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Abstract

Taylor diffusion (or dispersion) refers to a phenomenon discovered experimen-
tally by Taylor in the 1950s where a solute dropped into a pipe with a background
shear flow experiences diffusion at a rate proportional to 1/v, which is much faster
than what would be produced by the static fluid if its viscosity is 0 < v < 1. This
phenomenon is analyzed rigorously using the linear PDE governing the evolution of
the solute. It is shown that the solution can be split into two pieces: an approximate
solution and a remainder term. The approximate solution is governed by an infinite-
dimensional system of ODEs that possesses a finite-dimensional center manifold,
on which the dynamics correspond to diffusion at a rate proportional to 1/v. The
remainder term is shown to decay at a rate that is much faster than the leading order
behavior of the approximate solution. This is proven using a spectral decomposition
in Fourier space and a hypocoercive estimate to control the intermediate Fourier
modes.

1. Introduction

Taylor dispersion is a phenomenon in fluid dynamics that was discovered in
the 1950s by GEOFFREY TAYLOR [13,14]. The setting is a three dimensional pipe in
which there is a background shear flow advecting the fluid down the length of the
pipe, but where the rate of advection can vary as a function of the cross-sectional
variables. It was observed by Taylor that, if a localized drop of dye was put into
the pipe, then as expected it would be carried down the pipe by the shear flow and
also diffuse due to the non-zero fluid viscosity. However, what was not expected
was that the rate of diffusion experienced by the dye was not that of the fluid, say
v, but instead a rate proportional to 1/v, which is much larger if 0 < v < 1.
This phenomenon has been subsequently analyzed by many people, for example
[1,4,9], but most of the work has been formal, based on asymptotic calculations.

Published online: 07 August 2019


http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-019-01440-2&domain=pdf
http://orcid.org/0000-0003-4385-7402

MARGARET BECK, OSMAN CHAUDHARY & EUGENE WAYNE

Our goal in this work is to rigorously analyze Taylor dispersion and provide a
mathematical mechanism for its occurrence using center manifolds and Villani’s
theory of hypocoercivity [15]. We note there is another rigorous analysis of Taylor
dispersion, [3], that also uses hypoceorcivity in the proof. We will comment on the
relationship between that and the present work at the end of this section.

The PDE model of fluid flow in a pipe with a background shear flow is given
by

ur =vAu —V(y,uy, x€R, (y,2) €2 cCR.

The function u : R x 2 x RT™ — R represents the concentration of the solute,
or dye, and the function V : £2 — R is a smooth background shear flow, which
depends only on the cross-sectional variables (y, z) € §2, where §2 is compact with
smooth boundary. We assume Neumann boundary conditions

ou

—lae =0.

n log2
For simplicity we assume the viscosity is a small, positive constant, 0 < v < 1.
To remove any effects of constant background advection caused by V, we define
X via

1

V.2) =Al+x(,2)), A= vol(2) fg V(y,z)dydz,

and require that y € H 2(£2). Thus, A is the average rate of advection in a cross
section, and x therefore has zero average advection in a cross section. We can then
change variables using x — x + At to obtain

ur =vAu — Ax(y, 2)uy. (1.1)

It will be convenient to separate the effects of the cross-stream and longitudinal pipe
variables. To that end, we will expand both u# and y in terms of the eigenfunctions
of the Laplacian 8)2, + 8Z2 acting on the compact domain 2. These eigenfunctions,
which we denote by {,,}7°;, form an orthonormal basis for L2(£2) with ¥ = 1,
and we denote their corresponding eigenvalues by {—u,}2,, which satisfy 0 =
no < pm1 < pp < --- [12, Section 11.3]. It will also be helpful to scale the
longitudinal space variable x and the time variable 7 by v via

X = vx, T = vt. (1.2)
This transforms (1.1) into
ur =v2uXX+Ay,Zu—Ax(y,z)uX. (1.3)

The main advantage of this change is that it helps us determine the dependence of
the solutions on the viscosity parameter v < 1. This advantage will be made clear
in Remarks 3.4 and 4.10. Inserting the expansions

o0

WX, y,2,T) =Y (X, DYn(3,2),  x(,2) =Y xa¥n(y,2), (1.4)

n=0 n=0
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where
un (X, T) = /Q WX, v, 2 T (v )dydz, o = fQ X ¥ (v, Ddydz,

into equation (1.3) and noting that yo = O since it has zero average in £2, we obtain

o
drug = V23)2(MO —A Z Xm OX Um (1.5)
m=1
o
oru, = uzaﬁun — UpUy — Axndxug — A Z Xn.mOXUm n=12,...,
m=1
(1.6)
where

Xn,m = (Y, XWm)LZ(Q)-

In order to use invariant manifolds to study Taylor dispersion, we must deal
with the fact that the Laplacian, 8)2(, on R has continuous spectrum consisting of
(—o00, 0]; in other words, there is no spectral gap. One way to overcome this is to
use similarity variables

X
= , T =log(T +1),
which exploit the space/time scaling inherent to the operator [16]. (The use of 7 +1,
rather than 7', in the above definition is just for convenience, so that the change
of variables is well-defined at 7 = 0). We therefore further define new dependent
variables {w;}° , via

1 X
uo(X, T) = wy | ——,log(T +1 1.7
o ) STl 0 (\/T—-l-l g( )) (L.7)
1 X
X, T)= ,log(T +1) ), =12,.... 1.8
un( ) T—i—lwn(\/T—-{-] og( +)> n (1.8)
Plugging this definition into (1.5) and (1.6), we obtain
o0
dcwo = Lwo — A Y XmOswi (1.9)
m=1
1 o0
O w, = (E + E) w, —e"?A Zl Xonm O Wiy
m=
—e" (nwn + Axndwo), (1.10)

where

1 1 1
£=v23§+§35(§-)=v23§+§§3g+§ (1.11)
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is the Laplacian u28§ written in terms of the similarity variables. Note that the
reason for the different powers of (T + 1) in front of wg and w, forn > 1in (1.7)
is that equation (1.9) above becomes t-independent. Continuing, we remark that
the operator £ was analyzed in detail in [6]. Its properties are given in Section 2
below, but for the moment we just note that, on the space

L*(m) = {w e L*(R) : f(l + EHMw(E))PdE < oo} , (1.12)
R

the spectrum of £ is composed of essential and discrete spectrum:
o(Ly={reC:Re(dx) < —-QC2m—1)/4}U{A=—k/2:k=0,1,2,...}.

Thus, as the algebraic weight m in the definition of the function space L2(m)
increases, the essential spectrum is pushed further into the left half-plane, reveal-
ing more and more isolated eigenvalues at negative multiples of 1/2. This suggests
that we can construct a center-stable manifold (which we often refer to as a center
manifold, for short) corresponding to those isolated eigenvalues, where the dimen-
sion of this manifold can be large if m is sufficiently large.

The utility of such a center manifold can be seen by considering the term
—e" (pwy + Ax,0swp) in (1.10). As 7 increases this term becomes large, which
suggests that w,, should evolve so that ultimately w,w, + Ax,0:wo = 0. Hence,
we expect that, for large times,

Axn

n

Wy N~ —

dgwo = drwo ~ Ligwo,
where

1 1
Lo = (v2 4+ A2N0) 0 + 30660, Il = ) (1Y)
m

m

is again the Laplacian in similarity variables but now with Taylor diffusion coeffi-
cient

Vg = (v2+A2||X||i>. (1.14)

Note that the spectrum of the operator does not depend on the viscosity, so o (£) =
0 (Ltq)- Thus, we expect that {w,,}>° ; will rapidly converge to a manifold defined
by w, = —(Axndswo)/(in), and then for large times the dynamics of wg can
be described by a center-stable manifold corresponding to the isolated eigenvalues
of the operator L;4. In terms of the original variables, this suggests that {u, }>° |
should become “slaved" to the low mode uo exponentially fast, while the low
mode ug should decay diffusively, but as if its diffusion coefficient is v,y = O(1)
(instead of vz), which, if we change back to the original (x, ¢) variables, matches
the experimental observations of Taylor and the formal calculations in [4].

There are several technical difficulties that must be overcome in order to make
the above argument rigorous. First, in analyzing the dynamics of system (1.9) and
(1.10) using the spectral structure of L,4, it would be natural to expand each w,,,
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n=0,1,...,interms of the eigenfunctions {go“’ (é)}N _oof L4, where N = N (m)
corresponds to the number of isolated elgenvalues and hence the dimension of the
center-stable manifold. In other words, we could write

N
Pyw,(5,7) = Y aja (D¢ (&), w) = (1 - Py)w,

J=0

for each n, where w is the component of the solution in the strong stable manifold,
which we expect to decay rapidly. Although this is essentially what we will do, it
turns out that it will be more convenient to prove the rapid decay of w;, in terms of
the (X, T) variables, by using the Fourier transform.

The reason for this is that our center manifold argument will only show that
the enhanced diffusion affects the first N + 1 terms in the eigenfunction expansion
{w,}. This is sufficient for the physical realization of the phenomenon because
the higher order terms, corresponding to w;,, will be shown to decay like T-NW)
where A can be made large by choosing N, and hence also m, to be large, which is
faster than the enhanced algebraic diffusive decay resulting from Taylor diffusion.

To understand what Py w,, corresponds to in the physical (x, ¢) variables, con-
sider the following calculation. The eigenfunctions of £;; are given by

52

oiE) = olol!©). ol &) = ¢ Wi (1.15)

41 v

If we assume that

N
ma+ﬂ w(E, ) =Y (e &),

I X
X, T) = , ,
w61 (1+T)vw(fT+1 =

which can represent either wg or w,, n > 1, depending on the choice of y, then

Gk, T) = / &M Xu(x, THdx

x2

(1 + T)/27Y (—ik) aj (log(T + 1)) f X e T X

Mz

= 47{1),
N
Z (1+ T)/2H1277 (i) o (log(T + 1))e ™ T+,

This implies that

40, T) = (1 + 1)Y* 7 ag(log(T + 1)),
3eu(0,T) = (=)(1 + T) Va1 (log(T + 1)), . ..

which, combined with the Taylor expansion

1
i, T) = a0, T) + (0, T + 03 (0, Ty + -,
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means that the behavior of Pyw tells us about the behavior of u(«, T') for k near
zero. In other words, Pyw represents both the behavior of the “low modes" of
w(&, ), where “low modes" refers to the leading eigenfunctions of £,4, and the
behavior of the “low modes" of ii(x, T'), where now “low modes" refers to values
of the Fourier variable « near zero. This relationship between Taylor dispersion,
the behavior of the Fourier transform of the solution at small wave numbers, and
the center-manifold theorem was also discussed by MERCER and ROBERTS in [9].

We will refer to w® = (1 — Py)w as the remainder, or error, term. In terms of
L;q it corresponds to the behavior due to the essential spectrum and the discrete
spectrum that is sufficiently far from the imaginary axis. To prove that the remainder
term decays rapidly, it will be convenient to work in terms of the Fourier variables
associated with physical (X, T') space, rather than system (1.9) and (1.10). This will
lead to a linear, nonautonomous equation governing the behavior of the remainder
term of the form ﬁr = B(K)U + F (k, T). We can then consider three regimes:
a small wavenumber regime defined by || < ko, an intermediate one defined by
ko < |k| < k1/v, and a large one defined by |k| > ki /v. In the large regime,
the solution decays exponentially due to the usual (non-Taylor) diffusive estimate
e"za)z( T ~ e"’z"zT < e"‘lzT. In the intermediate regime this naive estimate is
not quite strong enough, because it only implies ePRT ~ VT <~ eVKG T
which is quite weak for 0 < v « 1. To improve it, we will apply a hypocoercivity
argument [15] to show that in this region we also have decay like e ™7 for some
M > 0. For the low wavenumbers, we will decompose the remainder term into a
piece corresponding to the leading eigenvalue Xo(x) of B(x), which is parabolic
with 19(0) = 0, and a piece corresponding to the rest of the spectrum of B(k). The
latter will decay exponentially fast because B(k) has a spectral gap for each fixed
k. The former will be shown to decay algebraically with the rate T-NW ), because
we have already removed the leading order behavior via the term Py w,,.

Our analysis will be divided into the following steps: in Section 2 we will more
precisely set-up our problem and carefully state the main results. In Section 3 we
will use the similarity variables and a center-stable manifold to prove that the low
modes, corresponding to Py w,,, experience enhanced Taylor diffusion. Finally, in
Section 4 we will use a spectral decomposition and hypocoercivity to show that
the remainder term decays rapidly, thus allowing for the Taylor diffusion to be
physically observable.

Before carrying this out, we comment on other related rigorous work on Taylor
diffusion. In [2] we analyzed a model of system (1.5) and (1.6) consisting of only
two equations, one corresponding to uo and one modeling all of the u,, forn > 1,
and carried out a similar analysis there. This allowed us to focus on the main ideas
of the argument: that the Taylor diffusion is really only affecting the low modes,
with the remainder term decaying rapidly. However, in that work, because of the
simple form of the system, one could see directly that the remainder term decayed
rapidly and the hypocoercivity argument we use here in Section 4 was not necessary.
Moreover, the center manifold argument, which was used to justify the enhanced
diffusion, was constructed for a finite-dimensional ODE. Here, the center manifold
argument in Section 3 will need to be carried out for an infinite-dimensional ODE.
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Also, in [3] an equation very similar to (1.1) was analyzed, also using hypoco-
ercivity. However, there Villani’s framework was applied directly to the PDE (1.1),
whereas our hypocoercivitiy argument is applied in Fourier space. This allows us
to avoid any assumptions on the critical points of the shear flow y, which play an
important role in the argument in [3]. Moreover, since X € R, we need to work in
Fourier space with all |«| > 0. The setting in [3] is for a bounded X domain, which
effectively means || > 1. This changes the nature of the resulting decay and the
regions in which the enhanced diffusion is obtained.

2. Set-Up and Statement of Main Results

The main result that we will prove is Theorem 1. Theorem 1(i) will be proven
in Section 3 and Theorem 1(ii) will be proven in Section 4. In the statement of the
Theorem we use the following notation for the space in which the initial data must
lie:

L*(N 4 1) x L*(£2)

= {u e L*Rx Q) : / f 1+ XHM (X, y, 2)|?dXdydz
R J2

—. 2
= ull72 vy 2@y < oo}.

Theorem 1. Given any N > 0, ifu(-,0) € LZ(N + 1) x Lz(.Q), then there exist
constants Cj = Cj(lu(-, 0.2 (v 1yxz2(2)) J = 1,2, that are independent of v
and a decomposition of the corresponding solution of (1.3) of the form

u(X,y,2,T) = ttapp(X, y, 2, T) + threm(X, y, 2, T),

where uapp(X, y, 2, T) and urem(X, y, z, T) are defined in (2.11) and (2.12), that
satisfies the following:

(i) There exists an infinite-dimensional system of ordinary differential equations
that govern the behavior of uapp. Moreover, this system of ODEs possesses a
finite dimensional center manifold that is globally attracting at a rate that is
exponentialin T, e for some 1 independent of v, and on which the dynamics
correspond to enhanced diffusion with viscosity v;q, defined in (1.14). In other

words,
2
Mapp(X, v,2,T)— Lei‘“’rd)&ﬂ) < L
NZETe e~ A+ TP

The constant C| is given explicitly by

C1=f/ u(X,y,z,0dXdydz.
R J2
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(ii) The remainder term satisfies
G
luremC, Dli2rxe) < ——5% 1
(1+T)etm

If we translate these results back to our original, unscaled time and space vari-

ables and choose N > 4 so that % + % > %, we see that we immediately obtain

Corollary 2.1. Given any initial condtion u(-,0) € L*(N + 1) x L%(£2), there
exist constants C; = Cj(|[u(-, 0) | ;2 (vt 1yx22(2))» J = 1, 2, such that the solution
of (1.1) satisfies

~ X

¢ e H+AZIXIZ/a+1/v)
AT+ A2 2+ 1/v)

u(x9y5 th) -

L2(Rx Q)
.G
= (L+ )3

The constant C\ is given explicitly by

6‘1:/[ u(x,y,z,0)dxdydz.
RJ2

Remark 2.2. Note that the leading order term in the asymptotics identified by
this Corollary corresponds to a solution of the diffusion equation with diffusion
coefficient (v + A2| ||i /v) which is precisely the asymptotic behavior derived
non-rigorously in [11]. (In particular, see (2.17) for the calculation of the shear
diffusion coefficient.) We note that the constant C» appearing in the Corollary can
be related to the constant C, appearing in the Theorem by undoing the change of
variables X = vx.

Remark 2.3. Aswe discuss later in Section 3, we actually derive not just the leading
order term in the asymptotics but higher terms as well - in principle, terms of arbi-
trary order, if the initial condition u decays sufficiently rapidly as |x| — oo. The
higher order terms in the asymptotics are expressed in terms of the eigenfunctions
of the operator £;4. See Remark 2.5 for further details.

To prove these results, we will use some facts about the operator £;4, which is
just the Laplacian written in terms of similarity variables. Recall from (1.13) that

1
Liagp = viadip + 0 Ep).
We state the following results for viscosity v;4, but the results are true with v,y

replaced by any other positive number. This operator has been analyzed in [6], and
in the weighted Hilbert space L%(m) defined in (1.12) one finds

ot = frecirem = - 222 uf L ien] .
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Furthermore, the eigenfunctions corresponding to the isolated eigenvalues Ay =
—k/2 are given by the Hermite functions

2

_ &
e i, gl &) =t g’ ().

td ey
(%) ¢é) = Arrvrg

The corresponding adjoint eigenfunctions are given by the Hermite polynomials

okpk g2 &2
H]id(é) — k‘ldezwrd age g (2.1

Note that we have the orthogonality relationship

1 if j=k

th’ t'd =8 =
(H ¥j )L2(R) ik 0 if j £k

which can be used to define spectral projections.

Remark 2.4. The expressions in [6] for (p,’(d and ngd are derived in the case when

viq = 1. The expressions given here follow easily by the change of variables
§ =&/ V.

2.1. Preparation of the Equations

To emphasize the expected role of the enhanced diffusion, we rewrite (1.9) and
(1.10) as

o0

3w = Liawo — Digd7wo — A Y YO wm (2.2)

m=1

1 o0
drwy = <£,d + 5) Wy — Dradfwy, — ef/ZA’;1 Xon.m O Wy

_er(ﬂnwn + AXnaEwO)a (2.3)
where
Dyg = A%\ xI1,

and L,y is defined in equation (1.13). As described above, asymptotically we expect
w, = —(Ax,0:wp)/(1,), which is a perfect derivative. To exploit this, we wish
to effectively integrate the w, equation. Naively, this could be done by defining
{Va}o2, via 3¢V, = wy. In order to obtain decay of V), as |£] — oo, we would
then need to assume that f wy, = 0. To avoid this additional assumption, we instead
define {V,}7° | via

wa (€, ) = Y (D)l (€) + Va(€, 1), Vn(T)=/an($, nds,  (2.4)



MARGARET BECK, OSMAN CHAUDHARY & EUGENE WAYNE

where @6" is the eigenfunction of £;; defined in (1.15) associated with the zero
eigenvalue. Note that this implies

yu(T) = (wn (), H) 12 = /R w (&, T)dE

and that y,,(t) is bounded for each t such that w,(tr) € L?(m), with m > 1/2,
because

1 m
(D] 5/ 0+ e ol
R (1 + &2

)2
| 172
= </R mdf) ||wn(T)||L2(m) = C(m)”wn(T)HLZ(m)-
Since f<p6d = 1, we see that [V, = 0. Inserting (2.4) into (2.3), we find that
. td 1 td 1 td 2
Yn®@y + 0V, = EVn(Po +\ Lia + 5 Vi — D (Vn(l’z + ¢ Vn)
o0
—e?AY " Xnm (@l + Vin)

m=1

—e" (1 Vi + Axndswo) — €t ynel?. 2.5)

Integrating over R and using the fact that go,’{d, wo — 0 as |&] — oo, we find that
. |
Vn = E —€ HUn | Vn,

Y (T) = yu(0)e2 THa =D, (2.6)

which implies that

With this information, in (2.5) we can cancel all the terms involving y,, alone, use
the fact that f V,, = 0 to define v, via dsv, = Vj;, and obtain from (2.2) and (2.3)
that

oo
3w = Liawo — Digd7wo — A Y Xm0z vm

m=1

o0
— Ae2 gl oy ()€ D @7

m=1

oo
3cvp = LigVn — Diad3vn — €AY " XnmOsVm — € (tnvn + Axnwo)

m=1

o0
— " AQE " Xnm Y (@) Hm e =D

m=1

— Digyn(0)eze € =Dgtd, (2.8)
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2.2. Separation into Low Modes and the Remainder Term

In order to analyze the behavior of solutions to system (2.7) and (2.8), we define

N
wo&, 7) = Y ax(pf! (€) + w(€, 7)
k=0

N
v(E 1) =) BLEOe € + v E D), (2.9)
k=0

where {@,’(‘1} ,1(\7:0 are the first N + 1 eigenfunctions associated with £;; and

a(t) = (wo, 1), HYE)) 2y, BL(T) = (a (€, 7)., HIY(E)) 12

are the spectral projections onto those eigenmodes defined via the corresponding
adjoint eigenfunctions H;“. See (2.1). Recalling that 3¢} = (pffH and Lq9}? =
—(k/ 2)(,02‘1, inserting the above expressions into (2.7) and (2.8) and taking the inner
product of the result with H ,ﬁd gives the following infinite-dimensional system of
ODE:s for the evolution of {ay}i_ and (B}, n > 1:

ap =0

: 1 - (e
@1 =—so1 = Ae? Y fmym(@)e ™D

m=1

_k 3
G = —50k — Draotg—2 — A Y Bl 2<k=N

m=1

o
Bl = =" (unBf + Axnt0) — €"A D Xnm¥m (0~ Hm =D

m=1

. 1 - T (et —
ﬁ? = _zﬂ? - eT(Mn,BTl + Axpar) —e2A Z Xn,m,B(r)n — Digyn(0)eZe #n(e"=1)

m=1

. k
Be = —Eﬁi‘ — e (unBy + Axnok)

o0
— DB, —€eTAY  umBil, 2<k=<N. (2.10)
m=1
Note that we have used the following facts: first, (H, ,éd, w‘(‘)) 12 = 0, which follows
by construction. This implies that (H/9, L,qw) ;> = (—(k/2)H[Y, wi),>» = 0.
One can also check that

(k—1)
et =~

dH' = H = —o:H,

which implies that (H,ﬁd, agu)g) = 0. Similar results hold for v}.
The key aspect of (2.10) is that, because of the structure of (2.7) and (2.8), the
dynamics of {ozk},ivzo and {B}'} ]lgV:() do not depend on the remainder terms w; or vj,.
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Therefore, the behavior of these low modes can be analyzed without any a priori
knowledge of the remainder terms. The structure of the above system suggests that,
with the exception of g, everything should decay exponentially fast in t, which
corresponds to algebraic decay in #. Moreover, the leading order behavior will be
governed by «g.

2.3. Definition of uapp and urem

We now relate the decomposition in (2.9) back to the solution u(X, y, z, T)
of the original equation (1.3). We define uypp in terms of the low modes and trem
in terms of the functions wy and v;. To do so we need to convert back to the
(X, T) variables and take into account the decomposition in (1.4) and the change
of variables in Section 2.1. In particular, we have

w(X,y,2,T) =Y un(X, )Y (y, 2)
n=0
1
X, T) =
uo(X, T) mwo(é,f)
1
WX, 1) = s [ O © +denE 0]z
Using (2.9), we find that
| 1
_ td s
ug(X, T) = e Zak(rm &) + mwo(s, 7)
X, T) = ! ! — 0,
un(X, T) = T+ D V(D)5 (€)+Zﬁ ©e & | + T 11 2 (6. 7).

‘We now define

Yoy, 2) w X
. 1 Dlet
JTiT A lloeT + Dl <¢T—+1>

o Y (. 2) ,d( X )
+n§ T1D [Vn[IOg(T+1)]¢o s

T
N
+ 3 Alog(T + Vgt (L)] , @.11)
=0 VT +1

Mapp(X» yv Zv T) =

and

, ! X
urem (X, y,2,T) = :p/ol()_)'_?wf) <\/T T log(T + 1))

Y (y, Z) s X
Z T+ 1) v ,1<m,log(T+l)>. (2.12)
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The behavior of u,pp, as stated in Theorem 1(i), will be determined in Section 3, and
the behavior of i, as stated in Theorem 1(ii), will be determined in Section 4.

Remark 2.5. Equation (2.11) provides a way to compute higher order asymptotics
of the solution. The leading order term, which appears in Theorem 1(i), corresponds
only to the g term in (2.11). The functions «;, for j = 1, ... N, as well as {y;}
and {B}'}, determine the higher order asymptotics. Indeed, one of the advantages of
the center-manifold approach is that, in principle, we can compute the asymptotic
behavior of the solution to any order. More precisely, in [5] it is proven that for
any fixed inverse power of ¢, one can compute the behavior of the solution up
to corrections of that order in ¢, solely in terms of the behavior of the solution
restricted to the center manifold, which is given by the functions {«;}, {y»}, and
{ ﬂ,’: }. Furthermore, because the formula for the center manifold, given in the proof
of Proposition 3.3, is explicit, these functions could in principle also be computed
explicitly.

3. Taylor Dispersion for the Approximate Solution via a Center Manfold

The main goal of this section is to prove Theorem 1(i). This will essentially
be done via Proposition 3.3, and it will be explained in Section 3.2 how its proof
follows from that Proposition.

3.1. Asymptotic Behavior of the Low Modes via a Center-Stable Manifold

Consider system (2.10). To construct its center manifold, we start by performing
some changes of variables. Recall from the formal analysis that, in long time limit,
we expect u,w, + Ax,0swo = 0. In system (2.10), this results from the term
e" (un ,B,i‘ + Ax,or). Therefore, we will diagonalize the system so that, in terms
of new variables (ax, b}), the set {i1,B; + Axnox} = 0 corresponds to the set
{b; = 0}. We define

A
ac=ap, bl =pr+ Ky 3.1)
n
and obtain
ao=0
l o
a1 = —5a1 = Aer Y gmym(0)e D
m=1
k [e¢)
ao=—sa—AY xmbi's 25k <N

m=1

o0
by = —€"tnbfy — " Ay Yumym(0)e "D

m=1



MARGARET BECK, OSMAN CHAUDHARY & EUGENE WAYNE

. 1 . A
by =~ (5 +e’un) by —eZA Y um [bg" - MX'" ao]

m=1 mn

— Diaya(O)eZ e "D

A2 >
— Xn e2 Z Xm Vm (O)e_lim(er_l)
[
. k Ax A
by = — <— +e’un> by — Dia ( k-2~ nak—2> ==Y mb
2 Mn Hn m=1
ad A
— Mm

where n > 1.

Remark 3.1. The equation for BZ follows from the fact that

Ax AZX >
— Dy <_n05k2 + ,3;?_2> - =" by
Mn L —

Axn AzXn
= —Dd< no, - ak_2> - E Kmb].
t k—2 i " = m<g—2

This system is non-autonomous, which makes it difficult to construct a center
manifold. To overcome this, we first undo the change of variables in time using
7 =log(l 4+ T') and define o = (1 + T)-1/2, Denoting d/dT = (-)’, we obtain

/
ay =0

1 > _
aj = —Eazal — Ao Z Xom Vi (0)e~Hn T

m=1

k o0
2
o (—zak—AE me}("2> 2<k<N

m=1

!’
ag

00
bg, _,unbg —A Z Xnm¥Ym (O)e_MmT

m=1

1 > A
by = — (702 + Hn) Bl — A0 Y Xum (bf)” Lo ao)
2 — Hm
_ A2 -
— Doy (0)e T _ o 22 AN Z XmVm (0)e wmT
n m=1
k A A? ad
b,'(” = — (502 + ;L,,) by — D,q02 (bZ—z - iak72> LA Z Xmbis
Mn Mn el
_(;Azxn,m (b,’f_l— ’”ak_l) 2<k<N
— Mm
m=1
S § (3.2)



Rigorous Justification of Taylor Dispersion

where n > 1. Note that, except for the terms involving y;, (0), which are decaying
exponentially fast in 7', this system is autonomous (but nonlinear), due to our
definition of o.

It is now convenient to define more compact notation. To that end, we write

b= bbb ), X=X X3 ¥ =112, V5 ),

where x is a constant, y = y(T) with y,(T) = y, (0)e T 'and by = by(T), and
n > 1. We also define operators on 02 via

()E *Y), = ZXn,mYma (YY), = uny.

m

Throughout the estimates to come we will use the following Lemma, which says
that ¥ and 7 ~! are bounded operators:

Lemma 3.2. The operators % and Y " are bounded operators on 2.

Proof. The bound on T"~! follows immediately by noting that ||[Y"~!Y ||%2 =

>y HYal? < Mf2||Y||%2 since i, > 1 for all n > 1. The boundedness
of x follows by noting that

R V0w =Y (Wns X¥m)Ym = (Y, x V).

m

where Y(y, z) =Y, Ym¥m(z, 2). Thus, (X *Y), is the generalized Fourier coef-
ficient of the function x ) and hence, by Parseval’s equality,

DA # V= 1V N7 < Ixlzw V72 = IxllZelY 2, (33)
n

where the last step in this expression again used Parseval’s equality. O

Intuitively, there are no linear terms in (3.2) in the equations for {ay } ,1:’:0 (except
for the term —Ao (X, y), which is decaying exponentially fast) or in the equation
for o. The equations for {bk},ivzo each contain a linear term of the form —7 by,
where (Yby, by) = u1llbr||?, with u1 > 0. Hence, these variables should decay
exponentially quickly, and there is a spectral gap determined by ;. Therefore,
there should exist an invariant center-stable manifold of dimension N + 2 of the
form M = {by = hi(ag,ay,...,an,0) : k =0,1,... N}. To see this, we note
that y’ = — Ty and add this equation to (3.2) to obtain the autonomous system

/
ClO:O

/ 1, .
ay = _EG ar — Ao (X, ¥)p

k
a, = —§o2ak —Ac*(X.by2)pp 2<k<N
by=—"Tby— Ax xy

1
b = — (502 + T) by — Ao § * [bo _ Aao(r”;z)]
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— Doy —a A* (X, y)(X~'0)
k v
b, = — <§02 + T) by — oA} * [bk—l - Aak—l(TilX)]

— 02Dy [bk—z — Aak—z(Tfl)V()]
—? AN b)Y 2<k <N

U/ — _103
2
Y = —Ty. (3.4)

The linear part of this system (although no longer diagonal, due to the term
—AY * y in the by equation) now makes the spectral separation clear. One could
abstractly justify the existence of a center manifold of the form (by, ...by, y) =
H (ay, ..., an, o). However, it turns out that we can compute the function H explic-
itly, and it has a rather simple form. Moreover, we can show directly that the center
manifold is globally attracting. These results are collected in the following propo-
sition:

Proposition 3.3. Foreach1 < k < N, there exist functions hy = hi(ao, ..., ar—1,0)
of the form

k
hi(ag, ar, ..., a-1,0) = Y Ci_yar—0’, (3.3)
=1

where the C ,l{‘_ ¢ are elements of 02 for each k and £, can be computed explicitly,
are independent of v, and such that (3.4) has an invariant center-stable manifold
given by
My ={(bo,...,bn,y) = (0, hi(ag,0), ..., hn(ao, ...,an—1,0),0)}.
(3.6)
Moreover, there exist constants C,n > 0 that are independent of v and such that
all solutions to (3.4) satisfy
(o, ..., by, y)(T)
—(0.hi(ao. o), ... hn(ap. ... .aN-1.0), 0)[[2yv+2 < Ce™ ", (3.7)

where (ag, ...,an—1) and o are solutions of

ay =0
1

ay = —zazal

/ k 2.

a = —50a - Ao (X, hx—2(ag, ..., ax-3,0))p2 2=k <N
1

o' =—=o3
2

Moreover, for all k > 1,

lag ()] < Ce™™, 1 =log(1+T). (3.8)
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Remark 3.4. More precise statements of the convergence to the center manifold
and decay within the center manifold are given in Lemmas 3.5 and 3.6, respectively.
Note that the exponential in 7' convergence to the center manifold is equivalent to
super-exponential in 7 convergence, e "7 = ¢~ while the exponential in
T decay on the center manifold, implied by (3.8), is equivalent to algebraic in T
decay, e™"" = (14 T)~". Furthermore, the v- independence of the constants C,f_ ‘
follows from the change of variable (1.2).

Proof. The Proof will be divided into three steps: (1) Justifying (3.5), the explicit
formula for the center manifold; (2) Proving global convergence to the center man-
ifold and justifying (3.7); and (3) Justifying equation (3.8), the decay rate within
the center manifold.

Step 1: Explicit formula for the center manifold To justify (3.5), we will ulti-
mately use induction, but we compute the first few terms directly since the equations
in (3.4) are different for k = 0, 1. First, notice that the set (bg, ) = (0, 0) is invari-
ant for (3.4). Next, we look for a function of the form

hi(ag, o) = Céaoa, Cé € Ez,

so that the set (bg, b1, ¥) = (0, hi(ag, o), 0) is invariant. Computing (b, b1, y)’
in two different ways and equating the results, we find that we need

cl (o

Thus, we can take
Co=AT""5x(r 1y,
Next, we look for a function of the form
hy(ag. a1, 0) = Ciajo + Cjago”,

so that the set (bg, b1, b2, y) = (0, hi(ag, o), ha(ag, a1, o), 0) is invariant. As
above, we find that

Cl=AT""7x(r'%. C§=DwATr 2% — AT [7 %G * T3]
We now assume that (3.5) holds for 0 < k£ < n and prove that this implies that it is
true for k = n + 1 with n > 2. First, we compute

n+1

n l
by = ar ch+1 —¢An+1-t0

n+1 1
42 +1 +2 2 +1 -1
—Z(——) +1 (Ant1-¢0 —EC? ajo"" — o Cy " axo”
=1

n—2
n+1-20)
— Z Tcn-’_l ZU€+2dn+1_e

=1
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n—2 n—€—1
n+1 2 [y n—€—1 J .
_AZCrrH EU X Z Cnfeflfja An—t—1-j
=1 j=1
n+1
(n + 1) I
= chil -0 2anr1-0

n—
+1
_AZCZJA ea <

Using (3.4) and evaluating at by = hy, by = y = 0, we also have

-1
Yoo jafan_g_l_j>. 3.9)

Jj=1

n+1) it n
= |: > 0%+ T:| Yol w0t — Agx Y Cryan— oot
=1 =1

n—1

—Du Y ChTl_yan-1-0 o Aay ik (X7X)
=1

+ DigAc?an_1 (Y1 3)

n—1

_Az(TIX)<XvZCn 1—¢G9n—1 [a€+2> (3.10)

=1

‘We now equate the expressions on the right hand sides of equations (3.9) and (3.10)
to obtain

n—£—1
n+1 M n—€—1 j .
_AZCn-H z“ <X’ Z Coi1-jo an—l—1—1>
j=1
n+l1 n
4 ~ l+1
_TZCnH (Oni1-00° — AX *ZC,’:%an,gU +
=1

n—1

n—1 e+2
Dyq Z Cl™|_jan—1-¢0""
=1

+0 A%, + (T %) + DaAc’a, 1 (T 50)
n—1
—A2(r~'p) <)?, Z CZ:ll_Zan_l_m”2> .
(=1
First, consider the resulting terms involving a,. We need

0= —TC,’Z‘Ha,,a +oA%a, 5 x (Y~
= = A2 g (r ).
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The terms involving a,_1 imply
0=-7C" —Aj * c;; L+ D AT )
= C" =Dy AT 2% — AT NGk C1)).
The terms involving a,_» imply
0= —-TC") — A% %C!'_, — D;aC'") — AT (%, C'75)
=t =t [—A)Z £ C"_) — Dy C'=) — AT %) (K. c;;:21>] .

Finally, for 3 < k < n, the terms involving a,,_; imply

_AZC';LI (X ) =-rCl - Ag Gy

— Dzdcn_k — A2 'L e,

which gives
crtl=r-! [AZCZI} (X h—AxxCr

— Dy C = A2 0, c,’;‘;)] .

All of the coefficients appearing in the sums on the RHS of this expression have
been computed at previous stages of the iteration and hence we obtain C Zf,l in the
form asserted in the Proposition.

Step 2: Proving global convergence to the center manifold and justifying (3.7):
We’ll show that the exact invariant manifolds previously constructed are globally
attracting. First, note that we can solve (3.4) explicitly to find

Yu(T) = yu(0)e T
= Iy (Mg < e Ty 0)lle, (3.11)

T
bo(T) = e T Thy(0) —/ e TT=9 A% % y(s)ds
0

= [1bo(T)ll2 < CUBOO Iz, Iy Ol 2) (1 + Tre 1T, (3.12)

and
1
0(T) = —— = |o(T)| < 1. 3.13
() NS lo(T)] < (3.13)
Next, define
By = by — hi(ao, ..., ak-1,0), k=>1, (3.14)

where hy is defined in (3.5).



MARGARET BECK, OSMAN CHAUDHARY & EUGENE WAYNE

Lemma 3.5. There exists a C > 0, independent of v, such that for all t > 0,
IBI(T) 2 < C(L+T)2e T
1B«(D)ll2 < C(L+T) T2 T 2 <k <N.

Proof. For k = 1, we can compute B| and solve the resulting equation explicitly
to find

B] (T) — E_TT_% 10g(T+1)B] (0)

T
1 A D
_ / e—T(T—s)—j(log(T-i-l)—log(s—i-l)) |: X * b()(S) + td
0

V1 +s «/1+SV(S)

2
T, y(s))] ds.

A
+
VJ1+s

As a result,
IBI(T) ;2 < CUIB1O) g2, 10Ol 2, 1y O) | 2) (1 + T)*2e™ T (3.15)

Next, for £k > 2, we have
/ K, 5
B, =— ?G +7 ) By —0A) % Br—1
— 02Dy Bis — 02 A% (%, Bio) (Y1 3),

and so, assuming the result is true for k — 1,

IBk(T)ll 2 < e ™7 | Bi(0) |l 2
— C(| Bk=10) 2, | Bk=2(0) || 2, I (0) ]I p2) %

T 1+k;1 1+ﬁ
/ e—m[ 11 (9" 1 (49 }ds’
0

+s 1 (145) 1

which implies the result. O

Step 3: Justifying equation (3.8), the decay rate within the center manifold
The goal of this section is to compute the decay rates of the a; by considering
the system (3.2) reduced to its center manifold, which is given by

ay=0
1
/ 2
ay=—=o0"ay
2
k
a, = —Edzak — Ao? (X%, hx—2(ap, ..., ax-3,0))p2 2<k<N
1
U/ — __03
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Converting back to T = log(1 + T'), this becomes

ap=0

) 1

a) = —=a

1 o

. k y _z

U = =50k — A(x, hg—2(ao, ..., ak-3,¢"2))p2 2 <k <N.
Using the fact that #p = 0, we see immediately that

ap(1) = ap(0), a1(v) = ar@e 2", ar(r) = ar(0)e ™. (3.16)

Lemma 3.6. There existsa C > 0, independent of v, suchthatifwe writek = 3j+n
with j e NU {0} and n € {0, 1, 2} then, for all T > 0,

7(,i+n)_[
lak(t)| < Ce” 2%, 0<k<N.

Proof. Using the bound for /1 in (3.5), we find that

t o
la3(0)] < e a3 (0)] + C/ e 1 9 ag(s)|e 3 ds,
0
which implies
las(1)] < Ce™ 7.
A similar calculation shows that
las(t)] < Ce™, las(t)] < Ce™ 7.

Consider now general k, and assume the result holds for a,, with m < k — 1. Using
(3.5), we have

T k—2
lag(T)| < |61k(0)|6’_gr +f e 59 <Z Cak—z—ze_gf> ds.
0 =1
Notice that
k=2 ) 1
Zak*%f‘f_js = ag_ze 2° + ag_ge”’
=1

_3 —<k—3)s _ (k—2)s
+ak—56 2 +...+ale 2 —|—aoe 2 .

Thus, if k = 3j + n, we find that
k—2 ) ) _
_t s _U+n) s _ (+n+2) 5 _ Bj+n-2) s
Zakfzfee 2P ~e 2 " +e 7 S4...4e 2 8,
(=1

Thus, we find that

(0] U+n

+n) _
7 Sds < Ce™ "2 T,

T
lax ()| = |ak(0)|e7%f _|_/ e*%(rfs)cef
0

as claimed. O

This concludes the proof of Proposition 3.3. O



MARGARET BECK, OSMAN CHAUDHARY & EUGENE WAYNE

3.2. Proof of Theorem (i)

We now show how Theorem 1(i) follows from Proposition 3.3. Recall the def-
inition of u,pp in (2.11). The dynamics of u,p, are governed by the behavior of
{ak},?’:o and {B} },’CV:O, where n = 1, 2, .... Their dynamics are governed by (2.10),
which is a system of ODEs on RN x (EZ(R))N . Proposition 3.3 shows that, after
converting to the variables ay, by, this system has a finite-dimensional globally
attracting center manifold given by (3.6), and the rate of convergence to that center
manifold is exponential in 7', as given in (3.7). Finally, recalling that o = ay,
B¢ = b} — (Axn/mn)ak, and that the only term among ay, b} that is not decaying
in time is agp, one obtains the leading behavior of (2.11). This justifies the statements
in 1(3i).

4. Decay of the Remainder via Spectral Decomposition and Hypocoercivity

The goal of this section is to prove Theorem 1(ii), which states that the remainder
terms decay rapidly. To that end, insert the expansion (2.9) into (2.7) and (2.8) and
project off the first N + 1 eigenfunctions to obtain

Brw(s) = Etdw(s) — Dy |:O(N_1(,05\?+1 +05N(p5\‘]1+2 =+ 8§w6]
00
—A Z Xm [ﬂ%,]wf\ﬁl + BN PN T aszv};]
m=1
s s n td n td 2.5
81:Un = »Ctdvn - Dtd [,BN_1¢N+1 + ﬁN(pN+2 + 8%- Un]

o
—€TAY Yum [ﬂ%%ﬁl + 3&%]
m=1
—e'[unvy + Axmwpl. 4.1)
The operator L;4, acting on wy) and v;, decays like e In addition, the forcing
terms in the above equation decay like ay, Bx with k > N — 1, which, due to
Lemmas 3.5 and 3.6, decay like e~ UtMT/2 < o=kT/0 for | — 3j + n. Therefore,
we expect wy and v), to decay with the same rate as the forcing terms.
To prove this, we will not work with the above system in the (£, t) variables,
but we will instead work in the Fourier space associated with the original (X, T')
variables. Using the fact that

X
up(X,T) = N lwg (JT = 1,log(T + 1)> ,
s _ 1 s X
W (X, T) = T 1)351),1 <m,log(T+ 1)), 4.2)
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we find that

o0
druy = v28§u8 —A Z XmOx Uy,
m=1

T+ [O‘N 1dog(7 + D)l JT+1
X

+ay log(T + )i, (

[u—y

771
A I I X
— T T)3/2 Z Xm I:,BN 1( og(T + ))¢N+1 <\/T—+1>

+ By (dog(T + 1))(PN+2 (

X
1))
8Tu = v28xu —A Z Xn,m9 Mnu + AXnaXu()]

__Du X
(1+7)? |::3N 1 (log(T + 1))¢N+2 (ﬁ)

X
+ By (log(T + 1))€0N+3 (JT:—H>:|
A loa(T + 1 X
- (1+T)3/2 ZX}’L mﬂN(Og( + ))¢N+2<m)

We now take the Fourier transform with respect to x, with the convention

ﬁ(K):/e_inu(x)dx.
R

Using the notation

. (@, T) ) . e 3 =
U(Kv T) - <{ﬁz(’(’ T)};OZI ’ X - {Xﬂ}n:]? (X *f)n —mzzl)(n,mfm7
4.3)
we find that
d
ﬁU B(K)U + F(/c T), 4.4)
where

22 (10 . 0 x- 00) . »
Bk) = —vk (0 1>+1KA ()Z X*)_<0 T) =By + By + By (4.5)

and

Fe,T) = (1?1("’ T)>, (4.6)
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with
- Dya®f (k. T) weo
Fite ) =~ [ M+ 1 i
+ay (M1 + 1) F (i) +2]
AD (k, T)
—WZM [ DA+ 1) (i)™
+ B+ 1) F (V2]
R Dia®i e, T) [, N2
Faloe, ) = =0 [+ 1) i+
+ BT+ 1) (=i
A® (k, T)

W ZXnm,BN(T)(1+T) f—ioN2 @)

Note that we have written o j (log(T + 1)) = o ;(T) and 7 (log(T + 1)) = B} (T)
for convenience, and a direct calculation shows that

B (k, T) = /T + e "’ T+D),

The plan is to analyze the behavior of (4.4) using Duhamel’s formula
T
U, T) = eBOT0 (1e, 0) + f BOT=F (i, 5)ds, (4.8)
0

and show that solutions decay like T~V (), where A/ can be made large by choosing
N large. The precise relationship between A/ and N is given in the statement of
Proposition 4.2. We will obtain this decay in the norm

10¢, DI* = f 10 (e, T) |} dic = / |68 (i, T)*dwc
R R
+ /R {5 (e, TH}Z dic. (4.9)

Remark 4.1. Recall that we expect decay of the remainder terms wy), v;, in L?(m),
and the relationship between these variables and u, u,, is given in (4.2). Suppose
that two functions g and f are related via

g¢.=0+D"fX.T), &= t =log(1 +T).

X
JI+T’
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Then we have

lg @32,y = / (1 489" 18, DI*dg

=1+ 12 /[1 + X2+ D)7 ' fX, T)PdX

~(1+ )72y 1+ T)_j/IXff(X, T)[2dX
j=0

= (L+ D723 A+ D)9 F (D)1
J=0

The discussion at the beginning of this section suggests we can expect wg (&, )
and v} (€, 7) to decay like

lw§ O L20m) + VSO le2 20y ~ €77,

where 1(N) grows with N. Therefore, one could estimate solutions to (4.8) in terms
of the norm

T = A+ )Y (1 +T) 7 19]do(T) ]
j=0

+ A+ TP A+ T) 10, e {an (T2 N72. (4.10)
j=0

Although this is possible [5], the calculations are cuambersome. Therefore, we have
chosen to carry out the estimates in terms of the much simpler norm (4.9), which
also seems quite natural.

The goal of this section will be to prove the following result:

Proposition 4.2. For any N € N and l}(/c, 0) such that ||8,fl7(-, 0)|| < oo forall
0<?¢<N+1and and S,fU(O, 0) =0forall0 < ¢ < N, the corresponding
solution of (4.8) satisfies

N_ L
6 12

1OC T <CA+T)~

forall T > 0, where C is a constant that is independent of v but depends on U 0)
and its derivatives.

Remark 4.3. The assumption that a,f(} (0,0) =0forall0 < ¢ < N holds for

initial data associated with U (x, ©) defined in (4.3), due to equations (4.2) and
(2.9) and the discussion following (1.15). See also Lemma 4.21.
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Remark 4.4. Note that the result claimed in Theorem 1(ii) follows from the above
proposition. To see this, recall that urem, is defined in (2.12). Using equations (4.2),
(4.9), and Plancherel’s Theorem , we have

litrem (T2 < Cy [l (DI + 11 THIE 12
= Cy [T + I T IZ 2 ]
— CylUMIP <CcU+T)"375,

where Cy, is a constant that depends on the L? norms of the cross-sectional eigen-
functions v, . Note that the requirement that || 8f U (-, 0)] < coforall0 < ¢ < N+1
in the above proposition holds as long as the initial data for (1.1) lies in the alge-
braically weighted function space: u(-, 0) € L2(N + 1) x L2(£2). This is because
3¢ f € L*if and only if X' f € L?, which means f € L*(£).

We now state a brief result on the decay of the forcing terms in (4.8).

Lemma 4.5. There exists a constant C > 0, independent of v, such that, for all
T>0kelR

1Py, T)| < C(L+4 T)' T 200 e N1 gmva®ED[] 4pey(1 4 7172
| F2l, Tl = €14 T) 7 72U N2t (1) o

(14 |c|(1+ )2 + 1+ T)V2,
where n, j are defined so that N — 1 =3j +n, withn € {0, 1, 2}.

Proof. This is a direct consequence of the definition of Fin (4.7), of Lemmas 3.5—
3.6,and of (3.1). O

In order to combine Lemma 4.5 with equation (4.8) and prove a decay result
for the remainder terms, we will need good control of the semigroup generated by
B(x). To obtain this, we will first obtain estimates on the spectrum of B(x). We
will then use these spectral estimates to obtain decay estimates on the semigroup
for three different regions: (1) small wavenumber 0 < |x| < k¢; (2) intermediate
wavenumber ko < || < k| v~ and (3) large wavenumber k| -l < |k |, where kg
and « are positive constants that are independent of v.

4.1. Spectral Decomposition

First, we state a lemma on the spectrum of By 1 2.
Lemma 4.6. On the space Y = C x £>(C), the following hold:

(i) The operator By has only point spectrum, and it is given by o (By) = {0} U

{—1n }311 y
(i) The operators By and B, are bounded.



Rigorous Justification of Taylor Dispersion

Proof. (i) This follows from the fact that B is diagonal and the only accumulation
point of its entries is co.

(i1) This is trivially true for B, because it is a scalar multiple of the identity, and for
B it follows from the fact that {1/, };° , forms an orthonormal basis for L2(£2)
and Parseval’s identity.

0

Next, we analyze the spectrum of B(«x) for any fixed x € R.
Lemma 4.7. Fix any k € R. The spectrum of B(k) consists only of point spectrum.

Proof. We will show that, for fixed «, B(x) = By + « (B + «37) is a relatively
compact perturbation of 5y. The result will then follow from Weyl’s theorem [10,
XIII.4, Corollary 2]. We must show that

K (By + «kB)(By + i)~

is a compact operator on C x £?(C). By Parseval’s identity, this is equivalent to
showing that

k(Ax (v, 2) —v2k)(A+ i)~

is a compact operator on L%(£2). We let {i,(y,2)} C L2(£2) be a bounded
sequence: ||it, (v, 2)lz2(@) < C forall n € N. Then, since i is in the resolvent set
of Aand (A+i)~": L?2(2) — H'(£2) is bounded, it follows that {(A +i)~'4,)
is a bounded sequence in H 1(£2). Therefore

k(AX(y, 2) — V(A + i) i)

is also a bounded sequence in H 1(£2). Since H 1(.(2) is compactly embed-
ded in L%(£2), this sequence has an L%(2) convergent subsequence. Therefore
k(iAx (v, 2) — v2k)(A + i)' is compact. O

4.1.1. Low Wavenumber Estimates Using the Leading Eigenvalue We next
prove a result on the spectrum of B(k) for |«| sufficiently small. In particular, we
show in this case that the eigenvalues of B(x) split into two parts: an eigenvalue
Ao (x) near 0, and eigenvalues (k) satisfying Re(A(x)) < —p1/2. Therefore, we
expect Ag(x) to dominate the long-time behavior, and we will therefore be able to
use it to obtain estimates on the low-wavenumber part of our solution. In addition,
we will show that this leading eigenvalue Ao (k) is approximately —v;4«2, so the
long-time behavior will correspond with Taylor dispersion.

We note that, at various points in the following proofs we will need to fix a
constant kg that is sufficiently small and consider only « such that || < kg. The
value of k will always be independent of v and will only be adjusted a finite number
of times.

Proposition 4.8. There exists a sufficiently small constant i that is independent
of v and such that, if we fix any k € R such that |k| < ko, and let 0 < v < 1, then
we have that
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(i) The (point) spectrum of B(x) can be divided into two disjoint sets, o (B(k)) =
{Ao(k)} U X(k), where |Ao(k) + UK2| < \/Zul/Z and, for any eigenvalue
M) € X(k), we have Re(M(k)) < —u1/2;

(ii) The leading eigenvalue satisfies ho(k) = —viak? + Ag(k), where Ag(k) =
irk3 + O*) is smooth, and independent of v. Here r = r(x, {in 2D eR
is given in equation (4.19).

The main idea behind this Proposition is the following: recall that B(x) =
Bo+« By 4«2 B> If || is small, then B(x) is just a small perturbation of By, which
has spectrum {0} U {—p,}7° , and the separation claimed in (i). Furthermore, we
will see that B; is antisymmetric, hence the real part of the spectrum of B(k) is
actually an O(k?) perturbation of that of By. The v-dependence of the spectrum
stated in the proposition can be obtained from the following decomposition: recall
that B, = —v?1. Letting C(x) = Bg + « Bj, we have that B(k) = C(k) — v>«k>I;
that is, the operators B(x) and C(«) differ by a scalar multiple of the identity, and,
since C (k) is independent of v, all of the v-dependence of B(k) is contained in this

scalar. Therefore we immediately have the following lemma:

Lemma 4.9. Fix any k € R, let v > 0, and let B(k) and C (k) be defined as above.
The following are true:

(i) The semigroups of B(x) and C(k) are related by BT = e‘”z"zTeC(")T;
(ii) The eigenvalues M(k) of B(k) and I' («) of C(x) are in one-to-one correspon-
dence with one another via M(k) = I" (k) — v>k2, and corresponding eigenval-

ues have the same projection operators P (k).

Remark 4.10. Since the operator C(k) is independent of v, the above lemma tells
us exactly what the v-dependence is in the semigroup eBET and it tells us exactly
what the v-dependence is in the eigenvalues A(x) in terms of the (v-independent)
eigenvalues I” () of C(x). Furthermore, since the projections P (k) of correspond-
ing eigenvalues are the same, and C(x) is independent of v, these projections can
be taken to be independent of v. This relationship between the v-dependence and
the structure of the system is a direct consequence of the change of variables (1.2).

Note that, because B(k) generates an analytic semigroup, the following Corol-
lary follows immediately from Proposition 4.8(i):

Corollary 4.11. There exists a sufficiently small constant k that is independent of
v and such that the following holds. Fix any k € R such that |k| < ko, and let
0 < v < 1. Let Qo(k) be the projection complementary to the eigenspace of the
eigenvalue Ao(k) of B(k). Then, for all W € C x £>(C) =Y and T > 0, we have

_m
15T Qo) Wly < Ce™ 2T Wiy
for some constant C > O which is independent of v.
Before proving Proposition 4.8, we will need to prove the following Lemma:

Lemma 4.12. There exists a sufficiently small constant k that is independent of v
and such that the following holds: let (k) be an eigenvalue of B(k), then
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(i) Re(A(x)) < —v?k?%;
(ii) If || < ko, then |ImA(k)| < u1/2.

Proof. This lemma follows by splitting B(«) into its real and imaginary parts.
Recall from (4.5) that B(x) = By + kB + k>, with

_ (0 0 (0 X _ 210
BQ—(O —T)’ BI—A1<X X*), By =—v (0 1>.

Note that By and BB, are diagonal, and hence that
S(k) := By +k*B,
is symmetric. Also note that
Al) == «kB;

is anti-symmetric, which follows from a straightforward computation using Par-
seval’s identity. Let V. = {V,};2, € C x 2(C) and let v(y,2) = Vo +
Zzozl Vo (v, 2). Then

(B] V’ V>(C><ZZ((C) = (AlX(y7 Z)v(yv Z)a U(y, Z))LZ(Q)
—(v(y, 2), Aix (y, Dv(y, Z))LZ(Q)
= —<V, B] V)foz((C)-

Using this splitting into symmetric and antisymmetric parts, if A (k) is an eigen-
value of B(k) with eigenvector V (x) normalized so that ||V (x)||ly = 1, one can
immediately write (see [7], p. 124, for example)

Re(A(k)) = (V (i), SK)V(K))cxerc)- 4.11)

Since S(k) is symmetric and V («) is normalized, the variational characterization
of the eigenvalues of symmetric operators insures that this inner product is bounded
by the right-most point in the spectrum S(x) which —v?«?. This proves the first
part of Lemma 4.12.

For the second part of this lemma, we use an argument similar to that used in
the proof of the first part to control the imaginary part of A(x). Writing A(k) =
(VKk), Blx)V(K))cx 2(C) and splitting B into its symmetric and anti-symmetric
parts yields an expression for Im(A(k)):

1
Im(30)) = = fg vk, v, DTAR (Y, Do(e, 7, Ddydz,

where v(«, y, z) is the unit eigenvector for A(k), and we have used Parseval’s
identity. Continuing, we get

Im(A(k)) = im;/ vk, ¥, D) x (v, 2)v(k, ¥, 2)dydz,
area($2) Jo

so that
"1
[ImA(k)| < [k[AllxliLe < >
aslongas kg < w1 /Al x|l Logo). This completes the proof of the Lemma. O
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We now prove Proposition 4.8

Proof. First, we prove item (i). To establish this separation for 3(x), we note first
that it suffices to establish it for C (k) since k2B (k) simply shifts the entire spectrum
by an amount «2. Let I, be the boundary of the rectangle {z = x + iy : |x|, |y| <
w1/2}. The Iy separates the spectrum of By, and for z € I, we have

2
1By — 2~ < =,
M1

since By is diagonal and /2 is the distance from Iy to o (Bp) [8, Chapter V,
Section 3.5, (3.16)].

Next note that the norm of « By, considered as an operator on C x £2(C),
can be bounded with the aid of Parseval’s identity. Let V € C x £2(C) and set
v(y. 2.6) = Vo) + 35521 Va()¥u(y. 2)- Then

IKBIV ¢y = kP (Aixv, Aixo) < kP A x 1700 01172y 4412)
= [k PA 1 x 170y IV I 2 -

Thus, if ko < p1/QAllxIL2), lkBill < wi/2.
This in turn implies that for any z € I,

1CU) =27 = 1(Bo +«By —2)7 '
= A +kBo—2)'B) "By -2 (4.13)

By the estimate of the norm of B; and the assumption that |«| < «g, we see that
lc(Bo =)' Bull < 1, (4.14)

so that (1 + xk(By — z)~!'B;)~! is bounded and hence that I, is contained in
the resolvent set of C(k) for all |k| < kg. Since the eigenvalues of C(x) vary
continuously with «, this means that there is one eigenvalue, I (k), of C(x) inside
I for all |x| < ko, and hence that [ IH(x)| < ﬁul/Z. As we observed above, the
corresponding eigenvalue of B(k) is Ag(k) = Ip(k) — vi2, and hence the first part
of point (i) in the Proposition follows.

Now suppose that I" (k) is an eigenvalue not contained in I (and hence, by the
relationship between the spectra of B(k) and C(x) it corresponds to an eigenvalue
M(k) € X(k)). Then either

(@) Re(I'(k)) < —p1/2, or
() —p1/2 =Re(I'(«)) =0, and | Im(I"(k))| > p1/2,

because Lemma 4.12 implies that none of the eigenvalues of C(x) can have positive
real part. If case (b) held, then there would be a corresponding eigenvalue A (x) of
B(k) with [Im(M(k))| > 1t1/2, and this would violate Lemma 4.12 (ii). Hence case
(a) applies and this in turn implies the bound in Proposition 4.8 (i).

Next, we prove item (ii) in Proposition 4.8. Note that, because 1 (k) is a pertur-
bation of the simple eigenvalue 0 of 3y, both L (k) and its spectral projection Py (k)
perturb smoothly in « [8]. However, due to Lemma 4.9, we can instead estimate
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the leading (v-independent) eigenvalue I (k) of C(k), which is still a perturbation
of the simple eigenvalue 0 of By. We expand this eigenvalue

To(k) = Ty + Nk + Dok + OD) (4.15)
and its corresponding eigenvector

V) = Vo + Vik + Var? + Oc?), (4.16)

8 iok)) o i)
o= (G): V’:(g(-)’)

Now the eigenvalue problem reads as

where

Cu)V (k) = T'k)V (k). (4.17)
Plugging (4.15) and (4.16) into (4.17), we find that

60‘70=O~‘7(), = I =0, ‘A/()= (é)
Next, we find that
BiVo+ BoVy = Vo
BV + BoVa = DoVo + IV, (4.18)
B1‘>2+B()‘73=F3‘70+F2‘71+F1‘72,

and so on. Solving the first equation, we find that

~ c
=0, Vl:(iATll)v(>’

where the scalar constant ¢ is undetermined but can be fixed by normalizing the
eigenvectors. At O(x?), we similarly find that

—_— Y = C2
In==Dy, V2= (iAqu)E — A2 5« (TU?)]) '

Finally, at O(k3), the first component in the equation implies
Iy = c1(Diag) +iA% - [iAci Y™ = A2 (r ')
= —iA% - X+ (7))
In particular, I3 is purely imaginary, and therefore
Ty(k) = —Dygk* +ire® + Ok,
where

=A% X 0L (4.19)
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Finally, using Lemma 4.9, we have

r0(K) = — (V2 + Dra)c* + Ag(k)
= —vaK? + Ag(k),

where Ag(k) = irk> + O(k*) is independent of v. This completes the proof of
item (ii), and of Proposition 4.8. O

4.1.2. High Wavenumber Estimates Using Standard Diffusive Estimates
Next, we consider the behavior of the spectrum of B(x) for large |«|.

K1

Corollary 4.13. Given any fixed constant k1, for all || > =+ we have

2
1POTW |y < Ce ™ T |W]y.

Proof. This follows immediately from Lemma 4.12, using the fact that B(x) gen-
erates an analytic semigroup. O

4.1.3. Intermediate Wavenumber Estimates via Hypocoercivity In this sub-
section, we prove the following Lemma:

Proposition 4.14. There exists a constant ko sufficiently small and independent of
v so that the following holds: there exist positive constants k1 and § € (0, }1) such
that for all ’% > k| = ko(1 —8) and T > 0, we have

T —MT
15OTW Yy < CeMT Wy,
where M and C are positive constants that are independent of v and k.

Remark 4.15. This result does not appear to be obvious. A naive estimate, such as
that in the proof of Corollary 4.13, would only give

2 2
[BOTW |y < Ce U= 1y

For large times 7 = 1, this does not actually produce decay: eV k0 (1=9PT

e~V ®0(1=9)? | Therefore, we really do need the stronger result given in Propo-
sition 4.14 to conclude that small wavenumbers |k | < kg really do give the leading
order behavior of solutions.

Proof. Leté € (0, }‘) and fixx € [kg(1—=36), k1 /v], withany fixed k1 > vig(1—6).
We will study the decay of solutions to

d . N

—U =B«)U,

dr

with U and B(k) defined in (4.3) and (4.5) using Villani’s theory of hypocoercivity
[15]. Writing this equation in components and writing iy = u and i}, = v,, with
m =1, 2, ... for notational convenience, we have
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o0
oru = —v2ictu + Aix Z XmVUm

m=1

o0
Orvm = —(W k> + )V + Aik Xt + Ak Y Xm0
j=1

Motivated by [15], we consider the functional
®[(u, V)I(T) = Gouit + Y GnVmdm + 2Re (iu Zamﬁm) :
m m

with &, ¢, and g, to be defined below. We will show that d < —M® for some
constant M that is independent of v and «, as long as k1/v > |k| > ko(1 — §).
We will also chose ¢o, ¢, and o5, so that there exist constants ¢ 2 independent
of v and « so that c||(u, v)||%, < @(u,v) < c2||(u, v)||f,. This will imply that

[(u, v)(D)]ly < «/cz/cle_%MT. Undoing the scalings will then imply the decay
claimed in the Proposition.
We compute

& = =200k ul> — 2AkoRe <iu > x,,,ﬁ,,,)

m

-2 Z é‘m(VzK2 + H«m)|vm|2
m
+2AkRe (iu Z Cm Xm Em)
m
o0

+2AkRe [ 1) Gnim Y xm.jv;

m j=1
— 202 Re (iu Z Om Em)

m

—2AkRe [ Y xjv; Y o

j m
—2Re (iu ZU’" (\)2162 + /Lm)ﬁm) + 2AkRe <|u|2 Z am)(m>

m

m

o
+2AxRe | u Zam me,]’ﬁj
m j=1

Next, define

Xms» &m =280 VYm,
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where c is a constant to be determined. Note that this choice of ¢, implies
—2AkZoRe (iu > Xm am) +2AkRe (iu > m Xmam) =0.
m m
Also,
oo
2AkRe [ 1D &nim Y xm.jvj | =0,
m j:]

which results from the fact that the y,,, ; are real and x,,, ; = x;jm. This follows
from the fact that the eigenfunctions v; of the Laplacian on the cross section £2
can be chosen to be real. Therefore, we have

b = 2000 ul® — 250 > 2% + ) vl
m
Re(luZ—xmvm)+cRe Zx]vjz vam
c _
+ —Re | iu Z Xom 2% + L) U
A — Klm

—clul? |X| — cRe MZM me]v]
m =1

< —2§0v2/<2+cvz|§|+ < 2—c|x|i+L2 |u?
AQ7 2A|K|Q2 2Q3

2 2 2
V2| Q3113

+ {—%o(m + %% + 1

CQ%
2A|k]|

2 CQ% 2,12 2
+elxllxle + [x] +T|xlﬂlxlpo [v]”.

= (Iy + T1L) [ul® + (I, + 11,) |v]?,

where we denote |v| = ||v]l,2, Q1,23 are constants that will be chosen later, and
where
2
c c cvik|
L= —clxP 4 s+ =g, 1l = 2502+ ——,
2A|K|Q2 2Q3 Q1
and
2 2
cQ cQ5
I, = =25op + ¢ + =2 X127 + ,
v Somr + clx x| > Ix X1z 2A|K||X|

2 21,12
2 2 cv |K|Q1|X|M

1, = —2¢vk” + "
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Recall that 0 < § < 1/4 and |k| > ko(1 — §). Furthermore, let

1-4 12
¢ < min ad AR - 8), |—’|‘21

|X|2 ’ 2 2|X—|2‘
o e + Iz + a5

We choose ¢y = 1, 07 = 03 = AKollxl,i and Q3 = ﬁ Then

3 Ko C|X|2
Iy, = C|X|,2L (_4_1 + m) <- 12“ = =,

since |k| > ko(1 —6),0 < § < 1/4,and ¢ < 12“1/|X|;2r Next, notice that the
above choices imply that

11, = 2 (—2/(2 + C|X|iK0|K|) < —v2/c2,

(d=9)

where we have used the facts that || > xo(1 — 8) and ¢ < 7
m

. Similarly,

2 2
I = —2p1 + | Illxl + X + —a | < a1,
3A%KyIX 15

Finally,

1, =v? (—2/<2 + AZCKO |K|> < -,
because ¢ < A2K§(1 — 8). Therefore,
& < —(u1 + V) (ul® + o).

Also, we have that

clxly
—< S |>'”' +( +2A|x|)'”'

< M(Ju)* + v,

where M = 1 + A’“’ max{l, |X| "}. As a result,
d<-Mo, (4.20)
where M = 11/ M. If we now additionally require that

Ako(1 — &)
Ix12 '

¢ < min {AK()(I —9),
"

we find that

@>(1—;)| (1o =i Y s Lup g ey,
= 2Ak0(1 —8) ) " 2AK0(1 —9) =ty
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Therefore,
(T2 + (T2 < 20(T) < 2 M7 (0) < 4e T [Ju(0)* + [v(0)]2].

which completes the proof of the Proposition. O

4.2. Splitting of the Semigroup

The goal of this subsection is to establish the decay rates on the semigroup by
splitting it as

eBOT=9) — gonle, T — 5) + Eiowlic, T — 5)
+In(, T —5) + Ry, T — ), @.21)

where the components are defined as follows: both Ejgp 10w Will be exponentially
decaying pieces that correspond to high and low wavenumbers, respectively; the
terms 7y and Ry will both correspond to the leading order eigenvalue Ag(k) =
—vak? + Ag(x) of B(k), defined in Proposition 4.8, with 7y arising from the
Taylor diffusion term —vgk? and Ry arising from the remainder Ag(x).

To precisely define each term in (4.21), first let ¥ (k) be a smooth bump function
that equals 1 for |«| < ko and O for |x| > 2k(, where kg is a fixed small constant
that is independent of v and whose value will be specified below. Furthermore,
let Py(x) be the (v-independent) projection onto the eigenspace for the leading
eigenvalue Ao (x) of B(k), defined in Proposition 4.8, and let Qo(k) = I — Py(k)
be its complement. We can then define

Enigh(k, T —5) = (1 — Y (k)BT =) (4.22)
Elowlic, T — 5) = W (k) Qo k)BT =), (4.23)

We use a Taylor expansion to define the remaining two terms 7y, acting on a
function G (k, s), and Ry as

Tn, T — $)G(ic, 5) = e~ (T=9)
N

I .
> 0 (W Po)e® TG, 5) ) ok
=0
(4.24)
Rvle, T —s) = e "4 T4 ) Py (1) 20T _ Ty (e, T — ).
(4.25)

With this definition, we have

¥ () Po(i)eP T = g (1) Py i) 00T =)
= eV (T=9)y, (16) Po (1) e 20T =5)

TN(K’T_S)+RN(K’T_S)

We now obtain decay estimates on each piece of (4.21).
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4.2.1. Bounds on &, Before providing bounds on &)y, we first state the fol-
lowing lemma:

Lemma 4.16. Recall vig = v* + Dy4, where Dig = A?||x||7,. Let d > 0 and
T > 0. Then

d
||Kde_v'dK2(l+T)||L2(R) <C(l+ T)—j—%’
where the constant C = C(d) is independent of v.

Proof. This follows from a direct calculation; the v-independence of the constant
C follows from the fact that

vl =02+ D) <D
O

We now prove the following lemma, which provides estimates on &}y [recall that
the norm || - || is defined in (4.9)]:

Lemma 4.17. (i) |Eow (. T)V ()| < Ce= 2T |V ()|
A N 1
(ii) || fif Eow(, T —$)F (-, 5)ds|l < C(1+T)~ 5 1.

Proof. By (4.9) and Corollary 4.11, we have
i TV OIE = [ o, 1OV ) e
< / Ce MV o) llydie = Ce TV O,
R

This proves (i). To prove item (ii), note that

T
_ KL Fa
< /0 Ce™ T TNIEC, )y | 2y ds.

T T
/ Elow (. T — ) F (-, 5)ds f Elow(s T — $)F(-, $)ds
0 0

vl L2®R)

Now from Lemma 4.5, we know that

1E G, $)lly < C(1+5) T —20Hmgmuar? (4 N+

Next, using Lemma 4.16, we have that

MEClyl2m < CA+5)"7 5 731 45720+
= C(1+5)"3(1 +5)"20Hm,
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where the constant C is independent of v. Therefore,

T T
H/ Elow(, T — ) F (-, 5)ds | < / Ce™ T T=9(1 4 5)73 (1 + )20y
0 0

<ca+T) 20t
1

N
<CA+T) e 12,
where the exponent in the last line follows from the fact that N — 1 = 3 4+ n, and
ne{0,1,2}. O
4.2.2. Bounds on &gy, We prove the following Lemma:

Lemma 4.18. There exist constants C and M, independent of v, such that

(i) | Enigh (-, T)V )| < Ce=MT V()
(i)

1
< Ce—ZMlT

T
H/ EnighC, T — $)F (-, 5)ds
0

Proof. We can use Proposition 4.14 for kg < || < '% and Corollary 4.13 for
lik| = =L to find that

1BOT Wy < Ce MWy

for all |x| > kp. Therefore, we have
I €high -, TYV ()1 = /R | Enign (e, THV (1) I3 dic
< fR Ce™MTV (1) |I3dic = Ce 2 MT |V ()%,

which proves (i). Item (ii) follows additionally from Lemma 4.5 and the estimate

T
[ f Ehigh(, T = $)F (-, s)ds||
0

T
< f CeMT=9|(1 =y (NI EC. )yl 2 ds
T M(T—s) N=l=n (N+1) ,—vrai® (145)
< (145310 = Y|V HDe
0
[1+ (k| + e ) (1 + s)‘/z]an(R)ds
T
S/ Ce™MT=9) qup (=% e~ H )
0 |k|>2k0

(14 (k| + &)L+ )2 2y ds

! M(T A2 (1 N_]
f Ce™MT=9) qup (e 2 ) (1 4 5)" 5~ 2ds
0

[]>2k0
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r 2 N_1
/ Ce—M(T—s)e—Zv,d/(O(l—i-s)(l +5)" 0 2ds
0

! —M(T—s) ,—vrgkl (1+s) ,—vead (145 -yl
:/ Ce e vtdKO( e Ved Ky a)(l_,’_s) 6 2ds
0

2 2
< CoMT oM—vak)T < Co=DiaigT

4.2.3. Bounds on RN In this section we prove the following lemma:

Lemma 4.19. Recall that Rn(x, T) is defined in (4.25), || - || in (4.9), and Fin
(4.6). Then

(i) IRNG, TV < Cp, Py, V)T~ 612 o

(ii) ||f0 RNG, T —$)F(,s5)ds| <CA+T) 6 1

forallT > 0, where the constant C (y, Po, V) depends onthe first N +1 derivatives
of ¥, Py, and V. In particular, we need to require that ||86V|| is bounded for all
0<t=<N+1

Remark 4.20. We can ensure that the initial condition U (x,0) in (4.8) has
||8,fU (-, 0)]| bounded for all 0 < ¢ < N + 1 by requiring that the initial con-
dition u(x, y, z, 0) to (1.1) lies in LZ((N + 1)).

Proof. To estimate Ry, notice that a smooth function minus the first N terms of
its Taylor series can be written as

N K rK K1
JIGED %f(j)(O)Kj :/ /N/ O+ F(y)dydir ... dicy
e 0 Jo 0

Therefore, we can write

K
RnGe, T — )Gk, T —s) = e—v,dszf
0

KN K1 .
/ / g+ [w(y)eAO(y)(T_S)Po(y)G(y, T — s)] dydicy . .. dicy
0 0

Furthermore, the computation of the expansion of Ao () that follows equation (4.15)
implies that

Iho() + vear®| = [ Ao(c)| < Clk]?,  for |k| < 2k

for some constant C that is independent of v. The y-derivatives in the above integral
expression could fall on any of the terms in the brackets. Thus, we need to bound
terms of the form

11 (1)) (9240 0OT) (93 Py (1)) (37 V (1)) ||, m1 + ma +m3 +mg =N + 1.
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Using the form of Ag(x), we have
92 g M0tT (KZT)pl (kTP (T)3 (T)P™ - - - (T)ﬂmZe/\O(K)T
K )

where p1 +20 + - - +mopu, =mpand p; € {0, 1, ..., my} for all i. Thus, the
pi term corresponds to i derivatives falling on Ag(x). Therefore,

K KN K1
7v,d/(2T / / / aNJrl
e . v
0 Jo 0

[y e Py V(] v . dew [ ax

IRNG TV O sf
R

~ 2
@Y D@ PN @V ()|

< > sup

my+my+ms+my=N+1K1=2€0

) K pKN K1
x/ (e_”""( T/ f /
[k <2k0 0 0 0

=CW, P, V) e 2T

|| <20

[T

2
dydkg .. .dKN> dk

2
ByzeAO(y)T‘ dydkq .. .d/cN> dk

(yZT),Ol (yT)(T)P*(T)P* - - - (T),OmzeA()(y)T‘

A~ 2 3
S C(w’ PO» V)T2(p1+~-+pmz)/ e—2v,dx T€2C|K| T|K|2(2pl+p2+N+l)dK.
K] =2k0

The constant C(y, Py, V) is determined by SUP)| | <210 || (B9 (1)) (3" Po (i)

. 2
o 4V(K))H " The function ¥ and the projection Py are smooth, bounded, and

independent of v, so we need not worry about derivatives that fall on them. Notice
that, for z = k/T, we have

B 2 3
/ e PAY S T62C|K| T|K|de
lc|=2ko

_(pth _ 2 3
=CT 2 1z|Pe 2042 ezcnz/ﬁ\ dz
|z|<2k0v/'T
_loth) 2 ,Zz(v ,2cm>
<CT 2 / |Z|p€ VidZ® o 1d =" 7T dz
|z|<2k0v/T
_(p+D)
<CT 72,

Note that we have used the fact that |z| < 2ko~/T . Therefore, after possibly making
ko smaller if necessary, v;g — % > (. As aresult,

IRNG. )V Ol < C, Py, VTP +om =5 =2 @ortont N,
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Notice that

11
prdcctpm = =52+t N+

4

= ot oyt pat SR

=P ALt TS

B 3N
—_— e m —_—— —_—

= 3001 +2m 20m) = 7=

N 5
< —— -
- 6 12

In addition,
201 +202 4+ 203 +3ps + -+ (m2 — 1) pmy <2my <2(N +1).
Therefore, we obtain

N_ 5
612,

IRNG, TV < C(, Py, V)T
which proves (i). To prove (ii), Lemma 4.5 implies
1E G )]y < CleN 1+ 5)"5 e G 4 (k| + [k2)(1 + )72,

Similarly,

Ha;‘mﬁ(k’ )y < Cle¥ =111 + S)%(&?e*"tdkz(lﬂ)) X

P+ (I + k(1 +)'/21,
where r| + rp + r3 = m4. Moreover,

@Pe ) = N (g (14 )T (—vga (14 5)) P e~k (159,
q1+2q2=r2

, K pKN K1
ok (T=s) / / - /
0 Jo 0

A 2
B;v“ [w(y)eAO(yxT—s)PO(y)F(y, s)} dydky ...dky HY di

As aresult,

IRNG, T —$)E (-, 5)|> < /R

< 3 sup || @y ()) @ Po)) [y,

mi+ma+m3+ms=N+1 lie|<2x0

) K KN K1
* / (eivrdK (T7S) / / o /
k| <2k o Jo 0
2N

5 -1
< C(Y, Py (T — ) XPrttom) (1 4 5) 75 H2@ita)

2
|2 AT =) gma oy, s)HY dydir .. .de> dic

x/ e—2VrdK2(T—S)6—2‘)1(1’(2(1‘*'5)62(:\)(\3(T—S)‘K|2(2ﬂ1+02+N+1)‘K|2(N+1—’l+¢11)d,€
k] <20

2(N-1)
< C(y, P())Ulzd(qlJqu)(T _ S>2(P1+‘“+ﬂmz)(1 +5)73 +2(q1+42)

«min {(T — 5)"ONF22p14m—ri4q)=5 (] 4 g)~CN+2E2014m—r14Hg) 3 } )
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As a result,

T
/O IRNCG, T = s)F (-, 8)llds <

T/2
C, Po)v,(Z‘“”)f (T — N @i+a) o
0
(T — s)—(N+1+m+p2/2—r1/2+q1/2)—%ds
T
+C(, Po)vqu”””)/ (T —5) WDt @i+a2) o
T/2

(1 +s)—(N+1+p1+pz/2—r1/2+q1/2>—%ds

1

< CO PO (14 T) 612 < C(y, Py, A, x)(1+T) 6 1.

Note that we have used the fact that

(N-1)
(o1 + -+ pmy) + 3 +@+q)—(N+1+p1+02/2—-11/2+q1/2
_ (P )_Z_N_l noa
—(2+p3+...pm2 3 12+2+2+q2
1 2N 7
S§(91+2/02+"-+m2/0m2)—T—E+ (Vl+72)
<l +l 2N 7
=3y T TR
<1(N+l) 2N 7 N 1
-2 3 12 6 12°

O

4.2.4. Bounds on 7y In this section we show that the Taylor polynomial terms
are actually zero.

Lemma 4.21. Let Ty (k, T—s))G(/c 5) bedefinedasin(4.24). If s = OandG(K 0)
is an initial condltlonfor 4.8), or lfG(K s) = F(K s), where Fis defined in (4.6),
then Tn(k, T — s)G(K, s) = 0 for all k.

Proof. Recall that

N
k. T — )Gk, s) =Y

£=0

Zl (Ve OT=) Py Gk, 5) ) ook (4.26)

In this expression, some derivatives fall on G (x, s), but the order of these derivatives
does not exceed N. First consider the case where G («, 0) is an initial condition for
(4.8). This implies that

A B 1l (k, 0)
G, 0) = (m;;(?c, 0)};";1)'
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The functions %}, forn = 0, 1, ... are defined via the projections in (2.9), the
similarity variables in (4.2), and the Fourier transform. Equation (2.9) defines w(S)
and v} as the projections off of the first N 4 1 eigenfunctions of the operator
L:4. The projections onto those eigenfunctions are defined in terms of the Hermite
polynomials, which implies that

/gfwg(s, 7)dé =/éfv,i(é,r)dé=0
R R

forallt > 0and j =0,..., N. Since when T = 0 we have £ = X, we therefore
find

3] a3 (1, 0) =0 = A?‘l[a,{ﬁo(-,O)](X)dX = C/RXf'ug(X, 0)dx
=c/ X/ wi(X,00dX =0, j=0,...N,
R

where we have used F~! to denote the inverse Fourier transform and C is some
constant that can be explicitly determined. Similarly,

8745 (i, 0)] =0 = cf X/us (X,0)dX = C/ X7 9xvs (X, 0)dX
R R
= —jc/RX/—lvf,(x, 0)dX =0, j=1,...N.

When j = 0, the result holds because [ 9z v (§, 0)dé = [V, (&, 0)dé = 0, where
V, is defined in (2.4).

Next, consider the case where G = F. Note that I:“(/c, s) = KN+II:I(K, s),
where A (x, s) is a smooth, bounded function in « and s. This fact can be seen from
equation (4.7). Therefore 8,‘5@(/(, k=0 =0for0<¢<N. O

4.3. Proof of Proposition 4.2, and Hence Theorem 1(ii)

Recall that the goal of this chapter is to prove Proposition 4.2, which by
Remark 4.4 implies Theorem 1(ii). Hence, we want to establish the estimate

10T < CU+T) 6T,
Recall from (4.8) that
T
Uk, T) = BOTT (1, 0) + / BOT=9) F e 5)ds.
0

Using the splitting of the semigroup in (4.21) and Lemmas 4.17, 4.18, 4.19 and
4.21, we have

) N_35 N
10N = e 3T 4™ 4141752 ] j0O)]
e [(1 + )78 e M 4 (14 T)‘%—ﬁ] :

which proves the result.
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