problem.
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8 Experiments

8.1 Code

Code for doing classification and regression using tent and interpolating polynomial
functions is available in the python teaspoon package.2 Classification and regres-
sion were done using ridge regression, where the loss and regularization functions
are both square. Computation is done using RidgeClassifierCV and RidgeCV
functions from thesklearn package. These functions are the counterparts of Ridge
and RidgeCV functions with built-in cross-validation of the regularization parameter,
α. Unless otherwise noted, we have used the default in sklearn, which chooses α from
the set {10n | n ∈ {−1, 0, 1}}.

The main hyperparameters to be chosen prior to running experiments are those
controlling the number of template functions used. The number of tent functions is
controlled by d in Eq. 13; the default is d = 10 unless otherwise noted. We then
choose δ and ε which control the support of the functions. If they are not specified in
advance, we use the following procedure. First, determine a bounding box is for the
points in all diagrams in the test set. This is done by setting ε to be half the minimum
persistence of all points in the diagrams, and then setting δ to be the smallest value so
that the box [0, δd] × [0δd + ε] contains all points in the birth-lifetime plane. Then
in the notation of Eq. 13, the support of all tent functions is contained in the box
[−δ, (d + 1)δ] × [ε, (d + 1)δ + ε].

For interpolating polynomials, the number and the type of the mesh points must
be specified. We used the roots of the Chebyshev polynomials of the first kind. The
number of the used functions is controlled by the length of the meshes A and B in
Eq. 15, i.e., the number of the chosen Chebyshev points in each direction. The default
length is m = n = 10 unless otherwise noted.

All experiments were run using seed = 48824 and 33% of the data reserved
for testing. Scores for classification experiments are reported using the percent that
were correctly classified. Scores for regression experiments are reported using the
coefficient of determination, R2. Note that this latter score can potentially take negative
values; perfect regression would score 1, and a method which returns the constant
prediction of the expected value is given a score of 0.

8.2 Off-Diagonal, Normally Distributed Points

We generate diagrams from the following procedure. Given μ and σ , draw n points
from the gaussian N (μ, σ ) on R

2. Retain all points which are are in W. For our
simulations, we fixed σ = 1 and variedμ. Examples of two overlaid example diagrams
are shown in Fig. 7.

Classification.We tested our classification accuracy with the following experiment.
We chose two collections, A and B, of 500 persistence diagrams each generated by
drawing n = 20 points (note that this means there are at most n points). The means μ

were different:μA = (1, 3) andμB was varied along the line (1, 3)t+(2, 5)(1− t) for

2 https://github.com/lizliz/teaspoon.
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Fig. 7 Example diagrams randomly generated by the procedure described in Sect. 8.2. Two diagrams drawn
from a distributions with different choices of μ are shown

Fig. 8 Results from classification test for pairs of choices of μ with μA = (1, 3) and μB chosen on the
line from (1, 3) to (2, 5)

t ∈ [0, 1]. Classification accuracy using tent and interpolating polynomial functions
is shown in Fig. 8. As expected, the correct classification percentage for the test set is
around 50% when μA ∼ μB , and improves as they move farther apart. In particular,
by the time the means are at distance apart equal to the standard deviation used for
the normal distribution (σ = 1), classification is well above 90%. For this particular
experiment, we do not see any difference between the choice of template function
used.
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Regression.We further ran two regression versions of the experiment as follows. In
the first test, we drew 500 diagrams from the above procedure with a choice of center
μ drawn uniformly on the line segment t(1, 3) + (1 − t)(6, 8), t ∈ [0, 1]. Then, we
predicted the distance from μ to (1, 3). We call this the “line” experiment. Second,
we drew μ from the normal distribution N ((1, 3), 1) and again predicted the distance
of μ from the point (1, 3). We call this the “ball” experiment.

Each of these experiments was run 10 times, and the results can be seen in Table 1.
Example predictions for single runs can be seen in Fig. 9, and the coefficients for
these examples are in Fig. 10. Note that the coefficients are drawn at the location of
their index. In particular, the interpolating polynomials are determined using a non-
uniform mesh, so the heatmap for these coefficients does not align with the location
of the associated point.

Table 1 The R2 results of the regression tests described in Sect. 8.2

Tents-train Tents-test Polynomials-train Polynomials-test

Line 0.977 ± 0.002 0.970 ± 0.004 0.979 ± 0.001 0.970 ± 0.002

Ball 0.823 ± 0.023 0.782 ± 0.023 0.832 ± 0.021 0.786 ± 0.021

Fig. 9 True versus predicted of distance to starting mean for the ball and line experiments described in
Sect. 8.2
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Fig. 10 Coefficients for regression experimentwithmean drawn from a line (left) and from a ball (right). The
top row uses tent functions, the bottom uses interpolating polynomials. The x and y coordinates correspond
to the index of the test function used

8.3 Manifold Experiment

Following an experiment run in [1], we generated collections of point clouds drawn
from differentmanifolds embedded inR

2 orR
3. Each point cloud has N = 200 points.

The categories are as follows:

Annulus. Points drawn uniformly from an annulus with inner radius 1 and
outer radius 2.

3 clusters. The 200 points are drawn from one of three different normal dis-
tributions, with means (0, 0), (0, 2) and (2, 0) respectively, and all
with standard deviation 0.05.

3 clusters of
3 clusters.

The points are drawn from normal distributions with standard devi-
ation 0.05 centered at the points (0, 0), (0, 1.5), (1.5, 0), (0, 4),
(1, 3), (1, 5), (3, 4), (3, 5.5), (4.5, 4).

Cube. Points drawn uniformly from [0, 1]2 ⊆ R
2.
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Fig. 11 Example point clouds from the experiment described in Sect. 8.3. From top left reading across
rows, the point clouds are a torus (in R

3 but drawn with color as the third coordinate), 3 clusters, annulus,
three clusters of three clusters, uniform box, and a sphere (again drawn with third coordinate as color). The
associated persistence diagrams are shown to the right of the point clouds; the 1-dimensional diagram is
given by blue dots and the 0-dimensional diagram is shown by red x’s. Diagrams are drawn with the same
axis values

Torus. Points drawn uniformly from a torus thought of as rotating a circle
of radius 1 in the xz-plane centered at (2,0) around the z-axis. The
generation of the points is done using the method from [29].

Sphere. Points drawn from a sphere of radius 1 in R
3 with uniform noise

in [−0.05, 0.05] added to the radius.

Examples of each of these can be seen in Fig. 11. Code for generation of these
point clouds as well as the full dataset can be found in the teaspoon package
at teaspoon.MakeData. PointCloud.testSetManifolds.

The choice of tent function parameters was done as follows. We determined the
bounding box necessary to enclose the training set diagrams in the (birth, lifetime)
plane and added padding of 0.05. We fixed d = 10; ε was chosen to be half the
minimum lifetime over all training set diagrams; then δ was chosen to ensure coverage
of the bounding box.

We reserved 33% of the data for testing and trained a regression model on the
remaining data. The results of this experiment averaged over 10 runs can be seen in
Table 2. In this experiment, particularly when we have 50 or more diagrams per class,
we see excellent (≥ 99%) classification.

8.4 Shape Data

We compared our results to the kernel method results reported in [55] by applying
feature functions to the same data set from that paper. In particular, the synthetic
SHREC 2014 data set ([53]) consists of 3D meshes of humans in different poses. The
people are labeled as male, female, and child (five each); and each person assumes one
of 20 poses. Reininghaus et al. defined a function on each mesh using the heat kernel
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Table 2 Results from the manifold test described in Sect. 8.3 for different numbers of examples drawn for
each type of manifold

No. Dgms Tents Polynomials

Train Test Train Test

10 99.8% ± 0.9 96.5% ± 3.2 99.8% ± 0.9 95.0% ± 3.9

25 99.9% ± 0.3 99.0% ± 1.0 99.7% ± 0.5 97.6% ± 1.5

50 99.9% ± 0.2 99.9% ± 0.3 100% ± 0 99.2% ± 0.9

100 99.8% ± 0.1 99.7% ± 0.4 99.6% ± 0.2 99.3% ± 0.5

200 99.5% ± 0.1 99.5% ± 0.3 99.2% ± 0.2 98.9% ± 0.5

The reported results are averaged over 10 experiments each

Fig. 12 Coefficients for the manifold experiment using tent functions run with 100 diagrams each

signature ([60]) for 10 parameters and computed the 0- and 1-dimensional diagrams
of each.

We start with this data set of 300 pairs of persistence diagrams (0- and 1-
dimensional) for each of the 10 parameter values, and predicted the human model;
i.e. which of the 15 people were represented by eachmesh. A comparison of the results
reported in [55] with our method using polynomial functions is shown in Table 3.
Additional results using tent functions are provided in the appendix (Table 4).

For this experiment, polynomial features (Table 3) were considerably more suc-
cessful than the tent functions. Further, using the 0- and 1-dimensional persistence
diagrams together was largely better than the 1-dimensional diagram alone, and
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Table 3 Results of classification of shape data discussed in Sect. 8.4

freq MSK Dim 0 Dim 1 Dim 0 & Dim 1

Train Test Train Test Train Test

1 94.7% ± 5.1 94.3% ± 0.5 67.1% ± 4.7 99.1% ± 0.3 85.4% ± 3.0 99.8% ± 0.3 90.4% ± 5.3

2 99.3% ± 0.9 92.1% ± 1.4 60.8% ± 6.3 99.9% ± 0.3 89.9% ± 1.5 100.% ± 0.0 95.1% ± 2.4

3 96.3% ± 2.2 83.4% ± 2.4 45.1% ± 2.9 99.6% ± 0.5 88.9% ± 3.0 99.7% ± 0.5 90.0% ± 2.0

4 97.3% ± 1.9 74.7% ± 2.0 37.4% ± 4.7 99.1% ± 0.7 85.2% ± 2.5 98.6% ± 0.9 84.8% ± 3.9

5 96.3% ± 2.5 65.3% ± 2.9 27.8% ± 5.0 99.2% ± 0.7 93.0% ± 2.2 99.7% ± 0.4 93.3% ± 2.2

6 93.7% ± 3.2 67.2% ± 2.5 36.5% ± 3.6 99.2% ± 0.5 93.4% ± 2.8 98.8% ± 0.5 92.9% ± 1.8

7 88.0% ± 4.5 71.5% ± 2.8 40.9% ± 4.1 98.3% ± 0.7 96.6% ± 0.7 99.0% ± 0.4 95.6% ± 1.4

8 88.3% ± 6.0 84.2% ± 3.3 63.0% ± 4.5 99.0% ± 0.5 93.0% ± 1.8 99.6% ± 0.4 94.0% ± 2.2

9 88.0% ± 5.8 83.5% ± 2.7 62.4% ± 5.0 98.4% ± 1.2 92.9% ± 1.5 98.5% ± 1.3 92.6% ± 2.1

10 91.0% ± 4.0 79.8% ± 2.7 59.0% ± 4.6 96.9% ± 0.6 92.1% ± 1.7 97.7% ± 1.1 89.5% ± 4.6

The function used was the Chebyshev polynomial of the second kind. The MSK column gives the original results
from [55]; the subsequent columns use the 0-dimensional diagrams only, the 1-dimensional diagrams only, and both,
respectively. Scores highlighted in bold give best average score MSK versus template functions and overlapping
intervals with the best score. Compare this to the results with tent functions, Table4

considerably better than the 0-dimensional diagram alone. The average classification
rates were improved in four out of the ten parameter choices; results with intersecting
confidence intervals occurred in an additional four out of ten parameter choices.

8.5 Rossler Periodicity

We tested our machine learning approach on time series simulated from the Rossler
system ([47])

ẋ = −y − z,

ẏ = x + αy,

ż = β + z, (x − γ ),

(18)

where the overdot denotes a derivativewith respect to time.We used an explicit Runge-
Kutta (4,5) formula to solve the Rossler system for β = 2, γ = 4, and 1201 evenly
spaced values of the bifurcation parameter α where 0.37 ≤ α ≤ 0.43. For each value
of α a set of initial conditions was sampled from uniformly distributed values in [0, 1].
We simulated 2 × 104 points using a time step of 0.2 seconds. Half of the simulated
points were discarded, and only the second half of the x variable data was used in
the current analysis. The left and right columns of Fig. 13 show two examples of the
resulting time series: one periodic with α = 0.37, and one chaotic with α = 0.42,
respectively. The first row of the figure shows the time series after dropping the first
half of the simulated data, and the bottom row shows the corresponding phase space.
The black dots in Fig. 13 represent the extrema of x which were accurately computed
using a modified version of Henon’s algorithm [38, 52]. These dots are basically the
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Poincaré points obtained by finding all the intersections of the x trajectory with the
surface ẋ = 0.

The two examples in Fig. 13 show how the bifurcation parameter α can influence
the system behavior. This dependence on α is further illustrated in the top graph of
Fig. 15which depicts themaximumLyapunov exponent computed using the algorithm
described by [6, 32, 58]. The bottom graph of Fig. 15 shows the score of the zero-one
test for chaos [35–37]: a binary test that yields a score of 0 for regular dynamics, and 1
for chaotic dynamics. In order to avoid the failure of the 0–1 test due to oversampling,
the test was applied to the subsampled data which was obtained by retaining every
sixth point from the original signal. The periodic windows shown in Figs. 14 and 15
were identified by examining the plot of the bifurcation diagram in Fig. 14 as well as
plots of the maximum Lyapunov exponent and the 0-1 test scores in Fig. 15.

We applied the feature function method on the resulting data set using the tent
functions. In this experiment, we set d = 10, δ = 0.4, and ε to be machine precision.
For this test, we got a score of 98.9% on the training set, and 97.2% on the test set.
The misclassified time series are superimposed on the bifurcation diagram in Fig. 14.
In this figure, green circles show the values of α that were tagged chaotic but that
the algorithm identified as periodic. Similarly, purple diamonds indicate the α values
that were identified as chaotic even though they were tagged as periodic. It can be
seen, unsurprisingly, that misclassification occurs near the transitions of the system
behavior from chaotic to periodic or vice versa.

We note that tagging of the data used for both training and testing was performed
by inspecting the bifurcation diagram, the maximum Lyapunov exponent plot, and
the 0-1 test. Therefore, for the very few misclassified α values we would actually
conjecture that our approach can provide a check for the correctness of tagging in the
testing and training sets especially for the boundary cases.

Fig. 13 Time series for the x value in a Rossler system (top row) and the corresponding phase portrait in
the (x, y, z) space (bottom row) for a periodic case with α = 0.37 (left column), and a chaotic case with
α = 0.42 (right column). The superimposed black dots correspond to the extrema of x
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Fig. 14 The bifurcation diagram for the Rossler system with α as the bifurcation parameter and the extrema
of x as the response parameter. The shaded windows indicate the regions that were tagged as periodic. The
misclassified points are superimposed with diamonds indicating the points that were incorrectly identified
as chaotic, while dots indicate that the algorithm incorrectly identified chaotic points as periodic

Fig. 15 Top: The maximum Lyapunov exponent for the Rossler system as a function of the bifurcation
parameter α. Bottom: The score of the 0–1 test for chaos where 0 indicates periodicity, while 1 indicates
chaos. The shaded windows denote the regions that were tagged as periodic

9 Discussion

In this paper, we have provided a new method for the featurization of persistence dia-
grams through the use of template functions; that is, collections of functions compactly
supported on the upper half plane away from the diagonal whose induced functions
on diagrams separate points. To do this, we further gave a complete description of
compact sets in persistence diagram space endowed with the bottleneck distance.
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This method of featurization allows for a great deal of flexibility for the end user.
In particular, we have provided two options for template functions, tent functions and
interpolating polynomials, but surely there are many other collections of functions
which could be tested for optimizing classification and regression tasks. We showed
these two functions worked quite well on standard experiments, as well as in compar-
ison to other methods available in the literature.

Wefind the particular results of theSHRECdata set (Sect. 8.4) to be quite fascinating
due to the vast improvement seen from tent functions to interpolating polynomials.
The usual knee-jerk reaction to setting up these featurization methods for persistence
diagrams is that localization is key. This was the impetus for creation of the tent
functions as they have support contained in a small box, so each tent function truly
only sees a small window of the diagram. Meanwhile, the interpolating polynomials
are nonzero well away from their chosen “basepoint” so the fact that these functions
work at all is surprising to say the least.

Template function featurization has also found successful applications in the litera-
ture. Specifically, in [65] the authors show a comparison between several TDA-based
featurization methods such as persistence landscapes, persistence images, and Carls-
son coordinates for classifying chatter in metal cutting from vibration signals. That
paper shows that template functions yield higher accuracy in comparison to some of the
existing featurization methods. Further, template functions (and Carlsson coordinates)
were shown to be computationally the fastest methods. Another application of tem-
plate functions can be found in [66], where the authors show that template functions
can be used to detect chatter from simulated, noisy vibration signals inmilling–another
metal cutting process. In addition to its speed, template functions were shown to yield
high classification accuracy and did not require the user to manually identify the clas-
sification features, which is the case in traditional chatter classification methods.

Future work is certainly needed to explore the available options that can be utilized
within the provided mathematical framework. Because the template system definition
is rather broad, we suspect there are many possible collections which could be utilized
to improve the results seen here. We have begun to see this in follow-up work which
takes a data driven approach to adaptively chose the relevant template functions [54,
63]. We hope to better understand this behavior in future work.
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Appendix A: Implementation of the Interpolating Polynomials
Algorithm

In this appendix, we give more details on the implementation of the interpolating
polynomials described in Sect. 6.2. The barycentric formula for Lagrange interpolation
described by [7] is given by
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f (x) :=
∑m

j=0
�Aj (x)c j =

∑m
j=0

w j
x−x̃ j

c j
∑k

j=0
w j

x−x̃ j

; where

w j = 1

�′(a j )
; �′(a j ) =

m∏

i=0,i �= j

(a j − ai ), (A1)

while A = {ai }mi=0 ⊂ R is a finite set of distinct mesh values, and {ci ∈ R} is a
collection of evaluation values. The function in Eq. (A1) has the property that f (ai ) =
ci for all i , and it also satisfies the partition of unity condition

∑m
j=0 f (x) = 1, ∀ x .

Barycentric Lagrange interpolation is often used for approximating R-valued func-
tions and there are efficient algorithms for obtaining the weights associated with it.
However, in our formulationwe need to an interpolating polynomial over anR

2-valued
function. Therefore, we next describe how to expand the algorithm for interpolating a
scalar valued function to interpolating a function on the plane. Note that the notation
used here is self-contained from Sect. 6.2.

We assume that our planar mesh is the outer product of m + 1 mesh points along
the birth time x-axis, and n + 1 points along the lifetime y-axis. We also assume that
the persistence diagram has N pairs of (birth, lifetime) points.

1. Get γ̃ and φ which correspond to the interpolation matrices along the x-mesh and
the y-mesh, respectively. These are the matrices that describe the linear transfor-
mation from the m + 1 mesh points of birth times (n + 1 mesh of lifetimes) to the
corresponding interpolated values of the N query birth times (N query lifetimes)
for a given diagram. This step is equivalent to separately obtaining the interpolation
matrices for the birth times and the lifetimes.

2. Set γ = γ̃ T .
3. (a) Replicate each column in γ n + 1 times to obtain � whose dimensions are

(m + 1) × (N × (n + 1)).
(b) Unravel φ row-wise into a row vector, then replicate each row m + 1 times to

obtain 
 whose dimensions are (m + 1) × (N × (n + 1)).
4. Use element-wise multiplication to obtain �̃ = � ·
, where ·means element-wise

multiplication, and �̃ has dimension (m + 1) × (N × (n + 1)).
5. (a) Split �̃ into N chunks of (m + 1) × (n + 1) matrices along the columns axis.

(b) Concatenate the split pieces row-wise to obtain an (N × (m + 1)) × (n + 1)
matrix �.

6. Reshape � by concatenating each (m + 1) × (n + 1) piece row-wise to obtain an
N × ((m + 1) × (n + 1)) matrix �.

7. Let the 2D base mesh be given as

⎡

⎢
⎢
⎢
⎣

f00 f01 . . . f0n
f10 f11 . . . f1n
...

...

fm0 fm1 . . . fmn

⎤

⎥
⎥
⎥
⎦

,
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where fi j = f (xi , y j ) and (xi , y j ) is a unique point in the 2D mesh. Define the
vector [ f00 f01 . . . fmn] which is obtained by unraveling the 2D mesh row-wise.

8. We can interpolate the query points (xq , yq) using

p(xq , yq) =

⎡

⎢
⎢
⎢
⎣

�0(x0)�0(y0) . . . �m(x0)�n(y0)
�0(x1)�0(y1) . . . �m(x1)�n(y1)

...
...

�0(xN−1)�0(yN−1) . . . �m(xN−1)�n(yN−1)

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f00
f01
...

fmn

⎤

⎥
⎥
⎥
⎦

.

Here is a sketch of the resulting matrices:

γ̃ =
⎡

⎢
⎣

�0(x0) �1(x0) . . . �m(x0)
...

...

�0(xN−1) �1(xN−1) . . . �m(xN−1)

⎤

⎥
⎦

N×(m+1)

,

φ =
⎡

⎢
⎣

�0(y0) �1(y0) . . . �n(y0)
...

...

�0(yN−1) �1(yN−1) . . . �n(yN−1)

⎤

⎥
⎦

N×(n+1)

,

γ = γ̃ T =

⎡

⎢
⎢
⎢
⎣

�0(x0) �0(x1) . . . �0(xN−1)

�1(x0) �1(x1) . . . �1(xN−1)
...

...

�m(x0) �m(x1) . . . �m(xN−1)

⎤

⎥
⎥
⎥
⎦

(m+1)×N

,

� =

⎡

⎢
⎢
⎢
⎣

�0(x0) �0(x0) . . . �0(x0) . . . �0(xN−1) �0(xN−1) . . . �0(xN−1)

�1(x0) �1(x0) . . . �1(x0) . . . �1(xN−1) �1(xN−1) . . . �1(xN−1)
...

...
...

...
...

�m(x0) �m(x0) . . . �m(x0) . . . �m(xN−1) �m(xN−1) . . . �m(xN−1)

⎤

⎥
⎥
⎥
⎦

where � has dimension (m + 1) × (N × (n + 1)).


 =

⎡

⎢
⎢
⎢
⎣

�0(y0) �1(y0) . . . �n(y0) . . . �0(yN−1) �1(yN−1) . . . �n(yN−1)

�0(y0) �1(y0) . . . �n(y0) . . . �0(yN−1) �1(yN−1) . . . �n(yN−1)
...

...
...

...
...

�0(y0) �1(y0) . . . �n(y0) . . . �0(yN−1) �1(yN−1) . . . �n(yN−1)

⎤

⎥
⎥
⎥
⎦

where 
 has dimension (m + 1) × (N × (n + 1)).
We can now compute the elementwise product� = � ·
, which has the dimension

(m + 1) × (N × (n + 1)).
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We then need to apply the following operations: (i) reshaping � to obtain �̂1 given
by

�̂1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�0(x0)�0(y0) �0(x0)�1(y0) . . . �0(x0)�n(y0)
�1(x0)�0(y0) �1(x0)�1(y0) . . . �1(x0)�n(y0)

...
...

�m(x0)�0(y0) �m(x0)�1(y0) . . . �m(x0)�n(y0)
...

...

�0(xN−1)�0(yN−1) �0(xN−1)�1(yN−1) . . . �0(xN−1)�n(yN−1)

�1(xN−1)�0(yN−1) �1(xN−1)�1(yN−1) . . . �1(xN−1)�n(yN−1)
...

...

�m(xN−1)�0(yN−1) �m(xN−1)�1(yN−1) . . . �m(xN−1)�n(yN−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(ii) unraveling �̂1 into an N × ((m + 1) × (n + 1)) matrix �̂2 given by

�̂2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�0(x0)�0(y0) . . . �0(x0)�n(y0) . . . �m(x0)�n(y0)
...

...

�0(xk)�0(yk) . . . �0(xk)�n(yk) . . . �m(xk)�n(yk)
...

...

�0(xN−1)�0(yN−1) . . . �0(xN−1)�n(yN−1) . . . �m(xN−1)�n(yN−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(A2)

The collection of all the scores constitutes the feature vector corresponding to the
chosen base mesh point and to the query points where the latter are the persistence
diagram points. In this studywe summed the rows of �̂2 after taking the absolute value
of each entry. The resulting number represents the score at each base mesh point. If
the persistence diagram contains the mesh points and we want to find the interpolated
values at query points pinterp, then we would compute pinterp. = �̂2 f .

The implementation of this algorithm can be found in the teaspoon package at
teaspoon.ML.feature_functions.interp_polynomial.

Appendix B: Additional Shape Data Results

This appendix gives additional results for the SHREC data set described in Sect. 8.4
using tent functions instead of interpolating polynomials. Table 4 should be compared
to the results of Table 3.
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Table 4 Results of classification of shape data discussed in Sect. 8.4

freq MSK Dim 0 Dim 1 Dim 0 & Dim 1

Train Test Train Test Train Test

1 94.7% ± 5.1 8.3% ± 0.5 3.4% ± 1.1 8.1% ± 0.2 3.7% ± 0.5 8.2% ± 0.3 3.5% ± 0.5

2 99.3% ± 0.9 8.3% ± 0.3 3.4% ± 0.7 8.2% ± 0.5 3.5% ± 1.1 8.56% ± 0.4 3.0% ± 1.0

3 96.3% ± 2.2 66.5% ± 2.7 31.8% ± 4.8 50.6% ± 2.1 31.1% ± 4.0 80.5% ± 1.3 44.4% ± 4.3

4 97.3% ± 1.9 46.2% ± 2.5 27.0% ± 3.8 83.1% ± 1.6 63.5% ± 4.6 89.1% ± 1.5 69.0% ± 4.9

5 96.3% ± 2.5 28.5% ± 1.4 18.9% ± 4.0 75.2% ± 2.6 58.3% ± 4.6 76.8% ± 2.7 58.4% ± 7.9

6 93.7% ± 3.2 25.4% ± 1.8 19.0% ± 2.4 96.5% ± 1.1 88.7% ± 2.4 96.8% ± 0.67 89.9% ± 1.7

7 88.0% ± 4.5 19.4% ± 2.6 10.0% ± 3.4 98.2% ± 0.5 93.6% ± 1.9 98.3% ± 0.6 94.1% ± 2.5

8 88.3% ± 6.0 10.8% ± 2.6 3.6% ± 2.4 91.9% ± 0.9 88.8% ± 2.7 91.9% ± 1.2 89.7% ± 3.3

9 88.0% ± 5.8 10.6% ± 2.7 4.3% ± 2.2 63.8% ± 2.7 53.3% ± 5.9 64.9% ± 2.3 53.7% ± 3.8

10 91.0% ± 4.0 9.2% ± 2.3 3.6% ± 1.7 27.0% ± 3.9 16.2% ± 3.2 27.3% ± 3.4 18.6% ± 5.6

The functions used are the tent functions with d = 20, and a ridge regression classifier. The MSK column gives
the original results from [55]; the subsequent columns use the 0-dimensional diagrams only, the 1-dimensional
diagrams only, and both, respectively. Scores highlighted in bold give best average score MSK versus template
functions and overlapping intervals with the best score
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