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Amphichiral knots with large 4-genus

A. N. Miller

Abstract

For each g > 0 we give infinitely many knots that are strongly negative amphichiral, hence

rationally slice and representing 2-torsion in the smooth concordance group, yet which do not

bound any locally flatly embedded surface in the 4-ball with genus less than or equal to g. Our

examples also allow us to answer a question about the 4-dimensional clasp number of knots.

1. Introduction

An oriented knot K in S
3 is called strongly negative amphichiral if there exists an orien-

tation reversing involution ' : S3 ! S
3 such that '(K) = K

r. Many concordance invariants
vanish on such knots, including the classical Tristram-Levine signature function [13], [23]
and more modern invariants coming from Heegaard Floer and Khovanov homology like
the ⌧ -invariant [20], ⌫+-invariant [8], ⌥-invariant [21], s-invariant [22], sn-invariants [18],
[24], s#-invariant [12], and j-invariant [14]. Notably, this list contains almost all known
lower bounds on the 4-genus, or minimal genus of a (smoothly or locally flatly) embedded
orientable surface in B

4 with boundary the given knot. However, we use Gilmer’s bound on
the topological 4-genus [5] coming from Casson-Gordon signatures [3] to prove the following.

Theorem 1.1. For any g > 0, there exists a knot K with the following properties:

(i) K is strongly negative amphichiral.

(ii) K can be transformed to a smoothly slice knot by changing some crossings (+) to (�).
(iii) K can be transformed to a smoothly slice knot by changing some crossings (�) to (+).
(iv) the topological 4-genus of Kis strictly larger than g.

In fact, something more is true, and proven in Proposition 2.7: for any g 2 N there
exists an infinite family of knots {Kk}k2N, generating a subgroup of the concordance group
isomorphic to (Z2)

1, such that any nontrivial sum K = #m
j=1K

kj satisfies the conclusions
of Theorem 1.1. Moreover, each of the knots K

k is algebraically slice, so we incidentally
reprove a result of Livingston [16] that there is a (Z2)

1-subgroup of the concordance group
consisting of algebraically slice knots.

Negative amphichiral knots, if not slice, represent 2-torsion elements of the smooth
concordance group; a still-open question of Gordon asks whether all 2-torsion elements
have such representatives [6, Problem 16]. We therefore obtain the following corollary to
Theorem 1.1, which appears to be previously unknown.

Corollary 1.2. There exist 2-torsion knots with arbitrarily large 4-genera.
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A knot K is called rationally slice if there exists a smooth 4-manifold W with boundary
@W = S

3 and H⇤(W ;Q) = H⇤(B4;Q) such that K bounds a smoothly embedded null-
homologous disc in W . Every strongly negative amphichiral knot is rationally slice [10],
and so Theorem 1.1 also answers a question of [7] in the a�rmative.

Corollary 1.3. There exist rationally slice knots with arbitrarily large 4-genera.

The 4-dimensional clasp number c4(K) of a knot K is the minimal number of transverse
double points across all immersions ofD2 in B

4 with @D
2 = K. Similarly, c+4 (K) (respectively

c
�
4 (K)) is defined to be the minimal number of positive (resp. negative) transverse double
points across all immersions of D2 in B

4 with @D
2 = K. It follows immediately from the

definitions that c+4 + c
�
4  c4; the figure-eight knot 41 is the prototypical example of when this

inequality is strict, since c+4 (41) = c
�
4 (41) = 0 and yet c4(41) = 1. We answer a question of [9]

by giving the first examples of knots for which c4(K) is arbitrarily larger than c
+
4 (K) + c

�
4 (K).

Corollary 1.4. The di↵erence between c4(K) and c
+
4 (K) + c

�
4 (K) can be arbitrarily

large.

Proof. For g 2 N, let Kg be a knot satisfying the conclusions of Theorem 1.1. By items (ii)
and (iii), we have that c+4 (Kg) + c

�
4 (Kg) = 0 + 0 = 0, and by item (iv) we have that

g < g4(Kg)  g
s
4(Kg)  c4(Kg),

noting that standard arguments show that for any knot K the smooth 4-genus g
s
4(K) is

bounded above by c4(K).

Since Casson-Gordon signatures provide bounds on the topological 4-genus, it remains
open whether one can find examples for the smooth analogue of Theorem 1.1. In particular,
the following three questions remain open.

Question 1. For g 2 N, is there a topologically slice knot K such that gs4(K) > g and
(i) K has order 2 in the smooth concordance group?
(ii) K is smoothly rationally slice?
(iii) c

+
4 (K) = c

�
4 (K) = 0?

Recent work of Hom-Kang-Park-Sto↵regen [7] has shown that {C2n+1,1(41)}n2N generates
a Z1-subgroup of rationally slice knots in the smooth concordance group. By work of [4],
the topological 4-genus of C2n+1,1(41) equals 1 for all n 2 N, but it remains open whether the
smooth 4-genus of C2n+1,1(41) is large. Since 2n+ 1 is relatively prime to 2, one can combine
the work of this paper with the formulas for Casson-Gordon signatures of satellite knots given
in [15] and conclude that for our choice of Kg satisfying the conclusions of Theorem 1.1, we
have that g4(C2n+1,1(Kg)) > g for all n 2 N. We therefore state the following as an interesting
open problem in either the smooth or topological categories.

Question 2. For any g 2 N, let Kg be one of the knots given in Section 2 that satisfies
the conclusions of Theorem 1.1. For some or all n 2 N, determine whether C2n+1,1(Kg) is
infinite order in the concordance group.
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We note that it remains open even whether C2n,1(K) must always be slice for strongly
negative amphichiral K, though it is known that many such knots are not ribbon [19].

Remark 1. The key feature of Casson-Gordon signatures that allows us to use Gilmer’s
bound to establish Theorem 1.1 when all other lower bounds on the 4-genus fail might initially
seem like a flaw: no single signature gives a 4-genus bound or even a sliceness obstruction.
While we avoid stating the precise definition of these invariants, we remind the reader that
�(K,�) 2 Q depends on not just the knot K but a choice of map � from the first homology
of the double branched cover of K to a cyclic group. The fact that K is negative amphichiral
implies that there is an involution ◆ on the set of such maps such that �(K, ◆(�)) = ��(K,�).
As long as this involution is non-trivial, the negative amphichirality of K does not force
�(K,�) to vanish and there is still the potential to obtain a sliceness obstruction–and even
a lower bound on the 4-genus–by considering the set of all such signatures. This could be
considered as philosophically similar to the fact that Casson-Gordon signatures can obstruct
knots from being concordant to their reverses [11], though that result requires a careful
analysis of additional structure that we are able to avoid.

Acknowledgements. The author is indebted to Anthony Conway and JungHwan Park for
thoughtful conversations and for suggesting the questions resolved by Corollaries 1.2 and 1.4,
and to Chuck Livingston for asking about algebraic sliceness. The author also thanks the
anonymous referee for their careful reading and helpful comments.

2. Proof of Main Result

Our examples are connected sums of certain satellites of the figure-eight knot.

Example 1. Let J be a reversible knot and define K(J) to be as in Figure 1, where J

denotes the mirror image of J , which since J is reversible equals the concordance inverse
�J . We note for later that the disc-with-bands Seifert surface for K(J) visible on the left of
Figure 1 demonstrates that K(J) shares a Seifert form with the figure-eight knot K0.

Figure 1. The knot K(J) from two perspectives.

The right side of Figure 1 demonstrates that K(J) is strongly negative amphichiral:
rotation by 180 degrees in the plane about the marked point followed by reflection in the plane
of the page takes K(J) to itself, but with reversed orientation. An alternate construction of
this involution comes from considering the decomposition of the exterior of K(J) as the
exterior of K(U), the figure eight knot, with two solid tori cut out and the exteriors of J and
J̄ glued in places. One can then verify that the involution guaranteeing the strong negative
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amphichirality of K(U) exchanges said tori, and hence yields an appropriate involution on
the exterior of K(J).

Proposition 2.1. If J is a reversible knot, then K(J) has c+4 (KJ) = c
�
4 (KJ) = 0.

Proof. Consider the knots K± as depicted in Figure 2, shown with genus one Seifert
surfaces F± in disc-with-bands position. Observe that K+ (respectively K�) is obtained
from KJ by changing a single negative (resp. positive) crossing to a positive (resp. negative)
crossing. Figure 2 also depicts a curve �± on F±. Note that each of �± represents a nontrivial

Figure 2. K+, obtained by changing a crossing from � to + (left) and K�, obtained by changing

a crossing from + to � (right).

element of H1(F±) and is 0-framed by F±; i.e. is an derivative curve. Considered as a knot,
�+ is J#J ; since J is reversible this is isotopic to J#� J and hence is slice. Similarly,
the knot type of �� is the slice knot J#� J . Therefore, surgering the Seifert surface F±
along the derivative curve �± yields a smooth slice disc for K±. We can convert this single
crossing change from K(J) to K± into an immersed annulus in S

3 ⇥ I from K(J) to K±.
Capping each of these annuli with a smooth slice disc for K± yields the desired immersed
discs bounded by K(J), each with a single singularity of di↵erent sign.

2.1. Background results

For n 2 N and a knot K, we let ⌃n(K) denote the nth cyclic branched cover of S3 along K.
To a knot K and a map � : H1(⌃n(K)) ! Zq one can associate the Casson-Gordon signature
�(K,�) 2 Q [3]. We avoid giving the technical definition of these invariants, noting only
that they are defined in terms of the twisted intersection form of some 4-manifold and are
notoriously di�cult to compute precisely. We remark for those familiar with Casson-Gordon
signatures that in the literature what we call �(K,�) is just �1⌧(K,�) instead.
Our lower bound on the topological 4-genus of a knot comes from the following slightly

reformulated result of Gilmer.

Theorem 2.2. [5, Theorem 1] Suppose that K is a knot with g4(K)  g. Then there is

a decomposition H1(⌃2(K)) = A1 �A2 such that:

(i) A1 has a presentation with at most 2g generators.

(ii) There is some B  A2 with |B|2 = |A2| such that for any prime power order

� : H1(⌃(K)) ! Zq with � vanishing on A1 �B, we have

|�(K,�) + �(K)|  4g.
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We remark for later that in our applications of Theorem 2.2 we will always have that K is
negative amphichiral and hence that �(K) = 0.

In particular, we have the following corollary, which is all that we need for Theorem 1.1.

Corollary 2.3. Suppose that K is a knot with g4(K)  g such that H1(⌃2(K)) is not
generated as an abelian group by any 2g of its elements. Then there exists a prime p and a

nontrivial character � : H1(⌃2(K)) ! Zp such that

|�(K,�) + �(K)|  4g.

Proof. Let A1, A2, and B be as in in the conclusion of Theorem 2.2. By our assumption on
H1(⌃2(K)), we have that A1 does not equal all of H1(⌃2(K)). Therefore |A1| < |H1(⌃2(K))|
and so

|A1 �B| = |A1| · |B| = |A1| ·
p
|A2| = |A1| ·

s
|H1(⌃2(K))|

|A1|
=
p
|A1|

p
|H1(⌃2(K))|

is strictly less than the order of H1(⌃2(K)). That is, A1 �B is a proper subgroup of
H1(⌃2(K)). It follows that for any prime p dividing the index of A1 �B in H1(⌃2(K))
there exists a nontrivial character � : H1(⌃2(K)) ! Zp that vanishes on A1 �B, and hence
that by Theorem 2.2 satisfies

|�(K,�) + �(K)|  4g

as desired.

Litherland proved a much more general formula for the Casson-Gordon invariants of
satellite knots, but we will only need the following special case.

Theorem 2.4. [15, Special case of Theorem 2] Suppose P is a pattern of winding number

0 described by an unknot ⌘ in the complement of P (U). Let x denote the homology class of

one of the lifts of ⌘ to ⌃2(P (U)). For any knot J , there is an isomorphism ↵ : H1(⌃2(P (J))) !
H1(⌃2(P (U))) such that for any � : H1(⌃2(P (U))) ! Zq we have

�(P (J),� � ↵) = �(P (U),�) + 2�J(!
�(x)
q ),

where !q = e
2⇡i/q

and �J denotes the Tristram-Levine signature function.

As well as the knot invariant �(K,�), Casson-Gordon introduced a signature invariant
�(M,�) associated to a 3-manifold M and a character � : H1(M) ! Zq. These are much
more computable than the knot Casson-Gordon signatures and satisfy the following key
property.

Proposition 2.5. [3, Lemma 3 and Theorem 4] Let J be a knot such that H1(⌃2(J))
is cyclic. Then for any prime power order character � on H1(⌃2(J)), we have that

|�(J,�)� �(⌃2(J),�)|  1.

We will need a formula due to Cimasoni-Florens for the Casson-Gordon signature of a 3-
manifold in terms of the colored signature function of a surgery link. Although this result is
proved in much more generality, we state it only for the case of interest: when M is obtained
by surgery on a Hopf link. We thereby avoid going into the technical details of the definition



Page 6 of 10 A. N. MILLER

of the colored signature function, noting only for the experts that the cell complex consisting
of 2 discs meeting in a single arc and bounded by the Hopf link is a C-complex in the sense
of [2], and the contractibility of this complex immediately implies that the colored signature
function of the Hopf link is identically zero.

Theorem 2.6. [2, Theorem 6.7] Suppose that a 3-manifold M is obtained by surgery

on a Hopf link L with linking matrix ⇤ =


a 1
1 b

�
. Let q be prime and � : H1(M) ! Zq be

a character such that the two meridians µ1, µ2 of L are sent to nonzero elements of Zq. For

i = 1, 2 let ni 2 {1, . . . , q � 1} be the unique value satisfying ni ⌘ �(µi) mod q. Then

�(M,�) = �1� sign(⇤) +
2

q2


n1

n2

�T
·


a 1
1 b

�
·


q � n1

q � n2

�

2.2. Proof of Theorem 1.1

In the proof of Theorem 1.1, we will need a formula for the Casson-Gordon signatures of
KJ in terms of the Tristram-Levine signatures of J .

Example 2. Let K0 denote the figure-eight knot. Note that K(J) is obtained from K0

by two infections along curves ⌘1 and ⌘2, as depicted in Figure 3.

Figure 3. The knot K(J) is an iterated satellite of the figure-eight knot.

By twice applying Theorem 2.4, we see that for any knot J there is an isomorphism
↵ : H1(⌃2(K(J))) ! H1(⌃2(K0)) such that for any character � : H1(⌃2(K0)) ! Zq we have

�(K(J),↵ � �) = �(K0,�) + 2�J(!
�(f⌘1)
q ) + 2�J(!

�(f⌘2)
q ) = �(K0,�) + 2�J(!

�(f⌘1)
q )� 2�J(!

�(f⌘2)
q )

Since both ⌘i curves are disjoint from the usual genus one Seifert surface for K0, we can
apply Akbulut-Kirby’s algorithm of [1] to obtain the following surgery diagram for ⌃2(K0),
with lifts of ⌘1 and ⌘2 as indicated. (Note that we have only depicted one lift of each curve,
since that is all we need to apply Theorem 2.6.) The first homology of ⌃2(K0) is generated

Figure 4. A surgery diagram L for ⌃2(K0).

by the meridians of the components of L, which are isotopic to e⌘1 and e⌘2. The relations are
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given by the rows of the linking-framing matrix, and are

�2[ e⌘2] + [ e⌘1] = 0 and [ e⌘2] + 2[ e⌘1] = 0.

Some quick simplifications give us that H1(⌃2(K0)) ⇠= Z5, generated by a := [ e⌘2] and such
that [ e⌘1] = 2[ e⌘2]. Therefore, for any character � : H1(⌃2(K0)) ! Z5 we have that

�(KJ ,� � ↵) = �(K0,�) + �J(!
2�(a)
5 )� �J(!

�(a)
5 ). (2.1)

We can also use the surgery diagram of Figure 4 to bound |�(K0,�)|. For j 2 Z5,
define �j : H1(⌃2(K0)) ! Z5 to be the map with �j(a) = j. Observe that �1([ e⌘1]) = 2 and
�2([ e⌘1]) = 4. Therefore, Theorem 2.6 gives us that

�(⌃2(K0),�1) = �1� 0 +
2

25

⇥
1 2

⇤  �2 1
1 2

� 
4
3

�
= �1 +

30

25
= 1/5

and

�(⌃2(K0),�2) = �1� 0 +
2

25

⇥
2 4

⇤  �2 1
1 2

� 
3
1

�
= �1 +

20

25
= �1/5.

Moreover, basic properties of Casson-Gordon signatures (or reapplying Theorem 2.6) imply
that �(⌃2(K0),�3) = �(⌃2(K0),�2), �(⌃2(K0),�4) = �(⌃2(K0),�1), and �(⌃2(K0),�0) =
0.
Since H1(⌃2(K0)) ⇠= Z5 is cyclic, Proposition 2.5 implies that for any � : H1(⌃2(K0)) !

Z5 we have |�(K0,�)� �(⌃2(K0),�)|  1 and hence, by the above computation, that
|�(K0,�)| < 2.

We are now ready to prove the following and obtain Theorem 1.1 as a consequence.

Proposition 2.7. Fix g 2 N. For i 2 N define Ji = #miT2,5, where mi = 22i+1
g.

Now, for k 2 N define K
k := #2g+2

i=1 K(Jk(2g+2)+i). Then S = {Kk}k2N is a collection of

algebraically slice knots such that any nontrivial sum K = #n
j=1K

kj satisfies the conclusions

of Theorem 1.1.

Proof. Observe that for any choice of J , the knot K(J) shares a Seifert form with
K0. Therefore, each K

k shares a Seifert form with the slice knot #2g+2
i=1 K0, and hence is

algebraically slice. Also, since Seifert forms determine the homology of cyclic branched covers,
we record for later that for any k we have

H1(⌃2(K
k)) ⇠= H1(⌃2(#

2g+2
i=1 K0)) ⇠= Z2g+2

5 .

Now let K = #n
j=1K

kj be a nontrivial sum of elements of S. Since each K
kj is 2-torsion,

we can and do assume that k1 < k2 < · · · < kn. Since strong negative amphichirality, rational
sliceness, and being related to a slice knot via (+) to (�) (or (�) to (+)) crossing changes
are all preserved under the connected sum operation, it only remains to verify item (iv).
Since n � 1,

H1(⌃2(K)) ⇠=
nM

j=1

H1(⌃2(K
kj ) ⇠= Zn(2g+2)

5 (2.2)

is not generated by any 2g of its elements. So Corollary 2.3 applies and it is enough to show
that for every nontrivial character � : H1(⌃2(K)) ! Z5, we have |�(K,�)| > 4g.
Let � be a nontrivial character, which by the isomorphism of Equation 2.2 we can write as

� = ((�j
i )

2g+2
i=1 )nj=1. By the additivity of Casson-Gordon signatures with respect to connected
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sum, we have that

�

✓
K,

⇣
(�j

i )
2g+2
i=1

⌘n
j=1

◆
=

nX

j=1

�(Kkj , (�j
i )

2g+2
i=1 ) =

nX

j=1

2g+2X

i=1

�(K(Jkj(2g+2)+i),�
j
i ). (2.3)

Moreover, for each 1  j  n and 1  i  2g + 2, Theorem 2.4 and Equation 2.1 of
Example 2 tells us that there is an identification

↵
j
i : H1(⌃2(K(Jkj(2g+2)+i))) ! H1(⌃2(K0))

such that for any � : H1(⌃2(K0)) ! Z5, we have

�(K(Jkj(2g+2)+i),� � ↵j
i ) = �(K0,�) + 2�Jkj(2g+2)+i

(!2�(a)
5 )� 2�Jkj(2g+2)+i

(!�(a)
5 ). (2.4)

Now, for each 1  j  n and 1  i  2g + 2, define

�
j
i := �

j
i � (↵

j
i )

�1 : H1(⌃2(K0)) ! Z5.

Equations 2.3 and 2.4 combine to tell us that

�(K,�) =
nX

j=1

 
2g+2X

i=1

�(K0,�
j
i ) + 2�Jkj(2g+2)+i

(!
2�j

i (a)
5 )� 2�Jkj(2g+2)+i

(!
�j
i (a)

5 )

!
(2.5)

Since � is nontrivial, there exists some j such that (�j
i )

2g+1
i=1 and hence (�j

i )
2g+1
i=1 is not

identically zero. Let j0 be the maximal such j and let i0 be the maximal i such that
�
j0
i is nonzero. Let ` = kj0(2g + 2) + i0. The following algebraic manipulations show that

�(K(J`),�
j0
i0
) so dominates the other terms that could contribute to �(K,�) that we have as

desired that |�(K,�)| > 4g.
Recalling that each Ji = #miT2,5, where mi = 22i+1

g, we have by the additivity of
Tristram-Levine signatures under connected sum that �Ji(!5) = �Ji(!

4
5) = �22i+2

g and
�Ji(!

2
5) = �Ji(!

3
5) = �22i+3

g (see KnotInfo [17] for the Tristram-Levine signature function
of T (2, 5).) Applying Equation 2.1 from Example 2, we see that for any i and any nonzero
character ⇢ : H1(⌃2(K(Ji))) ! Z5 we have that

22i+3
g � 2  |�(K(Ji), ⇢)| = |�(K0, ⇢)± (2�Ji(!5)� 2�Ji(!

2
5))|  22i+3

g + 2, (2.6)

where we briefly suppress the identification of H1(⌃2(K(Ji))) with H1(⌃2(K0)).
Observe that the set of natural numbers

{kj0(2g + 2) + i : 1  i  i0 � 1} [
j0�1[

j=1

{kj(2g + 2) + i) : 1  i  2g + 2} (2.7)

is a subset of {1, . . . , `� 1}, where ` = kj0(2g + 2) + i0.
Recalling that �(K(Jkj(2g+2+i),�

j
i ) = 0 whenever j > j0 or j = j0 and i > i0, we therefore

have that

|�(K,�)| =

������

nX

j=1

2g+2X

i=1

�(K(Jkj(2g+2)+i),�
j
i )

������

=

������
�(K(J`),�

j0
i0
) +

i0�1X

i=1

�(K(Jkj0 (2g+2)+i),�
j0
i ) +

j0�1X

j=1

2g+2X

i=1

�(K(Jkj(2g+2)+i),�
j
i )

������

�
����(K(J`),�

j0
i0
)
����

i0�1X

i=1

����(K(Jkj0 (2g+2)+i),�
j0
i )
����

j0�1X

j=1

2g+2X

i=1

����(K(Jkj(2g+2)+i),�
j
i )
���

� (22`+3
g � 2)�

`�1X

k=1

(22k+3
g + 2) =: (⇤)
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where in the last inequality we use our observation from Equation 2.7 together with
Equation 2.6. Some algebraic simplification yields that

(⇤) = 8g

 
22` �

`�1X

k=1

22k
!

� 2` = (g/3)(22`+3 � 32)� 2`.

Now, note that since ` > 2g + 2 � 4 we have that 2`+ 3 > 11 and so certainly 22`+3 � 32 >

22`+2. Therefore

|�(K,�)| � (⇤) > (g/3)22`+2 � 2` > 22` � 2`.

Finally, we observe that for any x > 2 we have 22x � 2x > 2x, since letting f(x) = 22x � 4x
we see that f 0(x) = ln(4)22x � 4 is positive for all x � 1 and f(2) = 8. Therefore

|�(K,�)| > 2` > 4g + 4 > 4g,

as desired.

Remark 2. The examples of Proposition 2.7 are far from the only knots satisfying the
conclusions of Theorem 1.1. One could vary the base knot, for example by choosing {ai}i�0

to be natural numbers such that {4a2i + 1}i2N consists of pairwise relatively prime numbers.
(This is easily accomplished by e.g. letting a0 = 1 and ak =

Qk�1
i=1 (4a

2
i + 1) for k � 1. ) Now,

let Ki be the 2-bridge knot corresponding to the rational number 4a2
i+1
2ai

, noting that indeed
K0 is the figure-eight knot. Choose {pi}i�0 to be primes dividing 4a2i + 1, noting that by our
choice of ai we have that pi divides 4a2j + 1 if and only if j = i. By taking connected sums of
Kai analogously infected with large connected sums of T2,pi and �T2,pi , we can essentially
repeat the arguments of Proposition 2.7 and obtain many more linearly independent knots
satisfying the conclusions of Theorem 1.1.
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