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Abstract

Taylor diffusion (or dispersion) refers to a phenomenon discovered experimen-
tally by Taylor in the 1950s where a solute dropped into a pipe with a background
shear flow experiences diffusion at a rate proportional to 1/ν, which is much faster
than what would be produced by the static fluid if its viscosity is 0 < ν ! 1. This
phenomenon is analyzed rigorously using the linear PDE governing the evolution of
the solute. It is shown that the solution can be split into two pieces: an approximate
solution and a remainder term. The approximate solution is governed by an infinite-
dimensional system of ODEs that possesses a finite-dimensional center manifold,
on which the dynamics correspond to diffusion at a rate proportional to 1/ν. The
remainder term is shown to decay at a rate that is much faster than the leading order
behavior of the approximate solution. This is proven using a spectral decomposition
in Fourier space and a hypocoercive estimate to control the intermediate Fourier
modes.

1. Introduction

Taylor dispersion is a phenomenon in fluid dynamics that was discovered in
the 1950s byGeoffrey Taylor [13,14]. The setting is a three dimensional pipe in
which there is a background shear flow advecting the fluid down the length of the
pipe, but where the rate of advection can vary as a function of the cross-sectional
variables. It was observed by Taylor that, if a localized drop of dye was put into
the pipe, then as expected it would be carried down the pipe by the shear flow and
also diffuse due to the non-zero fluid viscosity. However, what was not expected
was that the rate of diffusion experienced by the dye was not that of the fluid, say
ν, but instead a rate proportional to 1/ν, which is much larger if 0 < ν ! 1.
This phenomenon has been subsequently analyzed by many people, for example
[1,4,9], but most of the work has been formal, based on asymptotic calculations.
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Our goal in this work is to rigorously analyze Taylor dispersion and provide a
mathematical mechanism for its occurrence using center manifolds and Villani’s
theory of hypocoercivity [15]. We note there is another rigorous analysis of Taylor
dispersion, [3], that also uses hypoceorcivity in the proof. We will comment on the
relationship between that and the present work at the end of this section.

The PDE model of fluid flow in a pipe with a background shear flow is given
by

ut = ν∆u − V (y, z)ux , x ∈ R, (y, z) ∈ Ω ⊂ R2.

The function u : R × Ω × R+ → R represents the concentration of the solute,
or dye, and the function V : Ω → R is a smooth background shear flow, which
depends only on the cross-sectional variables (y, z) ∈ Ω , whereΩ is compact with
smooth boundary. We assume Neumann boundary conditions

∂u
∂n

|∂Ω = 0.

For simplicity we assume the viscosity is a small, positive constant, 0 < ν ! 1.
To remove any effects of constant background advection caused by V , we define
χ via

V (y, z) = A(1+ χ(y, z)), A = 1
vol(Ω)

∫

Ω
V (y, z)dydz,

and require that χ ∈ H2(Ω). Thus, A is the average rate of advection in a cross
section, and χ therefore has zero average advection in a cross section. We can then
change variables using x → x + At to obtain

ut = ν∆u − Aχ(y, z)ux . (1.1)

It will be convenient to separate the effects of the cross-stream and longitudinal pipe
variables. To that end, we will expand both u and χ in terms of the eigenfunctions
of the Laplacian ∂2y + ∂2z acting on the compact domain Ω . These eigenfunctions,
which we denote by {ψn}∞n=0, form an orthonormal basis for L2(Ω) with ψ0 ≡ 1,
and we denote their corresponding eigenvalues by {−µn}∞n=0, which satisfy 0 =
µ0 < µ1 ≤ µ2 ≤ · · · [12, Section 11.3]. It will also be helpful to scale the
longitudinal space variable x and the time variable t by ν via

X = νx, T = νt. (1.2)

This transforms (1.1) into

uT = ν2uXX + ∆y,zu − Aχ(y, z)uX . (1.3)

The main advantage of this change is that it helps us determine the dependence of
the solutions on the viscosity parameter ν ! 1. This advantage will be made clear
in Remarks 3.4 and 4.10. Inserting the expansions

u(X, y, z, T ) =
∞∑

n=0

un(X, T )ψn(y, z), χ(y, z) =
∞∑

n=0

χnψn(y, z), (1.4)
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where

un(X, T ) =
∫

Ω
u(X, y, z, T )ψn(y, z)dydz, χn =

∫

Ω
χ(y, z)ψn(y, z)dydz,

into equation (1.3) and noting that χ0 = 0 since it has zero average inΩ , we obtain

∂T u0 = ν2∂2Xu0 − A
∞∑

m=1

χm∂Xum (1.5)

∂T un = ν2∂2Xun − µnun − Aχn∂Xu0 − A
∞∑

m=1

χn,m∂Xum, n = 1, 2, . . . ,

(1.6)

where

χn,m = 〈ψn,χψm〉L2(Ω).

In order to use invariant manifolds to study Taylor dispersion, we must deal
with the fact that the Laplacian, ∂2X , on R has continuous spectrum consisting of
(−∞, 0]; in other words, there is no spectral gap. One way to overcome this is to
use similarity variables

ξ = X√
T + 1

, τ = log(T + 1),

which exploit the space/time scaling inherent to the operator [16]. (The use of T+1,
rather than T , in the above definition is just for convenience, so that the change
of variables is well-defined at T = 0). We therefore further define new dependent
variables {wn}∞n=0 via

u0(X, T ) =
1√

T + 1
w0

(
X√
T + 1

, log(T + 1)
)

(1.7)

un(X, T ) =
1

T + 1
wn

(
X√
T + 1

, log(T + 1)
)
, n = 1, 2, . . . . (1.8)

Plugging this definition into (1.5) and (1.6), we obtain

∂τw0 = Lw0 − A
∞∑

m=1

χm∂ξwm (1.9)

∂τwn =
(
L+ 1

2

)
wn − eτ/2A

∞∑

m=1

χn,m∂ξwm

− eτ (µnwn + Aχn∂ξw0), (1.10)

where

L = ν2∂2ξ + 1
2
∂ξ (ξ ·) = ν2∂2ξ + 1

2
ξ∂ξ +

1
2

(1.11)

Author's personal copy



Margaret Beck, Osman Chaudhary & Eugene Wayne

is the Laplacian ν2∂2X written in terms of the similarity variables. Note that the
reason for the different powers of (T + 1) in front of w0 and wn for n ≥ 1 in (1.7)
is that equation (1.9) above becomes τ -independent. Continuing, we remark that
the operator L was analyzed in detail in [6]. Its properties are given in Section 2
below, but for the moment we just note that, on the space

L2(m) =
{
w ∈ L2(R) :

∫

R
(1+ ξ2)m |w(ξ)|2dξ < ∞

}
, (1.12)

the spectrum of L is composed of essential and discrete spectrum:

σ (L) = {λ ∈ C : Re(λ) ≤ −(2m − 1)/4} ∪ {λ = −k/2 : k = 0, 1, 2, . . . }.

Thus, as the algebraic weight m in the definition of the function space L2(m)

increases, the essential spectrum is pushed further into the left half-plane, reveal-
ing more and more isolated eigenvalues at negative multiples of 1/2. This suggests
that we can construct a center-stable manifold (which we often refer to as a center
manifold, for short) corresponding to those isolated eigenvalues, where the dimen-
sion of this manifold can be large if m is sufficiently large.

The utility of such a center manifold can be seen by considering the term
−eτ (µnwn + Aχn∂ξw0) in (1.10). As τ increases this term becomes large, which
suggests that wn should evolve so that ultimately µnwn + Aχn∂ξw0 = 0. Hence,
we expect that, for large times,

wn ≈ − Aχn

µn
∂ξw0 ⇒ ∂τw0 ≈ Ltdw0,

where

Ltd :=
(
ν2 + A2‖χ‖2µ

)
∂2ξ + 1

2
∂ξ (ξ ·), ‖χ‖2µ =

∑

m

1
µm

χ2
m (1.13)

is again the Laplacian in similarity variables but now with Taylor diffusion coeffi-
cient

νtd :=
(
ν2 + A2‖χ‖2µ

)
. (1.14)

Note that the spectrum of the operator does not depend on the viscosity, so σ (L) =
σ (Ltd). Thus, we expect that {wn}∞n=1 will rapidly converge to a manifold defined
by wn = −(Aχn∂ξw0)/(µn), and then for large times the dynamics of w0 can
be described by a center-stable manifold corresponding to the isolated eigenvalues
of the operator Ltd . In terms of the original variables, this suggests that {un}∞n=1
should become “slaved" to the low mode u0 exponentially fast, while the low
mode u0 should decay diffusively, but as if its diffusion coefficient is νtd = O(1)
(instead of ν2), which, if we change back to the original (x, t) variables, matches
the experimental observations of Taylor and the formal calculations in [4].

There are several technical difficulties that must be overcome in order to make
the above argument rigorous. First, in analyzing the dynamics of system (1.9) and
(1.10) using the spectral structure of Ltd , it would be natural to expand each wn ,
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n = 0, 1, . . . , in terms of the eigenfunctions {ϕtd
j (ξ)}Nj=0 ofLtd , where N = N (m)

corresponds to the number of isolated eigenvalues, and hence the dimension of the
center-stable manifold. In other words, we could write

PNwn(ξ, τ ) =
N∑

j=0

α j,n(τ )ϕ
td
j (ξ), ws

n = (1 − PN )wn

for each n, wherews
n is the component of the solution in the strong stable manifold,

which we expect to decay rapidly. Although this is essentially what we will do, it
turns out that it will be more convenient to prove the rapid decay of ws

n in terms of
the (X, T ) variables, by using the Fourier transform.

The reason for this is that our center manifold argument will only show that
the enhanced diffusion affects the first N + 1 terms in the eigenfunction expansion
{wn}. This is sufficient for the physical realization of the phenomenon because
the higher order terms, corresponding to ws

n , will be shown to decay like T−N (N )

whereN can be made large by choosing N , and hence alsom, to be large, which is
faster than the enhanced algebraic diffusive decay resulting from Taylor diffusion.

To understand what PNwn corresponds to in the physical (x, t) variables, con-
sider the following calculation. The eigenfunctions of Ltd are given by

ϕtd
j (ξ) = ∂

j
ξ ϕtd

0 (ξ), ϕtd
0 (ξ) = 1√

4πνtd
e− ξ2

4νtd . (1.15)

If we assume that

u(X, T ) = 1
(1+ T )γ

w

(
X√
T + 1

, log(T + 1)
)
, w(ξ, τ ) =

N∑

j=0

α j (τ )ϕ
td
j (ξ),

which can represent either w0 or wn , n ≥ 1, depending on the choice of γ , then

û(κ, T ) =
∫

eiκXu(X, T )dX

=
N∑

j=0

1√
4πνtd

(1+ T ) j/2−γ (−iκ) jα j (log(T + 1))
∫

eiκXe− X2
4νtd (T+1) dX

=
N∑

j=0

(1+ T ) j/2+1/2−γ (−iκ) jα j (log(T + 1))e−κ2νtd (T+1).

This implies that

û(0, T ) = (1+ T )1/2−γ α0(log(T + 1)),

∂̂κu(0, T ) = (−i)(1+ T )1−γ α1(log(T + 1)), . . .

which, combined with the Taylor expansion

û(κ, T ) = û(0, T )+ ∂κ û(0, T )κ + 1
2
∂2κ û(0, T )κ

2 + · · · ,
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means that the behavior of PNw tells us about the behavior of û(κ, T ) for κ near
zero. In other words, PNw represents both the behavior of the “low modes" of
w(ξ, τ ), where “low modes" refers to the leading eigenfunctions of Ltd , and the
behavior of the “low modes" of û(κ, T ), where now “low modes" refers to values
of the Fourier variable κ near zero. This relationship between Taylor dispersion,
the behavior of the Fourier transform of the solution at small wave numbers, and
the center-manifold theorem was also discussed by Mercer and Roberts in [9].

We will refer to ws = (1 − PN )w as the remainder, or error, term. In terms of
Ltd it corresponds to the behavior due to the essential spectrum and the discrete
spectrum that is sufficiently far from the imaginary axis. To prove that the remainder
term decays rapidly, it will be convenient to work in terms of the Fourier variables
associatedwith physical (X, T ) space, rather than system (1.9) and (1.10). This will
lead to a linear, nonautonomous equation governing the behavior of the remainder
term of the form ÛT = B(κ)Û + F̂(κ, T ). We can then consider three regimes:
a small wavenumber regime defined by |κ| ≤ κ0, an intermediate one defined by
κ0 ≤ |κ| ≤ κ1/ν, and a large one defined by |κ| ≥ κ1/ν. In the large regime,
the solution decays exponentially due to the usual (non-Taylor) diffusive estimate
eν2∂2X T ∼ e−ν2κ2T ≤ e−κ21 T . In the intermediate regime this naive estimate is
not quite strong enough, because it only implies eν2∂2X T ∼ e−ν2κ2T ≤∼ e−ν2κ20 T ,
which is quite weak for 0 < ν ! 1. To improve it, we will apply a hypocoercivity
argument [15] to show that in this region we also have decay like e−MT for some
M > 0. For the low wavenumbers, we will decompose the remainder term into a
piece corresponding to the leading eigenvalue λ0(κ) of B(κ), which is parabolic
with λ0(0) = 0, and a piece corresponding to the rest of the spectrum of B(κ). The
latter will decay exponentially fast because B(k) has a spectral gap for each fixed
k. The former will be shown to decay algebraically with the rate T−N (N ), because
we have already removed the leading order behavior via the term PNwn .

Our analysis will be divided into the following steps: in Section 2 we will more
precisely set-up our problem and carefully state the main results. In Section 3 we
will use the similarity variables and a center-stable manifold to prove that the low
modes, corresponding to PNwn , experience enhanced Taylor diffusion. Finally, in
Section 4 we will use a spectral decomposition and hypocoercivity to show that
the remainder term decays rapidly, thus allowing for the Taylor diffusion to be
physically observable.

Before carrying this out, we comment on other related rigorous work on Taylor
diffusion. In [2] we analyzed a model of system (1.5) and (1.6) consisting of only
two equations, one corresponding to u0 and one modeling all of the un for n ≥ 1,
and carried out a similar analysis there. This allowed us to focus on the main ideas
of the argument: that the Taylor diffusion is really only affecting the low modes,
with the remainder term decaying rapidly. However, in that work, because of the
simple form of the system, one could see directly that the remainder term decayed
rapidly and the hypocoercivity argumentwe use here in Section 4was not necessary.
Moreover, the center manifold argument, which was used to justify the enhanced
diffusion, was constructed for a finite-dimensional ODE. Here, the center manifold
argument in Section 3 will need to be carried out for an infinite-dimensional ODE.
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Also, in [3] an equation very similar to (1.1) was analyzed, also using hypoco-
ercivity. However, there Villani’s framework was applied directly to the PDE (1.1),
whereas our hypocoercivitiy argument is applied in Fourier space. This allows us
to avoid any assumptions on the critical points of the shear flow χ , which play an
important role in the argument in [3]. Moreover, since X ∈ R, we need to work in
Fourier space with all |κ| ≥ 0. The setting in [3] is for a bounded X domain, which
effectively means |κ| ≥ 1. This changes the nature of the resulting decay and the
regions in which the enhanced diffusion is obtained.

2. Set-Up and Statement of Main Results

The main result that we will prove is Theorem 1. Theorem 1(i) will be proven
in Section 3 and Theorem 1(ii) will be proven in Section 4. In the statement of the
Theorem we use the following notation for the space in which the initial data must
lie:

L2(N + 1) × L2(Ω)

=
{
u ∈ L2(R × Ω) :

∫

R

∫

Ω
(1+ X2)N+1|u(X, y, z)|2dXdydz

=: ‖u‖2L2(N+1)×L2(Ω)
< ∞

}
.

Theorem 1. Given any N > 0, if u(·, 0) ∈ L2(N + 1) × L2(Ω), then there exist
constants C j = C j (‖u(·, 0)‖L2(N+1)×L2(Ω)), j = 1, 2, that are independent of ν

and a decomposition of the corresponding solution of (1.3) of the form

u(X, y, z, T ) = uapp(X, y, z, T )+ urem(X, y, z, T ),

where uapp(X, y, z, T ) and urem(X, y, z, T ) are defined in (2.11) and (2.12), that
satisfies the following:

(i) There exists an infinite-dimensional system of ordinary differential equations
that govern the behavior of uapp. Moreover, this system of ODEs possesses a
finite dimensional center manifold that is globally attracting at a rate that is
exponential in T , e−ηT for some η independent of ν, and on which the dynamics
correspond to enhanced diffusion with viscosity νtd , defined in (1.14). In other
words,
∥∥∥∥uapp(X, y, z, T ) − C1√

4πνtd(T + 1)
e− X2

4νtd (T+1)

∥∥∥∥
L2(R×Ω)

≤ C2

(1+ T )3/4
.

The constant C1 is given explicitly by

C1 =
∫

R

∫

Ω
u(X, y, z, 0)dXdydz.
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(ii) The remainder term satisfies

‖urem(·, T )‖L2(R×Ω) ≤ C2

(1+ T )
N
6 + 1

12

.

If we translate these results back to our original, unscaled time and space vari-
ables and choose N ≥ 4 so that N

6 + 1
12 ≥ 3

4 , we see that we immediately obtain

Corollary 2.1. Given any initial condtion u(·, 0) ∈ L2(N + 1) × L2(Ω), there
exist constants C̃ j = C̃ j (‖u(·, 0)‖L2(N+1)×L2(Ω)), j = 1, 2, such that the solution
of (1.1) satisfies
∥∥∥∥∥∥
u(x, y, z, t) − C̃1√

4π(ν + A2‖χ‖2µ/ν)(t + 1/ν)
e
− x2

4(ν+A2‖χ‖2µ/ν)(t+1/ν)

∥∥∥∥∥∥
L2(R×Ω)

≤ C̃2

(1+ νt)3/4
.

The constant C̃1 is given explicitly by

C̃1 =
∫

R

∫

Ω
u(x, y, z, 0)dxdydz.

Remark 2.2. Note that the leading order term in the asymptotics identified by
this Corollary corresponds to a solution of the diffusion equation with diffusion
coefficient (ν + A2‖χ‖2µ/ν) which is precisely the asymptotic behavior derived
non-rigorously in [11]. (In particular, see (2.17) for the calculation of the shear
diffusion coefficient.) We note that the constant C̃2 appearing in the Corollary can
be related to the constant C2 appearing in the Theorem by undoing the change of
variables X = νx .

Remark 2.3. Aswediscuss later in Section 3,we actually derive not just the leading
order term in the asymptotics but higher terms as well - in principle, terms of arbi-
trary order, if the initial condition u0 decays sufficiently rapidly as |x | → ∞. The
higher order terms in the asymptotics are expressed in terms of the eigenfunctions
of the operator Ltd . See Remark 2.5 for further details.

To prove these results, we will use some facts about the operator Ltd , which is
just the Laplacian written in terms of similarity variables. Recall from (1.13) that

Ltdϕ = νtd∂
2
ξ ϕ + 1

2
∂ξ (ξϕ).

We state the following results for viscosity νtd , but the results are true with νtd
replaced by any other positive number. This operator has been analyzed in [6], and
in the weighted Hilbert space L2(m) defined in (1.12) one finds

σ (Ltd) =
{
λ ∈ C : Re(λ) ≤ − (2m − 1)

4

}
∪
{
−k
2
| k ∈ N

}
.
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Furthermore, the eigenfunctions corresponding to the isolated eigenvalues λk =
−k/2 are given by the Hermite functions

ϕtd
0 (ξ) = 1√

4πνtd
e− ξ2

4νtd , ϕtd
k (ξ) = ∂kξ ϕtd

0 (ξ).

The corresponding adjoint eigenfunctions are given by the Hermite polynomials

Htd
k (ξ) = 2kνktd

k! e
ξ2
4νtd ∂kξ e

− ξ2
4νtd . (2.1)

Note that we have the orthogonality relationship

〈Htd
k ,ϕtd

j 〉L2(R) = δ jk =
{
1 if j = k
0 if j 3= k,

which can be used to define spectral projections.

Remark 2.4. The expressions in [6] for ϕtd
k and Htd

k are derived in the case when
νtd = 1. The expressions given here follow easily by the change of variables
ξ → ξ/

√
νtd .

2.1. Preparation of the Equations

To emphasize the expected role of the enhanced diffusion, we rewrite (1.9) and
(1.10) as

∂τw0 = Ltdw0 − Dtd∂
2
ξ w0 − A

∞∑

m=1

χm∂ξwm (2.2)

∂τwn =
(
Ltd +

1
2

)
wn − Dtd∂

2
ξ wn − eτ/2A

∞∑

m=1

χn,m∂ξwm

− eτ (µnwn + Aχn∂ξw0), (2.3)

where

Dtd := A2‖χ‖2µ
andLtd is defined in equation (1.13). As described above, asymptotically we expect
wn = −(Aχn∂ξw0)/(µn), which is a perfect derivative. To exploit this, we wish
to effectively integrate the wn equation. Naively, this could be done by defining
{Vn}∞n=1 via ∂ξVn = wn . In order to obtain decay of Vn as |ξ | → ∞, we would
then need to assume that

∫
wn = 0. To avoid this additional assumption, we instead

define {Vn}∞n=1 via

wn(ξ, τ ) = γn(τ )ϕ
td
0 (ξ)+ Vn(ξ, τ ), γn(τ ) =

∫

R
wn(ξ, τ )dξ, (2.4)
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where ϕtd
0 is the eigenfunction of Ltd defined in (1.15) associated with the zero

eigenvalue. Note that this implies

γn(τ ) = 〈wn(τ ), Htd
0 〉L2 =

∫

R
wn(ξ, τ )dξ

and that γn(τ ) is bounded for each τ such that wn(τ ) ∈ L2(m), with m > 1/2,
because

|γn(τ )| ≤
∫

R

1

(1+ ξ2)
m
2
(1+ ξ2)

m
2 |w(ξ, τ )|dξ

≤
(∫

R

1
(1+ ξ2)m

dξ
)1/2

‖wn(τ )‖L2(m) ≤ C(m)‖wn(τ )‖L2(m).

Since
∫

ϕtd
0 = 1, we see that

∫
Vn = 0. Inserting (2.4) into (2.3), we find that

γ̇nϕ
td
0 + ∂τVn = 1

2
γnϕ

td
0 +

(
Ltd +

1
2

)
Vn − Dtd

(
γnϕ

td
2 + ∂2ξ Vn

)

− eτ/2A
∞∑

m=1

χn,m∂ξ (γmϕtd
0 + Vm)

− eτ (µnVn + Aχn∂ξw0) − eτµnγnϕ
td
0 . (2.5)

Integrating over R and using the fact that ϕtd
k , w0 → 0 as |ξ | → ∞, we find that

γ̇n =
(
1
2

− eτµn

)
γn,

which implies that

γn(τ ) = γn(0)e
τ
2−µn(eτ −1). (2.6)

With this information, in (2.5) we can cancel all the terms involving γn alone, use
the fact that

∫
Vn = 0 to define vn via ∂ξvn = Vn , and obtain from (2.2) and (2.3)

that

∂τw0 = Ltdw0 − Dtd∂
2
ξ w0 − A

∞∑

m=1

χm∂2ξ vm

− Ae
τ
2 ϕtd

1

∞∑

m=1

χmγm(0)e−µm (eτ −1) (2.7)

∂τvn = Ltdvn − Dtd∂
2
ξ vn − eτ/2A

∞∑

m=1

χn,m∂ξvm − eτ (µnvn + Aχnw0)

− eτ Aϕtd
0

∞∑

m=1

χn,mγm(0)e−µm (eτ −1)

− Dtdγn(0)e
τ
2 e−µn(eτ −1)ϕtd

1 . (2.8)
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2.2. Separation into Low Modes and the Remainder Term

In order to analyze the behavior of solutions to system (2.7) and (2.8), we define

w0(ξ, τ ) =
N∑

k=0

αk(τ )ϕ
td
k (ξ)+ ws

0(ξ, τ )

vn(ξ, τ ) =
N∑

k=0

βn
k (τ )ϕ

td
k (ξ)+ vsn(ξ, τ ), (2.9)

where {ϕtd
k }Nk=0 are the first N + 1 eigenfunctions associated with Ltd and

αk(τ ) = 〈w0(ξ, τ ), Htd
k (ξ)〉L2(R), βn

k (τ ) = 〈vn(ξ, τ ), Htd
k (ξ)〉L2(R),

are the spectral projections onto those eigenmodes defined via the corresponding
adjoint eigenfunctions Htd

k . See (2.1). Recalling that ∂ξϕ
td
k = ϕtd

k+1 and Ltdϕ
td
k =

−(k/2)ϕtd
k , inserting the above expressions into (2.7) and (2.8) and taking the inner

product of the result with Htd
k gives the following infinite-dimensional system of

ODEs for the evolution of {αk}Nk=0 and {βn
k }Nk=0, n ≥ 1:

α̇0 = 0

α̇1 = −1
2
α1 − Ae

τ
2

∞∑

m=1

χmγm(0)e−µm (eτ −1)

α̇k = −k
2
αk − Dtdαk−2 − A

∞∑

m=1

χmβm
k−2 2 ≤ k ≤ N

β̇n
0 = −eτ (µnβ

n
0 + Aχnα0) − eτ A

∞∑

m=1

χn,mγm(0)e−µm (eτ −1)

β̇n
1 = −1

2
βn
1 − eτ (µnβ

n
1 + Aχnα1) − e

τ
2 A

∞∑

m=1

χn,mβm
0 − Dtdγn(0)e

τ
2 e−µn(eτ −1)

β̇n
k = −k

2
βn
k − eτ (µnβ

n
k + Aχnαk)

− Dtdβ
n
k−2 − e

τ
2 A

∞∑

m=1

χn,mβm
k−1 2 ≤ k ≤ N . (2.10)

Note that we have used the following facts: first, 〈Htd
k , ws

0〉L2 = 0, which follows
by construction. This implies that 〈Htd

k ,Ltdw
s
0〉L2 = 〈−(k/2)Htd

k , ws
0〉L2 = 0.

One can also check that

L∗
td(∂ξ Htd

k ) = − (k − 1)
2

∂ξ Htd
k ⇒ Htd

k−1 = −∂ξ Htd
k ,

which implies that 〈Htd
k , ∂2ξ w

s
0〉 = 0. Similar results hold for vsn .

The key aspect of (2.10) is that, because of the structure of (2.7) and (2.8), the
dynamics of {αk}Nk=0 and {βn

k }Nk=0 do not depend on the remainder terms ws
0 or v

s
n .
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Therefore, the behavior of these low modes can be analyzed without any a priori
knowledge of the remainder terms. The structure of the above system suggests that,
with the exception of α0, everything should decay exponentially fast in τ , which
corresponds to algebraic decay in t . Moreover, the leading order behavior will be
governed by α0.

2.3. Definition of uapp and urem

We now relate the decomposition in (2.9) back to the solution u(X, y, z, T )
of the original equation (1.3). We define uapp in terms of the low modes and urem
in terms of the functions ws

0 and vsn . To do so we need to convert back to the
(X, T ) variables and take into account the decomposition in (1.4) and the change
of variables in Section 2.1. In particular, we have

u(X, y, z, T ) =
∞∑

n=0

un(X, T )ψn(y, z)

u0(X, T ) =
1√

1+ T
w0(ξ, τ )

un(X, T ) =
1

(T + 1)

[
γn(τ )ϕ

td
0 (ξ)+ ∂ξvn(ξ, τ )

]
, n ≥ 1.

Using (2.9), we find that

u0(X, T ) =
1√

1+ T

N∑

k=0

αk(τ )ϕ
td
k (ξ)+ 1√

T + 1
ws
0(ξ, τ )

un(X, T ) =
1

(T + 1)

[

γn(τ )ϕ
td
0 (ξ)+

N∑

k=0

βn
k (τ )ϕ

td
k+1(ξ)

]

+ 1
(T + 1)

∂ξv
s
n(ξ, τ ).

We now define

uapp(X, y, z, T ) =
ψ0(y, z)√
1+ T

N∑

k=0

αk[log(T + 1)]ϕtd
k

(
X√
T + 1

)

+
∞∑

n=1

ψn(y, z)
(T + 1)

[

γn[log(T + 1)]ϕtd
0

(
X√
T + 1

)

+
N∑

k=0

βn
k [log(T + 1)]ϕtd

k+1

(
X√
T + 1

)]

, (2.11)

and

urem(X, y, z, T ) =
ψ0(y, z)√
1+ T

ws
0

(
X√
T + 1

, log(T + 1)
)

+
∞∑

n=1

ψn(y, z)
(T + 1)

∂ξv
s
n

(
X√
T + 1

, log(T + 1)
)
. (2.12)
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The behavior of uapp, as stated in Theorem 1(i), will be determined in Section 3, and
the behavior of urem, as stated in Theorem 1(ii), will be determined in Section 4.

Remark 2.5. Equation (2.11) provides a way to compute higher order asymptotics
of the solution. The leading order term, which appears in Theorem 1(i), corresponds
only to the α0 term in (2.11). The functions α j , for j = 1, . . . N , as well as {γn}
and {βn

k }, determine the higher order asymptotics. Indeed, one of the advantages of
the center-manifold approach is that, in principle, we can compute the asymptotic
behavior of the solution to any order. More precisely, in [5] it is proven that for
any fixed inverse power of t , one can compute the behavior of the solution up
to corrections of that order in t , solely in terms of the behavior of the solution
restricted to the center manifold, which is given by the functions {α j }, {γn}, and
{βn

k }. Furthermore, because the formula for the center manifold, given in the proof
of Proposition 3.3, is explicit, these functions could in principle also be computed
explicitly.

3. Taylor Dispersion for the Approximate Solution via a Center Manfold

The main goal of this section is to prove Theorem 1(i). This will essentially
be done via Proposition 3.3, and it will be explained in Section 3.2 how its proof
follows from that Proposition.

3.1. Asymptotic Behavior of the Low Modes via a Center-Stable Manifold

Consider system (2.10). To construct its centermanifold, we start by performing
some changes of variables. Recall from the formal analysis that, in long time limit,
we expect µnwn + Aχn∂ξw0 = 0. In system (2.10), this results from the term
eτ (µnβ

n
k + Aχnαk). Therefore, we will diagonalize the system so that, in terms

of new variables (ak, bnk ), the set {µnβ
n
k + Aχnαk} = 0 corresponds to the set

{bnk = 0}. We define

ak = αk, bnk = βn
k + Aχn

µn
αk (3.1)

and obtain

ȧ0 = 0

ȧ1 = −1
2
a1 − Ae

τ
2

∞∑

m=1

χmγm(0)e−µm (eτ −1)

ȧk = −k
2
ak − A

∞∑

m=1

χmbmk−2 2 ≤ k ≤ N

ḃn0 = −eτµnbn0 − eτ A
∞∑

m=1

χn,mγm(0)e−µm (eτ −1)
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ḃn1 = −
(
1
2
+ eτµn

)
bn1 − e

τ
2 A

∞∑

m=1

χn,m

[
bm0 − Aχm

µm
a0

]

− Dtdγn(0)e
τ
2 e−µn(eτ −1)

− A2χn

µn
e

τ
2

∞∑

m=1

χmγm(0)e−µm (eτ −1)

ḃnk = −
(
k
2
+ eτµn

)
bnk − Dtd

(
bnk−2 − Aχn

µn
ak−2

)
− A2χn

µn

∞∑

m=1

χmbmk−2

− eτ/2A
∞∑

m=1

χn,m

(
bmk−1 − Aχm

µm
ak−1

)
2 ≤ k ≤ N ,

where n ≥ 1.

Remark 3.1. The equation for ḃnk follows from the fact that

− Dtd

(
Aχn

µn
αk−2 + βn

k−2

)
− A2χn

µn

∞∑

m=1

χmβm
k−2

= −Dtd

(
bnk−2 − Aχn

µn
ak−2

)
− A2χn

µn

∞∑

m=1

χmbmk−2.

This system is non-autonomous, which makes it difficult to construct a center
manifold. To overcome this, we first undo the change of variables in time using
τ = log(1+ T ) and define σ = (1+ T )−1/2. Denoting d/dT = (·)′, we obtain

a′
0 = 0

a′
1 = −1

2
σ 2a1 − Aσ

∞∑

m=1

χmγm(0)e−µmT

a′
k = σ 2

(

− k
2
ak − A

∞∑

m=1

χmbmk−2

)

2 ≤ k ≤ N

bn0
′ = −µnbn0 − A

∞∑

m=1

χn,mγm(0)e−µmT

bn1
′ = −

(
1
2
σ 2 + µn

)
bn1 − Aσ

∞∑

m=1

χn,m

(
bm0 − Aχm

µm
a0

)

− Dtdσγn(0)e−µnT − σ
A2χn

µn

∞∑

m=1

χmγm(0)e−µmT

bnk
′ = −

(
k
2
σ 2 + µn

)
bnk − Dtdσ

2
(
bnk−2 − Aχn

µn
ak−2

)
− A2χn

µn
σ 2

∞∑

m=1

χmbmk−2

− σ A
∞∑

m=1

χn,m

(
bmk−1 − Aχm

µm
ak−1

)
2 ≤ k ≤ N

σ ′ = −1
2
σ 3, (3.2)
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Rigorous Justification of Taylor Dispersion

where n ≥ 1. Note that, except for the terms involving γn(0), which are decaying
exponentially fast in T , this system is autonomous (but nonlinear), due to our
definition of σ .

It is now convenient to define more compact notation. To that end, we write

bk = (b1k , b
2
k , b

3
k , . . .), χ̌ = (χ1,χ2,χ3 . . .), γ = (γ1, γ2, γ3, . . . ),

where χ̌ is a constant, γ = γ (T ) with γn(T ) = γn(0)e−µnT , and bk = bk(T ), and
n ≥ 1. We also define operators on 32 via

(χ̃ ∗ Y )n =
∑

m

χn,mYm, (Υ Y )n = µnYn .

Throughout the estimates to come we will use the following Lemma, which says
that χ̃ and Υ −1 are bounded operators:

Lemma 3.2. The operators χ̃ and Υ −1 are bounded operators on 32.

Proof. The bound on Υ −1 follows immediately by noting that ‖Υ −1Y‖2
32

=
∑∞

n=1 µ
−2
n |Yn|2 ≤ µ−2

1 ‖Y‖2
32

since µn ≥ µ1 for all n ≥ 1. The boundedness
of χ̃ follows by noting that

(χ̃ ∗ Y )n =
∑

m

〈ψn,χψm〉Ym = 〈ψn,χY〉,

where Y(y, z) =∑m Ymψm(z, z). Thus, (χ̃ ∗ Y )n is the generalized Fourier coef-
ficient of the function χY and hence, by Parseval’s equality,

∑

n

|(χ̃ ∗ Y )n|2 = ‖χY‖2L2(Ω)
≤ ‖χ‖2L∞‖Y‖2L2(Ω)

= ‖χ‖2L∞‖Y‖32 , (3.3)

where the last step in this expression again used Parseval’s equality. 67

Intuitively, there are no linear terms in (3.2) in the equations for {ak}Nk=0 (except
for the term −Aσ 〈χ̌ , γ 〉, which is decaying exponentially fast) or in the equation
for σ . The equations for {bk}Nk=0 each contain a linear term of the form −Υ bk ,
where 〈Υ bk, bk〉 ≥ µ1‖bk‖2, with µ1 > 0. Hence, these variables should decay
exponentially quickly, and there is a spectral gap determined by µ1. Therefore,
there should exist an invariant center-stable manifold of dimension N + 2 of the
form M = {bk = hk(a0, a1, . . . , aN , σ ) : k = 0, 1, . . . N }. To see this, we note
that γ ′ = −Υ γ and add this equation to (3.2) to obtain the autonomous system

a′
0 = 0

a′
1 = −1

2
σ 2a1 − Aσ 〈χ̌ , γ 〉32

a′
k = −k

2
σ 2ak − Aσ 2〈χ̌ , bk−2〉32 2 ≤ k ≤ N

b′
0 = −Υ b0 − Aχ̃ ∗ γ

b′
1 = −

(
1
2
σ 2 + Υ

)
b1 − Aσ χ̃ ∗

[
b0 − Aa0(Υ −1χ̌)

]
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− Dtdσγ − σ A2〈χ̌ , γ 〉(Υ −1χ̌)

b′
k = −

(
k
2
σ 2 + Υ

)
bk − σ Aχ̃ ∗

[
bk−1 − Aak−1(Υ

−1χ̌)
]

− σ 2Dtd

[
bk−2 − Aak−2(Υ

−1χ̌)
]

− σ 2A2〈χ̌ , bk−2〉(Υ −1χ̌) 2 ≤ k ≤ N

σ ′ = −1
2
σ 3

γ ′ = −Υ γ . (3.4)

The linear part of this system (although no longer diagonal, due to the term
−Aχ̃ ∗ γ in the b0 equation) now makes the spectral separation clear. One could
abstractly justify the existence of a center manifold of the form (b0, . . . bN , γ ) =
H(a0, . . . , aN , σ ). However, it turns out thatwe can compute the function H explic-
itly, and it has a rather simple form. Moreover, we can show directly that the center
manifold is globally attracting. These results are collected in the following propo-
sition:

Proposition 3.3. For each1 ≤ k ≤ N, there exist functions hk = hk(a0, . . . , ak−1, σ )

of the form

hk(a0, a1, . . . , ak−1, σ ) =
k∑

3=1

Ck
k−3ak−3σ

3, (3.5)

where the Ck
k−3 are elements of 32 for each k and 3, can be computed explicitly,

are independent of ν, and such that (3.4) has an invariant center-stable manifold
given by

MN = {(b0, . . . , bN , γ ) = (0, h1(a0, σ ), . . . , hN (a0, . . . , aN−1, σ ), 0)}.
(3.6)

Moreover, there exist constants C, η > 0 that are independent of ν and such that
all solutions to (3.4) satisfy

‖(b0, . . . , bN , γ )(T )
− (0, h1(a0, σ ), . . . , hN (a0, . . . , aN−1, σ ), 0)‖(32)N+2 ≤ Ce−ηT , (3.7)

where (a0, . . . , aN−1) and σ are solutions of

a′
0 = 0

a′
1 = −1

2
σ 2a1

a′
k = −k

2
σ 2ak − Aσ 2〈χ̌ , hk−2(a0, . . . , ak−3, σ )〉32 2 ≤ k ≤ N

σ ′ = −1
2
σ 3.

Moreover, for all k ≥ 1,

|ak(τ )| ≤ Ce−ητ , τ = log(1+ T ). (3.8)
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Remark 3.4. More precise statements of the convergence to the center manifold
and decaywithin the center manifold are given in Lemmas 3.5 and 3.6, respectively.
Note that the exponential in T convergence to the center manifold is equivalent to
super-exponential in τ convergence, e−ηT = e−η(eτ −1), while the exponential in
τ decay on the center manifold, implied by (3.8), is equivalent to algebraic in T
decay, e−ητ = (1+T )−η. Furthermore, the ν- independence of the constants Ck

k−3
follows from the change of variable (1.2).

Proof. The Proof will be divided into three steps: (1) Justifying (3.5), the explicit
formula for the center manifold; (2) Proving global convergence to the center man-
ifold and justifying (3.7); and (3) Justifying equation (3.8), the decay rate within
the center manifold.

Step 1: Explicit formula for the center manifold To justify (3.5), we will ulti-
mately use induction, butwe compute the first few terms directly since the equations
in (3.4) are different for k = 0, 1. First, notice that the set (b0, γ ) = (0, 0) is invari-
ant for (3.4). Next, we look for a function of the form

h1(a0, σ ) = C1
0a0σ, C1

0 ∈ 32,

so that the set (b0, b1, γ ) = (0, h1(a0, σ ), 0) is invariant. Computing (b0, b1, γ )′

in two different ways and equating the results, we find that we need

−C1
0

2
a0σ 3 = −C1

0

2
a0σ 3 + σa0

[
−ΥC1

0 + A2χ̃ ∗ (Υ −1χ̌)
]
.

Thus, we can take

C1
0 = A2Υ −1χ̃ ∗ (Υ −1χ̌).

Next, we look for a function of the form

h2(a0, a1, σ ) = C2
1a1σ + C2

0a0σ
2,

so that the set (b0, b1, b2, γ ) = (0, h1(a0, σ ), h2(a0, a1, σ ), 0) is invariant. As
above, we find that

C2
1 = A2Υ −1χ̃ ∗ (Υ −1χ̌), C2

0 = Dtd AΥ −2χ̌ − A3Υ −1[χ̃ ∗ (χ̃ ∗ (Υ −1χ̌))].

We now assume that (3.5) holds for 0 ≤ k ≤ n and prove that this implies that it is
true for k = n + 1 with n ≥ 2. First, we compute

b′
n+1 = d

dt

n+1∑

3=1

Cn+1
n+1−3an+1−3σ

3

=
n+1∑

3=1

(
−1
2

)
3Cn+1

n+1−3an+1−3σ
3+2 − 1

2
Cn+1
1 a1σ n+2 − σ 2Cn+1

2 a2σ n−1

−
n−2∑

3=1

(n + 1 − 3)

2
Cn+1
n+1−3σ

3+2an+1−3
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− A
n−2∑

3=1

Cn+1
n+1−3σ

3+2

〈

χ̌ ,

n−3−1∑

j=1

Cn−3−1
n−3−1− jσ

j an−3−1− j

〉

= − (n + 1)
2

n+1∑

3=1

Cn+1
n+1−3σ

3+2an+1−3

− A
n−2∑

3=1

Cn+1
n+1−3σ

3+2

〈

χ̌ ,

n−3−1∑

j=1

Cn−3−1
n−3−1− jσ

j an−3−1− j

〉

. (3.9)

Using (3.4) and evaluating at bk = hk , b0 = γ = 0, we also have

b′
n+1 = −

[
(n + 1)

2
σ 2 + Υ

] n+1∑

3=1

Cn+1
n+1−3an+1−3σ

3 − Aχ̃ ∗
n∑

3=1

Cn
n−3an−3σ

3+1

− Dtd

n−1∑

3=1

Cn−1
n−1−3an−1−3σ

3+2 + σ A2anχ̃ ∗ (Υ −1χ̌)

+ Dtd Aσ 2an−1(Υ
−1χ̌)

− A2(Υ −1χ̌)

〈

χ̌ ,

n−1∑

3=1

Cn−1
n−1−3an−1−3σ

3+2

〉

. (3.10)

We now equate the expressions on the right hand sides of equations (3.9) and (3.10)
to obtain

− A
n−2∑

3=1

Cn+1
n+1−3σ

3+2

〈

χ̌ ,

n−3−1∑

j=1

Cn−3−1
n−3−1− jσ

j an−3−1− j

〉

= −Υ

n+1∑

3=1

Cn+1
n+1−3an+1−3σ

3 − Aχ̃ ∗
n∑

3=1

Cn
n−3an−3σ

3+1

Dtd

n−1∑

3=1

Cn−1
n−1−3an−1−3σ

3+2

+ σ A2anχ̃ ∗ (Υ −1χ̌)+ Dtd Aσ 2an−1(Υ
−1χ̌)

− A2(Υ −1χ̌)

〈

χ̌ ,

n−1∑

3=1

Cn−1
n−1−3an−1−3σ

3+2

〉

.

First, consider the resulting terms involving an . We need

0 = −ΥCn+1
n anσ + σ A2anχ̃ ∗ (Υ −1χ̌)

⇒ Cn+1
n = A2Υ −1χ̃ ∗ (Υ −1χ̌).
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The terms involving an−1 imply

0 = −ΥCn+1
n−1 − Aχ̃ ∗ Cn

n−1 + Dtd A(Υ −1χ̌)

⇒ Cn+1
n−1 = Dtd AΥ −2χ̌ − AΥ −1(χ̃ ∗ Cn

n−1).

The terms involving an−2 imply

0 = −ΥCn+1
n−2 − Aχ̃ ∗ Cn

n−2 − DtdCn−1
n−2 − A(Υ −1χ̌)〈χ̌ ,Cn−1

n−2 〉
⇒ Cn+1

n−2 = Υ −1
[
−Aχ̃ ∗ Cn

n−2 − DtdCn−1
n−2 − A(Υ −1χ̌)〈χ̌ ,Cn−1

n−2 〉
]
.

Finally, for 3 ≤ k ≤ n, the terms involving an−k imply

− A
n−2∑

3=1

Cn+1
n+1−3〈χ̌ ,Cn−3−1

n−k 〉 = −ΥCn+1
n−k − Aχ̃ ∗ Cn

n−k

− DtdCn−1
n−k − A2(Υ −1χ̌)〈χ̌ ,Cn−1

n−k 〉,
which gives

Cn+1
n−k = Υ −1

[

A
n−2∑

3=1

Cn+1
n+1−3〈χ̌ ,Cn−3−1

n−k 〉 − Aχ̃ ∗ Cn
n−k

− DtdCn−1
n−k − A2(Υ −1χ̌)〈χ̌ ,Cn−1

n−k 〉
]

.

All of the coefficients appearing in the sums on the RHS of this expression have
been computed at previous stages of the iteration and hence we obtain Cn+1

n−k in the
form asserted in the Proposition.

Step 2: Proving global convergence to the center manifold and justifying (3.7):
We’ll show that the exact invariant manifolds previously constructed are globally
attracting. First, note that we can solve (3.4) explicitly to find

γn(T ) = γn(0)e−µnT

⇒ ‖γ (T )‖32 ≤ e−µ1T ‖γ (0)‖32 , (3.11)

b0(T ) = e−Υ T b0(0) −
∫ T

0
e−Υ (T−s)Aχ̃ ∗ γ (s)ds

⇒ ‖b0(T )‖32 ≤ C(‖b0(0)‖32 , ‖γ (0)‖32)(1+ T )e−µ1T , (3.12)

and

σ (T ) = 1√
T + 1

⇒ |σ (T )| ≤ 1. (3.13)

Next, define

Bk = bk − hk(a0, . . . , ak−1, σ ), k ≥ 1, (3.14)

where hk is defined in (3.5).
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Lemma 3.5. There exists a C > 0, independent of ν, such that for all t > 0,

‖B1(T )‖32 ≤ C(1+ T )
3
2 e−µ1T

‖Bk(T )‖32 ≤ C(1+ T )1+
k
2 e−µ1T 2 ≤ k ≤ N .

Proof. For k = 1, we can compute B ′
1 and solve the resulting equation explicitly

to find

B1(T ) = e−Υ T− 1
2 log(T+1)B1(0)

−
∫ T

0
e−Υ (T−s)− 1

2 (log(T+1)−log(s+1))
[

A√
1+ s

χ̃ ∗ b0(s)+
Dtd√
1+ s

γ (s)

+ A2
√
1+ s

(Υ −1χ̌)〈χ̌ , γ (s)〉
]
ds.

As a result,

‖B1(T )‖32 ≤ C(‖B1(0)‖32 , ‖b0(0)‖32 , ‖γ (0)‖32)(1+ T )3/2e−µ1T . (3.15)

Next, for k ≥ 2, we have

B ′
k = −

(
k2

2
σ 2 + Υ

)
Bk − σ Aχ̃ ∗ Bk−1

− σ 2Dtd Bk−2 − σ 2A2〈χ̌ , Bk−2〉(Υ −1χ̌),

and so, assuming the result is true for k − 1,

‖Bk(T )‖32 ≤ e−µ1T ‖Bk(0)‖32

−C(‖Bk−1(0)‖32 , ‖Bk−2(0)‖32 , ‖γ (0)‖32) ×
∫ T

0
e−µ1T

[
1√
1+ s

(1+s)1+
k−1
2

1
+ 1

(1+ s)
(1+s)1+

k−2
2

1

]

ds,

which implies the result. 67

Step 3: Justifying equation (3.8), the decay rate within the center manifold
The goal of this section is to compute the decay rates of the ak by considering

the system (3.2) reduced to its center manifold, which is given by

a′
0 = 0

a′
1 = −1

2
σ 2a1

a′
k = −k

2
σ 2ak − Aσ 2〈χ̌ , hk−2(a0, . . . , ak−3, σ )〉32 2 ≤ k ≤ N

σ ′ = −1
2
σ 3.
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Converting back to τ = log(1+ T ), this becomes

ȧ0 = 0

ȧ1 = −1
2
a1

ȧk = −k
2
ak − A〈χ̌ , hk−2(a0, . . . , ak−3, e− τ

2 )〉32 2 ≤ k ≤ N .

Using the fact that h0 = 0, we see immediately that

a0(τ ) = a0(0), a1(τ ) = a1(0)e− 1
2 τ , a2(τ ) = a2(0)e−τ . (3.16)

Lemma 3.6. There exists aC > 0, independent of ν, such that if wewrite k = 3 j+n
with j ∈ N ∪ {0} and n ∈ {0, 1, 2} then, for all τ ≥ 0,

|ak(τ )| ≤ Ce− ( j+n)
2 τ , 0 ≤ k ≤ N .

Proof. Using the bound for h1 in (3.5), we find that

|a3(τ )| ≤ e− 3
2 τ |a3(0)| + C

∫ t

0
e− 3

2 (τ−s)|a0(s)|e− s
2 ds,

which implies

|a3(τ )| ≤ Ce− 1
2 τ .

A similar calculation shows that

|a4(τ )| ≤ Ce−τ , |a5(τ )| ≤ Ce− 3
2 τ .

Consider now general k, and assume the result holds for am withm ≤ k − 1. Using
(3.5), we have

|ak(τ )| ≤ |ak(0)|e− k
2 τ +

∫ τ

0
e− k

2 (τ−s)

(
k−2∑

3=1

Cak−2−3e− 3
2 s

)

ds.

Notice that
k−2∑

3=1

ak−2−3e− 3
2 s = ak−3e− 1

2 s + ak−4e−s

+ ak−5e− 3
2 s + · · · + a1e− (k−3)

2 s + a0e− (k−2)
2 s .

Thus, if k = 3 j + n, we find that

k−2∑

3=1

ak−2−3e− 3
2 s ∼ e− ( j+n)

2 s + e− ( j+n+2)
2 s + · · · + e− (3 j+n−2)

2 s .

Thus, we find that

|ak(τ )| ≤ |ak(0)|e− k
2 τ +

∫ τ

0
e− k

2 (τ−s)Ce− ( j+n)
2 sds ≤ Ce− ( j+n)

2 τ ,

as claimed. 67
This concludes the proof of Proposition 3.3. 67
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3.2. Proof of Theorem 1(i)

We now show how Theorem 1(i) follows from Proposition 3.3. Recall the def-
inition of uapp in (2.11). The dynamics of uapp are governed by the behavior of
{αk}Nk=0 and {βn

k }Nk=0, where n = 1, 2, . . . . Their dynamics are governed by (2.10),
which is a system of ODEs on RN × (32(R))N . Proposition 3.3 shows that, after
converting to the variables ak, bnk , this system has a finite-dimensional globally
attracting center manifold given by (3.6), and the rate of convergence to that center
manifold is exponential in T , as given in (3.7). Finally, recalling that αk = ak ,
βn
k = bnk − (Aχn/µn)αk , and that the only term among ak , bnk that is not decaying

in time is a0, one obtains the leading behavior of (2.11). This justifies the statements
in 1(i).

4. Decay of the Remainder via Spectral Decomposition and Hypocoercivity

Thegoal of this section is to proveTheorem1(ii),which states that the remainder
terms decay rapidly. To that end, insert the expansion (2.9) into (2.7) and (2.8) and
project off the first N + 1 eigenfunctions to obtain

∂τw
s
0 = Ltdw

s
0 − Dtd

[
αN−1ϕ

td
N+1 + αNϕtd

N+2 + ∂2ξ w
s
0

]

− A
∞∑

m=1

χm

[
βm
N−1ϕ

td
N+1 + βm

Nϕtd
N+2 + ∂2ξ v

s
m

]

∂τv
s
n = Ltdv

s
n − Dtd

[
βn
N−1ϕ

td
N+1 + βn

Nϕtd
N+2 + ∂2ξ v

s
n

]

− e
τ
2 A

∞∑

m=1

χn,m

[
βm
Nϕtd

N+1 + ∂ξv
s
m

]

− eτ [µnv
s
n + Aχmw

s
0]. (4.1)

The operatorLtd , acting onws
0 and v

s
n , decays like e

− N+1
2 τ . In addition, the forcing

terms in the above equation decay like αk,βk with k ≥ N − 1, which, due to
Lemmas 3.5 and 3.6, decay like e−( j+n)τ/2 ≤ e−kτ/6, for k = 3 j + n. Therefore,
we expect ws

0 and vsn to decay with the same rate as the forcing terms.
To prove this, we will not work with the above system in the (ξ, τ ) variables,

but we will instead work in the Fourier space associated with the original (X, T )
variables. Using the fact that

us0(X, T ) =
1√

T + 1
ws
0

(
X√
T + 1

, log(T + 1)
)
,

usn(X, T ) =
1

(T + 1)
∂ξv

s
n

(
X√
T + 1

, log(T + 1)
)
, (4.2)
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we find that

∂T us0 = ν2∂2Xu
s
0 − A

∞∑

m=1

χm∂Xusm

− Dtd

(1+ T )3/2

[
αN−1(log(T + 1))ϕtd

N+1

(
X√
T + 1

)

+αN (log(T + 1))ϕtd
N+2

(
X√
T + 1

)]

− A
(1+ T )3/2

∞∑

m=1

χm

[
βm
N−1(log(T + 1))ϕtd

N+1

(
X√
T + 1

)

+βm
N (log(T + 1))ϕtd

N+2

(
X√
T + 1

)]

∂T usn = ν2∂2Xu
s
n − A

∞∑

m=1

χn,m∂Xusm − [µnusn + Aχn∂Xus0]

− Dtd

(1+ T )2

[
βn
N−1(log(T + 1))ϕtd

N+2

(
X√
T + 1

)

+βn
N (log(T + 1))ϕtd

N+3

(
X√
T + 1

)]

− A
(1+ T )3/2

∞∑

m=1

χn,mβm
N (log(T + 1))ϕtd

N+2

(
X√
T + 1

)
.

We now take the Fourier transform with respect to x , with the convention

û(κ) =
∫

R
e−iκxu(x)dx .

Using the notation

Û (κ, T ) =
(

ûs0(κ, T )
{ûsn(κ, T )}∞n=1

)
, χ̌ = {χn}∞n=1, (χ̃ ∗ f )n =

∞∑

m=1

χn,m fm,

(4.3)

we find that

d
dT

Û = B(κ)Û + F̂(κ, T ), (4.4)

where

B(κ) = −ν2κ2
(
1 0
0 1

)
+ iκA

(
0 χ̌ ·
χ̌ χ̃∗

)
−
(
0 0
0 Υ

)
=: κ2B2 + κB1 + B0 (4.5)

and

F̂(κ, T ) =
(
F̂1(κ, T )
F̂2(κ, T )

)
, (4.6)
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with

F̂1(κ, T ) = −DtdΦ̂
td
0 (κ, T )

(1+ T )3/2

[
αN−1(T )(1+ T )

N+1
2 (−iκ)N+1

+αN (T )(1+ T )
N+2
2 (−iκ)N+2

]

− AΦ̂ td
0 (κ, T )

(1+ T )3/2

∞∑

m=1

χm

[
βm
N−1(T )(1+ T )

N+1
2 (−iκ)N+1

+βm
N (T )(1+ T )

N+2
2 (−iκ)N+2

]

F̂2(κ, T ) = −DtdΦ̂
td
0 (κ, T )

(1+ T )2

[
βn
N−1(T )(1+ T )

N+2
2 (−iκ)N+2

+βn
N (T )(1+ T )

N+3
2 (−iκ)N+3

]

− AΦ̂ td
0 (κ, T )

(1+ T )3/2

∞∑

m=1

χn,mβm
N (T )(1+ T )

N+2
2 (−iκ)N+2. (4.7)

Note that we have written α j (log(T + 1)) = α j (T ) and βn
j (log(T + 1)) = βn

j (T )
for convenience, and a direct calculation shows that

Φ̂ td
0 (κ, T ) =

√
T + 1e−νtdκ2(T+1).

The plan is to analyze the behavior of (4.4) using Duhamel’s formula

Û (κ, T ) = eB(κ)T Û (κ, 0)+
∫ T

0
eB(κ)(T−s)F(κ, s)ds, (4.8)

and show that solutions decay like T−N (N ), whereN can bemade large by choosing
N large. The precise relationship between N and N is given in the statement of
Proposition 4.2. We will obtain this decay in the norm

‖Û (·, T )‖2 =
∫

R
‖Û (κ, T )‖2Y dκ =

∫

R
|ûs0(κ, T )|2dκ

+
∫

R
‖{ûsn(κ, T )}‖232dκ. (4.9)

Remark 4.1. Recall that we expect decay of the remainder termsws
0, v

s
n in L2(m),

and the relationship between these variables and u0, un is given in (4.2). Suppose
that two functions g and f are related via

g(ξ, τ ) = (1+ T )γ f (X, T ), ξ = X√
1+ T

, τ = log(1+ T ).
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Then we have

‖g(τ )‖2L2(m)
=
∫
(1+ ξ2)m |g(ξ, τ )|2dξ

= (1+ T )2γ−1/2
∫
[1+ X2(1+ T )−1]m | f (X, T )|2dX

8 (1+ T )2γ−1/2
m∑

j=0

(1+ T )− j
∫

|X j f (X, T )|2dX

= (1+ T )2γ−1/2
m∑

j=0

(1+ T )− j‖∂ j
κ f̂ (T )‖2L2 .

The discussion at the beginning of this section suggests we can expect ws
0(ξ, τ )

and vsn(ξ, τ ) to decay like

‖ws
0(τ )‖L2(m) + ‖‖vs(τ )‖32‖L2(m) ∼ e−η(N )τ ,

where η(N ) growswith N . Therefore, one could estimate solutions to (4.8) in terms
of the norm

|||Û (T )||| = (1+ T )1/2
m∑

j=0

(1+ T )− j‖∂ j
κ û0(T )‖2L2

+ (1+ T )3/2
m∑

j=0

(1+ T )− j‖∂ j
κ (κ

−1‖{ûn(T )}‖32)‖2L2 . (4.10)

Although this is possible [5], the calculations are cumbersome. Therefore, we have
chosen to carry out the estimates in terms of the much simpler norm (4.9), which
also seems quite natural.

The goal of this section will be to prove the following result:

Proposition 4.2. For any N ∈ N and Û (κ, 0) such that ‖∂3
κÛ (·, 0)‖ < ∞ for all

0 ≤ 3 ≤ N + 1 and and ∂3
κÛ (0, 0) = 0 for all 0 ≤ 3 ≤ N , the corresponding

solution of (4.8) satisfies

‖Û (·, T )‖ ≤ C(1+ T )−
N
6 − 1

12

for all T ≥ 0, where C is a constant that is independent of ν but depends on Û (0)
and its derivatives.

Remark 4.3. The assumption that ∂3
κÛ (0, 0) = 0 for all 0 ≤ 3 ≤ N holds for

initial data associated with Û (κ, τ ) defined in (4.3), due to equations (4.2) and
(2.9) and the discussion following (1.15). See also Lemma 4.21.
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Remark 4.4. Note that the result claimed in Theorem 1(ii) follows from the above
proposition. To see this, recall that urem is defined in (2.12). Using equations (4.2),
(4.9), and Plancherel’s Theorem , we have

‖urem(T )‖2L2 ≤ Cψ

[
‖us0(T )‖2L2 + ‖‖{usn(T )}‖232‖

2
L2

]

= Cψ

[
‖ûs0(T )‖2L2 + ‖‖{ûsn(T )}‖232‖

2
L2

]

= Cψ‖Û (T )‖2 ≤ C(1+ T )−
N
3 − 1

6 ,

where Cψ is a constant that depends on the L2 norms of the cross-sectional eigen-
functionsψn . Note that the requirement that ‖∂3

κÛ (·, 0)‖ < ∞ for all 0 ≤ 3 ≤ N+1
in the above proposition holds as long as the initial data for (1.1) lies in the alge-
braically weighted function space: u(·, 0) ∈ L2(N + 1)× L2(Ω). This is because
∂3
κ f̂ ∈ L2 if and only if X3 f ∈ L2, which means f ∈ L2(3).

We now state a brief result on the decay of the forcing terms in (4.8).

Lemma 4.5. There exists a constant C > 0, independent of ν, such that, for all
T > 0, κ ∈ R

|F̂1(κ, T )| ≤ C(1+ T )
N−1
2 − 1

2 ( j+n)|κ|N+1e−νtdκ2(1+T )[1+ |κ|(1+ T )1/2]
‖F̂2(κ, T )‖32 ≤ C(1+ T )

N−1
2 − 1

2 ( j+n)|κ|N+2e−νtdκ2(1+T ) ×
[1+ |κ|(1+ T )1/2 + (1+ T )1/2],

where n, j are defined so that N − 1 = 3 j + n, with n ∈ {0, 1, 2}.

Proof. This is a direct consequence of the definition of F̂ in (4.7), of Lemmas 3.5–
3.6, and of (3.1). 67

In order to combine Lemma 4.5 with equation (4.8) and prove a decay result
for the remainder terms, we will need good control of the semigroup generated by
B(κ). To obtain this, we will first obtain estimates on the spectrum of B(κ). We
will then use these spectral estimates to obtain decay estimates on the semigroup
for three different regions: (1) small wavenumber 0 ≤ |κ| ≤ κ0; (2) intermediate
wavenumber κ0 ≤ |κ| ≤ κ1ν

−1; and (3) large wavenumber κ1ν
−1 ≤ |κ|, where κ0

and κ1 are positive constants that are independent of ν.

4.1. Spectral Decomposition

First, we state a lemma on the spectrum of B0,1,2.

Lemma 4.6. On the space Y = C × 32(C), the following hold:

(i) The operator B0 has only point spectrum, and it is given by σ (B0) = {0} ∪
{−µn}∞n=1;

(i) The operators B1 and B2 are bounded.
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Proof. (i) This follows from the fact thatB0 is diagonal and the only accumulation
point of its entries is ∞.

(ii) This is trivially true for B2 because it is a scalar multiple of the identity, and for
B1 it follows from the fact that {ψn}∞n=0 forms an orthonormal basis for L2(Ω)

and Parseval’s identity.
67

Next, we analyze the spectrum of B(κ) for any fixed κ ∈ R.

Lemma 4.7. Fix any κ ∈ R. The spectrum of B(κ) consists only of point spectrum.

Proof. We will show that, for fixed κ , B(κ) = B0 + κ(B1 + κB2) is a relatively
compact perturbation of B0. The result will then follow from Weyl’s theorem [10,
XIII.4, Corollary 2]. We must show that

κ(B1 + κB2)(B0 + i)−1

is a compact operator on C × 32(C). By Parseval’s identity, this is equivalent to
showing that

κ(iAχ(y, z) − ν2κ)(∆ + i)−1

is a compact operator on L2(Ω). We let {ûn(y, z)} ⊂ L2(Ω) be a bounded
sequence: ||ûn(y, z)||L2(Ω) ≤ C for all n ∈ N. Then, since i is in the resolvent set
of ∆ and (∆+ i)−1 : L2(Ω) → H1(Ω) is bounded, it follows that {(∆+ i)−1ûn}
is a bounded sequence in H1(Ω). Therefore

{κ(iAχ(y, z) − ν2κ)(∆ + i)−1ûn}

is also a bounded sequence in H1(Ω). Since H1(Ω) is compactly embed-
ded in L2(Ω), this sequence has an L2(Ω) convergent subsequence. Therefore
κ(iAχ(y, z) − ν2κ)(∆ + i)−1 is compact. 67

4.1.1. Low Wavenumber Estimates Using the Leading Eigenvalue We next
prove a result on the spectrum of B(κ) for |κ| sufficiently small. In particular, we
show in this case that the eigenvalues of B(κ) split into two parts: an eigenvalue
λ0(κ) near 0, and eigenvalues λ(κ) satisfying Re(λ(κ)) ≤ −µ1/2. Therefore, we
expect λ0(κ) to dominate the long-time behavior, and we will therefore be able to
use it to obtain estimates on the low-wavenumber part of our solution. In addition,
we will show that this leading eigenvalue λ0(κ) is approximately −νtdκ

2, so the
long-time behavior will correspond with Taylor dispersion.

We note that, at various points in the following proofs we will need to fix a
constant κ0 that is sufficiently small and consider only κ such that |κ| ≤ κ0. The
value of κ0 will always be independent of ν andwill only be adjusted a finite number
of times.

Proposition 4.8. There exists a sufficiently small constant κ0 that is independent
of ν and such that, if we fix any κ ∈ R such that |κ| ≤ κ0, and let 0 < ν < 1, then
we have that
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(i) The (point) spectrum of B(κ) can be divided into two disjoint sets, σ (B(κ)) =
{λ0(κ)} ∪ Σ(κ), where |λ0(κ) + νκ2| ≤

√
2µ1/2 and, for any eigenvalue

λ(κ) ∈ Σ(κ), we have Re(λ(κ)) ≤ −µ1/2;
(ii) The leading eigenvalue satisfies λ0(κ) = −νtdκ

2 + Λ0(κ), where Λ0(κ) =
irκ3 + O(κ4) is smooth, and independent of ν. Here r = r(χ , {µn}∞n=1) ∈ R
is given in equation (4.19).

The main idea behind this Proposition is the following: recall that B(κ) =
B0+κB1+κ2B2. If |κ| is small, thenB(κ) is just a small perturbation ofB0, which
has spectrum {0} ∪ {−µn}∞n=1 and the separation claimed in (i). Furthermore, we
will see that B1 is antisymmetric, hence the real part of the spectrum of B(κ) is
actually an O(κ2) perturbation of that of B0. The ν-dependence of the spectrum
stated in the proposition can be obtained from the following decomposition: recall
that B2 = −ν2 I . Letting C(κ) = B0 + κB1, we have that B(κ) = C(κ) − ν2κ2 I ;
that is, the operators B(κ) and C(κ) differ by a scalar multiple of the identity, and,
since C(κ) is independent of ν, all of the ν-dependence of B(κ) is contained in this
scalar. Therefore we immediately have the following lemma:

Lemma 4.9. Fix any κ ∈ R, let ν > 0, and let B(κ) and C(κ) be defined as above.
The following are true:

(i) The semigroups of B(κ) and C(κ) are related by eB(κ)T = e−ν2κ2T eC(κ)T ;
(ii) The eigenvalues λ(κ) of B(κ) and Γ (κ) of C(κ) are in one-to-one correspon-

dence with one another via λ(κ) = Γ (κ)− ν2κ2, and corresponding eigenval-
ues have the same projection operators P(κ).

Remark 4.10. Since the operator C(κ) is independent of ν, the above lemma tells
us exactly what the ν-dependence is in the semigroup eB(κ)T , and it tells us exactly
what the ν-dependence is in the eigenvalues λ(κ) in terms of the (ν-independent)
eigenvalues Γ (κ) of C(κ). Furthermore, since the projections P(κ) of correspond-
ing eigenvalues are the same, and C(κ) is independent of ν, these projections can
be taken to be independent of ν. This relationship between the ν-dependence and
the structure of the system is a direct consequence of the change of variables (1.2).

Note that, because B(κ) generates an analytic semigroup, the following Corol-
lary follows immediately from Proposition 4.8(i):

Corollary 4.11. There exists a sufficiently small constant κ0 that is independent of
ν and such that the following holds. Fix any κ ∈ R such that |κ| ≤ κ0, and let
0 < ν < 1. Let Q0(κ) be the projection complementary to the eigenspace of the
eigenvalue λ0(κ) of B(κ). Then, for all W ∈ C× 32(C) = Y and T > 0, we have

‖eB(κ)T Q0(κ)W‖Y ≤ Ce−µ1
2 T ‖W‖Y

for some constant C > 0 which is independent of ν.

Before proving Proposition 4.8, we will need to prove the following Lemma:

Lemma 4.12. There exists a sufficiently small constant κ0 that is independent of ν
and such that the following holds: let λ(κ) be an eigenvalue of B(κ), then
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(i) Re(λ(κ)) ≤ −ν2κ2;
(ii) If |κ| ≤ κ0, then |Imλ(κ)| < µ1/2.

Proof. This lemma follows by splitting B(κ) into its real and imaginary parts.
Recall from (4.5) that B(κ) = B0 + κB1 + κ2B2 with

B0 =
(
0 0
0 −Υ

)
, B1 = Ai

(
0 χ̌ ·
χ̌ χ̃∗

)
, B2 = −ν2

(
1 0
0 I

)
.

Note that B0 and B2 are diagonal, and hence that

S(κ) := B0 + κ2B2

is symmetric. Also note that

A(κ) := κB1

is anti-symmetric, which follows from a straightforward computation using Par-
seval’s identity. Let V = {Vn}∞n=0 ∈ C × 32(C) and let v(y, z) = V0 +∑∞

n=1 Vnψn(y, z). Then

〈B1V, V 〉C×32(C) = 〈Aiχ(y, z)v(y, z), v(y, z)〉L2(Ω)

= −〈v(y, z), Aiχ(y, z)v(y, z)〉L2(Ω)

= −〈V,B1V 〉C×32(C).

Using this splitting into symmetric and antisymmetric parts, if λ(κ) is an eigen-
value of B(κ) with eigenvector V (κ) normalized so that ‖V (κ)‖Y = 1, one can
immediately write (see [7], p. 124, for example)

Re(λ(κ)) = 〈V (κ),S(κ)V (κ)〉C×32(C). (4.11)

Since S(κ) is symmetric and V (κ) is normalized, the variational characterization
of the eigenvalues of symmetric operators insures that this inner product is bounded
by the right-most point in the spectrum S(κ) which −ν2κ2. This proves the first
part of Lemma 4.12.

For the second part of this lemma, we use an argument similar to that used in
the proof of the first part to control the imaginary part of λ(κ). Writing λ(κ) =
〈V (κ),B(κ)V (κ)〉C×32(C) and splitting B into its symmetric and anti-symmetric
parts yields an expression for Im(λ(κ)):

Im(λ(κ)) = − 1
area(Ω)

∫

Ω
v(κ, y, z)κi Aχ(y, z)v(κ, y, z)dydz,

where v(κ, y, z) is the unit eigenvector for λ(κ), and we have used Parseval’s
identity. Continuing, we get

Im(λ(κ)) = iκA
1

area(Ω)

∫

Ω
v(κ, y, z)χ(y, z)v(κ, y, z)dydz,

so that

|Imλ(κ)| ≤ |κ|A‖χ‖L∞
Ω
<

µ1

2
,

as long as κ0 < µ1/(2A‖χ‖L∞
Ω
). This completes the proof of the Lemma. 67
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We now prove Proposition 4.8

Proof. First, we prove item (i). To establish this separation for B(κ), we note first
that it suffices to establish it for C(κ) since κ2B(κ) simply shifts the entire spectrum
by an amount κ2. Let Γ∗ be the boundary of the rectangle {z = x + iy : |x |, |y| ≤
µ1/2}. The Γ∗ separates the spectrum of B0, and for z ∈ Γ∗ we have

||(B0 − z)−1|| ≤ 2
µ1

,

since B0 is diagonal and µ1/2 is the distance from Γ∗ to σ (B0) [8, Chapter V,
Section 3.5, (3.16)].

Next note that the norm of κB1, considered as an operator on C × 32(C),
can be bounded with the aid of Parseval’s identity. Let V ∈ C × 32(C) and set
v(y, z, κ) = V0(κ)+

∑∞
n=1 Vn(κ)ψn(y, z). Then

‖κB1V ‖2C×32(C) = |κ|2〈Aiχv, Aiχv〉 ≤ |κ|2A2‖χ‖2L∞(Ω)‖v‖2L2(Ω)
(4.12)

= |κ|2A2‖χ‖2L∞(Ω)‖V ‖2C×32(C).

Thus, if κ0 < µ1/(2A‖χ‖L∞
Ω
), ‖κB1‖ ≤ µ1/2.

This in turn implies that for any z ∈ Γ∗,

‖(C(κ) − z)−1‖ = ‖(B0 + κB1 − z)−1‖
= ‖(1+ κ(B0 − z)−1B1)

−1(B0 − z)−1‖ . (4.13)

By the estimate of the norm of B1 and the assumption that |κ| < κ0, we see that

‖κ(B0 − z)−1B1‖ < 1 , (4.14)

so that (1 + κ(B0 − z)−1B1)
−1 is bounded and hence that Γ∗ is contained in

the resolvent set of C(κ) for all |κ| ≤ κ0. Since the eigenvalues of C(κ) vary
continuously with κ , this means that there is one eigenvalue, Γ0(κ), of C(κ) inside
Γ∗ for all |κ| ≤ κ0, and hence that |Γ0(κ)| ≤

√
2µ1/2. As we observed above, the

corresponding eigenvalue of B(κ) is λ0(κ) = Γ0(κ)− νκ2, and hence the first part
of point (i) in the Proposition follows.

Now suppose that Γ (κ) is an eigenvalue not contained in Γ∗ (and hence, by the
relationship between the spectra of B(κ) and C(κ) it corresponds to an eigenvalue
λ(κ) ∈ Σ(κ)). Then either

(a) Re(Γ (κ)) ≤ −µ1/2 , or
(b) −µ1/2 ≤ Re(Γ (κ)) ≤ 0, and | Im(Γ (κ))| > µ1/2,

because Lemma 4.12 implies that none of the eigenvalues of C(κ) can have positive
real part. If case (b) held, then there would be a corresponding eigenvalue λ(κ) of
B(κ)with |Im(λ(κ))| > µ1/2, and this would violate Lemma 4.12 (ii). Hence case
(a) applies and this in turn implies the bound in Proposition 4.8 (i).

Next, we prove item (ii) in Proposition 4.8. Note that, because λ0(κ) is a pertur-
bation of the simple eigenvalue 0 ofB0, both λ0(κ) and its spectral projection P0(κ)
perturb smoothly in κ [8]. However, due to Lemma 4.9, we can instead estimate
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the leading (ν-independent) eigenvalue Γ0(κ) of C(κ), which is still a perturbation
of the simple eigenvalue 0 of B0. We expand this eigenvalue

Γ0(κ) = Γ0 + Γ1κ + Γ2κ
2 +O(κ3) (4.15)

and its corresponding eigenvector

V̂ (κ) = V̂0 + V̂1κ + V̂2κ2 +O(κ3), (4.16)

where

V̂ (κ) =
(
û0(k)
Û (κ)

)
, V̂ j =

(
û j
0

Û j

)

.

Now the eigenvalue problem reads as

C(κ)V̂ (κ) = Γ (κ)V̂ (κ). (4.17)

Plugging (4.15) and (4.16) into (4.17), we find that

B0V̂0 = 0 · V̂0, ⇒ Γ0 = 0, V̂0 =
(
1
0

)
.

Next, we find that

B1V̂0 + B0V̂1 = Γ1V̂0

B1V̂1 + B0V̂2 = Γ2V̂0 + Γ1V̂1

B1V̂2 + B0V̂3 = Γ3V̂0 + Γ2V̂1 + Γ1V̂2,

(4.18)

and so on. Solving the first equation, we find that

Γ1 = 0, V̂1 =
(

c1
iAΥ −1χ̌

)
,

where the scalar constant c1 is undetermined but can be fixed by normalizing the
eigenvectors. At O(κ2), we similarly find that

Γ2 = −Dtd , V̂2 =
(

c2
iAc1Υ −1χ̌ − A2Υ −1[χ̃ ∗ (Υ −1χ̌)]

)
.

Finally, at O(κ3), the first component in the equation implies

Γ3 = c1(Dtd)+ iAχ̌ ·
[
iAc1Υ −1χ̌ − A2[χ̃ ∗ (Υ −1χ̌)]

]

= −iA3χ̌ · [χ̃ ∗ (Υ −1χ̌)].
In particular, Γ3 is purely imaginary, and therefore

Γ0(k) = −Dtdκ
2 + irκ3 +O(κ4),

where

r = −A3χ̌ · [χ̃ ∗ (Υ −1χ̌)]. (4.19)
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Finally, using Lemma 4.9, we have

λ0(κ) = −(ν2 + Dtd)κ
2 + Λ0(κ)

= −νtdκ
2 + Λ0(κ),

where Λ0(κ) = irκ3 + O(κ4) is independent of ν. This completes the proof of
item (ii), and of Proposition 4.8. 67

4.1.2. High Wavenumber Estimates Using Standard Diffusive Estimates
Next, we consider the behavior of the spectrum of B(κ) for large |κ|.

Corollary 4.13. Given any fixed constant κ1, for all |κ| ≥ κ1
ν we have

‖eB(κ)T W‖Y ≤ Ce−κ21 T ‖W‖Y .

Proof. This follows immediately from Lemma 4.12, using the fact that B(κ) gen-
erates an analytic semigroup. 67

4.1.3. Intermediate Wavenumber Estimates via Hypocoercivity In this sub-
section, we prove the following Lemma:

Proposition 4.14. There exists a constant κ0 sufficiently small and independent of
ν so that the following holds: there exist positive constants κ1 and δ ∈ (0, 1

4 ) such
that for all κ1

ν ≥ |κ| ≥ κ0(1 − δ) and T > 0, we have

‖eB(κ)T W‖Y ≤ Ce−MT ‖W‖Y ,

where M and C are positive constants that are independent of ν and κ .

Remark 4.15. This result does not appear to be obvious. A naive estimate, such as
that in the proof of Corollary 4.13, would only give

‖eB(κ)T W‖Y ≤ Ce−ν2(κ0(1−δ))2T ‖W‖Y .

For large times T = 1, this does not actually produce decay: e−ν2(κ0(1−δ))2T =
e−ν2(κ0(1−δ))2 ∼ 1. Therefore, we really do need the stronger result given in Propo-
sition 4.14 to conclude that small wavenumbers |κ| ≤ κ0 really do give the leading
order behavior of solutions.

Proof. Let δ ∈ (0, 1
4 ) and fix κ ∈ [κ0(1−δ), κ1/ν], with any fixed κ1 > νκ0(1−δ).

We will study the decay of solutions to

d
dT

Û = B(κ)Û ,

with Û and B(κ) defined in (4.3) and (4.5) using Villani’s theory of hypocoercivity
[15]. Writing this equation in components and writing ûs0 = u and ûsm = vm with
m = 1, 2, . . . for notational convenience, we have
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∂T u = −ν2κ2u + Aiκ
∞∑

m=1

χmvm

∂T vm = −(ν2κ2 + µm)vm + Aiκχmu + Aiκ
∞∑

j=1

χm, jv j .

Motivated by [15], we consider the functional

Φ[(u, v)](T ) = ζ0uū +
∑

m

ζmvm v̄m + 2Re

(

iu
∑

m

σm v̄m

)

,

with ζ0, ζm , and σm to be defined below. We will show that Φ̇ ≤ −M̃Φ for some
constant M̃ that is independent of ν and κ , as long as κ1/ν ≥ |κ| ≥ κ0(1 − δ).
We will also chose ζ0, ζm , and σm so that there exist constants c1,2 independent
of ν and κ so that c1‖(u, v)‖2Y ≤ Φ(u, v) ≤ c2‖(u, v)‖2Y . This will imply that

‖(u, v)(τ )‖Y ≤ √
c2/c1e− 1

2 M̃T . Undoing the scalings will then imply the decay
claimed in the Proposition.

We compute

Φ̇ = −2ζ0ν2κ2|u|2 − 2Aκζ0Re

(

iu
∑

m

χm v̄m

)

− 2
∑

m

ζm(ν
2κ2 + µm)|vm |2

+ 2AκRe

(

iu
∑

m

ζmχm v̄m

)

+ 2AκRe



i
∑

m

ζm v̄m

∞∑

j=1

χm, jv j





− 2ν2κ2Re

(

iu
∑

m

σm v̄m

)

− 2AκRe




∑

j

χ jv j
∑

m

σm v̄m





− 2Re

(

iu
∑

m

σm(ν
2κ2 + µm)v̄m

)

+ 2AκRe

(

|u|2
∑

m

σmχm

)

+ 2AκRe



u
∑

m

σm

∞∑

j=1

χm, j v̄ j



 .

Next, define

σm = − c
2Aκµm

χm, ζm = ζ0 ∀m,
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where c is a constant to be determined. Note that this choice of ζm implies

−2Aκζ0Re

(

iu
∑

m

χm v̄m

)

+ 2AκRe

(

iu
∑

m

ζmχm v̄m

)

= 0.

Also,

2AκRe



i
∑

m

ζm v̄m

∞∑

j=1

χm, jv j



 = 0,

which results from the fact that the χm, j are real and χm, j = χ j,m . This follows
from the fact that the eigenfunctions ψ j of the Laplacian on the cross section Ω

can be chosen to be real. Therefore, we have

Φ̇ = −2ζ0ν2κ2|u|2 − 2ζ0
∑

m

(ν2κ2 + µm)|vm |2

+ cν2κ
A

Re

(

iu
∑

m

1
µm

χm v̄m

)

+ cRe




∑

j

χ jv j
∑

m

1
µm

χm v̄m





+ c
A
Re

(

iu
∑

m

χm

κµm
(ν2κ2 + µm)v̄m

)

− c|u|2|χ |2µ − cRe



u
∑

m

χm

µm

∞∑

j=1

χm, j v̄ j





≤
[

−2ζ0ν2κ2 + cν2|κ|
AQ2

1
+ c

2A|κ|Q2
2

− c|χ |2µ + c

2Q2
3

]

|u|2

+
[

−2ζ0(µ1 + ν2κ2)+
cν2|κ|Q2

1|χ |2µ
A

+ c|χ ||χ |µ + cQ2
2

2A|κ| |χ |
2 + cQ2

3

2
|χ |2µ|χ |2L∞

]

|v|2.

= (Iu + I Iu) |u|2 + (Iv + I Iv) |v|2,
where we denote |v| = ‖v‖32 , Q1,2,3 are constants that will be chosen later, and
where

Iu = −c|χ |2µ + c

2A|κ|Q2
2
+ c

2Q2
3
, I Iu = −2ζ0ν2κ2 + cν2|κ|

AQ2
1
,

and

Iv = −2ζ0µ1 + c|χ ||χ |µ + cQ2
3

2
|χ |2µ|χ |2L∞ + cQ2

2

2A|κ| |χ |
2,

I Iv = −2ζ0ν2κ2 +
cν2|κ|Q2

1|χ |2µ
A

.
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Recall that 0 < δ < 1/4 and |κ| > κ0(1 − δ). Furthermore, let

c < min





1 − δ

|χ |2µ
,

µ1

|χ ||χ |µ + |χ |2L∞ + 2|χ |2|
3A2κ20 |χ |2µ

, A2κ2
0 (1 − δ),

12µ1

|χ |2µ





.

We choose ζ0 = 1, Q2
1 = Q2

2 = 1
Aκ0|χ |2µ

and Q2
3 = 2

|χ |2µ
. Then

Iu = c|χ |2µ
(

−3
4
+ κ0

2|κ|

)
≤ −

c|χ |2µ
12

≤ −µ1,

since |κ| > κ0(1 − δ), 0 < δ < 1/4, and c < 12µ1/|χ |2µ. Next, notice that the
above choices imply that

I Iu = ν2
(
−2κ2 + c|χ |2µκ0|κ|

)
≤ −ν2κ2,

where we have used the facts that |κ| > κ0(1 − δ) and c < (1−δ)
|χ |2µ

. Similarly,

Iv = −2µ1 + c

[

|χ ||χ |µ + |χ |2L∞ + 2|χ |2
3A2κ2

0 |χ |2µ

]

≤ −µ1.

Finally,

I Iv = ν2
(

−2κ2 + c
A2κ0

|κ|
)

≤ −ν2κ2,

because c < A2κ2
0 (1 − δ). Therefore,

Φ̇ ≤ −(µ1 + ν2κ2)(|u|2 + |v|2).
Also, we have that

Φ ≤
(
1+ c

2A|κ|

)
|u|2 +

(

1+
c|χ |2µ
2A|κ|

)

|v|2

≤ M̌(|u|2 + |v|2),
where M̌ = 1+ Aκ0

2 max{1, |χ |2µ}. As a result,

Φ̇ ≤ −M̃Φ, (4.20)

where M̃ = µ1/M̌ . If we now additionally require that

c ≤ min

{

Aκ0(1 − δ),
Aκ0(1 − δ)

|χ |2µ

}

,

we find that

Φ ≥
(
1 − c

2Aκ0(1 − δ)

)
|u|2 +

(

1 −
c|χ |2µ

2Aκ0(1 − δ)

)

|v|2 ≥ 1
2
(|u|2 + |v|2).
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Therefore,

|u(T )|2 + |v(T )|2 ≤ 2Φ(T ) ≤ 2e−M̃TΦ(0) ≤ 4e−M̃T [|u(0)|2 + |v(0)|2],

which completes the proof of the Proposition. 67

4.2. Splitting of the Semigroup

The goal of this subsection is to establish the decay rates on the semigroup by
splitting it as

eB(κ)(T−s) = Ehigh(κ, T − s)+ Elow(κ, T − s)

+TN (κ, T − s)+RN (κ, T − s), (4.21)

where the components are defined as follows: both Ehigh,low will be exponentially
decaying pieces that correspond to high and low wavenumbers, respectively; the
terms TN and RN will both correspond to the leading order eigenvalue λ0(κ) =
−νtdκ

2 + Λ0(κ) of B(κ), defined in Proposition 4.8, with TN arising from the
Taylor diffusion term −νtdκ

2 and RN arising from the remainder Λ0(κ).
To precisely define each term in (4.21), first letψ(κ) be a smooth bump function

that equals 1 for |κ| ≤ κ0 and 0 for |κ| ≥ 2κ0, where κ0 is a fixed small constant
that is independent of ν and whose value will be specified below. Furthermore,
let P0(κ) be the (ν-independent) projection onto the eigenspace for the leading
eigenvalue λ0(κ) of B(κ), defined in Proposition 4.8, and let Q0(κ) = I − P0(κ)
be its complement. We can then define

Ehigh(κ, T − s) = (1 − ψ(κ))eB(κ)(T−s) (4.22)

Elow(κ, T − s) = ψ(κ)Q0(κ)eB(κ)(T−s). (4.23)

We use a Taylor expansion to define the remaining two terms TN , acting on a
function Ĝ(κ, s), and RN as

TN (κ, T − s)Ĝ(κ, s) = e−νtdκ2(T−s)

N∑

3=0

1
3!∂

3
κ

(
ψ(κ)P0(κ)eΛ0(κ)(T−s)Ĝ(κ, s)

)
|κ=0κ

3

(4.24)

RN (κ, T − s) = e−νtdκ2(T−s)ψ(κ)P0(κ)eΛ0(κ)(T−s) − TN (κ, T − s).

(4.25)

With this definition, we have

TN (κ, T − s)+RN (κ, T − s) = ψ(κ)P0(κ)eB(κ)(T−s) = ψ(κ)P0(κ)eλ0(κ)(T−s)

= e−νtdκ2(T−s)ψ(κ)P0(κ)eΛ0(κ)(T−s).

We now obtain decay estimates on each piece of (4.21).
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4.2.1. Bounds on Elow Before providing bounds on Elow, we first state the fol-
lowing lemma:

Lemma 4.16. Recall νtd = ν2 + Dtd , where Dtd = A2‖χ‖2µ. Let d > 0 and
T > 0. Then

‖κde−νtdκ2(1+T )‖L2(R) ≤ C(1+ T )−
d
2 − 1

4 ,

where the constant C = C(d) is independent of ν.

Proof. This follows from a direct calculation; the ν-independence of the constant
C follows from the fact that

ν−1
td = (ν2 + Dtd)

−1 ≤ D−1
td .

67

We now prove the following lemma, which provides estimates on Elow [recall that
the norm ‖ · ‖ is defined in (4.9)]:

Lemma 4.17. (i) ‖Elow(·, T )V̂ (·)‖ ≤ Ce−µ1
2 T ‖V̂ (·)‖

(ii) ‖
∫ T
0 Elow(·, T − s)F̂(·, s)ds‖ ≤ C(1+ T )−

N
6 − 1

12 .

Proof. By (4.9) and Corollary 4.11, we have

‖Elow(·, T )V̂ (·)‖2 =
∫

R
‖Elow(κ, T )V̂ (κ)‖2Y dκ

≤
∫

R
Ce−µ1T ‖V̂ (κ)‖2Y dκ = Ce−µ1T ‖V̂ (·)‖2.

This proves (i). To prove item (ii), note that
∥∥∥∥

∫ T

0
Elow(·, T − s)F̂(·, s)ds

∥∥∥∥ =
∥∥∥∥

∥∥∥∥

∫ T

0
Elow(·, T − s)F̂(·, s)ds

∥∥∥∥
Y

∥∥∥∥
L2(R)

≤
∫ T

0
Ce−µ1

2 (T−s)‖‖F̂(·, s)‖Y ‖L2(R)ds.

Now from Lemma 4.5, we know that

‖F̂(κ, s)‖Y ≤ C(1+ s)
N−1
2 − 1

2 ( j+n)e−νtdκ2(1+s)[|κ|N+1

+ |κ|N+2(1+ s)1/2 + |κ|N+2 + |κ|N+3(1+ s)1/2].

Next, using Lemma 4.16, we have that

‖‖F̂(·, s)‖Y ‖L2(R) ≤ C(1+ s)
N−1
2 − N+1

2 − 1
4 (1+ s)−

1
2 ( j+n)

= C(1+ s)−
5
4 (1+ s)−

1
2 ( j+n),
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where the constant C is independent of ν. Therefore,
∥∥∥∥

∫ T

0
Elow(·, T − s)F̂(·, s)ds

∥∥∥∥ ≤
∫ T

0
Ce−µ1

2 (T−s)(1+ s)−
5
4 (1+ s)−

1
2 ( j+n)ds

≤ C(1+ T )−
1
2 ( j+n)− 1

4

≤ C(1+ T )−
N
6 − 1

12 ,

where the exponent in the last line follows from the fact that N − 1 = 3 j + n, and
n ∈ {0, 1, 2}. 67

4.2.2. Bounds on Ehigh We prove the following Lemma:

Lemma 4.18. There exist constants C and M1, independent of ν, such that

(i) ‖Ehigh(·, T )V̂ (·)‖ ≤ Ce−M1T ‖V̂ (·)‖
(ii)

∥∥∥∥

∫ T

0
Ehigh(·, T − s)F̂(·, s)ds

∥∥∥∥ ≤ Ce− 1
4 M1T .

Proof. We can use Proposition 4.14 for κ0 ≤ |κ| ≤ κ1
ν and Corollary 4.13 for

|κ| ≥ κ1
ν to find that

‖eB(κ)T W‖Y ≤ Ce−MT ‖W‖Y
for all |κ| ≥ κ0. Therefore, we have

‖Ehigh(·, T )V̂ (·)‖2 =
∫

R
‖Ehigh(κ, T )V̂ (κ)‖2Y dκ

≤
∫

R
Ce−2MT ‖V̂ (κ)‖2Y dκ = Ce−2MT ‖V̂ (·)‖2,

which proves (i). Item (ii) follows additionally from Lemma 4.5 and the estimate

‖
∫ T

0
Ehigh(·, T − s)F̂(·, s)ds‖

≤
∫ T

0
Ce−M(T−s)‖(1 − ψ(·))‖F̂(·, s)‖Y ‖L2(R)ds

≤
∫ T

0
Ce−M(T−s)(1+ s)

N−1−n
3 ‖(1 − ψ(κ))|κ|(N+1)e−νtdκ2(1+s)

[1+ (|κ| + |κ|2)(1+ s)1/2]‖L2(R)ds

≤
∫ T

0
Ce−M(T−s) sup

|κ|≥2κ0
(e− νtd

2 κ2(1+s))(1+ s)
N−1−n

3 ‖|κ|(N+1)e− νtd
2 κ2(1+s)

[1+ (|κ| + |κ|2)(1+ s)1/2]‖L2(R)ds

≤
∫ T

0
Ce−M(T−s) sup

|κ|≥2κ0
(e− νtd

2 κ2(1+s))(1+ s)−
N
6 − 1

2 ds
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=
∫ T

0
Ce−M(T−s)e−2νtdκ20 (1+s)(1+ s)−

N
6 − 1

2 ds

=
∫ T

0
Ce−M(T−s)e−νtdκ20 (1+s)e−νtdκ20 (1+s)(1+ s)−

N
6 − 1

2 ds

≤ Ce−MT e(M−νtdκ20 )T ≤ Ce−Dtdκ20 T .
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4.2.3. Bounds on RN In this section we prove the following lemma:

Lemma 4.19. Recall that RN(κ, T ) is defined in (4.25), ‖ · ‖ in (4.9), and F̂ in
(4.6). Then

(i) ‖RN(·, T )V̂ (·)‖2 ≤ C(ψ, P0, V̂ )T− N
6 − 5

12 ;
(ii) ‖

∫ T
0 RN(·, T − s)F̂(·, s)ds‖ ≤ C(1+ T )−

N
6 − 1

12

for all T > 0, where the constantC(ψ, P0, V̂ ) depends on the first N+1 derivatives
of ψ, P0, and V̂ . In particular, we need to require that ‖∂3

κ V̂ ‖ is bounded for all
0 ≤ 3 ≤ N + 1.

Remark 4.20. We can ensure that the initial condition Û (κ, 0) in (4.8) has
‖∂3

κÛ (·, 0)‖ bounded for all 0 ≤ 3 ≤ N + 1 by requiring that the initial con-
dition u(x, y, z, 0) to (1.1) lies in L2((N + 1)).

Proof. To estimate RN, notice that a smooth function minus the first N terms of
its Taylor series can be written as

f (κ) −
N∑

j=0

1
j ! f

( j)(0)κ j =
∫ κ

0

∫ κN

0
. . .

∫ κ1

0
∂N+1
y f (y)dydκ1 . . . dκN .

Therefore, we can write

RN(κ, T − s)Ĝ(κ, T − s) = e−νtdκ2T
∫ κ

0∫ κN

0
. . .

∫ κ1

0
∂N+1
y

[
ψ(y)eΛ0(y)(T−s)P0(y)Ĝ(y, T − s)

]
dydκ1 . . . dκN .

Furthermore, the computation of the expansion ofλ0(κ) that follows equation (4.15)
implies that

|λ0(κ)+ νtdκ
2| = |Λ0(κ)| ≤ C |κ|3, for |κ| ≤ 2κ0

for some constantC that is independent of ν. The y-derivatives in the above integral
expression could fall on any of the terms in the brackets. Thus, we need to bound
terms of the form

‖(∂m1
κ ψ(κ))(∂m2

κ eΛ0(κ)T )(∂m3
κ P0(κ))(∂m4

κ V̂ (κ))‖, m1 + m2 + m3 + m4 = N + 1.
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Using the form of Λ0(κ), we have

∂m2
κ eΛ0(κ)T ∼ (κ2T )ρ1(κT )ρ2(T )ρ3(T )ρ4 · · · (T )ρm2 eΛ0(κ)T ,

where ρ1 + 2ρ2 + · · · + m2ρm2 = m2 and ρi ∈ {0, 1, . . . ,m2} for all i . Thus, the
ρi term corresponds to i derivatives falling on Λ0(κ). Therefore,

‖RN(·, T )V̂ (·)‖2 ≤
∫

R

∥∥∥∥e
−νtdκ2T

∫ κ

0

∫ κN

0
. . .

∫ κ1

0
∂N+1
y

[
ψ(y)eΛ0(y)T P0(y)V̂ (y)

]
dydκ1 . . . dκN

∥∥∥
2

Y
dκ

≤
∑

m1+m2+m3+m4=N+1

sup
|κ|≤2κ0

∥∥∥(∂m1
κ ψ(κ))(∂m3

κ P0(κ))(∂m4
κ V̂ (κ))

∥∥∥
2

Y

×
∫

|κ|≤2κ0

(
e−νtdκ2T

∫ κ

0

∫ κN

0
. . .

∫ κ1

0

∣∣∣∂m2
y eΛ0(y)T

∣∣∣ dydκ1 . . . dκN
)2

dκ

= C(ψ, P0, V̂ )

∫

|κ|≤2κ0
e−2νtdκ2T

×
(∫ κ

0

∫ κN

0
. . .

∫ κ1

0

∣∣∣(y2T )ρ1(yT )ρ2(T )ρ3(T )ρ4 · · · (T )ρm2 eΛ0(y)T
∣∣∣

dydκ1 . . . dκN

)2

dκ

≤ C(ψ, P0, V̂ )T 2(ρ1+···+ρm2 )

∫

|κ|≤2κ0
e−2νtdκ2T e2C|κ|3T |κ|2(2ρ1+ρ2+N+1)dκ.

The constant C(ψ, P0, V̂ ) is determined by sup|κ|≤2κ0

∥∥(∂m1
κ ψ(κ))(∂

m3
κ P0(κ))

(∂
m4
κ V̂ (κ))

∥∥∥
2

Y
. The function ψ and the projection P0 are smooth, bounded, and

independent of ν, so we need not worry about derivatives that fall on them. Notice
that, for z = κ

√
T , we have
∫

|κ|≤2κ0
e−2νtdκ2T e2C|κ|3T |κ|ρdκ

= CT− (ρ+1)
2

∫

|z|≤2κ0
√
T
|z|ρe−2νtd z2e2CT |z/

√
T |3dz

≤ CT− (ρ+1)
2

∫

|z|≤2κ0
√
T
|z|ρe−νtd z2e

−z2
(
νtd− 2C |z|√

T

)

dz

≤ CT− (ρ+1)
2 ,

Note that we have used the fact that |z| ≤ 2κ0
√
T . Therefore, after possibly making

κ0 smaller if necessary, νtd − 2C|z|√
T

≥ 0 . As a result,

‖RN(·, T )V̂ (·)‖ ≤ C(ψ, P0, V̂ )T ρ1+···+ρm2 T− 1
4− 1

2 (2ρ1+ρ2+N+1).
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Notice that

ρ1 + · · · + ρm2 − 1
4

− 1
2
(2ρ1 + ρ2 + N + 1)

= 1
2
ρ2 + ρ3 + ρ4 + . . . ρm2 − 3

4
− N

2

≤ 1
3
(ρ1 + 2ρ2 + · · · + m2ρm2) − 3

4
− N

2

≤ −N
6

− 5
12

.

In addition,

2ρ1 + 2ρ2 + 2ρ3 + 3ρ4 + · · · + (m2 − 1)ρm2 ≤ 2m1 ≤ 2(N + 1).

Therefore, we obtain

‖RN(·, T )V̂ (·)‖ ≤ C(ψ, P0, V̂ )T− N
6 − 5

12 ,

which proves (i). To prove (ii), Lemma 4.5 implies

‖F̂(κ, s)‖Y ≤ C |κ|N+1(1+ s)
N−1
3 e−νtdκ2(1+s)[1+ (|κ| + |κ|2)(1+ s)1/2].

Similarly,

‖∂m4
k F̂(k, s)‖Y ≤ C |κ|N+1−r1(1+ s)

N−1
3 (∂r2κ e−νtdκ2(1+s)) ×

∂r3κ [1+ (|κ| + |κ|2)(1+ s)1/2],

where r1 + r2 + r3 = m4. Moreover,

(∂r2κ e−νtdκ2(1+s)) =
∑

q1+2q2=r2

C(−νtdκ(1+ s))q1(−νtd(1+ s))q2e−νtdκ2(1+s).

As a result,

‖RN(·, T − s)F̂(·, s)‖2 ≤
∫

R

∥∥∥∥e
−νtdκ2(T−s)

∫ κ

0

∫ κN

0
. . .

∫ κ1

0

∂N+1
y

[
ψ(y)eΛ0(y)(T−s)P0(y)F̂(y, s)

]
dydκ1 . . . dκN

∥∥∥
2

Y
dκ

≤
∑

m1+m2+m3+m4=N+1

sup
|κ|≤2κ0

∥∥(∂m1
κ ψ(κ))(∂m3

κ P0(κ))
∥∥2
L(Y )

×
∫

|κ|≤2κ0

(
e−νtdκ2(T−s)

∫ κ

0

∫ κN

0
. . .

∫ κ1

0

∥∥∥|∂m2
y eΛ0(y)(T−s)∂m4

y F̂(y, s)
∥∥∥
Y
dydκ1 . . . dκN

)2

dκ

≤ C(ψ, P0)ν
2(q1+q2)
td (T − s)2(ρ1+···+ρm2 )(1+ s)

2(N−1)
3 +2(q1+q2)

×
∫

|κ|≤2κ0
e−2νtdκ2(T−s)e−2νtdκ2(1+s)e2C |κ|3(T−s)|κ|2(2ρ1+ρ2+N+1)|κ|2(N+1−r1+q1)dκ

≤ C(ψ, P0)ν
2(q1+q2)
td (T − s)2(ρ1+···+ρm2 )(1+ s)

2(N−1)
3 +2(q1+q2)

×min
{
(T − s)−(2N+2+2ρ1+ρ2−r1+q1)− 1

2 , (1+ s)−(2N+2+2ρ1+ρ2−r1+q1)− 1
2

}
.
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As a result,

∫ T

0
‖RN(·, T − s)F̂(·, s)‖ds ≤

C(ψ, P0)ν
(q1+q2)
td

∫ T/2

0
(T − s)(ρ1+···+ρm2 )(1+ s)

(N−1)
3 +(q1+q2) ×

(T − s)−(N+1+ρ1+ρ2/2−r1/2+q1/2)− 1
4 ds

+C(ψ, P0)ν
(q1+q2)
td

∫ T

T/2
(T − s)(ρ1+···+ρm2 )(1+ s)

(N−1)
3 +(q1+q2) ×

(1+ s)−(N+1+ρ1+ρ2/2−r1/2+q1/2)− 1
4 ds

≤ C(ψ, P0)ν
(q1+q2)
td (1+ T )−

N
6 − 1

12 ≤ C(ψ, P0, A,χ)(1+ T )−
N
6 − 1

12 .

Note that we have used the fact that

(ρ1 + · · · + ρm2)+
(N − 1)

3
+ (q1 + q2) − (N + 1+ ρ1 + ρ2/2 − r1/2+ q1/2

=
(ρ2

2
+ ρ3 + . . . ρm2

)
− 2N

3
− 7

12
+ r1

2
+ q1

2
+ q2

≤ 1
3
(ρ1 + 2ρ2 + · · · + m2ρm2) − 2N

3
− 7

12
+ 1

2
(r1 + r2)

≤ 1
3
m2 +

1
2
m4 − 2N

3
− 7

12

≤ 1
2
(N + 1) − 2N

3
− 7

12
= −N

6
− 1

12
.
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4.2.4. Bounds on TN In this section we show that the Taylor polynomial terms
are actually zero.

Lemma 4.21. LetTN(κ, T−s))Ĝ(κ, s) be defined as in (4.24). If s = 0 and Ĝ(κ, 0)
is an initial condition for (4.8), or if Ĝ(κ, s) = F̂(κ, s), where F̂ is defined in (4.6),
then TN(κ, T − s)Ĝ(κ, s) = 0 for all κ .

Proof. Recall that

TN(κ, T − s)Ĝ(κ, s) =
N∑

3=0

1
3!∂

3
κ

(
ψ(κ)eΛ0(κ)(T−s)P0(κ)Ĝ(κ, s)

)
|κ=0κ

3.(4.26)

In this expression, some derivatives fall on Ĝ(κ, s), but the order of these derivatives
does not exceed N . First consider the case where Ĝ(κ, 0) is an initial condition for
(4.8). This implies that

Ĝ(κ, 0) =
(

ûs0(κ, 0)
{ûsn(κ, 0)}∞n=1

)
.
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The functions ûsn , for n = 0, 1, . . . are defined via the projections in (2.9), the
similarity variables in (4.2), and the Fourier transform. Equation (2.9) defines ws

0
and vsn as the projections off of the first N + 1 eigenfunctions of the operator
Ltd . The projections onto those eigenfunctions are defined in terms of the Hermite
polynomials, which implies that

∫

R
ξ jws

0(ξ, τ )dξ =
∫

R
ξ jvsn(ξ, τ )dξ = 0

for all τ ≥ 0 and j = 0, . . . , N . Since when τ = 0 we have ξ = X , we therefore
find

∂ j
κ û

s
0(κ, 0)|κ=0 =

∫

R
F−1[∂ j

κ û
s
0(·, 0)](X)dX = C

∫

R
X jus0(X, 0)dX

= C
∫

R
X jws

0(X, 0)dX = 0, j = 0, . . . N ,

where we have used F−1 to denote the inverse Fourier transform and C is some
constant that can be explicitly determined. Similarly,

∂ j
κ û

s
n(κ, 0)|κ=0 = C

∫

R
X jusn(X, 0)dX = C

∫

R
X j∂Xv

s
n(X, 0)dX

= − jC
∫

R
X j−1vsn(X, 0)dX = 0, j = 1, . . . N .

When j = 0, the result holds because
∫

∂ξv
s
n(ξ, 0)dξ =

∫
Vn(ξ, 0)dξ = 0, where

Vn is defined in (2.4).
Next, consider the case where Ĝ = F̂ . Note that F̂(κ, s) = κN+1 Ĥ(κ, s),

where Ĥ(κ, s) is a smooth, bounded function in κ and s. This fact can be seen from
equation (4.7). Therefore ∂3

κ Ĝ(κ, s)|κ=0 = 0 for 0 ≤ 3 ≤ N . 67

4.3. Proof of Proposition 4.2, and Hence Theorem 1(ii)

Recall that the goal of this chapter is to prove Proposition 4.2, which by
Remark 4.4 implies Theorem 1(ii). Hence, we want to establish the estimate

‖Û (·, T )‖ ≤ C(1+ T )−
N
6 − 1

12 .

Recall from (4.8) that

Û (κ, T ) = eB(κ)T Û (κ, 0)+
∫ T

0
eB(κ)(T−s) F̂(κ, s)ds.

Using the splitting of the semigroup in (4.21) and Lemmas 4.17, 4.18, 4.19 and
4.21, we have

‖Û (T )‖ ≤ C
[
e−µ1

2 T + e−MT + (1+ T )−
N
6 − 5

12

]
‖Û (0)‖

+C
[
(1+ T )−

N
6 − 1

12 + e− 1
4 MT + (1+ T )−

N
6 − 1

12

]
,

which proves the result.
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