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Abstract

Short gamma-ray bursts (GRBs) are thought to result from the merger of two neutron stars (NSs) or an NS and a stellar
mass black hole (BH). The final stages of the merger are generally accompanied by the production of one or more tidal
“tails” of ejecta, which fall back onto the remnant-disk system at late times. Using the results of a linear stability
analysis, we show that if the material comprising these tails is modeled as adiabatic and the effective adiabatic index
satisfies v > 5/3, then the tails are gravitationally unstable and collapse to form small-scale knots. We analytically
estimate the properties of these knots, including their spacing along the tidal tail, the total number produced, and their
effect on the mass return rate to the merger remnant. We perform hydrodynamical simulations of the disruption of a
polytropic (with the polytropic and adiabatic indices ~y equal), v = 2 NS, by a BH and find agreement between the
predictions of the linear stability analysis and the distribution of knots that collapse out of the instability. The return of
these knots to the BH induces variability in the fallback rate, which can manifest as variability in the light curve of the
GRB and—depending on how rapidly the instability operates—the prompt emission. The late-time variability induced
by the return of these knots is also consistent with the extended emission observed in some GRBs.

Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); Analytical mathematics (38); Hydrodynamics
(1963); Hydrodynamical simulations (767); Accretion (14)
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1. Introduction

Timing, energetics, and host galaxy (both the specific
environments and lack of apparent proximity) constraints have
suggested that short gamma-ray bursts (GRBs) originate from
the merger of compact objects (e.g., Paczynski 1986; Eichler
et al. 1989; Burrows et al. 2005; Zhang 2007; Berger 2014;
Fong et al. 2015). This theoretical notion was recently
vindicated with the contemporaneous gravitational-wave and
gamma-ray observations of the event GW/GRB 170817
(Abbott et al. 2017). Multiwavelength follow-up of this event
also confirmed that such mergers produce a kilonova—the
radioactively powered emission from r-process nucleosynthesis
in the aftermath of the coalescence (e.g., Li & Paczyrski 1998;
Metzger et al. 2010; Kasen et al. 2017).

The emission from GRBs shows variability across a range of
timescales (e.g., Margutti et al. 2011; Dichiara et al. 2013;
Berger 2014; Swenson & Roming 2014; Mu et al. 2018). The
origin of this variability could be related to an intrinsic restructuring
of the accretion disk surrounding the postmerger object (Perna
et al. 2006; Dall’Osso et al. 2017). Another possibility, however, is
related to the fallback of material onto the postmerger system that
occurs as the tidal tails of debris—ejected during the final stages of
the inspiral—rain back onto the disk. In particular, while it is
predicted that the overall scaling of this fallback should trace a
smooth, o /3 decline in time (e. g., Chevalier 1989; see also the
fallback rate in Figure 3 below), small-scale structure in the debris
that feeds the accretion flow could correspondingly lead to changes
in the luminosity of the system.

Such structure could be supplied by the intrinsic nature of the
object(s) destroyed in the merger; for example, convection in the
interior of a neutron star (NS; e.g., Thompson & Duncan 1993),

which may be enhanced during the inspiral, will naturally
provide local density fluctuations in the tails of the debris. It is
also conceivable that the dynamical state of the ejected material
is susceptible to a larger-scale instability, leading to the
formation of knots within the tails that then return at discrete
times. Rosswog (2007) speculated about this latter possibility,
and Lee & Ramirez-Ruiz (2007) found from their numerical
simulations that such an instability could indeed occur (see also
Colpi & Rasio 1994; Rasio & Shapiro 1994; Lee 2000).
However, Lee & Ramirez-Ruiz (2007) only found that the tails
were unstable if the polytropic index of the gas comprising the
tails satisfied v 2 3, whereas more realistic equations of state
likely yield v ~ 2-3 (e.g., Rasio & Shapiro 1994; Lattimer &
Prakash 2001).

Here we use a combination of analytical arguments and
numerical experiments to demonstrate that the tails generated
from compact object mergers are gravitationally unstable and
collapse to form small-scale knots that lead to variability in the
fallback rate provided that the adiabatic index of the gas
comprising the tails satisfies v > 5/3. In Section 2 we provide
analytic estimates of the linear growth rate of the instability and
the properties of the knots that condense out of the tail, and in
Section 3 we compare these predictions to numerical hydro-
dynamical simulations. We discuss the observational implica-
tions of these findings in Section 4. We summarize and
conclude in Section 5.

2. Stability Analysis and Analytic Estimates

Polytropic, hydrostatic cylinders are gravitationally unstable
to perturbations along the axis of the cylinder below a critical
wavenumber, k., Where k., ~ few is measured in units of the
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radius of the cylinder (Coughlin & Nixon 2020). By
“polytropic” we mean that the adiabatic index of the gas,
which controls how vigorously pressure perturbations respond
to density perturbations, and the polytropic index, being the
exponent ~y that appears in the relation p oc p”, where p is the
pressure and p is the density that appear in the equation of
hydrostatic balance, are equal. All perturbations with wave-
numbers below k;, are unstable and grow as e?’, where o is
the growth rate that depends on the wavenumber and 7 is time
in units of the sound-crossing time over the radius of the
cylinder, and cause runaway collapse along the cylinder axis.
However, there is a second wavenumber, k. ~ 1 (<kgi), at
which the growth rate of the instability is maximized at a value
of omax ~ 1 (Figure 4 of Coughlin & Nixon 2020). If a
hydrostatic cylinder is subjected to a random initial perturba-
tion, such that the Fourier coefficients have comparable power
over the range of unstable wavenumbers, then this wavelength
will grow fastest and characterize the mass and separation
scales of the objects that condense out of the instability.

The formation of a cylindrical filament is a natural
consequence of the tidal stretching of the debris that is flung
out during the final stages of the merger of two compact objects
(e.g., Figure 2). The difference between such a tidal tail and a
hydrostatic cylinder is that the former possesses a nonnegligi-
ble amount of shear in the velocity along the axis of the
cylinder, which is established by the tidal field of the disrupting
object and inhibits the growth of the instability. In the next
subsection, we analyze the general behavior of the instability in
the presence of shear. In Section 2.2 we limit the analysis to a
polytropic index of v = 2, and we present the observational
implications of the instability.

2.1. General Stability Analysis

The tail expands predominantly in one direction as a
consequence of the tidal stretching, which we define as the z-
direction and delimits the axis of the cylinder, and we define s
as the cylindrical-radial direction and ¢ as the azimuthal angle
around the axis of the cylinder. Along z, there is a location Z(f)
where the material is marginally bound to the remnant, and the
fluid element at this location therefore obeys

0z 2GM.
% — vy, = |22 1
E 7 ~ (1)

where M. is the mass of the remnant. Near this marginally
bound position, we can Taylor expand the fluid variables in the
quantity

z—Z(@) _ Az

Z@0)  Z@) @

and the leading-order (in Az/Z) solution to the fluid equations
for the z-component of the velocity is (Coughlin et al. 2016a)

If we now assume that the gas is isentropic and let the adiabatic
index satisfy v > 5/3, then we can show that the leading-order
solutions to the fluid equations for the other fluid variables are

_ A2 _ GN B
= 47TH(Z)28(5),P - 47TH2h(£)’ Vg = VH& (4)
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where p is the gas density, p is the pressure, v, is the
cylindrical-radial velocity, H(Z) is the radius of the cylinder
where the density equals zero, Vg = OH/0t is the surface
velocity that satisfies

2—-~ H
Vi = V,— 5
H — 2 (5)
and hence H oc Z&~1/0=D ¢ = s/H, and
H
Aocf psds o Z2 6)
0

is the line mass of the cylinder. With these definitions and the
isentropic relation between the pressure and the density so that
h = Kg”, where K is the entropy, we can show that the
cylindrical component of the momentum equation and the
Poisson equation can be combined to give

y—1
Ky 9 [La_A) Y o
v — 19|\ § 9¢ £

where \ = fo ¢ g(&)¢& d¢ is the dimensionless line mass and

A(1) = 1. Equation (7) is the Lane-Emden equation for the line
mass of the cylinder as a function of cylindrical radius and can
be integrated and solved for K as described in Coughlin &
Nixon (2020; see their Figure 1).

The solutions given by Equation (4) are quasi-hydrostatic in
that the fluid velocity is nonzero in the cylindrical-radial
direction but the sound speed ¢, declines less rapidly than Vy;
specifically, we have

s~ VGA < Z71, (8)

while the velocity at the surface of the tail obeys

2-v 3
Vi oc Z1 2, )

Thus, as time advances and the tail continues to stretch, the
propagation speed of perturbations within the tail is given by
the sound speed, and the relevant dimensionless timescale that
characterizes the evolution of any perturbation is

g~ Sy = YGA

H H

With this dimensionless timescale, we can now introduce
perturbations to the density, pressure, and gravitational
potential that are functions of { = s/H, n = Az/H, ¢, and T
and derive the linearized perturbation equations from the fluid
equations. When ~ > 5/3, the resulting set of equations is
identical to that derived in Coughlin & Nixon (2020) because
of the quasi-hydrostatic nature of the unperturbed solutions,
and there is correspondingly a maximally growing and unstable
mode that will characterize the properties of the knots that
collapse out of the ejected tail(s). When v = 5/3, the analysis
and the linearized perturbation equations are more complicated
owing to the identical scaling between the sound speed and the

dt. (10)
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expansion rate of the surface, and there is an additional
parameter—being the ratio of the sound speed to the expansion
speed, which can be rewritten as the ratio of the tail density to
the black hole (BH) tidal density7—that enters into the
equations. When the tail density is much larger than the BH
density, then the equations reduce to those derived in Coughlin
& Nixon (2020), and the instability grows as a power law in
time with the power-law index appropriate to Figure 4 in that
paper. However, when the ejecta and BH densities are
comparable, the unstable eigenvalue must be derived as a
function of the ratio of those densities.

Here we focus on the case when v > 5/3, as this has been
the focus of past investigations of NS mergers and is likely
appropriate for the very stiff equations of state that characterize
nuclear densities (valid for the initial expansion of the tidal tail;
see Appendix A.3); correspondingly, the results directly carry
over from Coughlin & Nixon (2020) with an appropriate
redefinition of the dimensionless variables. Specifically,
Equation (10) combined with the scalings for the line mass
of the stream and the stream width gives

3/2 33t
JGhy 7. 1 X[(z) ‘ _1]’ an

Hy 2GM. g - % Zy
-

T =

where Ay, Hy, and Z, are the initial line mass, stream radius,
and location of the marginally bound orbit, respectively. If we
further integrate Equation (1) to give

12)

and use the fact that the object(s) that gave rise to the tidally
disrupted tail(s) had a pericenter distance comparable to the
tidal radius, so that Z3'?/V2GM. ~ Hy/\/GA,, then for
t 2 ty, Equation (11) becomes

1

t 17%ﬁ
T ™ (—) s (13)
to

2 R
th = Z_kx
° " 3 260,

is roughly the sound-crossing time over the original star of
radius R, and mass M,.

The existence of the unstable mode implies that perturba-
tions to the density at the maximally growing mode increase
with time as ~e“m=", which is exponential to a fractional power
of time, and the fractional power depends on the adiabatic
index but approaches 1 as v becomes large. If we denote the
dimensionless amplitude of the seed perturbation at the
maximally growing mode by 6p,, then the time-dependent
evolution of the perturbation to the density at the wavelength
kmax is

where

(14)

6_p
Po

> §pyetmT, (15)

7 By the tidal density of the BH, we mean M. /r3.
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where pg is the background density (which is declining owing
to the stretching of the tail). The nonlinear phase of the
instability is reached when 6p ~ p,, which is correspondingly
near the time at which we expect the tail to fragment.

We note that the analysis here assumed that the axis of the
cylinder was confined to a single direction (which we defined
as the z-direction), whereas in reality, the tidal tail ejected from
a merger will possess some curvature that results from the
nonzero angular momentum of the debris (see Figure 2). This
additional aspect of the problem can be trivially incorporated
into the perturbation analysis, as such curvature amounts to a z-
dependent displacement of the axis of the cylinder, which
corresponds to an m = 1 perturbation (where perturbations in
the ¢ direction around the axis of the cylinder vary as o ¢,
where m is an integer; an m = 1 perturbation displaces the axis
of the cylinder, analogous to the way in which an ¢ =1
perturbation of a spherical configuration of gas displaces the
center of mass of the sphere). However, it can be shown that
such perturbations are stable (Breysse et al. 2014; Coughlin &
Nixon 2020), and hence the curvature of the tidal tail has no
impact on the linear growth of the instability.

2.2. Fragmentation Timescales and Observational Implications
for Short GRBs

Taking an adiabatic index of = 2 for concreteness, the
time at which this nonlinear phase is reached, which we denote
Ifrag, 18 (inverting the above expressions for the density and 7)

ﬁ (16)

As discussed in more detail below (see Figure 4 and the
discussion thereof), the initial amplitude of the perturbation at
the maximally growing mode will be small if the density profile
of the NS is as smooth as a v = 2 polytrope, and nonlinear
couplings between smaller-k perturbations are likely respon-
sible for the emergence of the most unstable mode. If we
therefore take 6p, ~ 1073, omax = 0.57 (Table 2 of Coughlin
& Nixon 2020), and—with R, = 11 km and M, = 1.5 M.—1,
~ (0.04 ms, then this timescale is

tirag =~ 70 ms. (17)

At approximately this time, we expect the stream to fragment
into N knots separated by a spacing of zeep =~ 2R, /kpax = 30
km along the tail and near the marginally bound radius, where
kmax = 0.96 is the wavenumber of the maximally growing
mode in units of the cylindrical radius of the tail (see Table 2 of
Coughlin & Nixon 2020). We can estimate the number N by
noting that at this time, the length of the stream L has expanded
by an amount L Z2; hence, using Equation (12),

In* (L)
6
Nupper = L =~ _kmax — Po ~3 x 103 (18)
Zsep 2

This is, however, an overestimate of the true number, owing to
the fact that a substantial fraction of the material will have
already returned to the BH by this time. A simple approx-
imation of the return time of the most bound debris can
be calculated from the tidal and frozen-in approximations
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(Lacy et al. 1982; Rees 1988; Lodato et al. 2009; Stone et al.
2013), which gives

3/2
Ty ~ (&) 2™ 05 ms, (19)
2) M. JGM.

where we set M. = 5M, for the BH mass, though the
comparable size of the NS and BH implies that material is
initially much deeper in the potential well and is promptly
accreted (see the hydrodynamical simulations below). Thus,
assuming that all of the stream is available to fragment results
in a large overestimate of the number of knots for the types of
encounters considered here. We can determine a lower bound
on the number of knots formed out of the instability by taking
the length of the stream to be of the order of the marginally
bound radius, which gives

r In? (—] )
6p,
Niower = Z_ ~ T B il ~ 20. (20)
Zsep 2 0 max

In general, we expect the number of fragments to be between
these upper and lower limits, and the exact number will depend
on the disruption dynamics and the mass ratios involved
(though the lower limit is likely more realistic for these
systems, where the return time of the most bound debris is
much shorter than the fragmentation time). Depending on the
amount of mass contained in the ejecta, we therefore expect the
masses of the fragments to be on the order of 107>~10-*M, and
thus ~107° M....

After the fragments form, we can approximate their
dynamical evolution by assuming that they evolve as point
masses purely in the gravitational field of the BH. Using
Equation (3), the Keplerian energy e of the knots at the time
they form is given by

L, GM. _ 5GM.A:z

€= — s
2 Z zZ Z

where Az is the distance of a given fragment from the
marginally bound position Z at that time. With the energy—
period relation of a Keplerian orbit, we find that the return time
of the knots within the tail is

3/2 3/2
Tmzzw(i) ! (i) . 22)
10 GM. Az

ey

If we now define the distance of the most bound knot from the
marginally bound radius by —AZ, so that the distance of the
nth knot along the tail from the most bound knot is
—AZy + nzyp, then the nth knot returns at a time

z -3/2
Tt () = Top] 1 — n—22 , 23
(n) b( AZO) (23)
where
ZV? z V"
Top = 27| —| —-=— 24
m (10) \/GM.(AZO) 4

is the return time of the most bound knot, i.e.,
Ty = Tre(n = 0). Adopting the limit of z., < Z, which is
valid when the number of knots formed is large, the temporal

Coughlin et al.
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Figure 1. Example of the return time of the nth knot 7., normalized by the
return time of the most bound knot 7y,,, when the knots are separated along the
stream by zge, = 0.01AZ,, where AZ, is the distance between the most bound
knot and the marginally bound radius at the time that fragmentation occurs. The
black solid curve gives the exact solution (Equation (23)), the green dashed
curve shows the leading-order solution for which the return time of successive
knots is constant, and the blue dotted—dashed curve contains the higher-order
correction that accounts for the increase in the return time between knots as the
number of knots n increases.

spacing between the return of successive knots n + 1 and n is

2
S ZS
ATy ~ iTmb Sep )y 4 3y L + 0| (25
2 " AZ, 2 AZ AZ;

This expression demonstrates that, while n zep/AZy S 1, the
spacing between the return of successive knots is roughly
constant; using the numbers derived above and setting AZ, ~
0.1Z at tgae, Ty =~ 1's, and this temporal spacing is ~100 ms.
However, as the number of knots to have fallen back increases,
the temporal spacing between successive knots increases owing
to the reduced binding energy of knots initially at a larger
distance, and the fractional increase is ~5zsep/(2AZp). Thus,
while the temporal spacing between the first and second knot is
~100 ms, the spacing between the ninth and 10th is ~240 ms,
the 99th and 100th is ~2.6s, etc. As an example, Figure 1
illustrates the ratio of the return time T, to the return time of
the most bound knot Ty, for zep /AZy = 0.01 as a function of
the number of knots to have returned to pericenter n. The black
solid curve shows the exact dependence (Equation (23)), the
green dashed curve gives the leading-order solution with a
constant return time between knots, and the blue dotted—dashed
curve contains the higher-order correction that accounts for the
secular increase in return time between knots.

These estimates predict that, if the variability in the light
curve of a short GRB traces the fallback of material to the
compact object and the tail is gravitationally unstable to this
mechanism, then the spacing between outbursts should be
roughly evenly spaced at early times but should lengthen
approximately linearly with the number of flares observed.
However, these estimates assume that the tail fragments
precisely at the maximally growing mode and generates a
specific separation between the resulting knots, while in reality,
there will be a range of separations owing to the fact that the
tail is unstable to a continuum of wavelengths below a critical
one. Nonetheless, it is likely that there will be enhanced power
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in the light curve at a frequency corresponding to the inverse of
AT, given in Equation (25).

In the next section, we compare these analytic predictions to
hydrodynamical simulations.

3. Hydrodynamical Simulations
3.1. Initial Setup

We use the smoothed particle hydrodynamics (SPH) code
PHANTOM (Price et al. 2018) to simulate the disruption of a
2.0M. NS by a 5 M., BH. We use a Paczynisky—Wiita (PW)
potential (Paczyrisky & Wiita 1980) to model the gravitational
field of the BH, and we set its accretion radius—inside of
which particles are “accreted” and removed from the simulation
—to its Schwarzschild radius. The NS is modeled as a pure
polytrope with a radius of 11 km, and we focus primarily on the
case where the polytropic index (equal to the adiabatic index) is
~ = 2. We maintain a polytropic equation of state for the entire
duration of the simulation, i.e., the pressure is related to the
density by P = Kp”, where both K and ~ are global fixed
constants,® which implies that any heat generated from
viscosity or shocks is lost from the system. Our fiducial
resolution is N, >~ 1.4 x 107 SPH particles. All other aspects of
the modeling as related to the code (e.g., the implementation of
self-gravity) are identical to those described in Coughlin &
Nixon (2015). In the Appendix we discuss the caveats of our
numerical approach and speculate as to the effects of relaxing
some of our assumptions (specifically, the disk physics in
Appendix A.l, the inclusion of general relativity in
Appendix A.2, the microphysics and thermal physics of the
tidal tails in Appendix A.3, the numerical resolution in
Appendix A.4, and the variation of the simulation parameters
in Appendix A.5).

We do not model the inspiral of the binary system from well
outside the tidal disruption radius of the NS, which would, at
the very least, require the inclusion of post-Newtonian terms
and an accurate modeling of the tidal dissipation in the star.
Instead, we initialize the SPH particles with the velocity of the
center of mass of the star, which itself is calculated to
reproduce a parabolic orbit with a pericenter distance equal to
the tidal disruption radius using the PW potential. Due to the
nature of the encounter (near equal mass, close approach), the
usual approach to estimating the tidal radius—at which the star
is completely disrupted—is inaccurate. Instead, we experi-
mented with the pericenter distance for the NS orbit and found
that a pericenter of 3GM./ ¢? (where M. is the mass of the BH)
is the largest pericenter that yields a fully disrupted NS and thus
an appropriate debris stream. Such a “plunge” into the tidal
radius may happen naturally on a single passage in a very dense
stellar environment, such as a globular cluster (e.g., Rosswog
et al. 2009), or may arise from the rapid (i.e., suborbital-time)
inspiral that accompanies the final stages of the tidal and
gravitational wave—induced coalescence (Lai et al. 1994; Rasio
& Shapiro 1994). Our motivation for this approach parallels the
focus of this paper, which is to assess the gravitational stability
of the tidal tails formed as a byproduct of the inspiral, not to
understand the precise mechanism of the production itself. A
number of other authors (e.g., Lee & Ramirez-Ruiz 2007;
Bauswein et al. 2013; Kyutoku et al. 2013; Brege et al. 2018;
Foucart et al. 2019) have demonstrated that tidal tails are a

8 Note that, since the code is Lagrangian, this is identical to solving the
entropy equation in the absence of shocks.

Coughlin et al.

fairly generic consequence of inspiral events with more realistic
initial conditions (see also Appendix A.5).

3.2. Results

Figure 2 shows the morphology of the disrupted debris
following the tidal interaction between the NS and the BH; here
the column density of the material projected onto the plane of
the binary is plotted, with brighter regions indicating denser
material. The top left, top right, and bottom panels show the
distribution of the material immediately postpericenter, after
the disk has formed but the tidal tail remains smooth, and after
the tail has fragmented, respectively. This figure demonstrates
that, as a consequence of the energy spread imparted by the
tidal potential of the BH, most of the NS material (>90% of the
initial mass of the star) is tightly bound to the BH and is either
swallowed directly or promptly forms an accretion disk.
However, ~10% of the initial NS mass is ejected in the form
of a tidal tail that, after many dynamical times at the tidal radius
(note that GM. /¢ ~ 2.5 x 1073 s here), fragments and falls
back onto the BH-disk system.

Figure 3 illustrates the fallback rate M onto the BH from the
tidally ejected tail in units of solar masses per second as a
function of time in seconds. To measure this quantity, we reran
the same simulation that yields the disk-tail structure in
Figure 2 but artificially increased the accretion radius of the BH
to 20 GM./c? ~ 100 km at a time of 8.75 x 10~ 3s. This
curve therefore represents the rate at which material from the
tail returns to pericenter (or impacts the disk; see discussion
below). We checked the debris distribution between this
simulation and the full simulation at late times and found no
change in the stream structure or evolution. For times ¢ < 0.1 s,
the curve in Figure 3 shows a smooth decline that is well
approximated by the blue dashed curve M o t~>/3, which is
the scaling expected from the return of material from the
marginally bound radius within the tail (e.g., Chevalier 1989).
However, for times ¢ 2 0.1 s, the fallback rate starts to exhibit
large fluctuations as discrete clumps of material return to the
BH. Moreover, if we approximate the region of the tail in
between clumps as dominated by the gravitational field of the
BH and the trailing clump, using Equation (15) of Coughlin &
Nixon (2019) and the fact that the ratio of the clump mass to
the BH mass is ¢ 2= 0.01 predicts that the return of this material
should scale as M oc t~>4. This scaling is shown by the orange
dashed curve in this figure and provides a good approximation
to the average decline (i.e., in between the accretion of clumps)
exhibited by the fallback curve.

The blue curve in Figure 4 shows the product o p x Z7,
where p is the density of an SPH particle that, by the time
appropriate to the bottom panel of Figure 2, belongs to a clump
that forms out of the instability, and Z is the location of the
marginally bound radius within the tail (we have examined
particles in several clumps, and this behavior is typical of each
clump). The quantities py and Z,, being the initial density and
position of the marginally bound orbit, are measured at a time
of 1=12.5 x 1075 (see the top left panel of Figure 2). The
density is plotted as a function of the time-like variable T,
which scales with the center-of-mass position as in
Equation (11). We find for this specific simulation that

GAy 73" 1
H, «/2GM.%7 !

!

~ 7.0, (26)
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Figure 2. Morphology of the disrupted debris following the tidal destruction of an NS by a BH. Here the mass of the NS is 2 M, with a radius of 11 km, and the BH
(shown by the gray circle) has a mass of 5 M, and an accretion radius—inside of which SPH particles are “accreted” and removed from the simulation—equal to its
Schwarzschild radius (see Section 3.1 for more details of this specific simulation). Each panel corresponds to a different time postdisruption, as shown in the top right
corner of each panel. Colors indicate the column density projected onto the plane of the orbit of the original star, with brighter (darker) colors indicating regions of
enhanced (reduced) density. The tidal potential of the BH causes a large fraction (Z290%) of the NS to immediately accrete onto the BH, which forms a prompt
accretion flow, while ~10% of the mass is launched out from the system in the form of a tidal tail. At late times (~few x 0.1 s), this ejected tail fragments under its
own self-gravity, forming knots that return to and impinge upon the BH—disk system, as can be seen in the bottom panel.

which normalizes the definition of 7. As noted at the end of
Section 2, the fact that this number is of the order unity is
expected based on the fact that the star was successfully
disrupted.

If the tidal tail were hydrodynamically stable, then the product
pZ> would exhibit gravito-acoustic oscillations at frequencies
appropriate to the fundamental modes of an adiabatic cylinder, but
the average value of this product would be unchanged. The dashed
green curve in this figure shows a sinusoidal dependence that has a
frequency given by the fundamental mode of a v = 2, polytropic
cylinder, the frequency of which is ¢ ~ 1.7 (Coughlin &
Nixon 2020). We see that this mode does, indeed, characterize the
oscillatory nature of the density perturbations, and we emphasize
that the solution does appear to be periodic in 7, implying that the
declining sound speed of the stretching stream induces a
periodicity in time ¢ that varies as ~sin (o1'3). However, there
is also a slowly increasing trend exhibited alongside the oscillatory

variation (from 7= 0 to ~17), which scales approximately as
o ™77 (note that Figure 5 is on a log-linear scale). This growth
rate, however, is much smaller than the one corresponding to the
maximally growing mode, being o< €77,

This very slow increase in the product pZ*> and the
corresponding instability arise from the fact that the stream
possesses an initial perturbation from the polytropic density
profile of the star. Specifically, instead of being exactly flat, at
early times, the density profile of the tidal tail possesses a long-
wavelength perturbation from the stretching of the centrally
peaked density profile of the spherical polytrope (i.e., we can
approximate the stream density as the spherical density profile
of the star stretched in one dimension, which has a maximum
near the stellar center of mass). The majority of the power of
the Fourier decomposition of this perturbation is contained at
small Fourier wavenumbers k (wavelengths much greater than

the radius of the tail H), all of which are unstable but grow at
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Figure 3. Fallback rate onto the BH from the returning tail in units of solar
masses per second as a function of time in seconds. After a time of ~0.1 s, the
fallback rate starts to exhibit variability from the return of the knots that have
gravitationally condensed out of the stream. The blue dashed curve shows the
o /3 scaling predicted for material returning from the marginally bound
radius within the stream, whereas the scaling o< 1 >* is the steeper scaling
predicted for material that is being affected by the presence of the clumps
(Coughlin & Nixon 2019).
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Figure 4. The blue curve shows, on a log-linear scale, the density of an
SPH particle that resides in a knot by the end of the simulation, normalized by
its initial density po and multiplied by (Z/Zo)z, where Z is the position of the
marginally bound orbit; Z, and py are both measured at a time of 2.5 x 10 s
postdisruption (see the top left panel of Figure 2), and 7 is a time-like variable
(see Equation (11)). In the absence of an instability, this curve would only
show stable oscillations, with an oscillatory frequency given approximately by
the f-mode of a v = 2 polytrope, which is shown by the green dashed curve.
There is a slight growth, however, at early times that is due to the aggregate of
weakly growing, very long wavelength perturbations that are all unstable; the
slope of the green dashed curve is chosen to match this slow growth to
highlight the agreement between the prediction of the f-mode oscillatory
frequency and the numerical results. The red dashed line shows the growth rate
predicted for the maximally growing mode, the amplitude of which—for this
simulation—likely grows primarily out of nonlinear couplings of the more
weakly growing, long-wavelength perturbations.

very slow rates (see Figure 4 of Coughlin & Nixon 2020). As
the stream stretches, all of these modes grow and give rise to
the slow increase of the product pZ>.

In addition to growing linearly, however, nonlinear cou-
plings between the modes also transfer power to higher &
(smaller wavelengths). Since there is a wavenumber with the
fastest growth rate, over time this mode preferentially “steals”
power from the longer-wavelength modes and emerges at later
times. We see this behavior at a time of 7 ~ 17, where the
growth rate of the instability steepens and is well approximated
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by the prediction for the fastest-growing mode (the red dashed
line in the figure).

To support the notion that we are seeing the emergence of
the maximally growing mode, the left panel of Figure 5 shows
the density profile as a function of radius, binned into ~1000
radial bins and averaged over the small solid angle of the
stream, at 7 ~ 17 (or a time postdisruption of t = 0.049 s),
which is at the onset of the appearance of the maximal growth
rate in Figure 4. Each point corresponds to a local maximum in
the density of the stream, and the vertical dashed line in this
panel shows the location of the marginally bound radius at this
time (i.e., the fluid element at this location has a Keplerian
specific energy of zero). The right panel of the figure shows a
histogram of the distance (in km) between successive clumps
binned into widths of 10 km. One prediction from the linear
perturbation theory (Coughlin & Nixon 2020) is that the
maximally growing mode for a v = 2 polytrope occurs at a
wavenumber of k., =~ 0.97, and that the spacing between
maxima should preferentially be given by ~27Hy /kmax = 53
km for this simulation; this spacing is shown by the dashed
blue line, which agrees well with the peak in the histogram. A
second prediction is that there is a larger wavenumber (smaller
wavelength), k.;; = 1.75, below which perturbations are stable,
and hence density maxima within the stream separated by a
length less than ~27H( /k.; =~ 29 km should be suppressed;
this spacing is shown by the dashed red line and does
reproduce the observed cutoff in the spacing distribution of the
local maxima.

To summarize and compare the numerical results here with
the analytic calculations of Section 2, the simulations here yield
a fragmentation time of around fg,, ~ 50 ms, while we
estimated this time to be ~70 ms; a preferred spacing between
clumps of ~53 km, compared to the prediction of ~30 km; and
a total number of ~40 knots that condense out of the stream,
which is between the upper and lower limits we anticipated (but
much closer to the lower limit of 20, as expected from the fact
that a substantial amount of material has accreted by the time
fragmentation occurs). The fallback rate in Figure 3 also shows
that variability begins around a time of 0.1s, while the
predicted time was closer to ~1s. The spacing between the
spikes in Figure 3 is also on the order of ~10-100 ms, which is
consistent with the prediction, and there does appear to be an
increase in the temporal separation between spikes in the
fallback rate as time advances.

4. Observational Implications

The preceding sections demonstrate that the tail of ejecta
shed from the destruction of an NS during a compact object
merger can fragment under its own self-gravity into self-bound
knots, and that this fragmentation occurs on a timescale of tens
of ms (e.g., Equations (16) and (17)). The number of knots
formed is generally on the order of tens owing to the short
return time of the most bound debris relative to the
fragmentation time (e.g., Figure 2 and Equations (18) and
(20)); the bound knots return to the disrupting object on a
timescale of hundreds of ms, while the unbound knots escape
from the system on hyperbolic trajectories and at ~10% of the
speed of light. Here we briefly discuss the observational
implications of these findings.
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Figure 5. Left: radial density profile of the stream, averaged over the stream width, at a time of ~0.05 s postdisruption. Shortly after this time, the nonlinear phase of
the instability sets in, and the stream fragments into a collection of knots; this time corresponds roughly to 7 =~ 17 in Figure 4 and is therefore predicted to be near the
onset of the runaway growth of the most unstable mode. The points coincide with local maxima in the density profile. The vertical dashed line shows the location of
the marginally bound radius within the stream at this time. Right: histogram of the spacing (in units of km) between the black points in the left panel of this figure,
where bin widths were set to 10 km; this bin width is a compromise between over- and undersampling the number of points within each bin. The blue dashed line is
the prediction for the spacing of the density peaks that arises from the maximally growing mode, ~53 km for this specific simulation. The red dashed line is the
minimum spacing of the density maxima, below which perturbations are predicted to be stable and runaway growth should not occur; this spacing corresponds to
~27R, /keiit, Where ke =~ 1.75 is the critical wavenumber (relative to the cylindrical radius of the tail) above which perturbations are stable, and is ~29 km for this

simulation.

4.1. Prompt Emission

With our simulations that adopted a post-Newtonian
prescription for the gravitational potential of the disrupting
BH, the pericenter distance of the NS implied that the angular
momentum of the returning material was sufficient to form an
accretion flow outside of the innermost stable circular orbit
(ISCO) of the remnant. As such, the material retained enough
angular momentum to circularize and form a large-scale disk
that spread viscously over time (Figure 2). As the knots
returned to pericenter, they impacted the disk and generated
shocks, and in our simulation, the heat from these shocks was
instantaneously radiated. More realistically, however, a large
fraction of the heat will be trapped in the accretion flow, which
will inflate the disk (though the material may still radiate a
significant amount of energy in the form of neutrinos; e.g., Lee
et al. 2009) and significantly lengthen the amount of time over
which the radiation from such shocks is emitted from the 7~ 1
surface; the accretion rate is also extremely super-Eddington,”
and the optical depth is very large to radiation'® and even to
neutrinos in the inner regions (e.g., Woosley 1993; Popham
et al. 1999; Lee et al. 2009; Siegel & Metzger 2018).
Consistent with previous works, we thus conclude that
incorporating the effects of the radiation field and neutrinos
would likely result in the formation of an optically thick,
relativistic outflow, the likes of which can power the prompt
emission of a short GRB (e.g., Goodman 1986; Paczynski 1986;
Krolik & Pier 1991) but would likely hinder the direct
detection of the radiation generated by knots impacting the
accretion flow.

° Adopting a radiative efficiency of 7 = 0.1, the Eddington accretion rate of a
5 M. BH with an electron scattering opacity of ks = 0.34 cm” g~ is
Mgaq =~ 4 x 107 M s7", compared to the values of ~1 M. s™' we obtain
for the fallback rate at early times from the simulation; see Figure 3.

10 The outer disk radius of the simulation in Figure 2 is R ~ 100 km, and
hence a characteristic optical depth is 7 2~ presR = My Kes /R2 ~6 x 10'%; this
estimate—which assumes a spherical distribution of material—is clearly an
over- (under)estimate outside (inside) of the disk midplane, but it is nonetheless
a measure of the extreme optical depths encountered in these compact object
mergers.

On the other hand, if the jetted activity thought to be
responsible for the gamma-ray production is linked to and
directly proportional to the accretion rate, then—if the viscosity
present in the accretion flow is large enough—the changes in the
fallback rate as the knots return to pericenter will induce a
comparable variability in the accretion rate and central engine
power. If the viscosity is large, then this variability can occur on
timescales as short as the dynamical time within the disk, on the
order of ~tens of ms, consistent with observations of the prompt
~-ray and early X-ray emission (e.g., Klebesadel et al. 1973;
Gehrels et al. 2006; Margutti et al. 2010, 2011). As noted in
Appendix A.1, we did not employ any explicit physical disk
viscosity in our simulation, and, correspondingly, the rate of
viscous accretion is artificially low. Specifically, the numerical
viscosity in our simulated disk is much smaller than the viscosity
expected from, e.g., the magnetorotational instability (MRI) in
fully ionized disks, which observations indicate has a Shakura &
Sunyaev (1973) a ~ 0.3 (King et al. 2007; Martin et al. 2019).

If such hydromagnetic turbulence is active in these disks, it
is also possible that the accretion timescale of the material
within the disk could be shorter than the fallback time of the
most bound clump or the time in between the return of
successive knots. In this scenario, much of the gas will have
been depleted from the vicinity of the returning knots, and,
instead of crashing into and merging with the disk, each knot
will be disrupted'' upon returning to pericenter. These
secondary disruption episodes will fuel further accretion onto
the compact object and may “restart” the central engine in
quasi-periodic bursts (see King et al. 2005 for an alternative
explanation of this phenomenon).

Moreover, if the BH is rotating at an angle that is inclined with
respect to the initial orbital plane of the binary, the disk that forms
will be inclined with respect to the returning debris (see, e.g.,
Stone & Loeb 2012; Franchini et al. 2016; Ivanov et al. 2018

1 Assuming that the density of the collapsed objects is of the order of or less
than the density of the original NS; this will always be the case if the gas retains
the same polytropic equation of state as the original star, such that the entropy
and adiabatic index remain unaltered throughout the disruption.
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for discussion of how this applies to stellar disruption by
supermassive BHs). In this case, even if a large-scale disk is
present at the time that the knots return, the knots may pass
through the disk at an oblique angle and at a distance much larger
than pericenter; upon reaching pericenter, they are disrupted,
forming secondary accretion flows that interact with one another.
Such debris orbits may interact at different orbital phases, driven
by nodal and apsidal precession, leading to shocks and
subsequent accretion (see Nixon et al. 2012). Over time, the
reservoir of gas that builds may, after accounting for the effects of
radiation pressure, resemble more of a quasi-spherical envelope
that enshrouds the BH, with bursts of accretion driven by the
interaction of the precessing disks that form. We note that if the
spin of the accretor is primarily determined by the angular
momentum of the recently merged binary, as expected for nearly
equal mass mergers, then it is unlikely that the ejected streams
will be strongly misaligned with the accretor’s spin, but
nonetheless, a significant spin-debris misalignment may be
possible in some cases (especially in BH-NS mergers, where
the mass ratio can deviate substantially from unity).

4.2. Extended Emission

A number of short GRBs also display “extended emission,”
which is softer v-ray /X-ray emission that is not generated by
the interaction of ejecta with surrounding material, continues
for hundreds of seconds following the prompt burst, and can
contain as much or more energy than the prompt spike of
emission (e.g., Lazzati et al. 2001; della Valle et al. 2006;
Gehrels et al. 2006; Nakar 2007; Perley et al. 2009; Norris et al.
2011; Kisaka et al. 2017; Burns et al. 2018). As discussed by
other authors (e.g., Faber et al. 2006; Lee & Ramirez-
Ruiz 2007; Metzger et al. 2010; Desai et al. 2019), the late-
time fallback of material to the BH (and the continued accretion
thereof) is one promising means of producing this emission,
and our results here serve to further substantiate this origin.

Additionally, this late-time emission is often highly variable
and on timescales much shorter than the ~100 s duration of the
extended emission itself, which suggests that the emission
arises from near the compact object. If the extended emission is
indeed fueled by the fallback of weakly bound material from
the tidal tail, this variability can be explained by the
gravitational instability of the stream identified here and is
driven by the return of knots to the compact object. The
mechanism responsible for communicating the fallback rate to
the BH, and ultimately how this increased energy and
(presumably) magnetic flux at the event horizon translates into
an increase in the jet power, dictates the relative fluence of
energy between the prompt and extended emission. Depending
on how this mechanism operates, this model for the powering
of the extended emission may be consistent with scenarios in
which the fluence of the extended emission exceeds that in the
prompt emission (as identified in, e.g., Gehrels et al. 2006;
Perley et al. 2009). For example, while the raw fallback rate in
Figure 3 contains a much larger mass flux at earlier times,
which naively translates to a larger accretion luminosity, the
outward transport of angular momentum in the disk implies that
a large fraction of this matter could be contained in a reservoir
that accretes at a later time. In this case, the extended emission
would contain an amount of mass (and liberate an amount of
accretion energy) that could conceivably exceed that contained
in the prompt emission.
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4.3. R-process and Kilonova

As noted above, the knots that form out of the gravitational
instability are distributed over the bound and unbound
segments of the tail. When the mass ratio of the inspiraling
objects is fairly dissimilar from unity, as is the case for a BH-
NS merger considered here, the tidally ejected tail contributes
substantially to the r-process production of heavy elements
and the corresponding kilonova afterglow (e.g., Lattimer &
Schramm 1974, 1976; Lattimer et al. 1977; Meyer 1989;
Rosswog et al. 2000; Metzger et al. 2010; Metzger &
Berger 2012; Barnes & Kasen 2013; Barnes et al. 2016; Radice
et al. 2018; Tsujimoto et al. 2020). Indeed, if the angular
momentum of the bound material places the disk within the
ISCO of the BH, the unbound tail provides the only source of
r-process enrichment. If the unbound tail rapidly (on the order
of ms; see Section 2) fragments into a number of distinct knots
separated by tenuous material, one would expect qualitative
differences in the appearance of the kilonova (compared, e.g.,
to a spherically symmetric outflow) that occurs days after the
disruption, owing to variations in the optical depth along the
filament and the reduction in the total emitting surface area.
The mixing of the r-process-enriched gas would also be less
efficient because of the much smaller effective volume
maintained by the ejecta.

4.4. Afterglow

Alongside the prompt ~-ray and early X-ray emission, the
interaction between the relativistic ejecta and the circumburst
medium should generate emission at longer wavelengths in the
form of an X-ray, optical, and radio afterglow (e.g., Rees &
Meszaros 1992; Mészaros & Rees 1997; Sari et al. 1998; Nakar
& Piran 2011; Margalit & Piran 2020; though in some short
GRBs, the relatively “clean” environment of a short GRB,
being in the outskirts of a galaxy following a natal kick,
correspondingly reduces the brightness of this component of
the emission; e.g., Narayan et al. 1992; Nysewander et al.
2009). To the extent that the rate of return of material to the
compact object influences the formation and energetics of the
relativistic outflow, we would qualitatively expect the sudden
enhancement in the accretion rate through the return of a
discrete knot to imprint itself on the afterglow, possibly in a
way that would mimic the “refreshed shock” scenario (e.g.,
Rees & Mészaros 1998; Kumar & Piran 2000).

In addition to the relativistic outflow formed from the central
engine, a radio transient should also be generated from the
interaction between the less relativistic, unbound tail and the
surrounding medium. The fragmentation of this tail into a
number of discrete knots greatly reduces its cross-sectional
area, which correspondingly dramatically inhibits the produc-
tion of this distinct radio transient. As for the case of r-process
emission, this will be the only source of radio emission if the
angular momentum of the fallback disk is insufficient to allow
the material to circularize outside of the ISCO.

4.5. Gravitational Waves

Finally, in addition to electromagnetic counterparts, the
successive return of the knots to pericenter will generate a
distinct gravitational-wave signal and will be characterized by a
train of ‘“chirps”—occurring as individual knots return to
pericenter—that accompany potential flares in the electro-
magnetic signal as the knots are disrupted to form secondary
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accretion flows or impact the disk. The amplitude of the
gravitational-wave signal will clearly be dramatically reduced
below that of the initial inspiral owing to the much smaller
mass ratio and will only be detectable by current facilities (i.e.,
LIGO; Aasi et al. 2015) if the event is very nearby (<10 Mpc),
but it may be observed by future-generation facilities at more
reasonable distances. The detection of this concomitant
gravitational-wave signal would be among the most convincing
pieces of evidence to support the existence of this instability
operating in short GRBs.

5. Summary and Conclusions

Our analytical arguments (Section 2) demonstrate that, if the
gas comprising the tidal tails formed during the merger of two
compact objects is adiabatic and has an effective adiabatic
index +y that satisfies v > 5/3, then such tails are unstable and
fragment globally—along the axis of the tail—under their own
self-gravity into knots with radii of the order of the width of the
tail. Our simulations of the disruption of a 2 M., NS, modeled
as ay = 2 polytrope with a radius of 11 km, by a 5 M, BH that
adopts an adiabatic index of v = 2 (Section 3) show agreement
with the predictions of the spacing of the knots that condense
out of the instability (Figure 5), the number of knots formed,
and the linear growth of the instability itself (Figure 4). The
return of these knots to the compact object results in variability
in the fallback rate (Figure 3) on timescales commensurate with
our predictions, being on the order of tens of ms.

As described in more detail in Section 4, this timescale over
which variability occurs in the fallback rate is roughly
consistent with observed variability in the prompt emission
of short GRBs. Thus, depending on how rapidly these changes
in the fallback rate can be communicated to the accreting object
and translated to an accretion rate, the return of individual
knots to pericenter can plausibly contribute to the flaring in the
light curves of short GRBs. The return of these knots to
pericenter also continues to later times (i.e., much later than the
~1-2 s duration of the prompt emission) and can generate
variability in the ‘“extended emission” observed in some
sources. Owing to its substantially smaller cross-sectional area,
the fragmentation of the unbound tail into discrete knots will
also significantly reduce the intensity of the radio transient that
forms as the tail slams into the circumburst medium. Finally,
the return of discrete knots to pericenter should also create a
gravitational-wave signal consisting of a train of “chirps,”
though it will likely be very difficult to detect owing to the
relatively small amount of mass contained in individual knots.

Here we focused primarily on the case of an NS disrupted by
a BH, as these unequal-mass-ratio encounters result in a
significant amount of dynamical ejecta; in our simulation, we
found that ~10% of the initial star comprises the ejecta, which
agrees well with other, more detailed simulations (e.g.,
Kyutoku et al. 2015). On the other hand, NS-NS mergers,
for which the mass ratio is generally much closer to unity, eject
less mass (~0.01-0.1 M) prior to the coalescence of the
objects (e.g., Shibata & Hotokezaka 2019). As we noted in
Section 2, the timescale for the instability to develop is directly
related to the line mass of the tidal tail, with larger (smaller)
amounts of mass yielding shorter (longer) instability time-
scales. We therefore expect that for short GRB progenitors with
mass ratios closer to unity, such as NS-NS mergers, the
instability identified here will take longer to develop and the
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mass contained in the knots will be smaller, which in general
will make its presence more difficult to detect.
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Appendix
Caveats of the Numerical Approach

Here we discuss some of the caveats and assumptions of our
numerical models, and we speculate as to the impact of
relaxing some of these assumptions.

A.l. Disk Physics

The NS material that is deeper in the gravitational potential
well of the BH (at the time it crosses the tidal radius) promptly
forms an accretion disk as it precesses relativistically and
intersects itself. Over time, material from the returning tail
feeds this disk, and it grows in radial extent as the angular
momentum budget increases. By the end of the simulation
(~2 s), the disk is extended in radius out to ~100 km, and
knots returning to the BH impinge upon this disk, as reflected
in the fallback rate (Figure 3).

We emphasize, however, that our model of the disk is likely
not physically appropriate to the extreme conditions under which
the disk forms and evolves. For one, our equation of state
assumes that any heat generated from the production of shocks
—which predominantly mediate the disk formation as general
relativistic apsidal precession causes the material to self-intersect
(e.g., Rosswog & Davies 2002)—can be efficiently radiated
from the system, whereas the optical depths are so large that this
energy should be trapped and heat the flow. The temperatures
and densities are also so high that neutrino cooling and even
nuclear burning are not negligible, both of which will modify the
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thermodynamics and feed back onto the fluid dynamics of the
flow (e.g., Ferndndez & Metzger 2016). Indeed, the densities are
so high at early times that neutrinos can couple efficiently to the
gas, generating a neutrino-driven wind (e.g., Ferndndez &
Metzger 2013; Siegel & Metzger 2018). Our disk, on the other
hand, retains a polytropic equation of state, while these other
effects would cause the disk to puff up in the vertical direction
and have an associated outflow.

Our simulations also do not employ magnetic fields, which
likely lead to additional dissipation through the existence of the
MRI (Balbus & Hawley 1991). This instability may manifest
itself as an increase in the effective viscosity coefficient « that
controls the rate at which angular momentum is transported
within the disk (Shakura & Sunyaev 1973). The viscosity
present in our simulations, by contrast, is only at the numerical
level, which is small for the large number of particles
Ny 2 107) we used. As a consequence, the accretion rate of
the BH is unrealistically small in our simulations, and the
fallback rate in Figure 3 is likely a better approximation of the
mass flux at the event horizon (modulo a suitable time lag) in a
realistic disk that has a ~ 1.

Our simulations also do not account for radiative processes;
while the densities and temperatures are initially so high that
neutrino cooling and heating are the dominant form of transport
of accretion energy (e.g., Popham et al. 1999), eventually the
temperature and density in the inner disk regions will drop to the
point where neutrino production is inefficient. In this case, the
dominant transport mechanism will be the advection of radiation
throughout the disk, but the accretion luminosity will be so well
in excess of the Eddington limit of the BH (even for extremely
small radiative efficiencies) that it is difficult to see how outflows
will be avoided (e.g., Blandford & Begelman 1999). The
radiation will also be trapped within the flow (Begelman 1978),
leading to—in addition to outflows—a much more vertically
extended disk structure than we find here.

A.2. General Relativity

Our simulations approximate the gravitational field of the
BH with a PW potential; in particular, we employ
—GM. /(r — Rg) for the potential of the BH, where Rg is the
Schwarzschild radius of the BH. This approach is clearly much
more simplistic than solving the Einstein equations, which is
the methodology employed by very recent simulations of
the mergers of compact objects (e.g., Bauswein & Stergioulas
2019; Foucart et al. 2019).

Solving the Einstein equations for the dynamical evolution
of the spacetime is necessary for accurately modeling the disk
physics in the regions in the immediate vicinity of the BH event
horizon. It is also necessary for understanding the initial, tidal
deformation of the NS, as for our setup—a 5 M. BH and a
2 M NS with a radius of 11 km—the fiducial tidal radius is
comparable to its gravitational radius. Indeed, the pericenter
distance of the star that leads to the disruption in Figure 2 was
3Rg, which is likely to be stretching the accuracy of the PW
potential (see, e.g., Figure 4 of Tejeda & Rosswog 2013).

Including general relativity would likely strengthen the tidal
interaction that results in the disruption of the star, as it is
generally the case that pseudo-Newtonian and effective potentials
underpredict general relativistic quantities (e.g., the relativistic
advance of periapsis, which can be thought of as an additional
term that enhances geodesic deviation, is generically under-
predicted by effective potentials; e.g., Tejeda & Rosswog 2013).

11

Coughlin et al.

Consequently, it is likely that a general relativistic treatment, or
including a potential that maintains higher-order corrections in
r/Rs, would not require as close a pericenter distance to
completely disrupt the star (see Appendix A.5); for the disruption
of solar-like stars by supermassive BHs, a partial disruption with a
Newtonian treatment of the gravitational field of the supermassive
BH may become a full disruption when one uses general relativity
(Gafton et al. 2015; Gafton & Rosswog 2019; Stone et al. 2019).

Properly accounting for relativity would clearly enhance the
physicality of the initial disruption and the disk physics.
However, this would also add significantly to the computa-
tional cost of the simulation and would not be essential for
understanding the fragmentation of the tidal tails—the main
focus of this paper—which occurs at hundreds to thousands of
gravitational radii of the BH.

A.3. Microphysics and Thermal Physics of the Tidal Tails

The evolution of the gas in our simulation is adiabatic with a
polytropic index of = 2. As discussed in Section 3, this
choice was motivated by the theoretical work on the nuclear
equation of state, which suggests that the effective adiabatic
index of the NS material is v ~ 2-3, and that more accurate
modeling seems to indicate that piecewise-polytropic functions
can reproduce more complicated equations of state (Read et al.
2009). This approach is also identical to what appears to have
been done in many previous investigations of this problem
(e.g., Lai et al. 1994; Lee & Kluzniak 1999; Rosswog et al.
1999; Lee et al. 2001; Faber et al. 2006; Lee & Ramirez-
Ruiz 2007; Ruiz et al. 2020), and we wanted to test the
prediction that these tails are subject to gravitational fragmen-
tation if this thermodynamic simplification is made.

More realistically, however, the decline of the density of the
tidal tail prior to the nonlinear phase of the instability (see
Figure 4) implies that the extremely high densities character-
istic of the nuclear equation of state p ~ 10" gcm ™ —and,
correspondingly, the high value of +—will no longer be
maintained. As the density declines, it becomes energetically
favorable for neutrons and protons to drip out from the denser
regions of the stretching material, and § decay and nuclear
fission of extremely neutron-rich nuclei result in the formation
of less heavy elements alongside the neutron fluid; this also
reduces the overall neutron-to-proton fraction. As this occurs,
the nucleons and electrons start to behave more classically and
possess an adiabatic index that is better approximated between
4/3 and 5/3. The equation of state described by Lattimer &
Swesty (1991) and Shen et al. (1998) and those discussed in
Shapiro & Teukolsky (1983) exhibit this general behavior (see,
e.g., Figure 5 of Rosswog & Davies 2002), as do more recent
equations of state (e.g., Shen et al. 2011; Hempel et al. 2012;
Steiner et al. 2013; Banik et al. 2014).

These equations of state and the corresponding adiabatic
exponent describe the variation of the nucleon—electron
pressure with respect to the density. As the density declines
and the nuclei decay into lighter elements, the neutrinos
become optically thin to processes such as neutrino—neutrino,
neutrino—electron, and neutrino—nucleon scattering (and a host
of others; see, e.g., Bruenn 1985; Burrows et al. 2006). When
the neutrinos are no longer trapped within the flow, a
significant amount of energy is lost from the expanding debris
tail (e.g., Sekiguchi et al. 2016; Vincent et al. 2020), which
correspondingly reduces the pressure below the isentropic
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value. Since the width of the tail is governed by the balance
between pressure and self-gravity, the width of the tail is
reduced. However, the sound speed still declines predomi-
nantly from the stretching of the tail in the direction of the
remnant (see Equation (8)), which implies that the sound-
crossing time over the width of the tail is reduced as the tail
cools from neutrino emission. This reduction in the sound-
crossing time implies that the effective ~y increases as the tail
radiates energy in the form of neutrinos.

We conclude that the effective ~ will soften below the
nuclear value as the density declines but also stiffen as the
material becomes optically thin to neutrinos and energy (and
pressure support against self-gravity) is lost. We experimented
with changing the equation of state by modifying the polytropic
index of the gas (equal to the polytropic index of the initial
star). We found—consistent with the predictions of Section 2
and with past investigations (Lee & Ramirez-Ruiz 2007)—that
increasing the adiabatic index resulted in more vigorous
fragmentation at earlier times (see also Coughlin et al.
2016a). As we softened the adiabatic index, the fragmentation
was less pronounced and occurred later. We did not perform
simulations with an adiabatic index v < 5/3 to test the
prediction that such a configuration is stable to gravitational
fragmentation, though the simulations of Coughlin et al.
(2016b), who studied the structure of debris streams produced
from tidal disruption events with a range of v, found that
fragmentation did not occur for v < 5/3.

Finally, we emphasize that the stability analysis, and the
condition that v = 5/3 is the critical adiabatic index that
separates stable from unstable streams, results from an
expansion of the fluid equations about the marginally bound
radius. In particular, the spreading of the material in this region
causes the sound speed to decline as ~1/Z, whereas the width
of the tail expands subsonically until ¥ = 5/3, which allows
the stream to remain causally connected in the transverse
direction. However, there are higher-order terms (in the
quantity Az/Z) that enter the fluid equations and modify the
stability criterion at late times once we start to move away from
the marginally bound radius. For the unbound tail, these
additional terms further destabilize the stream to self-gravity, as
the fluid elements asymptotically approach constant velocities
at late times. In this constant-velocity limit, the sound speed
declines only as Z~ 172 which implies that the unbound
segment of the tail is susceptible to gravitational fragmentation
until H « Z; this scaling occurs when v =4/3 (see also
Section 5.2 of Coughlin et al. 2016a) and demonstrates that the
unbound segment of the tail is asymptotically unstable to
fragmentation even in the presence of softer equations of state.

A.4. Resolution

The time at which the linear gravitational instability reaches the
nonlinear regime—and leads to the formation of knots within the
tidal tail—depends on the magnitude of the initial perturbation that
seeds the instability. In our simulation, the dominant source that
contributes to the seed density fluctuations is the polytropic
density profile of the initial star. In particular, instead of the
density along the axis of the tidal tail being completely flat, the
geometric center of the stream possesses a slightly increased
density relative to the extremities. Consequently, there is an initial
density perturbation along the cylinder axis, which gives rise to a
collection of simultaneously growing, long-wavelength perturba-
tions. As we argued above, the growth of these modes is likely
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responsible for the slow increase in the product pZ> in Figure 4,
and their nonlinear couplings give rise to additional power at the
maximally growing mode that eventually emerges.

In addition to the magnitude of the seed perturbation, the
time at which the nonlinear growth is reached also depends on
the width of the stream, as it is the dimensionless sound-
crossing time over this width—being proportional to the width
itself—that characterizes the oscillatory and growing nature of
the perturbations. In the limit of infinite resolution, the width of
the tidal tail is determined by the solution to the cylindrical
Lane-Emden equation (see Section 2) and is where self-gravity
causes the density to equal zero. With a finite number of
particles, however, the density can never equal zero, and the
stream width is characterized by a location of finite density and
pressure. This finite pressure is larger for fewer numbers of
particles as the pressure smoothing length is larger, which feeds
back on the structure of the tail and correspondingly reduces its
width (i.e., the tail becomes effectively pressure-confined,
which has a smaller equilibrium width than it would if it were
in vacuum). Consequently, the growth timescale of the
instability as calculated with the numerical method is
artificially short, and simulations with fewer particles lead to
increasingly shorter timescales in a way that scales linearly
with the width of the tail.

To understand how this effect modifies the growth of the
instability and the emergence of the most unstable mode, we
resimulated identical disruptions as shown in Figure 2 with
N, = 10’ and 10° In all three (i.e., including N, = 107)
simulations, we located a clump that collapsed out of the
stream that was near the marginally bound orbit and computed
the average density of the particles constituting that clump. The
left panel of Figure Al shows the evolution of the average
density for N, = =10’ (green dotted—dashed), 10° (blue dashed),
and 107 (red sohd) as a function of time in milliseconds (note
that this is on a log-log scale and plotted as a function of time,
as compared to Figure 4, which is on a log-linear scale and
plotted as a function of dimensionless 7). The purple dotted line
shows the expected growth from the maximally growing mode
normalized to the values appropriate to this simulation; i.e., this
curve scales as ~e037x70xt/10)'” where (.57 is the maximum
dimensionless growth rate, the factor of 7.0 comes from the
ratio of the dynamical time at the tidal radius to the sound-
crossing time over the width of the stream at 2.5 ms
postdisruption (see Equations (11) and (26)), and £y =
273/ /(3J2GM.) ~ 1.1 ms, where Z, ~ 160 km is the
location of the marginally bound radius at 2.5 ms postdisrup-
tion. We see that, as we increase the resolution of the
simulation, the time at which the maximally growing mode
appears is extended to later times.

The right panel of this figure illustrates the same three
curves, but the time for each simulation is now scaled by the
ratio of the stream width of the respectlve simulation to the
width measured from the N, = = 107 run. We find that this ratio
is ~0.61 for N, = 10° and ~0.83 for N, = 10° (i.e., the width
of the tail in the N, = = 10’ run is roughly 0.61 times the width
of the tail in the N, = = 10" run); hence, the time for the
N, = 10° (10°) run is scaled by 1/0.61 ~ 1.65 (1/0.83 ~ 1.2).
ThlS figure demonstrates that, by accounting for the sound-
crossing time over the width of the stream, the simulations
converge in the time taken for the most unstable mode to
emerge.
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Figure Al. Left: product p / po X (t/ to)*/3, where p is the average density of the particles that constitute a bound clump that fragments as a result of the instability by
the end of the simulation, and ¢ is the time since pericenter passage. Here 7o = 2.5 ms, and p, is measured at that time (see the top left panel of Figure 2 for the
distribution of the debris at that time). The solid, dashed, and dotted—dashed curves are appropriate to the particle numbers N, shown in the legend, and the dotted
curve is the growth rate predicted for the maximally growing mode; here the instability shown by the dotted curve grows as ~exp(0.57 x 7.0(t/t0)'/?), where 0.57 is
the maximum growth rate predicted from the stability analysis, the factor of 7.0 arises from the ratio of the sound-crossing time over the cylindrical radius of the tail to
the dynamical time at the location of the marginally bound radius in this simulation (see Equation (11) and (26)), and fy ~ 1.2 ms is the dynamical time at 2.5 ms
postdisruption. This panel shows that the time at which the fastest-growing mode appears changes as a function of resolution. Right: same as the left panel, but here the
time for the N, = 10° and 10° particle runs is normalized by the ratio of the stream width appropriate to each simulation to that of the N, = 107 run. This panel shows
that, after accounting for the effect that normalizes the sound-crossing time over the width of the stream, the emergence of the most unstable mode appears
independently of resolution. This panel demonstrates that, while the resolution affects the time at which the instability manifests itself, the source of the perturbation

that seeds the instability is not numerical noise.

In addition to the physical perturbation that arises from the
density profile of the original star, there is a second source that
is due to the finite number of particles employed by the
numerical method. Specifically, there will always be an
inherent level of noise in the density distribution of the tidal
tail at the level of the SPH smoothing length, and this noise
gives rise to an effective perturbation on that length scale.
Initially, this scale is much smaller than the width of the stream,
and therefore the oscillations induced by these numerical
perturbations are stable (i.e., the wavenumber of the perturba-
tion k satisfies k > k., where k. =~ 1.75; see Figure 4 and
Table 2 of Coughlin & Nixon 2020). However, over timescales
much longer than the sound-crossing time over the width of the
tidal tail, these perturbations are stretched out, and their
effective k decreases. Therefore, at some time following the
disruption of the star, these perturbations will start to “leak”
into the unstable region of Fourier space and will nonphysically
—and in a way that depends exclusively on the resolution of
the simulation—drive the instability at the fastest-growing
mode. If the resolution of the simulation is not high enough, the
time taken for the numerical perturbations to leak into the
unstable regime will be shorter than the time taken for the long-
wavelength modes seeded by the polytropic density profile to
nonlinearly couple, and the numerical result will not be
converged. Coughlin & Nixon (2015) suggested that this noise
was ultimately responsible for driving the fragmentation of the
debris streams produced from tidal disruption events.

We can estimate the time at which finite resolution will start
to artificially drive the instability: from Equation (3), the
distance between two SPH particles on either side of the
marginally bound radius grows approximately as

~

2
Z
Az = AZ()(—) . (A1)
Zy
If the two particles are originally separated by the

SPH smoothing length %, then this separation will grow to
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the radius of the cylinder H—and will drive growing
perturbations—after the center-of-mass position reaches

H 6
Vi SN

where in the last line, we used the fact that the interparticle
separation is of the order Npl/ 3. Using the fact that Z o A3, if
particle noise is seeding the instability, then the time at which
the maximally growing mode appears will scale approximately
as Ng/ 4

For our simulations, this scaling of the time for particle noise
to influence the fragmentation implies that each increase in the
particle number by a factor of 10 should result in a delay of the
appearance of the fastest-growing mode by a factor of 1074 ~
1.8. From Figure Al, the time at which the fastest-growing
mode appears in the Néj = 10 run is roughly ~60 ms; hence,
the N, = 10° and 10° runs should—if particle noise seeds
the instability—fragment at times of ~60/1.8 ~ 33 and
~60/1.8% ~ 19 ms. Comparing these predictions to
Figure Al, it is clear that the fastest-growing mode appears
significantly later than it would if the seed perturbations were
provided purely by numerical noise, and that this effect is not
dominant in contributing to the gravitational fragmentation
observed in our simulations.

Z (A2)

A.5. Variation of Simulation Parameters

In this paper, we focused primarily on the results of a
simulation in which a 2 M, NS, modeled as a v = 2 polytrope
with a radius of 11 km, was disrupted by a 5 M, BH. The
pericenter distance of the center of mass of the star was equal to
3Rg, where Rg is the gravitational radius of the BH. This
simulation reproduced a particularly clean set of initial
conditions to study the fragmentation of the tidal tails produced
from the disruption: the NS was completely disrupted on its
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initial passage and formed a single extended tail containing
~10% of the mass of the star.

The mergers that result in short GRBs clearly have a more
varied set of initial conditions than this one case study. As
such, we performed additional simulations in which we varied
the pericenter distance of the stellar center of mass, the mass of
the star, the mass of the BH, the polytropic index of the star and
fluid (we tried v = 1.8 and 3), the strength of the gravitational
field (we replaced the PW potential with a Newtonian
potential), and—because the NS is likely rotating substantially
if the merger happens after the more gradual inspiral of the
binary—the stellar rotation. The most substantial difference
generated by varying these parameters was the increased or
reduced survivability of the NS during its passage. In
particular, many of the simulations we performed resulted in
a partially disrupted star, which then returned to the BH at least
once to be redisrupted (see also Rosswog & Davies 2002;
Rosswog et al. 2004). However, in every case we simulated, we
recovered the formation of at least one tidal tail of debris,
which subsequently fragmented under its own self-gravity.
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