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Nonlocal partner to the cosmological constant
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I show that quantum corrections due to a massive particle generates a nonlocal term in the gravitational
effective action which is of zeroth order in the derivative expansion, much like the cosmological constant. It
carries a fixed coefficient which is very much larger than the cosmological constant and which cannot be
fine-tuned. The interaction is active at scales above the particle’s mass. This is of the form

m* (& R), (x| log(O + m?)[y)" (% R)
aspects of its interpretation.
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L. LOCAL AND NONLOCAL INTERACTIONS

The foundation of general relativity is general
covariance—the invariance of the theory under local
changes in the coordinates. One can write an action which
respects this symmetry using the curvatures

1
S=/d“x\/—g[—A—l—mR—l—qRZ—l—czRﬂyR‘W—l—--- .
(1)

Here A is the cosmological constant (of mass dimension
m*), R,, and R = g*’R,, are the Ricci tensor and scalar
curvatures, G is Newton’s constant (with mass dimension
1/G ~m?), and c,, ¢, are dimensionless constants. This
action has been ordered in the derivative expansion, with
the cosmological constant being of zeroth order, the scalar
curvature having two derivatives, and the curvature-squared
terms involving four derivatives. The ellipses indicate terms
with yet more derivatives. In applications the derivatives
turn into factors of energy and momentum, and therefore
the terms with two or more powers of the curvature are
negligible at low energy. Using the first two terms in this
action, we obtain Einstein’s equations with a cosmological
constant. Rather famously, the cosmological constant is
remarkably small, taking the value A =~ 1047 GeV* if the
present accelerated expansion of the universe is due to the
presence of A.
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and I discuss the meaning of “(x|log(0J 4 m?)|y)” and other

If we had a complete theory of quantum gravity, we
could presumably predict the coefficients in the gravita-
tional action from the fundamental parameters in that
theory. In place of that knowledge, all we really know is
that the unknown physics from high energy will be
described by local terms in the action. This follows from
the uncertainty principle which tells us that heavy fields do
not propagate far when viewed at low energy. When one
treats quantum effects of matter fields, or of the gravita-
tional field itself, one needs to renormalize the parameters
in this action. The divergences also are local because they
occur at high energy.

However, we can still make predictions at low energy
without knowing the complete quantum theory of gravity
[1,2]. At low energy, gravitons and other light particles can
propagate a long distance, which distinguishes them from
the local high energy effects. Knowing the low energy
degrees of freedom and their couplings is sufficient to
calculate these effects. In momentum space, where the
calculations are most often performed, this is distinguished
by nonanalytic behavior, such as \/c?, log g%, which
cannot be Taylor expanded in powers of g* and as such
cannot be represented by derivative operators in a local
Lagrangian. For example, in the quantum correction to the
Newtonian potential due to gravition loops, one calculates
the logarithmic nonanalytic term
4rGMm 41
M= ? [l - quz log(—qz)} , (2)
which turns into a long-distance correction when Fourier
transformed [3,4]:

V(r) =

_%[H 41 G] o)

r 107 2|

The one-loop logarithm yields the leading quantum effect.
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The nonanalytic and nonlocal terms can be described by
a nonlocal effective action. The most well-known are in the
curvature squared terms, where Barvinsky and Vilkovisky
and collaborators [5—8] have included the logarithmic
nonanalytic terms using the generic form

O
L =ci(u)R* + cy(u)R,,R* + d R 1log (P)R

O
+ d,R,, log (F) R (4)

with d; , being known dimensionless constants calculated
at one-loop order. Here log [ represents a generalization of
the Fourier transform of log g>—it will be described more
fully below. Although this is written in a form which
appears local, it really represents a nonlocal action because
(x|log O|y) is nonlocal. In particular, the correspondence is

£:Rlog(5)R =

S= / d*x\/—g(x)d*y\/ —g(y)R(x)<x

log (%) ‘y>R(y)-
(5)

In the derivative expansion, these terms are of fourth order
in the derivatives.

The basic result of this paper is that when dealing with
loops of massive particles, there are also nonlocal effects at
zeroth order and second order in the derivative expansion.
That at zeroth order is

— | (B (@ -+ miym) (7
5 (ER)os@myml (GR)] @

from the loop of a massive scalar field. A massive fermion
yields —2 times this result. The two derivatives in the
curvatures are canceled by the 1/ factors, so that overall
this is zeroth order in the derivative expansion. The
structure of this is explained below, but in the sense of
the derivative expansion this is a nonlocal partner to the
cosmological constant. It comes with a coefficient which
cannot be adjusted.

In most settings the fact that there was a nonlocal
component to the interaction would not be remarkable,
as these effects are expected in usual quantum corrections.
However, in the case of the cosmological constant there is a
special feature. The experimental value of the local
cosmological constant is very much smaller than expected,
while the nonlocal partner enters at normal size and cannot
be removed. Therefore, it has an enormous numerical
advantage over the tiny cosmological constant. For

L

example considering the top quark in the loop, we have
m# /A ~ 10°, However, we will see that this interaction is
only applicable at scales above the particle’s mass, as the
effect of the massive field becomes local below that scale.

II. ORIGIN OF NONLOCAL INTERACTIONS

One-loop diagrams can all be reduced to functions of
momentum times the basic scalar tadpole, bubble, triangle,
and box diagrams [9]. The UV divergent diagrams are the
tadpole and bubble. The tadpole has no external momentum
running through it, and in dimensional regularization has
the form near d = 4,

, [ d% 1

(22) 2 = m?]

I = —ip*”

m2

1
=162 [E —y + log(4x) + log(p?/m*) + 1| (7)
with € = (4 —d)/2. This is always independent of any
external momenta. The massive bubble does depend on the

external momentum and has the form

g [ d% 1
b0 =4 [ ey =ar

_ # E— y +log(4x) +log(u2/m2) —J (q2)] "

with
J(q?) = /0 ' dxlog [%} o

When the mass is zero or the momentum becomes large,
one obtains the log g> which has been referenced above.

The logarithm in the Barvinsky-Vilkovisky effective
action comes from the bubble diagram. While they derive
this using the background field method and a nonlocal
version of the heat kernel [8], it is easy to reproduce it in a
perturbative expansion also [10-13]. One expands g, (x) =
N + hy,(x) and calculates the bubble diagram involving
two h,,. One finds

1
M~ hyhas(9" 9 q°q + ) E+---—log(—qz) . (10)

This can be matched to the possible terms in a covariant
effective action. There is a unique connection between the
tensor structure of the momentum factors and the leading
terms in an expansion in the curvatures, resulting in the
identification of the renormalization of the curvature-
squared terms and also the Rlog (IR terms.

In flat space we have the clear identification of the
meaning of log (. It is a function defined by the Fourier
transform of log —q?,
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Lo(x —y) = (x[log O/p?|y)

dq .
= / ‘;4 e 7)) log(-g* — i€) /.

(2x

(1)

For curved spacetime we need a covariant generalization of
this. This is not uniquely defined—there are several options
which could reduce to the flat space version in the
appropriate limit. This issue is discussed in the Appendix.

In the Barvinsky-Vilkovisky formalism, there are also
nonlocal terms following from the one-loop triangle dia-
gram, which involves three factors of the gravitational field
[6]. These provide the triple graviton portions of the R? and
R log IR effects previously identified, as well as some new
terms. When the latter are written in covariant form, they
yield contributions which are proportional to actions such
as R?(1/00)R. Here 1/ is a propagator

(el 1y) = Glx.). (12)
which has covariant versions [ 14—-16]. Such interactions are
said to be of “higher order in the curvature.” However, they
are of the same order in the derivative expansion as are the
local R? terms and the nonlocal R log (IR terms, i.e. all are
of fourth order in the derivative expansion.

In practice, the Barvinsky-Vilkovisky expansion in the
curvature is a weak field expansion rather than a derivative
expansion. It, however, has the great advantage that all
factors are written in covariant form, so that it manifests the
coordinate invariance of general relativity.

III. RENORMALIZATION OF THE
COSMOLOGICAL CONSTANT

What about the lower order terms in the derivative
expansion? The coefficients of the curvature-squared terms
are dimensionless. Starting with massless fields one can
generate these as their coefficients are just pure numbers
and do not require any dimensionful parameters. However,
to generate terms with fewer derivatives, one needs an extra
mass parameter because the coefficients of such a term
must carry a dimensionful factor. With loops of a massive
field, one generates the renormalization of the scalar
curvature term at order m? and the cosmological constant
at order m* when using dimensional regularization, i.e.

P) L MR | onlocal
vV—9——=R ~ \/—g—— + nonlocal,
962G =

4
5/=gA ~ ,/_—gm? + nonlocal. (13)

Our goal is to calculate the nonlocal actions in these cases.
First, we need to understand the renormalization of the
local terms.

Again we can identify the effect by an expansion about
Minkowski space. For reference, the weak field expansion
of the cosmological term is

(a) (b) (c)

FIG. 1. (a), (b) The tadpole diagrams and (c) the bubble
diagram. The solid line is the scalar field, and the dashed line
is the metric field.

11 1
V=IA = A(l o hg g (H) = S hoph™ - ) (14)

We can then identify changes in the cosmological constant
through the couplings to the gravitational field h,,, with
interactions which do not involve derivatives.

For a minimally coupled scalar field, the gravitational
couplings come from the Lagrangian

VAL =Y 2 40,00,

1 h K1
e —_ —_——— ﬂﬂ - 252
5 Kl+2+ 3 2h hﬂﬂ) (0,00 —m*p*)

— W0, $8,p+ (h”ﬁk}; —%hk*‘”) ayqsa,,qs]. (15)

Here h = hi.

The one-loop correction linear in the gravitational field
comes from the tadpole diagram of Fig. 1(a) and has the
form

'k i
—iM, = —ihm kk
M = =i / Qr)* K —m? + e

dk n i
— —jh 4—d/ ﬂkZ ,
R (27)? d = kK*—m? +ie

(16)

where I have dropped a dimensionless integral because I am
using dimensionless regularization.' This integral is readily
evaluated and yields

2

m* [1 u 3
—i =ih——s |-+log—+= 17
Ma = b [EJF ogm2+2] (17)
with the shorthand notation
LI + log(4x) (18)
z e 7 g '

The second order terms in the gravitational field are
similarly straightforward. That of Fig. 1(b) is given by

"The effect of this dimensionless integral also vanishes when
using a cutoff because there is an extra interaction from the
measure required when using cutoff regularization [17].
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) NS d*k i For the bubble diagram of Fig. 1(c), for our purposes in this
—iMy =i| W hy - Ekh (2n)* kuk, k2 —m? +ie section we can evaluate it at zero momentum because the
4 i 1 2 4 cosmological constant does not involve momentum
m u .
- W Ry — ~ hhv 1 dependence. This yields
64;:2( ) )”“‘[-J”’g 2+2]
(19)
|
v 2L d*k Wk, — 5 h(k* — m*)|[h*k,ks — 5 h(k* — m?)]
“ 2] @2a)¢ (k* — m? + ie)?
:lfﬂ hﬂvhaﬁm_hhﬂvL
2] (2x)* (k? — m? + ie)? K2 —m? + ie
d*k [ Wh? ( N n ) 4 N 2m? hh* m?
(27)* |d(d +2) Mhullap 7 Nuallp 7 Nupllva (k> —m? +ie)?  k* —m® +ie d kK —m?+ie

AN BRI
2R | N
2 )LJF °gm2+2]

In this case, it is nontrivial that the finite part (the 3/2
within the final square bracket) comes out identical to the
finite part in the previous two diagrams. However, this is
required for general covariance. Summing the three dia-
grams one gets the appropriate combination for the ex-

pansion of /=g, i.e.

4 1 1 1 2 3
m ~h+-h*——h"u :+log’u—2-|-— .
4 € m- 2

m4
=i Weh
12872 ( w

—iM=iza(3hty

(21)

This lets us read off the one-loop contribution to the
cosmological constant

m

3
A = — 327!2[ —y + log(4x) + log 2+2] (22)

This quantum effect is one contribution to the physical
renormalized value of the cosmological constant. All
physical predictions are expressed in terms of the measured
value after renormalization. As is well-known, it is striking
that the measured value is so much smaller than all the
known mass scales. The present calculation reinforces that
mystery, but does not help explain it.

One can also readily calculate the renormalization of the
Einstein term, proportional to R, by this method. In this
case one must include the external momentum dependence.
The result is proportional to m? and does not add anything
particular to our discussion, so I do not describe it further.

IV. THE NONLOCAL PARTNER

While the ingredients calculated in the previous section
disappear into the renormalized value of A, nonlocal effects

(20)

are finite and physical. Having worked through the
renormalization calculation, we can readily see that such
effects must occur. The fact that the scalar bubble diagram
contributes to the renormalization, as seen in Eq. (20), and
that this diagram has logarithmic momentum dependence,
as seen in Eq. (8), means that there will be logarithmic
nonlocalities when one includes nonzero momentum/spa-
tial dependence.

For this calculation, one needs to include the external
momentum dependence in the bubble diagram, which will
be denoted by the momentum g¢*. The reduction to scalar
integrals is more extensive in this case. It is, however,
useful to show one such integral which displays an
important facet of the final result. Consider the integral

P / d*k kK, kaks
wal = | 2m)* (k2 — m? + ie][(k + q)* — m? + ie]
= F(qpy’?aﬁ + Nyualyp + '?,uﬁ’?av)
+ G(Muwq.9p + 5 perms.) + Hq,q,9,9;-

(23)

The m* portions of the coefficient functions F, G, H are
given by

i m*[1l +1 u? L3
— —_— —_— 0 —
167* 8 |e gm2

") + O(m?),

3 8

-—J(g 2

B i m
 16x%15¢7

i —-m*

= @gu’(qz) + O(m?),

(24)

where J (qz) is the logarithm of Eq. (9). The feature worth
noticing is the inverse powers of g2 in the G and H form
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factors. Combined with the numerator factors in the integral
definition of Eq. (23), these mean that all of these terms are
of zeroth order when counting powers of the momenta.

Consider a matrix element with two external gravitons
having polarization vectors €,, and €;; and define

Q_uv = 4,49, — '?Iuyqz (25)

with g being the momentum carried by the gravitons. With
this notation, the residual matrix element at order m* and
m? after renormalization has been performed is

1
M,umﬁ = m (Q,uanﬁ + QpaQyﬁ + Q,uﬁQm)

m*J(q%) +ém242 =3m*q’J(¢*)|.  (26)
There are also terms of order m®, which contribute to the
Barvinsky-Vilkovisky action in ways which are described
above. What is most important to note is the overall factor
of 1/¢*. Combined with the factors of ¢ in the Q,,, this
makes the overall prefactor zeroth order in the momentum
expansion.

In position space this interaction can only be represented
by a nonlocal effective action. This can be first displayed
using the gravitational field 4, as a preliminary step. The
gravitational field is not gauge invariant by itself, and in this
case the choice of harmonic gauge d,h* = 1 3“h will get
rid of the pesky inverse powers of g2. In this gauge, we
have

1
eﬂpQﬂl’J = _quejs
1
€ Qlua - q qae,l qzez' (27)

In terms of the field, and again using the quasilocal
notation, we find

mt
L= [hm, log[(O + m?)/m?|h* .

16072
- éhleg[(D + mz)/mz]h} : (28)

where we have defined the notation log[(C] + m?/m?)] by

(l1ogl @+ m ) = [ Edidtns(a). (29

More discussion of this function is found in the Appendix.

More generally, we wish to represent the matrix element
in a covariant fashion, independent of the gauge. To do this,
we return to the original matrix element, Eq. (26), and
identify a correspondence between the possible curvatures

and their matrix elements. At second order in the fields the
different products of curvatures have matrix elements,

(RR) = 2Q_uv Qaﬁ,

(R;la ) [2 Q,:w Qaﬂ + Q_ufovﬁ + Qluﬂ Qm] (30)

When using the curvatures, we still have the inverse powers
of g2 in the matrix element so we use

<(éR) (éR» = ;TQmQaﬁ- (31)

This leads to the nonlocal action

4?12 [( l Rza) log((O + m?)/m?) (é Rm)
- é (éR) log((O + m?)/m?) (éR)}

m? .. 1.1
+240”2 [RM R SRDR] (32)
Here I have included the effect of the second term in the
square brackets of Eq. (26) even though it is second order in
the derivative expansion, as it will be important for the
discussion of decoupling and locality which will be
discussed soon. The first two lines are the nonlocal partner
of the cosmological constant.

V. DECOUPLING

At first sight, this operator would seem to violate the
principle of decoupling [18]. The effects of very heavy
masses should be local, when applied at energies much
lower than the mass. The factors of 1/[] seem to violate this
as they appear nonlocal down to low energies. However,
this is not the case. The power counting is different at low
and high energy because

2

J(g?) ~ log% -2 ¢>m?
m

__q

P q* < m?. (33)

This implies that at low energy there is a cancellation
between the terms in Eq. (26). The overall factor in the
square brackets of Eq. (26) is of order g* for ¢g*> <« m? and
results in a local operator.

This implies that the nonlocal operator is only operative
at scales above the particle mass. What is meant by the
phrase “scales” depends on the context. In the original
computation, this clearly referred to the momentum.
However, in general relativistic applications, it would refer
rather to spatial or temporal derivatives. In cosmological
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settings, the Hubble parameter H = a/a would likely play
the role of the energy scale in applications.

The presence of the integral J(g?) has been previously
noted in various settings in gravitational physics [19-21]
including appropriate comments about nonlocalities and
decoupling. These works provide possible avenues for
application of the effective action described above.

VI. DISCUSSION

I have calculated the nonlocal effects due to quantum
loops of a massive particle and found an effect which is
zeroth order in the derivative expansion, much as the
cosmological constant. Nonlocal effects are ubiquitous
when loops involve particles whose mass is smaller than
the relevant energy scales. In this case the result is special
because it is very many orders of magnitude larger than the
local effect (the cosmological constant), although the
nonlocality is active only at high energy scales.” I have
used the Barvinsky-Vilkovisky technique to express this in
covariant form involving the curvatures.

The cosmological constant is not a running coupling
constant in the usual sense. Its value in applications does
not depend on the energy scales involved. One might be
tempted to identify the unphysical dimensional regulariza-
tion parameter u, which appears in the renormalization
procedure of Eq. (22), as a running parameter. In mass-
independent renormalization schemes, or when the mass is
negligible, this y dependence is sometimes used as a
surrogate for the energy dependence, because in those
theories the scale dependence tracks the energy depend-
ence. However, here it just totally disappears into the
renormalized parameter and does not track any energy
dependence, as can be seen most obviously in the tadpole
loop. Energy dependence in the coupling could be
described in position space by a nonlocal effective action.’
In the case of the cosmological constant, the nonlocal effect
has a different structure than the local effect. The nonlocal
partner is the closest thing that we have to a running effect
at zeroth order in the derivative expansion.

The triangle diagram can bring in further nonlocal
effects. Some of these will be part of the interaction
calculated in this paper, when the curvature products are
expanded to order h3. There likely will also be new
operators which can be best expressed as the product of
three curvatures. Some of these can also be of zeroth order
in the derivative expansion. The result of this paper is an
approximation to a much more complicated general result.
This expansion in the curvatures is a weak field expansion.

%A related special case is the inflaton potential, where the local
component can be fine-tuned to be almost flat. However, Miao
and Woodard [22] have pointed out that couplings of the inflaton
to fields needed for reheating generate a nonlocal component
which cannot be fine-tuned.

3For an example with QED, see [12].

It is also possible that repeating this procedure around other
fixed background spacetimes may yield forms which are
more useful for those backgrounds.

There is a subset of the literature dealing with nonlocal
actions in gravity, which can be traced through the refer-
ences in [23-27]. Many of these are speculative suggestions
for nonlocal actions. In contrast, the Barvinsky-Vilkovisky
program and the present work are derived from the quantum
effects of standard local theories and are not speculative.

Techniques in applying nonlocal actions are less well-
developed than those of local Lagrangians, and further
work here would be useful for applications.
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APPENDIX: COVARIANT NONLOCAL
FUNCTIONS

In flat space the meaning of log [ is not controversial—
its matrix element is the Fourier transform of log(—g? — i€)
[Eq. (11)]. Notationally it appears as an operator, but it is
applied as just a function. When we generalize to curved
spacetime, we seek a covariant definition which reduces to
the flat space version in the appropriate limit. Such a
generalization will involve the metric as well as the end
points. Unfortunately there is not a unique choice—I
display three possibilities below, and there are undoubtably
more. The nonlocal operators log [J and log(C] + ; R) also
are discussed in connection with the conformal anomaly
[28-30] as these provide a representation for the anomaly.

Given this nonuniqueness, how can one proceed? A first
point is that within the framework of an expansion in the
curvatures differences in the definitions can be corrected for
by adjusting higher order terms in the curvature expansion.
If you are working at second order in the curvature, the
differences between the various covariant operators appear
at third order in the curvature. At leading order, one may in
principle use any covariant definition.

However, it is still possible that some forms are better
than others for particular applications. For example, a given
form may introduce spurious infrared divergences which
should not be present. This has been seen in at least one
application [12]. Beyond this caveat, not much is known.

Here are three possible definitions of covariant log [J:

(1) Barvinsky, Vilkovisky, and collaborators use a
definition with a single propagator,

1 1
O-m?> W-m

iogT/ul) = [ am(o { 1.

(A1)
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Here

1

g

[y) (A2)

is the covariant propagator for a massive particle [14].

(2) Osborn and Erdmenger [31] have proposed using two
massless propagators, and the subtraction of the divergence
which occurs in this combination

Iy)} 2

- \/%54& -) E—l—loguz/mz + 1] :

(A3)

(x|logO/p*ly) = [(x||:]_lm2

The flat space version of this is the scalar bubble
diagram, so this definition has the good feature that it
is close to what one does when calculating Feynman
diagrams. One proves this relation by Fourier trans-
forming both sides.

(3) Perhaps the simplest generalization uses the proper
time parametrization. In this case one uses the flat space
representation

Lo(x —y) = (x|log O/u|y)

d* i (x—y .
- /ﬁe—u;-v—y} log(—q* — i€)/u?

— d4q m@ ei(q3+£€)s - ei,uzs e~ ia(x-y)
2o o s [ ]

1 oo ds o X=y 2—!6‘
= @/ STB_‘%‘ + local.
0

(A4)

This can be made covariant most simply by replacing the
spacetime separation by the geodetic distance, i.e. the
proper distance along the geodesic connecting the points
%(x —y)? = o so that one can use

]. oo d ra=iE
/ Seit, (AS)
0

L =—
(@) 1672 s

That these definitions are different can be verified by
expanding them about flat spacetime in an expansion in the
gravitational field.

There is another aspect to the use of nonlocal
functions, which is the fact that tensor quantities
transform differently at different spacetime locations
because general coordinate invariance is a local symmetry.
In R, (x)(x|log Ol|y)**’R .5(y) the curvature tensors trans-
form differently at x and y. The treatment of this using
Wilson lines is reserved for a future publication [32].

The function

J(x,y) = (x|log(O + m?)/m?|y)

is a covariant generalization of

(A6)

Iox=y)= [ G Seee (g

dq 1 m?—x(1-x)q*

= | — ety [ dxlog |—— ],
/ (22)*¢ ﬁ “’g[ m? ]
(A7)

Again, this is not uniquely defined. Because it is to be
applied only above the energy scale m, it is probably most
useful to use an approximation valid for g% > m?, namely
J(g?) ~log(—g?*/m?) — 2, in which case the nonlocal part
of J(x,y) is approximated by log [J.

[1] J.E. Donoghue, General relativity as an effective field
theory: The leading quantum corrections, Phys. Rev. D
50, 3874 (1994).

[2] J.E. Donoghue, M. M. Ivanov, and A. Shkerin, EPFL
lectures on general relativity as a quantum field theory,
arXiv:1702.00319.

[3] N.E.J. Bjerrum-Bohr, J. F. Donoghue, and B. R. Holstein,
Quantum gravitational corrections to the nonrelativistic
scattering potential of two masses, Phys. Rev. D 67,
084033 (2003); 71, 069903(E) (2005).

[4] L. B. Khriplovich and G. G. Kirilin, Quantum power correc-
tion to the Newton law, J. Exp. Theor. Phys. 95, 981 (2002).

[5] A.O. Barvinsky and G. A. Vilkovisky, Covariant perturba-
tion theory II. Second order in the curvature. General
algorithms, Nucl. Phys. B333, 471 (1990).

[6] A.O. Barvinsky, Y. V. Gusev, V. V. Zhytnikov, and G. A.
Vilkovisky, Covariant perturbation theory IV. Third order in
the curvature, arXiv:0911.1168.

[7] I. G. Avramidi, The nonlocal structure of the one loop
effective action via partial summation of the asymptotic
expansion, Phys. Lett. B 236, 443 (1990).

[8] A.O. Barvinsky and G.A. Vilkovisky, The generalized
Schwinger-Dewitt technique in gauge theories and quantum
gravity, Phys. Rep. 119, 1 (1985).

[9] G. Passarino and M. J. G. Veltman, One loop corrections for
e"e” annihilation into " u~ in the Weinberg model, Nucl.
Phys. B160, 151 (1979).

[10] A. Codello and O. Zanusso, On the non-local heat
kernel expansion, J. Math. Phys. (N.Y.) 54, 013513
(2013).

105025-7



JOHN F. DONOGHUE

PHYS. REV. D 105, 105025 (2022)

[11] J.F. Donoghue and B. K. El-Menoufi, Nonlocal quantum
effects in cosmology: Quantum memory, nonlocal FLRW
equations, and singularity avoidance, Phys. Rev. D 89,
104062 (2014).

[12] J.F. Donoghue and B. K. El-Menoufi, Covariant non-local
action for massless QED and the curvature expansion,
J. High Energy Phys. 10 (2015) 044.

[13] J.LF. Donoghue and B.K. El-Menoufi, QED trace
anomaly, non-local Lagrangians and quantum equivalence
principle violations, J. High Energy Phys. 05 (2015)
118.

[14] B. S. DeWitt, Quantum field theory in curved space-time,
Phys. Rep. 19, 295 (1975).

[15] B. S. DeWitt, Quantum theory of gravity. II. The manifestly
covariant theory, Phys. Rev. 162, 1195 (1967).

[16] B. S. DeWitt, Quantum theory of gravity. IIl. Applications
of the covariant theory, Phys. Rev. 162, 1239 (1967).

[17] J.F. Donoghue, Cosmological constant and the use of
cutoffs, Phys. Rev. D 104, 045005 (2021).

[18] T. Appelquist and J. Carazzone, Infrared singularities and
massive fields, Phys. Rev. D 11, 2856 (1975).

[19] D.A.R. Dalvit and F.D. Mazzitelli, Running coupling
constants, Newtonian potential and nonlocalities in the
effective action, Phys. Rev. D 50, 1001 (1994); D. Lopez
Nacir and F. D. Mazzitelli, Running of Newton’s constant
and noninteger powers of the d’Alembertian, Phys. Rev. D
75, 024003 (2007).

[20] E. V. Gorbar and I. L. Shapiro, Renormalization group and
decoupling in curved space, J. High Energy Phys. 02 (2003)
021.

[21] D. Burns and A. Pilaftsis, Matter quantum corrections to the
graviton self-energy and the Newtonian potential, Phys.
Rev. D 91, 064047 (2015).

[22] S.P. Miao and R.P. Woodard, Fine tuning may not be
enough, J. Cosmol. Astropart. Phys. 09 (2015) 022.

[23] A.O. Barvinsky, Nonlocal action for long distance mod-
ifications of gravity theory, Phys. Lett. B 572, 109 (2003);
A.O. Barvinsky, Y. V. Gusev, V.F. Mukhanov, and D. V.
Nesterov, Nonperturbative late time asymptotics for heat
kernel in gravity theory, Phys. Rev. D 68, 105003 (2003).

[24] S. Deser and R.P. Woodard, Nonlocal Cosmology, Phys.
Rev. Lett. 99, 111301 (2007).

[25] S. Deser and R.P. Woodard, Nonlocal cosmology II—
Cosmic acceleration without fine tuning or dark energy,
J. Cosmol. Astropart. Phys. 06 (2019) 034.

[26] M. Maggiore and M. Mancarella, Nonlocal gravity and dark
energy, Phys. Rev. D 90, 023005 (2014).

[27] M. Maggiore, Nonlocal infrared modifications of gravity.
A review, Fundam. Theor. Phys. 187, 221 (2017).

[28] S. Deser, M. J. Duff, and C.J. Isham, Nonlocal conformal
anomalies, Nucl. Phys. B111, 45 (1976).

[29] S. Deser and A. Schwimmer, Geometric classification of
conformal anomalies in arbitrary dimensions, Phys. Lett. B
309, 279 (1993).

[30] S. Deser, Closed form effective conformal anomaly actions
in D > 4, Phys. Lett. B 479, 315 (2000).

[31] J. Erdmenger and H. Osbormn, Conserved currents and the
energy momentum tensor in conformally invariant theories
for general dimensions, Nucl. Phys. B483, 431 (1997).

[32] 1. F. Donoghue and B. K. El-Menoufi (to be published).

105025-8



