BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS

PAOLO ACETO, JEFFREY MEIER, ALLISON N. MILLER, MAGGIE MILLER, JUNGHWAN PARK,
AND ANDRAS I. STIPSICZ

ABSTRACT. Prime power fold cyclic branched covers along smoothly slice knots all bound rational
homology balls. This phenomenon, however, does not characterize slice knots. In this paper, we
give a new construction of non-slice knots that have the above property. The sliceness obstruction
comes from computing twisted Alexander polynomials, and we introduce new techniques to simplify
their calculation.

1. INTRODUCTION

For a knot K C S3, let Y4(K) denote the g-fold cyclic branched cover of 53 along K. Consider
the set of prime powers Q = {p’ | p prime, ¢ € N}. For ¢ € Q, the three-manifold Yy(K) is a
rational homology sphere — i.e. H.(3,(K); Q) & H.(S Q). It is not hard to see that if K C S3 is
smoothly slice — i.e. bounds a smooth, properly embedded disk D in the 4-ball D* — then %, (K)
bounds a smooth rational homology ball X4, that is, ¥,(K) = 0X* and H.(X* Q) = H.(D* Q).
Indeed, the g-fold cyclic branched cover of D* branched along D will be such a four-manifold. It
is natural to ask if the property that all prime power fold cyclic branched covers bound rational
homology balls characterizes slice knots.

To put this question in a more algebraic framework, notice that ¥, (—K) = —%,(K) (where —K
is the reverse of the mirror image of the knot K, and —Y is the three-manifold Y with reversed
orientation) and X,(K1#K>) = X,(K1)#X4(K2). Hence the map

K — $,(K)

descends to a homomorphism C — 03, where C denotes the smooth concordance group of knots
in S3, and @f@ is the smooth rational homology cobordism group of rational homology spheres. We

then let
p:C— H 63,
qeQ
be the homomorphism given by

(K] = ([E(K)])ge0;

and note that [K] € ker ¢ exactly when all the prime power fold cyclic branched covers of K bound
rational homology balls. The following question was posed during problem sessions at the conference
on Synchronizing Smooth and Topological 4-manifolds and at the conference on 4-Manifolds and
Knot Concordance, hosted by Banff International Research Station and the Max Planck Institute
for Mathematics, respectively, in 2016 [1, [2].

Question 1.1. Is ker ¢ trivial?

In fact, the answer to this question can be rather swiftly shown to be ‘no’. Since the 3-manifold
¥4(K) is independent of the orientation of K, any knot J which is not concordant to its reverse J"
yields a nontrivial element K := J# — J" in ker . The existence of such J was first established
by Livingston; see [27, 28] for proofs. In fact, recent work of Kim and Livingston together with the
above observation implies that ker ¢ contains an infinitely generated free subgroup, generated by
topologically slice knots of the form K# — K" [25].

1
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Considerably less seems to be known with regards to finite order elements in ker . Kirk and
Livingston showed that the knot 87, which is negative-amphichiral, is not concordant to its re-
verse [27] (see also [7]), and so the above observation implies that 8;7#8]- represents a nontrivial
element of order two in ker ¢.

In this article, we give a new construction that yields large families of knots representing elements
in ker p. In addition, we show that four of these knots generate a (Zg)* subgroup of ker p. We
remark that an easy extension of our arguments in the proof of Theorem show that adding in
817#87 - in fact gives a (Zy)® subgroup. It is an interesting technical challenge to show that a (Z3)>
subgroup exists in ker ; we expect that our examples (see Theorem generate such a subgroup.

While our knots are prime and hence not isotopic to any J# — J", it is not at all obvious how to
show that they are not concordant to any knot of the form J# — J”. To belabor this point, we note
that the bulk of this article’s work is required to merely show that these knots are not concordant
to U# — U" = U. We therefore propose the following refinement of Hedden’s Question [1.1] as a
stimulus to future work.

Question 1.2. Is ker p = {[K# — K"] | K is a knot in $3}?

Our examples are constructed as follows. Let L, be the link depicted in the left diagram of
Figure [1, where the box labeled » € N consists of r right-handed half-twists (and —r denotes
r left-handed half-twists). When r is even, L, is a knot (a simple generalization of the figure-
8 knot, which is given by Ls). As was shown in [6], these knots are rationally slice, non-slice,
and strongly negative-amphichiral and moreover generate a subgroup isomorphic to (Z3)* in the
smooth concordance group C. If r = 2m+1 is odd, then L, is a 2-component link of unknots, which
we redraw in the middle of Figure [1| by braiding component Bs,, 11 about component Agy,11. The
resulting (2m + 1)-braid f,, is shown in the right diagram of Figure

—r B

2m+1 2m+1

FIGURE 1. L, (left) is a knot if r is even and is a 2-component link if » = 2m +1 is
odd. The middle diagram shows Loy, +1 = Agpmi1 U Boy,y1 redrawn as (the closure
of) a (2m + 1)-braid f3,, with its braid axis. On the right we give the (2m + 1)-braid
Brm.-

We define K, 5, to be the lift of Bay,41 to Xy, (A2m+1), which since Agp,41 is an unknot is just
S3. Note that K, is a knot if » = 2m + 1 and n are relatively prime. In fact, the description
of Figure (1] shows that K,,, is simply the braid closure of the braid 3];,. We use the symmetry
of Lom41 to show that 3, (K,, ) is diffeomorphic to ¥, (K, ) when n and ¢ are both relatively
prime to 2m + 1. We then use the fact that K, , is strongly negative-amphichiral to show that
many of these knots represent elements of ker .

Theorem 1.3. If n is an odd prime power which is relatively prime to 2m+1, then [Kp, 5] € ker .

For instance, if n is an odd prime power and not divisible by 3, then K1, is contained in ker ¢.
The knots K, previously appeared in work of Lisca [31], where it was pointed out that these
knots are strongly negative-amphichiral. Therefore they are of order at most two in C. In addition,
Sartori proved in his thesis [41] that one of these knots (K 7 in our notation) is not slice; hence,
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by our Theorem this knot spans Zs < ker ¢. We show that some other members of this family
represent non-trivial elements in ker ¢ and are moreover linearly independent. Let K, denote K1,
i.e. the closure of the three-braid (51)" := (alogl)n.

Theorem 1.4. The subgroup of ker ¢ generated by K7, K11, K17, Ka3, and 817487, is isomorphic
to (ZQ)S.

In general, using twisted Alexander polynomials to show that a fixed knot K is not slice is
not so much technically difficult as computationally intense. However, obstructing sliceness for an
infinite family of knots via twisted Alexander polynomials is generally much harder, and occurs
only infrequently in the literature. While we see no reason that {Kg,+5}nen should not generate
(Za)>*® < ker g, proving this via twisted Alexander polynomials would require significantly more
arduous computations and arguments.

Delaying all precise definitions to Section [3] we say merely that in this context twisted Alexander
polynomials are associated to a choice of ¢ € Q and a map x: Hi(X4(K);Z) — Zg for some d. In
order to use twisted Alexander polynomials to obstruct a knot K from being slice, one must show
that for every subgroup M of H(34(K);Z) satisfying certain algebraic properties there exists a
map x vanishing on M such that the resulting twisted Alexander polynomial does not factor in a
certain way.

By better understanding the structure of H;(24(K);Z) one can sometimes significantly reduce
the number of computations that are necessary. For example, Sartori’s result of [41] that K7 is
not slice requires the computation (and subsequent obstruction of factorization as a norm) of 170
different twisted Alexander polynomials, corresponding to order 13 characters vanishing on the 130
different square root order subgroups of Hi(37(K7);Z). By careful consideration of the linking
form on H;(X3(Ky,); Z) and how its metabolizers are permuted by the induced action of an order n
symmetry of K, we are able to prove that K, is not slice by computing only two twisted Alexander
polynomials, at least for n = 11,17,23. In fact, while we do not include these computations here,
we leave as a challenge for the interested reader to reprove Sartori’s result by following roughly the
same argument below, but computing precisely 3 carefully chosen twisted Alexander polynomials
corresponding to x: Hy(X3(K7);Z) — Zr.

In addition, we overcome the following technical difficulty, which may be of independent interest.
In many settings, the easiest way to compute the homology of a knot’s cyclic branched cover, with
its linking form and module structure, is in terms of some nice Seifert surface. However, the
standard efficient algorithms for computing the twisted Alexander polynomial corresponding to
x: H1(34(K);Z) — Zg require one to compute a map ¢,: m(Xg) — GL(q,Q(&)[tF!]) on the
Wirtinger generators for m1(Xg). Relating these two perspectives is not entirely trivial, and we
refer the reader to Section |3|for a discussion of this process.

Remark 1.5. One can ask an analogous question in the topological category: Is there a knot that
does not bound any topologically locally flat disk in the 4-ball but all its prime power fold cyclic
branched covers bound topological rational homology balls? It turns out that such examples can
be constructed by using the classical Alexander polynomial. Let {n;} be the set of all natural
numbers divisible by at least 3 distinct primes and K; be a knot with Alexander polynomial the
nﬁh cyclotomic polynomial. By Livingston [33], for each i, all the prime power fold cyclic branched
covers along K; are integral homology spheres. Hence, by Freedman [11| [12], they all bound
contractible topological four-manifolds. On the other hand, since the cyclotomic polynomials are
irreducible, K; and K are concordant if and only if ¢ = j. Hence the knots {K;} represent distinct
elements in ker ©!°P, the topological analogue of ker .

The results discussed in this introduction show that slice knots are not characterized by the
property that each of their prime power fold cyclic branched covers bound rational homology balls.
However, there is a stronger condition that one might posit as a characterization of sliceness. When
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a knot is slice, not only do its covers bound rational homology balls, but the deck transformations
of the covers extend over these balls. Additionally, the lifts of the slice knot to knots in the covers
bound slicing disks in these balls. This leads us to the following question.

Question 1.6.

(1) Does there exist a non-slice knot K such that 3,(K’) bounds a rational homology ball for
each prime power ¢ such that the deck transformations of ¥,(K) extend over the rational
homology ball?

(2) Does there exist a non-slice knot K such that 3,(K) bounds a rational homology ball for
each prime power ¢ such that the lift of K to ¥,(K) bounds a disk in the rational homology
ball?

We remark that each of the knots K, , studied in this article, as well as any knot of the
form K# — K" where K is negative-amphichiral, can be shown to have the desired properties of
Question (1) when ¢ is odd or equal to 2, and the desired properties of Question (2) when
q is odd.

Lastly, we make a remark on some other sliceness obstructions for K,, where n is an odd prime
power not divisible by 3. Note that K, is strongly positive-amphichiral hence it is algebraically
slice [34]. Further, K, is also strongly negative-amphichiral, which implies that it is rationally slice.
Hence the 7-invariant [38], e-invariant [18], Y-invariant [39], Y2-invariant [24], v*-invariant [19],
pj-invariants [9], and s-invariant [40] all vanish for K,,. Moreover, since [K,,| € ker ¢, the sliceness
obstructions from the Heegaard Floer correction term and Donaldson’s diagonalization theorem
(e.g. |16l 120L 130, 135]) applied to the cyclic branched covers of K, all vanish. As mentioned above,
the fact that the involution induced by the deck transformation on ¥a(K,) extends to a rational
homology ball (in fact it is a Zy homology ball) implies that sliceness obstructions such as [3, 18]
vanish.

The paper is organized as follows: in Section [2] we prove Theorem and in Section [3] we use
twisted Alexander polynomials to show Theorem
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2. BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS

In this section, we will prove Theorem after establishing the following two propositions. We
work in the smooth category.

Proposition 2.1. Suppose that n and q are both relatively prime to 2m + 1. Then Xy(Kp, ) and
Yn (K q) are diffeomorphic three-manifolds.

Proof. We can realize X (K, ) by first taking the n-fold cyclic branched cover of S branched
along Ag,,+1 and then the g¢-fold cyclic branched cover branched along the pull-back of Bap,11
of Figure Since the roles of Agy,+1 and Ba,,41 are symmetric (as shown by the left diagram
of Figure , this three-manifold is the same as the g-fold cyclic branched cover branched along
Ao, followed by the n-fold cyclic branched cover branched along the pull-back of Bay,11, which
is exactly 3, (K,,q), concluding the argument. O
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Proposition 2.2. Suppose that n is relatively prime to 2m + 1. Then K, , bounds a disk in a
rational homology ball Xy, ,, with only 2-torsion in Hy (X n;Z).

Recall that a knot is called strongly negative-amphichiral if there is an orientation-reversing
involution 7: $3 — 3 such that 7(K) = K and the fixed point set of 7 is a copy of S° C K.
Proposition follows from the following lemma, which is a special case of [21], together with a
simple observation regarding the knots K, ,,. (This version of the result below was also proved in
[23, Lemma 3.1].)

Lemma 2.3 ([21] Section 2|). If K is a strongly negative-amphichiral knot, then K is slice in a
rational homology ball X with only 2-torsion in Hy(X;Z).

Proof. Let T be the orientation-reversing involution on S3 with 7(K) = K where the fixed point
set is two points. Let Mg be the three-manifold obtained by performing 0-surgery on K. Then the
involution 7 extends from the exterior of K to a fixed-point free orientation-reversing involution 7
on M.

The rational homology ball X of the lemma is now constructed as follows: Consider the trace
W of the 0-surgery M, i.e. W is the four-manifold we get from S® x [0, 1] by attaching a 0-framed
2-handle along K C S3 x {1}. Consider the quotient of W by 7 on its boundary component
diffeomorphic to M. The resulting compact four-manifold X has S® as its boundary, and K C
S3 x {0} is obviously slice in X: the slice disk is simply the core of the 2-handle (trivially extended
through S3 x [0, 1]).

In order to complete the proof of the lemma, it would be enough to show that H,.(X;Q) =
H.(D* Q) and H1(X;Z) = Zy. For this computation, we consider an alternative description of
X as follows. Factoring Mg by the free involution 7 we get a three-manifold M, together with a
principal Zo-bundle 7: Mg — M and an associated interval-bundle Z — M. Note that 0Z = Mg
and that Z retracts to M. Then X is the union of the surgery trace W with Z, glued along M,
i.e. the four-manifold obtained by attaching a O-framed 2-handle along the meridian of 072 = M.
The inclusion map ¢ induces the following exact sequence

H(0Z;7) 25 Hy(Z:7) — 7y — 0.

This implies that H;(X;Z) = Zo since a 2-handle is attached along the generator of Hi(0Z;Z) to
obtain X. 0

N N\ N

\ \ \
/_’//__
‘&,"L\f::f
—_____/

FIGURE 2. Reflection to the (red) dot in the middle provides an involution 7: S —
S3 verifying that the knot is strongly negative-amphichiral.

Recall that K, ,, is the braid closure of the (2m + 1)-braid (8,,)" (see Figure [L|for §,,) — in the
following we will view K, , as this braid closure; see Figure [2| for the case of the 7-braid (,6’3)3.

Proof of Proposition [2.2. Figure [2|shows that K, , is strongly negative-amphichiral: Indeed, if the
(red) dot in the middle of Figure is in the origin of R and the middle strand of the knot passes
through oo = S3 \ R3, then the knot can be isotoped slightly so that the obvious extension to S3
of the map v — —v for v € R? provides the required 7. Then Lemma M completes the proof of
the proposition. O
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We recall a well known lemma of Casson and Gordon and for completeness sketch its proof.

Lemma 2.4 (5, Lemma 4.2]). Suppose that ¢ = p* is an odd prime power, and K is a knot that is
slice in a rational homology ball X with only 2-torsion in Hy(X;Z). Then ¥4(K) bounds a rational
homology ball.

Proof. Let D be the disk that K bounds in X and ¥,(D) be the g-fold cyclic branched cover of
X branched along D. Consider the infinite cyclic cover X of X ~ D and the following long exact
sequence [36]

~ = ti-1d = > ~ ~ =

= Hy(X5Zy) —— Hi(X Zy) = Hi(¢(D); Zyp) — Hi—1(X;Zyp) — -+ -
Here t, is the automorphism induced by the canonical covering translation. Since X is a rational
homology ball with only 2-torsion in the first homology, t. — Id is an isomorphism. Moreover, with
Zy, coefficients we have td —1d = (t« — Id)?. Hence the result follows. O

Proof of Theorem[1.5 If ¢ is an odd prime power, then Proposition and Lemma together
immediately imply that ¥,(K,, ) bounds a rational homology ball.

Suppose now that ¢ = 2¢. By Proposition we have that X,(Ky,,) is diffeomorphic to
Y (Kmq). Moreover n was chosen to be an odd prime power, while ¢ = 2¢ is relatively prime to
2m + 1. Hence the statement follows from the first case of this proof. O

3. SLICENESS OBSTRUCTIONS FROM TWISTED ALEXANDER POLYNOMIALS

The goal of this section is to prove Theorem Recall that K, := K, is the closure of the
three-braid (51)" := (Jlagl)n (see e.g. the left diagram of Figure 3| for n = 7). We first prove the
following theorem.

Theorem 3.1. The knots K11, K17, and K3 are not slice; hence are of order two in C.

The sliceness obstruction we intend to use in the proof of Theorem rests on a result of Kirk
and Livingston [26] involving twisted Alexander polynomials. Throughout the rest of the section,
e?mi/d is denoted by &g, and the three-manifold obtained by performing O-surgery on K is denoted
by My. We generally follow the exposition of [17], and refer the reader to that work for more
details.

Definition 3.2. Given a representation «: m1(Mg) — GL(q,Q(&4)[tTY]), the twisted Alexander
module A*(K) is the Q(&;)[tT!]-module Hy(My; Q(&9)[tE]9).

Definition 3.3. The twisted Alezander polynomial A% (t) is a generator of the order ideal of
A%(K); this polynomial is well-defined up to multiplication by units in Q(&4)[t*!].

Twisted Alexander polynomials generalize the classical Alexander polynomial. If we fix the
representation ag: 71 (Mp) — GL(1,Q[t*!]) (i.e. ¢ = d = 1), then A% (K) is the classical (rational)
Alexander module A(K) of K and Ag(t) := A% (t) is the classical Alexander polynomial. (Note
that ag is not actually uniquely determined, as it may map a meridian of K to t" for any n € Z.
Rather, one should consider ag to be any representation that comes from abelianization of 71 (M ).)

We will restrict to a special class of representations as follows. First, choose ¢ € N and a
character x: Hi(X4(K);Z) — Zq. Note that Hy(X,(K);Z) = A(K)/(t? — 1) and that a choice of a
meridian for K determines a map from 71 (M) to Z x A(K)/(t?—1), as discussed in more detail in
Subsection The character x therefore induces o, : 1 (My) — GL(q, Q(&)[tF]), and we write
AL(1) = AT (1)

This is a very quick explanation of twisted Alexander polynomials from the Casson-Gordon
perspective, and Friedl and Vidussi [15] have a survey of twisted Alexander polynomials which we
recommend for more detailed exposition.
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The obstruction we will use in the proof of Theorem [3.1] is a generalization of the Fox-Milnor
condition [10], which states that the Alexander polynomial of a slice knot factors as f(t)f(t~!) for
some f(t) € Z[t™1]. First, recall the following definitions.

Definition 3.4. We call a Laurent polynomial d(t) € Q(&g)[tT!] a norm if there exist ¢ € Q(&y),
k € Z, and f(t) € Q(&)[t*!] such that

d(t) = ct* f(£) f(¢),
where = is induced by the Q-linear map on Q(&4)[t*!] sending #* to t~% and &, to {d_l.

Definition 3.5. Let ¢ be an odd prime power and x: Hi(X4(K);Z) — Zg be a character. The

reduced twisted Alexander polynomial ﬁ’fz(t) is defined to be A%X(¢)(t — 1)~*, where s = 0 if y is
trivial and s = 1 otherwise.

Theorem 3.6 (Theorem 6.2, [26]). Suppose that K is a slice knot and q is an odd prime power.
Then there exists a covering transformation invariant metabolizer P < Hy(¥X4(K);Z) such that if
X: Hi(34(K);Z) — Zq is a character of odd prime power order such that x|p = 0, then the reduced

twisted Alexzander polynomial A}%(t) € Q(&9)[tTY] is a norm. O

Let K € {K11, K17, Ka3}. We first determine the metabolizers of H;(33(K);Z) and construct
prime order characters vanishing on each metabolizer in Subsection We then show that the
corresponding reduced twisted Alexander polynomials of K do not factor as a norm in Subsec-

tion [3.4]

3.1. The metabolizers of Hi(33(K,);Z). We assume that n is odd and not divisible by 3, so
in particular K, is a knot. Our understanding of Hy(X3(K,);Z) and its metabolizers will come
from a computation of the Alexander module and the Blanchfield pairing of K,,. Throughout this
section, we also keep track of the order n symmetry of K,, which will be useful later on to reduce
the number of twisted Alexander polynomials we must compute.

Observe that K := K, has a genus n—1 Seifert surface F, illustrated in Figure[3|for n = 7, which
is invariant under the periodic order n symmetry r: S — S2 given diagrammatically by rotating
counterclockwise by 27 /n. We pick a collection of simple closed curves aq,...,n—1,81,.-,Bpn_1

FiGURE 3. A Seifert surface F' for K from two different perspectives.

on F that form a basis for Hy(F;Z) as illustrated on the left of Figure 4| Note that r(a;) = a;—1
and r(3;) = B;_; for all i = 1,...n — 1. By considering the right side of Figure [4| we see that

Z?:_()l [a;] =0 in H(F;Z), and so the induced action of r on [a1], [51] € H1(F;Z) is given by

r«([aa]) = o] = . —[a]
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FIGURE 4. A basis of curves for Hy(F;Z) (left) and an additional curve «g which
does not represent an element of our basis for H;(F,Z) (right, depicted for n = 7).

and, via an analogous argument,

n—1
re(B1) =D~ 8
i=1
It is straightforward to compute the Seifert matrix A for the Seifert pairing on F' with respect
_gT
to our fixed basis, and we obtain A = [ g g ] , where B is the (n — 1) X (n — 1) matrix with
1 i=y
entries given by B; j = ¢ —1 i =j — 1. Recall that Blanchfield [4] showed that the Alexander
0 else

module A(K) supports a non-singular pairing
Bl: A(K) x A(K) — Q(t)/ Z[t*!]

called the Blanchfield pairing. The pairing can be computed using a Seifert matrix of K as follows,

for more details see [14] 22} 29].

Theorem 3.7 (|14, Theorem 1.3 and 1.4]). Let F' be a Seifert surface for a knot K with a collection
of simple closed curves 01,...,02g on F that form a basis for Hi(F';Z) and corresponding Seifert
matriz A. Let ;5\1, .. ,ggg be a collection of simple closed curves in S® \ v(F) representing a basis
for Hi(S® \ v(F);Z) satisfying 1k(6;, 5;) = 0;; (i.e. the Alexzander dual basis), where v(F') denotes
an open tubular neighborhood F x I. Consider the standard decomposition of the infinite cyclic

cover of the knot exterior as
+oo

xXg= U &*~v(®)

1=—00

and let the homology class of the unique lift ofgi to (S® \v(F))o be denoted by d;. Then the map
p: (ZIF))* = A(K)

29
(:L'l, - ,1’29) — Z x;d;.
i=1

is surjective and has kernel given by (tA — AT) Z[t™1]29. Moreover, the Blanchfield pairing is given
as follows: for x,y € Z[t*']%9 we have

Bl(p(x), p(y)) = (t = D)a’ (A — tAT) "'y € Q(t)/ Z[t*"),
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where ~ is induced by the Z-linear map on Z[tT'] sending t' to t. O

Following the language above, let dl,...,dn_l,Bl,...,Bn_l be the Alexander dual basis of
al,...,n-1,B1,...,5,_1 and a;,b; be the homology classes of the unique lifts of &i,Bi, respec-
tively. Note that &,,—1 and Bn_l are illustrated in Figure [4| as small closed curves linking F'. By
inspecting the matrix tA — AT, illustrated below for n = 7,

[ 1—¢t ¢ 0 0 0 0 -1 1 0 0 0 0
-1 1—-t t 0 0 0 0 -1 1 0 0 0
0 -1 1—-t t 0 0 0 0 -1 1 0 0
0 0 -1 1—t ¢ 0 0 0 0 -1 1 0
0 0 0 -1 1—¢ t 0 0 0 0 -1 1
0 0 0 0 -1 1—¢| 0 0 0 0 0 -1
t 0 0 0 0 0 |[t—1 1 0 0 0 0
—t t 0 0 0 0 —t t—1 1 0 0 0
0 —t t 0 0 0 0 —t t—1 1 0 0
0 0 —t t 0 0 0 0 -t t—1 1 0
0 0 0 —t t 0 0 0 0 —t t—1 1
0 0 0 0 —t t 0 0 0 0 —t t—1

we see that we can use the bolded pivot entries to perform column operations over Z[tﬂ] to
transform tA — AT to a matrix as below:

o o 0o O o o}jO0 1 0 0 O 0
o 0 o o O OO0 O 1 0 O 0
o 0 o o O Oy0 O O 1 0 0
o o o o o o0 O O o0 1 0
o 0 o o O Oy0 O O 0 O 1
x x ok ok kx| %k x %k k *
* —t 0 0 0 0|t 10 0 0 0
* x —t 0 0 0|0 ¢ 10 0 0
* x x —t 0 0] 0 0 ¢t 1 0 0
* % * x —t 0 0 0 0 t 1 0
* % * * x —t| 0 0 0 0 t 1
¥ % * * * |—1 -1 -1 -1 -1 t-—-1
We now use the new bolded entries as pivots to perform column operations to obtain a matrix whose
it" row has a single non-zero entry that occurs in column i+1, foralli =1,...,n—2,n,...,2n—3.
This matrix is of the following form:
[0 00 0 0 O0 0 1000 0]
0 0O 0 0 0 O 0 01 000
0 0O 0 0 0 O 0 001 0O
0 0O 0 0 0 O 0 0 0010
0 0O 0 0 0 O 0 0 00 01
kp—1,1 ok k ok kK | ky_qg ¥k ok k%
0 -t 0 0 0 O 0 000 00O
0 0O -t 0 0 O 0 000 00O
0 0O 0 —t 0 O 0 0 00 00O
0 0O 0 0 -t O 0 0 00 00O
0 0O 0 0 0 -t 0 0 00 00O
*271—271 * * * % * *2n—27n ko ok % ok X
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10 P. ACETO, J. MEIER, A. N. MILLER, M. MILLER, J. PARK, AND A. I. STIPSICZ

Notice that only the x-entries with indices have an impact on A(K). In particular, A(K) is
generated by a,—1 and b,_1, in the language of the notation introduced just after Theorem [3.7]

For n = 11,17, 23 one continues to perform column moves until the above matrix is simplified to
the following form:

[0 10000 0 000O0GO O]
0O 010O0O0O O O0O0OOTVOO
0O 00100 O 0O0OOTOO
0O 00O0OT1O0O O O0O0OOTOO
0 00 O0O01 0 00 O0O0O0
pn(t) * x % % x 0 * ok ok % %
0 00 0 0O 0 1 00 0 0]’
0 00 0 0O 0 01 0 0O
0 00 0 0O 0 00100
0 00 0 0O 0 00 010
0 00 0 0O 0 0 0 0 0 1
0 % % x % *|pu(t) * % * x x
where
(n—1)/2
p)= [I (P+E-1+5+1).
k=0

This and all further computations in Subsection [3.1were done in a Jupyter notebook and is available
on the third author’s website. In particular, this implies that Ay, (t) = p,(¢)?, which one can verify
for general n € N by using the formula for the Alexander polynomial of a periodic knot in terms of
the multivariable Alexander polynomial of the quotient link [37].

Using the above matrix, we obtain for our values of interest that

A(K) = Z[E]/(pa(t)) © Z[t]/ (pa(t)),

where the two summands are respectively generated by a := a,,—1 and b := b,,_1.

Remark 3.8 (The action of r, on A(K)). We can also compute the action induced by the order n
symmetry r on A(K). In particular, we can observe that r(a,—1) is a curve whose only non-trivial

~

linkage is —1 with a,—1 and +1 with «,,_s. Similar observations can be made for r(3,,_;), and so
it follows that the induced action of 7 on [@,_1], [8,_1] € H1(S® \ v(F);Z) is given by

ru([@n-1]) = ~[@n-1] + [@n-2] and r4([B 1)) = ~[Bpr] + [Bs]
Therefore, the action of 7, on the generators of A(K) is given by
re(@p—1) = —ap—1 + an—2 and r«(bp—1) = —bp—1 + by—o.
Moreover, by considering the (n — 1)"* and (2n — 2)*" columns of tA — AT, we obtain the relations
tan—o + (1 —t)ap—1 + thy,—1 =0,

(p—2 — p—1 + bp_o + (t - 1)bn—1 =0.
Simple algebraic manipulations give us that

T*(an—l) = —Qp-1+an-2= _t_lan—l —bp_1, (1)

T*(bn_l) = —bp—1+byp_o= tilan_l + (1 - t)bn_l. (2)

Moreover, we obtain that if v = f1(t)an—1 + g1(t)bp—1 and w = fa(t)an—1 + g2(t)bp—1 then

Bl(v, w) { At) r‘ [ a1 e ] ‘ [ ft) ]

g1(t) 21 €22 ga(t™1)
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BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS 11

where ¢;; = (t —1)(4 — tAT)g(ln—U,j(n—n)' We remark that the interested reader can use this
formula to algebraically verify the geometrically immediate fact that Bl(r(v),r«(w)) = Bl(v, w)
for all v, w € A(K).

In applying Theorem we will take ¢ = 3, that is, we will consider the 3-fold cyclic branched
cover X3(K) of $3 branched along K, and will derive the sliceness obstruction from that cover.
From now on, we take n to be 11, 17, or 23. We expect that the subsequent computations of this
section will hold for general n =5 (mod 6), but we have not verified these results for n > 23.

We wish to transfer our information about (A(K),Bl) to tell us about (Hy(X3(K);Z),A). First,

we have that
Hi(%3(K); 2) = A(K)/{t° - 1)
>~ A(K)/(t* +t+1)
= 75/ (pn(t), £+t + 1) @ Z[tEY] [ (pn(t), 2+t + 1)

where the two summands are generated by a and b, the images of a,,—1 and b,—1 in Hy(X3(K);Z)
or, equivalently, the homology classes of the lifts of the curves a,_1 and /ﬂ\n_l to the preferred copy
of $3 N\ v(F) in ¥3(K).
A straightforward computation using our explicit formula for p,(t) when n = 11,17,23 shows
that
ZIEY ) (pn (), 82+t + 1) 2 Z,[tE /(2 +t + 1)
and hence that

Hy(Z3(K);Z) 2 Zp[t5) /(2 +t + 1) © Zo [t/ (82 + £+ 1).

In particular, as a group Hy(X3(K);Z) & (Zy,)*, with natural generators a, ta, b, and tb.
The following result, which is slightly reformulated from [13], lets us compute the torsion linking
form A with respect to our preferred basis.

Proposition 3.9 ([13, Chapter 2.6]). Suppose that q is a prime power and let x,y € Hi(34(K);Z).
Choose z,y € A(K) which lift x and y, and write

~ p(t) +1

Bl(y,x) = e Q(t)/ Z|t—|.

7.) = 20 € Q) 2t
Since t1 — 1 and Ak(t) are relatively prime, one can find r(t) € Z[t*) and ¢ € Z such that
Ag(t)r(t) = ¢ (mod t9 — 1). Writing p(t)r(t) = Y i_; a;t" (mod t? — 1), fori =0,...,q — 1 we
obtain

. Qg—;
)\q(:c,tly):qTeQ/Z. O

When we apply this process to our formula for Bl, we obtain that with respect to the Z,-basis
{a,ta,b,tb} our linking form is given by the matrix

-1 -k -k k

1| -k -1 0 -k

nl -k 0 1 &k |’
E -k k1

where n = 2k + 1. We remind the reader that, while we expect this formula to hold for general
n =5 (mod 6), we only establish it for n = 11,17, 23.

L=

Remark 3.10 (The invariant metabolizers of Hq(33(K,);Z)). We now wish to understand the
invariant metabolizers of Hy(X3(K,);Z) in order to effectively apply Theorem

First, we make the key observation that the induced action of r on H;(X3(K},); Z) preserves the
linking form. This can be seen from a geometric viewpoint, since the action of r on the exterior X,
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12 P. ACETO, J. MEIER, A. N. MILLER, M. MILLER, J. PARK, AND A. I. STIPSICZ

lifts to the infinite cyclic cover X7 to induce a Blanchfield pairing preserving action on A(K,,).
It can also be verified algebraically, using our formulas and , which hold equally well for the
induced action of r on Hj(X3(K,);Z) once we apply the relation t> = 1, and our explicit formula
for the linking form. Since r, also commutes with the action of ¢, we have that r, acts on the set
P of all covering transformation invariant metabolizers.

Recalling that n € {11,17,23}, we note that since n = 5 (mod 6) the polynomial t2 + ¢ + 1 is
irreducible in Z,, [t*!]. Therefore, since n is prime, we see that Z,[t*!]/(t>4+t+1) has no non-trivial
proper submodules. Therefore, if (kg + k1)a + (jo + j1)b € M for some integers ko, k1, jo, j1 and
some proper submodule M, then either kg = k1 = 0 and b € M or a + (j§ + j5)b € M for some
integers jj), ji-

It follows that there are exactly n? 4+ 1 order n? submodules of Hy(X3(K);Z): first, for any
ng,n1 € Zy, we have

Py ny i= spang, p=1{a + (no + n1t)b} = spang, {a + nob + nitb,ta — n1b + (ng — n1)tb}
and secondly we have
P':= spang +1){b} = spang {b, tb}[

Using the matrix L, we see that A(b,b) = % # 0 € Q/Z, and so P’ is not a metabolizer.
Moreover, observe that the condition

1 1
Ma + (1o + m1t)b, a+ (no + n1t)b) — 7?0 L 730 —0e€Q/Z
ni ni

gives us a 2-variable (ng and n;) quadratic polynomial over Z,,, and hence has at most 2n solutions.
We have therefore shown that
|P| < 2n.
Moreover, since the map r, acts on P , n is prime, and (r,)" = Id, we know that the orbit of a
metabolizer must be either of order n or order 1. A short algebraic argument shows that 7, (P, n,) =
P, n, if and only if ng = ny = 1: the ‘if’ direction follows immediately from Equation and ,
and for the ‘only if’ direction, we compute

re(a + nob + nith) = (1 —ng + n1)a+ (1 — no)ta + (—1 + ng + n1)b + (—ng + 2n1)tb

and observe that if this element belongs to P, », then by looking at the a and ta coefficients we
see that it must equal

(1 —ngp + n1)(a+ neb+ nitb) + (1 — ng)(ta — n1b + (ng — nq)td).

Contemplation of the coefficients of b and tb in these two expressions shows that they can only be
equal if ng = n1 = 1. One can quickly verify that P ; is in fact a metabolizer, and so we see that
the action of r, on P has exactly one orbit of order 1. The remaining metabolizers (of which there
are at most 2n — 1 must be partitioned into orbits of order n, and so there are at most 2 orbits. It
is not hard to explicitly verify that P_; _; is also a metabolizer and so there are exactly two orbits.

We summarize this work in the following proposition.

Proposition 3.11. Let n = 11,17, or 23. Then the action of r« on P, the set of invariant
metabolizers for Hy(33(K,);Z), has exactly two orbits. The first orbit has order 1 and consists of

Py = Py = spang, {a + b+ tb, ta — b}.

1Although at first glance the reader may be surprised by the seeming asymmetry between a and b, we note that
we could have equivalently enumerated our order n”® submodules by Qmq,m, = spany_ =110 + (mo + mit)a} and

Q = Spanz[til]{a}-

4 Aug 2020 05:50:43 PDT
200430-Park Version 3 - Submitted to Algebr. Geom. Topol.



BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS 13

The second orbit has order n and consists of {ri(P-)}!—, where
P_:=P_; _; =spang {a —b—tb,ta +b}. O

It is extremely easy to construct characters
x: Hi1(33(Kp);Z) = Zn,
vanishing on either Py or P_: choose x(b) and x(tb) freely and x(a) and x(ta) are determined.
Definition 3.12. Define x4 : H1(X3(K,);Z) — Z,, as follows:
x+(a) = £1, x+(ta) = 0, x+(b) = 0, and x+(tb) = —1. 3)

Note that x4+ vanishes on Py and y_ vanishes on P_. To avoid confusion, we point out here
that the ‘d’ of Definitions [3.2] and [3.3] and Theorem [3.6| happens to be n for us.

3.2. Computation of twisted Alexander polynomials. We are now ready to begin computing
certain twisted Alexander polynomials. It is helpful to have the following naming conventions that
are standard in this subfield. Given a knot K in S% bounding a Seifert surface F, we write:

v(K) to denote an open tubular neighborhood of K,
v(F') to denote an open tubular neighborhood of F,
Xk to denote S3 \ v(K),

X% to denote the n-fold cyclic cover of X, and
Xr to denote S3 \ v(F).

Given a character x: Hy(X3(K);Z) — Zy, we apply |L7] to obtain a representation
oy m(XK) = GL(3,Q(&)[1)

as follows. Fix a basepoint xy chosen for convenience in X and let Zg denote the lift of x to the
0" copy of S3\v(F) in X3 C X3(K). Let e: m(Xk) — Z be the canonical abelianization map,
and let jug be a preferred meridian of K based at 2. Given a simple closed curve v in $% \. K based
at zo and with 1k(K,v) = 0, we can obtain a well-defined lift 7 of v to X3(K), giving a map

[: ker(e) — H1(X3(K);Z).

We note for the sake of clarity that the map [ does not in general coincide with our previous method
of converting elements of Hy(S% \ v(F);Z) to elements of Hy(X3(K);Z), unless v is actually disjoint
from F'. In particular, {(uogpg 1)y = t-1(g) despite the fact that Hog ity Land ¢ certainly represent
the same class in Hy(S® \v(F);Z).

Our choice of g allows us to define a map

¢: m(Xg) = ZxH(33(K);Z)
g (t19.115""9)),
where the product structure on Z x Hy(X3(K);Z) is given by
("™ 1) - (872, 20) = (™2 T2y 4 19).
We then define ¢, = f, o ¢, where

Fyt ZwH)(35(K); Z) = GL(3,Q(&)[t])
mle® o 0

00 ¢
" z)—~ |1 0 0 0o &t . (4)

The following well-known result (see e.g. |17} 26]) reduces computation of twisted Alexander
polynomials to Fox calculus and matrix algebra.
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14 P. ACETO, J. MEIER, A. N. MILLER, M. MILLER, J. PARK, AND A. I. STIPSICZ

Proposition 3.13 ([17, Section 9]). Let m1(Xk) = (g1, -+, ge(x) : T15-- - Te(k)) be a Wirtinger
presentation . Assume that ¢,: m(Xk) — GL(q,F[t*Y]) is induced by a non-trivial character x.
Then there is a natural extension ®: Z[m(Xk)] — My(F[tF!]) where My(F[t*1]) is the set of q by
q matrices with entries from F[t*], and the reduced twisted Alexander polynomial of (K, ) is

e ([2(8)]2)
[t 1) det( (91) - 1)

We see that in order to compute a twisted Alexander polynomial one must determine ¢, (g;) for
all the generators g; in a Wirtinger presentation of 71 (Xg). If one is not particularly attached to
a given description of H1 (X%, (K);Z), [17] gives a straightforward way to do this. However, we have
very specific x4, defined in terms of a particular generating set for H;(X3(K);Z), and so we must
be a little more careful than is usually necessary.

Our basepoint = for S \ v(K) lies far below the diagram, which we think of as lying almost
in the plane of the page. All of our curves are based at xg, though as usual we sometimes draw
meridians to components of the knots as unbased curves, with the understanding that they are
based via the ‘go straight down to the basepoint’ path.

0

Ax(t) =

g1 g2 g3

Vb

FiGURE 5. Wirtinger generators g;.

Remark 3.14 (Computing the image of Wirtinger generators under ¢,, ). Let {g;}?"; be the
Wirtinger generators for 71 (X g, xg), some of which are illustrated in Figure |5, and o be the pre-
ferred meridian that represents ¢g;. In order to compute our desired twisted Alexander polynomials,
we need to know ¢, (g;) foralli =1,...,2n. Since K is the closure of a 3-braid, once we specify the
image of the three top strand generators g1, g2, g3 under ¢,, the rest of the computation is simple.
In fact, since g2 = g Lgag1, it suffices to determine the image of g1, g3, and ga.

By considering Equation (4)), we see that ¢, (g;) is determined by the tuple

()i == (x(U(gy " g0))s x (¢ - 1(gy " g0)), x (2% - gy ' 90)) -

We now describe (x)1, ()3, and ()4, and use the above discussion to compute ¢, (g;) for each
Wirtinger generator g;. We obtain immediately that

()1 = (x(U(g7 " 91)), x(t - 1gi " g1)), x (8 - 197 '91))) = (0,0,0) € ZJ.

Given a simple closed curve  based at xg and disjoint from F', recall that we obtain a curve 7 in
Y3(K) by lifting v to our preferred copy of S® \ v(F). As before, we let a denote the homology

class of the lift of @,,_1 and b denote the homology class of the lift of En,l in Hy(X3(K);Z). Let 7,
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BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS 15

be a simple closed curve that represents g; g;l and v_, be its reverse, chosen to be disjoint from F
as in Figure 5| Then we have that —a = [¥,] € H1(Z3(K);Z) and

a=[F-a) = Ugagr ") = U1 (g1 "ga)gr ") =t 191 "94) € H1(S3(K); Z).
Therefore
()a = (x(Ug7 " 9a))s x(t - Ugy " 9a)) X (£ - Ugy ' a))) = (x(t7 - a), x(a), x(t - a))
(—x(a) = x(t-a),x(a),x(t-a)) € ZJ.

Similarly, let v, be a simple closed curve that represents gsg3g; ! g4_1 and is disjoint from F, as in
Figure 5l So we have that

b= (%) =U(gagsgi g1 ") =t -Ugsgr ") =t - Ugi(gy 'g3)gr ") =t - U(gy 'g3) € Hi(E5(K); Z).
Hence
()3 = (x(L(g7 "g3)), x(t - 191 " 93)), X (£ - 197 " 93))) = (x(t - b), X (£* - b), x (b))
= (x(t-b),—x(b) — x(t-b), x(b)) € Z3.

We can now straightforwardly compute ¢,(g;) for the rest of the Wirtinger generators g;.

_ We have now done all the work necessary to compute the reduced twisted Alexander polynomials
A}‘i (t) € Q(&,)[tT!] what remains is simply to write down a Wirtinger presentation, construct a
matrix as in Proposition [3.13, and take its determinant. However, we do not do this directly,
instead choosing a slightly more efficient approach that allows us to work over finite fields.

3.3. Working over finite fields. To apply Theorem [3.6), we must obstruct polynomials from
factoring in a certain way over Q(&4)[tT1]. Tt is easier to obstruct the existence of factorizations in
Ly, [t¥1], where computer programs are for finiteness reasons capable of proving that no factorization
of a given kind exists, and the following propositions allow us to make this transition.

Proposition 3.15 (|17, Lemma 8.6]). Let d, s be primes and suppose s = kd + 1. Choose 0 € Zs
so that 6 € Zg is a primitive d" root of unity modulo s. The choice of s and 6 defines a map
mo: Z[E)[tTY] — Zs[tT] where 1 is mapped to 1 and &; is mapped to 6.

Let d(t) € Z[¢4)[tTY] be a polynomial of degree 2N such that my(d(t)) € Zs[t*'] also has degree
2N. Ifd(t) € Q(&g)[tTY] is a norm then mo(d(t)) € Zs[tT'] factors as the product of two polynomials
of degree N. O

Proposition 3.16. Given a knot K, a preferred meridian o, and a map x: H1(34(K);Z) — Zq
where d is a prime, we obtain as above a reduced twisted Alexander polynomial ﬁ}%(t) By rescaling,
assume that A}C((t) is an element of Z[£4)[tT!].

Let s = kd+ 1, 0 € Zs, and my: Z[E4][tTY] — Zs[tT'] be as in Proposition @ Suppose that
) (5}(((75)) is a degree QLC(KQ)_S

L%J polynomials in Zg[t*']. Then &XK(t) € Q(&y)[t*Y] is mot a norm.

| polynomial which cannot be written as a product of two degree

Here, degree is taken to be the degree of a Laurent polynomial —i.e. deg,,,, — deg,;,. Proposition
is useful for efficient computations, since in our setting det(¢y(g1) —Id) =t — 1 and one can

compute
o (A;g(t)) — (t—i)Q J=2/ _ (t—i)2 ,

in particular computing determinants of matrices with entries in Zs[t*!] rather than in Q(&;)[t*!].
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Proof of Proposition|3.16. By Proposition to establish our desired result under the above
hypotheses it suffices to show that the degree of A% () is equal to 2LC(K2)_3J, i.e. that the reduced
twisted Alexander polynomial does not drop degree under my. By considering Proposition and

recalling that we chose g1 so that the determinant of ¢, (g1) —Id is ¢t — 1, we see that the degree of
A% (t) is no more than ¢(K) — 3 as follows.

~ ¢(K)
The degree of AY-(t) is 2 less than the degree of det [@ (ggl )} . The Wirtinger presentation

i/ i =2

of m1(Xx) has ¢(K) generators and ¢(K) relations of the form r; = ‘_qaigbigc_ilgb_l_1 for some a;, b;, c;.
Moreover, since ga,gp, 9., 1 9, 1'— 1 one can verify that for any g; € m1(Xk)

(9090959 ) (9009907 0(gugn) Do)  Oga,

— — _ — _|_(g __1)%_917 8901'
9g; 9g; g; 9g; ag; 7" '0g; T Og;
Therefore for any i, j we have that
(10 0]
0 0 1|
o0 t][eg 0o 0] 100
ari —_ kK 3 —
®{5-)=1]1 00 0 & 0 | —]0 1 0] ifj=b,
% o100 0o g |oo1
o0 t][eg o o
1 00 0 & 0 if j = ¢,
01 0][0 0 &™)

and is the 3 x 3 zero matrix if j & {a;, b;,¢;}. In particular, ® (g;?) has at most one entry which
J

is of the form at for o € Q(&;) and all its other entries are elements of Q(&y). It follows that the

degree of
N\ 7<)
o (5]
995/ 1 j=2

is no more than ¢(K) — 1 and so the degree of A}%(t) is no more than ¢(K) — 3.
Since polynomials of the form f(¢)f(t) certainly have even degrees, either A% (¢) is not a norm,

or we have K _3 K _3
2 {C(;_J = degmy (&;@(t)) < deg AX.(t) < 2 {C(;_J :
and hence we have equality throughout. O

Table gives the degrees of the irreducible factors of my (ﬁ}‘i (t)) over Zs[t*!], which is all we

will need to prove our main theorem. We refer the interested reader to the Appendix [A for the
actual factorizations.

3.4. Proof of the main theorems. We are now ready to embark upon proving the main theorems
of this paper.

Proof of Theorem[3.1] Let n € {11,17,23} and let K = K,,. Let r: Xx — Xx denote the order n
symmetry of the knot exterior given in Figure|3| by rotation by 27 /n. As discussed above, r extends
to an order n symmetry of 33(K) and induces a covering transformation invariant, linking form
preserving isomorphism r.: Hi(33(K);Z) — H1(X3(K);Z). Let P be a covering transformation
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n|t|s=kn+1|6¢€Zs| degree sequence of my (K}Ci (75)>
1+ 23 2 (2,2,3,3,8)
_ 2 (4,14)
17 | + 103 ] (2,3,9,16)
_ 9 (2, 28)
YR 17 1 (1, 1,11,29)
N 9 (1,1, 2, 12, 12, 14)

TABLE 1. The degree sequences of my (A}Ci (t))

invariant metabolizer of H;(X3(K);Z). By Proposition we see that either P = P or there
exists some k = 0,...,n — 1 such that P = r¥(P_).
In the former case, let x4 be the character defined in Equation and note that x4 vanishes

on P = P;. Moreover, the computations in Table (1, the observation that 2LC(KZ)_3J =223 =

2(n—2), and Proposition@together imply that &}‘: (t) does not factor as a norm over Q(&,)[t*!].
In the latter case, let x_: H1(X3(K);Z) — Z, be the character defined in Equation that
vanishes on P_. Since r¥(P_) = P, we have that y := xy_ o r;* vanishes on P. Moreover, since
is a diffeomorphism of the 0-surgery, we h~ave that E}C((t) = ﬁ}‘{ (t). So again the computations in
Table ly and Proposition M imply that AY.(t) does not factor as a norm over Q(&,)[t*1].
Therefore, for each invariant metabolizer of H;(33(K);Z) we have constructed a character of
prime power order vanishing on that metabolizer so that the corresponding reduced twisted Alexan-
der polynomial of K is not a norm. By Theorem 3.6 we conclude that K is not slice. g

Recall that J = 817#8],. Kirk and Livingston [27] proved J is not slice by showing that for each
invariant metabolizer of P < Hy(X3(J); Z) = (Z13)* there exists a character x: Hy(X3(J); Z) — Z13
such that x|p = 0 and AX(t) € Q(&3)[t*!] is not a norm. Now we are ready to prove our main
theorem.

Proof of Theorem[1.4 For the duration of this proof we refer to J as K for ease of notation in
the formulae below.
Suppose that

K = a7 Kr#an Kn#ag K j#arr Kir#ass Kag

is slice for az,a11,a7,a17,a23 € {0,1}. If a11 = ay = a17 = agg = 0, then Sartori’s work [41] implies
that a7 = 0, since K7 is not slice. So we can assume that there exists ig € {11, J, 17,23} such that

Qg #:0
Let

I:={ie{7,11,7,17,23} | a; # 0}

and P be an invariant metabolizer for H;(33(K);Z). With the understanding of Z; = Zi3, we
have

H\(S3(K); Z) = @) Hi(S3(K:); Z2) = €D (Z4)*
i€l i€l
and since 7,11, 13,17, and 23 are relatively prime, P’ := PN H;(33(K,,); Z) is an invariant metab-
olizer for Hi(¥3(K;,); Z).
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Moreover, if X": Hy(X3(K,); Z) — Zj, is a character vanishing on P’, then we can construct a
character x vanishing on P by decomposing

Hy(33(K); Z) = @) H1(S5(K,); Z)
el

and letting

X' i=1o

X|H1(23(K¢)§Z) - {0 1 # 1p.

Moreover, for such a character we let x; denote X|g, (5,(k,):z) and observe that by [32, Corollary 1]
we have

A =JTAR® = A%, 0.

It therefore suffices to show that for any invariant metabolizer of Hy(X3(Kj;,);Z) there exists a
character x’ to Z;, vanishing on that metabolizer such that the resulting reduced twisted Alexander

polynomial K}‘; (t) does not factor as a norm over Q(&;,)[t*1].
ig

This is exactly what we did in the proof of Theorem for i = 11,17,23 and what Kirk and
Livingston did in [27] for the case of igp = J thereby completing the proof. O

APPENDIX A. THE IMAGES OF THE REDUCED TWISTED ALEXANDER POLYNOMIALS IN Z,[t*1].

For the convenience of the reader, we give the irreducible factors of the images of the reduced

ot
twisted Alexander polynomials 7y <A}<( (t)) € Zs[tT']. These computations, necessary in order to

obtain the degree sequences of Table 1, were done in Maple worksheets that are available on the
third author’s website.

(£,s,0) Irreducible factors of 7y (3’;:11@)) € Zg[tT!]

(+,23,2)

degree 2 213t +1,t2 4+ 3t + 11

degree 3 13+ 142 4 3, 3 + 222 4 22t 4 22

degree 8 | t8 4 227 4 4t5 4 14¢° + 3t* + 3t3 4+ 16t> + ¢ + 20
(—,23,2)

degree 4 1T A2 1T+ 1

degree 14 | t'* 4+ 713 4 5¢12 4 7¢11 4 7410 4 2249 4 2248 4 747
+22t0 4226 4+ T+ T 452 + T+ 1

4 Aug 2020 05:50:43 PDT
200430-Park Version 3 - Submitted to Algebr. Geom. Topol.



BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS 19

(£,5,0) Irreducible factors of mg (5?17 (t)) € Zg[tT!]
(+,103,8)

degree 2 t24+98t+5

degree 3 3 4+ 12t% + 36t + 93

degree 9 19 4 33t + 94¢7 + 325 + 61¢° + 20t* + 6313 + 48t% 4 19t + 94
degree 16 t16 4 74415 4+ 2611 + 92413 4 31#12 + 85t 4 8610 + 3417 + 3548

+677 + 995 + 6415 + 67t + 1143 + 95¢% + 8¢ + 19

(—,103,9)

degree 2 24+ 13t+1

degree 28 | 128 4 6127 + 97126 4+ 22¢25 4 25124 + 27123 4 7322 + 47121 + 79t%0 + 31410
+99¢18 + 36¢17 4+ 54116 + 40¢15 + 40t + 40613 + 54¢12 + 36¢1 + 99¢10
43189 + 79t8 4+ 47t7 + 7316 + 2715 + 25¢4 + 2263 + 972 + 61t + 1

(£,s,0) Irreducible factors of mg (ﬁ}‘és (t)) € Zs[tt]
(+,47,4)
degree 1 t+21,t+29

degree 11 | 11 4+ 37¢10 4+ 43¢% + 568 + 7 + 4210 + 34¢° + 43t* + 53 + 3442 + 44t + 9

degree 29 | t29 4+ 2528 4 9127 + 19¢26 4 38125 + 46124 4 27123 + 40t22 4 41421 + 180

1719 4 18 4 34417 4+ 6416 4 21415  25¢1 4 18413 4 25¢12 4+ 34411 4 9¢10
+12t9 4 418 4 46t7 + 1010 + 40t° + 21t* + 1013 + 2 + 40t + 13

(_a 477 2)
degree 1 t+46,t + 46
degree 2 2+t4+1

degree 12 t12 4 3¢ 4 27410 11969 + 388 + 25¢7 + 25¢5 + 40> + 16t* + 25¢°

+441% + 28t + 23, 12 4 38tM 4 610 + 4419 + 15¢% 4 1447 + 4445
+441° + 18t* + 93 + 40t + 41t + 45

degree 14 14 42413 1 2412 4311 4 42410 1 3617 + 30t8 + 33¢7 + 3016

+36t° 4+ 42t* + 4313 + 262 + 2t + 1
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