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Abstract. Prime power fold cyclic branched covers along smoothly slice knots all bound rational
homology balls. This phenomenon, however, does not characterize slice knots. In this paper, we
give a new construction of non-slice knots that have the above property. The sliceness obstruction
comes from computing twisted Alexander polynomials, and we introduce new techniques to simplify
their calculation.

1. Introduction

For a knot K ⇢ S
3, let ⌃q(K) denote the q-fold cyclic branched cover of S3 along K. Consider

the set of prime powers Q = {p` | p prime, ` 2 N}. For q 2 Q, the three-manifold ⌃q(K) is a
rational homology sphere – i.e. H⇤(⌃q(K);Q) ⇠= H⇤(S3;Q). It is not hard to see that if K ⇢ S

3 is
smoothly slice – i.e. bounds a smooth, properly embedded disk D in the 4-ball D4 – then ⌃q(K)
bounds a smooth rational homology ball X4, that is, ⌃q(K) = @X

4 and H⇤(X4;Q) ⇠= H⇤(D4;Q).
Indeed, the q-fold cyclic branched cover of D4 branched along D will be such a four-manifold. It
is natural to ask if the property that all prime power fold cyclic branched covers bound rational
homology balls characterizes slice knots.

To put this question in a more algebraic framework, notice that ⌃q (�K) = �⌃q(K) (where �K

is the reverse of the mirror image of the knot K, and �Y is the three-manifold Y with reversed
orientation) and ⌃q(K1#K2) = ⌃q(K1)#⌃q(K2). Hence the map

K 7! ⌃q(K)

descends to a homomorphism C ! ⇥3
Q, where C denotes the smooth concordance group of knots

in S
3, and ⇥3

Q is the smooth rational homology cobordism group of rational homology spheres. We
then let

' : C !
Y

q2Q
⇥3

Q,

be the homomorphism given by
[K] 7! ([⌃q(K)])q2Q,

and note that [K] 2 ker' exactly when all the prime power fold cyclic branched covers of K bound
rational homology balls. The following question was posed during problem sessions at the conference
on Synchronizing Smooth and Topological 4-manifolds and at the conference on 4-Manifolds and
Knot Concordance, hosted by Ban↵ International Research Station and the Max Planck Institute
for Mathematics, respectively, in 2016 [1, 2].

Question 1.1. Is ker' trivial?

In fact, the answer to this question can be rather swiftly shown to be ‘no’. Since the 3-manifold
⌃q(K) is independent of the orientation of K, any knot J which is not concordant to its reverse Jr

yields a nontrivial element KJ := J# � J
r in ker'. The existence of such J was first established

by Livingston; see [27, 28] for proofs. In fact, recent work of Kim and Livingston together with the
above observation implies that ker' contains an infinitely generated free subgroup, generated by
topologically slice knots of the form K#�K

r [25].
1
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Considerably less seems to be known with regards to finite order elements in ker'. Kirk and
Livingston showed that the knot 817, which is negative-amphichiral, is not concordant to its re-
verse [27] (see also [7]), and so the above observation implies that 817#8r17 represents a nontrivial
element of order two in ker'.

In this article, we give a new construction that yields large families of knots representing elements
in ker'. In addition, we show that four of these knots generate a (Z2)4 subgroup of ker'. We
remark that an easy extension of our arguments in the proof of Theorem 1.4 show that adding in
817#8r17 in fact gives a (Z2)5 subgroup. It is an interesting technical challenge to show that a (Z2)1

subgroup exists in ker'; we expect that our examples (see Theorem 1.3) generate such a subgroup.
While our knots are prime and hence not isotopic to any J#�J

r, it is not at all obvious how to
show that they are not concordant to any knot of the form J#�J

r. To belabor this point, we note
that the bulk of this article’s work is required to merely show that these knots are not concordant
to U# � U

r = U . We therefore propose the following refinement of Hedden’s Question 1.1 as a
stimulus to future work.

Question 1.2. Is ker' = {[K#�K
r] | K is a knot in S

3}?

Our examples are constructed as follows. Let Lr be the link depicted in the left diagram of
Figure 1, where the box labeled r 2 N consists of r right-handed half-twists (and �r denotes
r left-handed half-twists). When r is even, Lr is a knot (a simple generalization of the figure-
8 knot, which is given by L2). As was shown in [6], these knots are rationally slice, non-slice,
and strongly negative-amphichiral and moreover generate a subgroup isomorphic to (Z2)1 in the
smooth concordance group C. If r = 2m+1 is odd, then Lr is a 2-component link of unknots, which
we redraw in the middle of Figure 1 by braiding component B2m+1 about component A2m+1. The
resulting (2m+ 1)-braid �m is shown in the right diagram of Figure 1.

m

B

...

...

...

m

−r

r

β
m

β
m

A
2m+1

2m+1

2m+1
B

2m+1
A

Figure 1. Lr (left) is a knot if r is even and is a 2-component link if r = 2m+1 is
odd. The middle diagram shows L2m+1 = A2m+1 [ B2m+1 redrawn as (the closure
of) a (2m+1)-braid �m with its braid axis. On the right we give the (2m+1)-braid
�m.

We define Km,n to be the lift of B2m+1 to ⌃n(A2m+1), which since A2m+1 is an unknot is just
S
3. Note that Km,n is a knot if r = 2m + 1 and n are relatively prime. In fact, the description

of Figure 1 shows that Km,n is simply the braid closure of the braid �
n
m. We use the symmetry

of L2m+1 to show that ⌃q(Km,n) is di↵eomorphic to ⌃n(Km,q) when n and q are both relatively
prime to 2m + 1. We then use the fact that Km,n is strongly negative-amphichiral to show that
many of these knots represent elements of ker'.

Theorem 1.3. If n is an odd prime power which is relatively prime to 2m+1, then [Km,n] 2 ker'.

For instance, if n is an odd prime power and not divisible by 3, then K1,n is contained in ker'.
The knots K1,n previously appeared in work of Lisca [31], where it was pointed out that these
knots are strongly negative-amphichiral. Therefore they are of order at most two in C. In addition,
Sartori proved in his thesis [41] that one of these knots (K1,7 in our notation) is not slice; hence,
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by our Theorem 1.3, this knot spans Z2  ker'. We show that some other members of this family
represent non-trivial elements in ker' and are moreover linearly independent. Let Kn denote K1,n,
i.e. the closure of the three-braid (�1)n :=

�
�1�

�1
2

�n
.

Theorem 1.4. The subgroup of ker' generated by K7,K11,K17, K23, and 817#8r17 is isomorphic
to (Z2)5.

In general, using twisted Alexander polynomials to show that a fixed knot K is not slice is
not so much technically di�cult as computationally intense. However, obstructing sliceness for an
infinite family of knots via twisted Alexander polynomials is generally much harder, and occurs
only infrequently in the literature. While we see no reason that {K6n+5}n2N should not generate
(Z2)1  ker', proving this via twisted Alexander polynomials would require significantly more
arduous computations and arguments.

Delaying all precise definitions to Section 3, we say merely that in this context twisted Alexander
polynomials are associated to a choice of q 2 Q and a map � : H1(⌃q(K);Z) ! Zd for some d. In
order to use twisted Alexander polynomials to obstruct a knot K from being slice, one must show
that for every subgroup M of H1(⌃q(K);Z) satisfying certain algebraic properties there exists a
map � vanishing on M such that the resulting twisted Alexander polynomial does not factor in a
certain way.

By better understanding the structure of H1(⌃q(K);Z) one can sometimes significantly reduce
the number of computations that are necessary. For example, Sartori’s result of [41] that K7 is
not slice requires the computation (and subsequent obstruction of factorization as a norm) of 170
di↵erent twisted Alexander polynomials, corresponding to order 13 characters vanishing on the 130
di↵erent square root order subgroups of H1(⌃7(K7);Z). By careful consideration of the linking
form on H1(⌃3(Kn);Z) and how its metabolizers are permuted by the induced action of an order n
symmetry of Kn, we are able to prove that Kn is not slice by computing only two twisted Alexander
polynomials, at least for n = 11, 17, 23. In fact, while we do not include these computations here,
we leave as a challenge for the interested reader to reprove Sartori’s result by following roughly the
same argument below, but computing precisely 3 carefully chosen twisted Alexander polynomials
corresponding to � : H1(⌃3(K7);Z) ! Z7.

In addition, we overcome the following technical di�culty, which may be of independent interest.
In many settings, the easiest way to compute the homology of a knot’s cyclic branched cover, with
its linking form and module structure, is in terms of some nice Seifert surface. However, the
standard e�cient algorithms for computing the twisted Alexander polynomial corresponding to
� : H1(⌃q(K);Z) ! Zd require one to compute a map �� : ⇡1(XK) ! GL(q,Q(⇠d)[t±1]) on the
Wirtinger generators for ⇡1(XK). Relating these two perspectives is not entirely trivial, and we
refer the reader to Section 3 for a discussion of this process.

Remark 1.5. One can ask an analogous question in the topological category: Is there a knot that
does not bound any topologically locally flat disk in the 4-ball but all its prime power fold cyclic
branched covers bound topological rational homology balls? It turns out that such examples can
be constructed by using the classical Alexander polynomial. Let {ni} be the set of all natural
numbers divisible by at least 3 distinct primes and Ki be a knot with Alexander polynomial the
n
th

i
cyclotomic polynomial. By Livingston [33], for each i, all the prime power fold cyclic branched

covers along Ki are integral homology spheres. Hence, by Freedman [11, 12], they all bound
contractible topological four-manifolds. On the other hand, since the cyclotomic polynomials are
irreducible, Ki and Kj are concordant if and only if i = j. Hence the knots {Ki} represent distinct
elements in ker'top, the topological analogue of ker'.

The results discussed in this introduction show that slice knots are not characterized by the
property that each of their prime power fold cyclic branched covers bound rational homology balls.
However, there is a stronger condition that one might posit as a characterization of sliceness. When
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a knot is slice, not only do its covers bound rational homology balls, but the deck transformations
of the covers extend over these balls. Additionally, the lifts of the slice knot to knots in the covers
bound slicing disks in these balls. This leads us to the following question.

Question 1.6.

(1) Does there exist a non-slice knot K such that ⌃q(K) bounds a rational homology ball for
each prime power q such that the deck transformations of ⌃q(K) extend over the rational
homology ball?

(2) Does there exist a non-slice knot K such that ⌃q(K) bounds a rational homology ball for
each prime power q such that the lift of K to ⌃q(K) bounds a disk in the rational homology
ball?

We remark that each of the knots Km,n studied in this article, as well as any knot of the
form K# � K

r where K is negative-amphichiral, can be shown to have the desired properties of
Question 1.6 (1) when q is odd or equal to 2, and the desired properties of Question 1.6 (2) when
q is odd.

Lastly, we make a remark on some other sliceness obstructions for Kn, where n is an odd prime
power not divisible by 3. Note that Kn is strongly positive-amphichiral hence it is algebraically
slice [34]. Further, Kn is also strongly negative-amphichiral, which implies that it is rationally slice.
Hence the ⌧ -invariant [38], "-invariant [18], ⌥-invariant [39], ⌥2-invariant [24], ⌫+-invariant [19],
'j-invariants [9], and s-invariant [40] all vanish for Kn. Moreover, since [Kn] 2 ker', the sliceness
obstructions from the Heegaard Floer correction term and Donaldson’s diagonalization theorem
(e.g. [16, 20, 30, 35]) applied to the cyclic branched covers of Kn all vanish. As mentioned above,
the fact that the involution induced by the deck transformation on ⌃2(Kn) extends to a rational
homology ball (in fact it is a Z2 homology ball) implies that sliceness obstructions such as [3, 8]
vanish.

The paper is organized as follows: in Section 2 we prove Theorem 1.3, and in Section 3 we use
twisted Alexander polynomials to show Theorem 1.4.

Acknowledgements: This project began during a break-out session during the workshop Smooth
concordance classes of topologically slice knots hosted by the American Institute for Mathematics in
June 2019. The authors would like to extend their gratitude to AIM for providing such a stimulating
research environment. PA is supported by the European Research Council (grant agreement No
674978). JM is supported by NSF grant DMS-1933019. ANM is supported by NSF grant DMS-
1902880. MM is supported by NSF grant DGE-1656466. JP thanks Min Hoon Kim and Daniel
Ruberman for helpful conversations. AS was supported by the Élvonal Grant NKFIH KKP126683
(Hungary). We thank Charles Livingston for pointing out the relevance of knots which are not
concordant to their reverses to this article. Lastly, we would like to thank the referee for the careful
reading of the manuscript and the numerous improvements suggested.

2. Branched covers bounding rational homology balls

In this section, we will prove Theorem 1.3 after establishing the following two propositions. We
work in the smooth category.

Proposition 2.1. Suppose that n and q are both relatively prime to 2m+ 1. Then ⌃q(Km,n) and
⌃n(Km,q) are di↵eomorphic three-manifolds.

Proof. We can realize ⌃q(Km,n) by first taking the n-fold cyclic branched cover of S3 branched
along A2m+1 and then the q-fold cyclic branched cover branched along the pull-back of B2m+1

of Figure 1. Since the roles of A2m+1 and B2m+1 are symmetric (as shown by the left diagram
of Figure 1), this three-manifold is the same as the q-fold cyclic branched cover branched along
A2m+1, followed by the n-fold cyclic branched cover branched along the pull-back of B2m+1, which
is exactly ⌃n(Km,q), concluding the argument. ⇤
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Proposition 2.2. Suppose that n is relatively prime to 2m + 1. Then Km,n bounds a disk in a
rational homology ball Xm,n with only 2-torsion in H1(Xm,n;Z).

Recall that a knot is called strongly negative-amphichiral if there is an orientation-reversing
involution ⌧ : S3 ! S

3 such that ⌧(K) = K and the fixed point set of ⌧ is a copy of S0 ⇢ K.
Proposition 2.2 follows from the following lemma, which is a special case of [21], together with a
simple observation regarding the knots Km,n. (This version of the result below was also proved in
[23, Lemma 3.1].)

Lemma 2.3 ([21, Section 2]). If K is a strongly negative-amphichiral knot, then K is slice in a
rational homology ball X with only 2-torsion in H1(X;Z).

Proof. Let ⌧ be the orientation-reversing involution on S
3 with ⌧(K) = K where the fixed point

set is two points. Let MK be the three-manifold obtained by performing 0-surgery on K. Then the
involution ⌧ extends from the exterior of K to a fixed-point free orientation-reversing involution ⌧̂

on MK .
The rational homology ball X of the lemma is now constructed as follows: Consider the trace

W of the 0-surgery MK , i.e. W is the four-manifold we get from S
3⇥ [0, 1] by attaching a 0-framed

2-handle along K ⇢ S
3 ⇥ {1}. Consider the quotient of W by ⌧̂ on its boundary component

di↵eomorphic to MK . The resulting compact four-manifold X has S
3 as its boundary, and K ⇢

S
3⇥ {0} is obviously slice in X: the slice disk is simply the core of the 2-handle (trivially extended

through S
3 ⇥ [0, 1]).

In order to complete the proof of the lemma, it would be enough to show that H⇤(X;Q) =
H⇤(D4;Q) and H1(X;Z) ⇠= Z2. For this computation, we consider an alternative description of
X as follows. Factoring MK by the free involution ⌧̂ we get a three-manifold M , together with a
principal Z2-bundle ⇡ : MK ! M and an associated interval-bundle Z ! M . Note that @Z = MK

and that Z retracts to M . Then X is the union of the surgery trace W with Z, glued along MK ,
i.e. the four-manifold obtained by attaching a 0-framed 2-handle along the meridian of @Z = MK .
The inclusion map i induces the following exact sequence

H1(@Z;Z) i⇤�! H1(Z;Z) ! Z2 ! 0.

This implies that H1(X;Z) ⇠= Z2 since a 2-handle is attached along the generator of H1(@Z;Z) to
obtain X. ⇤

Figure 2. Reflection to the (red) dot in the middle provides an involution ⌧ : S3 !
S
3 verifying that the knot is strongly negative-amphichiral.

Recall that Km,n is the braid closure of the (2m+1)-braid (�m)n (see Figure 1 for �m) — in the
following we will view Km,n as this braid closure; see Figure 2 for the case of the 7-braid (�3)3.

Proof of Proposition 2.2. Figure 2 shows that Km,n is strongly negative-amphichiral: Indeed, if the
(red) dot in the middle of Figure 2 is in the origin of R3 and the middle strand of the knot passes
through 1 = S

3 \ R3, then the knot can be isotoped slightly so that the obvious extension to S
3

of the map v 7! �v for v 2 R3 provides the required ⌧ . Then Lemma 2.3 completes the proof of
the proposition. ⇤
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We recall a well known lemma of Casson and Gordon and for completeness sketch its proof.

Lemma 2.4 ([5, Lemma 4.2]). Suppose that q = p
` is an odd prime power, and K is a knot that is

slice in a rational homology ball X with only 2-torsion in H1(X;Z). Then ⌃q(K) bounds a rational
homology ball.

Proof. Let D be the disk that K bounds in X and ⌃q(D) be the q-fold cyclic branched cover of

X branched along D. Consider the infinite cyclic cover eX of X rD and the following long exact
sequence [36]

· · · ! eHi( eX;Zp)
t
q
⇤�Id���! eHi( eX;Zp) ! eHi(⌃q(D);Zp) ! eHi�1( eX;Zp) ! · · ·

Here t⇤ is the automorphism induced by the canonical covering translation. Since X is a rational
homology ball with only 2-torsion in the first homology, t⇤ � Id is an isomorphism. Moreover, with
Zp coe�cients we have t

q

⇤ � Id = (t⇤ � Id)q. Hence the result follows. ⇤
Proof of Theorem 1.3. If q is an odd prime power, then Proposition 2.2 and Lemma 2.4 together
immediately imply that ⌃q(Km,n) bounds a rational homology ball.

Suppose now that q = 2`. By Proposition 2.1, we have that ⌃q(Km,n) is di↵eomorphic to
⌃n(Km,q). Moreover n was chosen to be an odd prime power, while q = 2` is relatively prime to
2m+ 1. Hence the statement follows from the first case of this proof. ⇤

3. Sliceness obstructions from twisted Alexander polynomials

The goal of this section is to prove Theorem 1.4. Recall that Kn := K1,n is the closure of the
three-braid (�1)n :=

�
�1�

�1
2

�n
(see e.g. the left diagram of Figure 3 for n = 7). We first prove the

following theorem.

Theorem 3.1. The knots K11,K17, and K23 are not slice; hence are of order two in C.

The sliceness obstruction we intend to use in the proof of Theorem 3.1 rests on a result of Kirk
and Livingston [26] involving twisted Alexander polynomials. Throughout the rest of the section,
e
2⇡i/d is denoted by ⇠d, and the three-manifold obtained by performing 0-surgery on K is denoted
by MK . We generally follow the exposition of [17], and refer the reader to that work for more
details.

Definition 3.2. Given a representation ↵ : ⇡1(MK) ! GL(q,Q(⇠d)[t±1]), the twisted Alexander
module A↵(K) is the Q(⇠d)[t±1]-module H1(MK ;Q(⇠d)[t±1]q).

Definition 3.3. The twisted Alexander polynomial �↵

K
(t) is a generator of the order ideal of

A↵(K); this polynomial is well-defined up to multiplication by units in Q(⇠d)[t±1].

Twisted Alexander polynomials generalize the classical Alexander polynomial. If we fix the
representation ↵0 : ⇡1(MK) ! GL(1,Q[t±1]) (i.e. q = d = 1), then A↵0(K) is the classical (rational)
Alexander module A(K) of K and �K(t) := �↵0

K
(t) is the classical Alexander polynomial. (Note

that ↵0 is not actually uniquely determined, as it may map a meridian of K to t
n for any n 2 Z.

Rather, one should consider ↵0 to be any representation that comes from abelianization of ⇡1(MK).)
We will restrict to a special class of representations as follows. First, choose q 2 N and a

character � : H1(⌃q(K);Z) ! Zd. Note that H1(⌃q(K);Z) ⇠= A(K)/htq � 1i and that a choice of a
meridian for K determines a map from ⇡1(MK) to ZnA(K)/htq�1i, as discussed in more detail in
Subsection 3.2. The character � therefore induces ↵� : ⇡1(MK) ! GL(q,Q(⇠d)[t±1]), and we write
��

K
(t) := �

↵�

K
(t).

This is a very quick explanation of twisted Alexander polynomials from the Casson-Gordon
perspective, and Friedl and Vidussi [15] have a survey of twisted Alexander polynomials which we
recommend for more detailed exposition.
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The obstruction we will use in the proof of Theorem 3.1 is a generalization of the Fox-Milnor
condition [10], which states that the Alexander polynomial of a slice knot factors as f(t)f(t�1) for
some f(t) 2 Z[t±1]. First, recall the following definitions.

Definition 3.4. We call a Laurent polynomial d(t) 2 Q(⇠d)[t±1] a norm if there exist c 2 Q(⇠d),
k 2 Z, and f(t) 2 Q(⇠d)[t±1] such that

d(t) = ct
k
f(t)f(t),

where · is induced by the Q-linear map on Q(⇠d)[t±1] sending t
i to t

�i and ⇠d to ⇠
�1
d

.

Definition 3.5. Let q be an odd prime power and � : H1(⌃q(K);Z) ! Zd be a character. The

reduced twisted Alexander polynomial e��

K
(t) is defined to be �

↵�

K
(t)(t � 1)�s, where s = 0 if � is

trivial and s = 1 otherwise.

Theorem 3.6 (Theorem 6.2, [26]). Suppose that K is a slice knot and q is an odd prime power.
Then there exists a covering transformation invariant metabolizer P  H1(⌃q(K);Z) such that if
� : H1(⌃q(K);Z) ! Zd is a character of odd prime power order such that �|P = 0, then the reduced

twisted Alexander polynomial e��

K
(t) 2 Q(⇠d)[t±1] is a norm. ⇤

Let K 2 {K11,K17,K23}. We first determine the metabolizers of H1(⌃3(K);Z) and construct
prime order characters vanishing on each metabolizer in Subsection 3.1. We then show that the
corresponding reduced twisted Alexander polynomials of K do not factor as a norm in Subsec-
tion 3.4.

3.1. The metabolizers of H1(⌃3(Kn);Z). We assume that n is odd and not divisible by 3, so
in particular Kn is a knot. Our understanding of H1(⌃3(Kn);Z) and its metabolizers will come
from a computation of the Alexander module and the Blanchfield pairing of Kn. Throughout this
section, we also keep track of the order n symmetry of Kn, which will be useful later on to reduce
the number of twisted Alexander polynomials we must compute.

Observe that K := Kn has a genus n�1 Seifert surface F , illustrated in Figure 3 for n = 7, which
is invariant under the periodic order n symmetry r : S3 ! S

3 given diagrammatically by rotating
counterclockwise by 2⇡/n. We pick a collection of simple closed curves ↵1, . . . ,↵n�1,�1, . . . ,�n�1

Figure 3. A Seifert surface F for K from two di↵erent perspectives.

on F that form a basis for H1(F ;Z) as illustrated on the left of Figure 4. Note that r(↵i) = ↵i�1

and r(�i) = �i�1 for all i = 1, . . . n � 1. By considering the right side of Figure 4 we see thatP
n�1
i=0 [↵i] = 0 in H1(F ;Z), and so the induced action of r on [↵1], [�1] 2 H1(F ;Z) is given by

r⇤([↵1]) = [↵0] =
n�1X

i=1

�[↵i]
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Figure 4. A basis of curves for H1(F ;Z) (left) and an additional curve ↵0 which
does not represent an element of our basis for H1(F,Z) (right, depicted for n = 7).

and, via an analogous argument,

r⇤([�1]) =
n�1X

i=1

�[�i].

It is straightforward to compute the Seifert matrix A for the Seifert pairing on F with respect

to our fixed basis, and we obtain A =


�B

T 0
B B

�
, where B is the (n� 1)⇥ (n� 1) matrix with

entries given by Bi,j =

8
><

>:

1 i = j

�1 i = j � 1

0 else

. Recall that Blanchfield [4] showed that the Alexander

module A(K) supports a non-singular pairing

Bl : A(K)⇥A(K) ! Q(t)/Z[t±1]

called the Blanchfield pairing. The pairing can be computed using a Seifert matrix of K as follows,
for more details see [14, 22, 29].

Theorem 3.7 ([14, Theorem 1.3 and 1.4]). Let F be a Seifert surface for a knot K with a collection
of simple closed curves �1, . . . , �2g on F that form a basis for H1(F ;Z) and corresponding Seifert

matrix A. Let b�1, . . . , b�2g be a collection of simple closed curves in S
3 r ⌫(F ) representing a basis

for H1(S3 r ⌫(F );Z) satisfying lk(�i, b�j) = �i,j (i.e. the Alexander dual basis), where ⌫(F ) denotes
an open tubular neighborhood F ⇥ I. Consider the standard decomposition of the infinite cyclic
cover of the knot exterior as

X
1
K =

+1[

i=�1
(S3 r ⌫(F ))i,

and let the homology class of the unique lift of b�i to (S3 r ⌫(F ))0 be denoted by di. Then the map

p :
�
Z[t±1]

�2g ! A(K)

(x1, . . . , x2g) 7!
2gX

i=1

xidi.

is surjective and has kernel given by (tA�A
T )Z[t±1]2g. Moreover, the Blanchfield pairing is given

as follows: for x, y 2 Z[t±1]2g we have

Bl(p(x), p(y)) = (t� 1)xT (A� tA
T )�1

y 2 Q(t)/Z[t±1],
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BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS 9

where · is induced by the Z-linear map on Z[t±1] sending t
i to t

�i. ⇤

Following the language above, let ↵̂1, . . . , ↵̂n�1, �̂1, . . . , �̂n�1 be the Alexander dual basis of

↵1, . . . ,↵n�1,�1, . . . ,�n�1 and ai, bi be the homology classes of the unique lifts of ↵̂i, �̂i, respec-

tively. Note that ↵̂n�1 and �̂n�1 are illustrated in Figure 4 as small closed curves linking F . By
inspecting the matrix tA�A

T , illustrated below for n = 7,
2

6666666666666666664

1� t t 0 0 0 0 �1 1 0 0 0 0
�1 1� t t 0 0 0 0 �1 1 0 0 0
0 �1 1� t t 0 0 0 0 �1 1 0 0
0 0 �1 1� t t 0 0 0 0 �1 1 0
0 0 0 �1 1� t t 0 0 0 0 �1 1
0 0 0 0 �1 1� t 0 0 0 0 0 �1
t 0 0 0 0 0 t� 1 1 0 0 0 0
�t t 0 0 0 0 �t t� 1 1 0 0 0
0 �t t 0 0 0 0 �t t� 1 1 0 0
0 0 �t t 0 0 0 0 �t t� 1 1 0
0 0 0 �t t 0 0 0 0 �t t� 1 1
0 0 0 0 �t t 0 0 0 0 �t t� 1

3

7777777777777777775

we see that we can use the bolded pivot entries to perform column operations over Z[t±1] to
transform tA�A

T to a matrix as below:
2

6666666666666666664

0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
⇤ �t 0 0 0 0 t 1 0 0 0 0
⇤ ⇤ �t 0 0 0 0 t 1 0 0 0
⇤ ⇤ ⇤ �t 0 0 0 0 t 1 0 0
⇤ ⇤ ⇤ ⇤ �t 0 0 0 0 t 1 0
⇤ ⇤ ⇤ ⇤ ⇤ �t 0 0 0 0 t 1
⇤ ⇤ ⇤ ⇤ ⇤ ⇤ �1 �1 �1 �1 �1 t� 1

3

7777777777777777775

.

We now use the new bolded entries as pivots to perform column operations to obtain a matrix whose
i
th row has a single non-zero entry that occurs in column i+1, for all i = 1, . . . , n�2, n, . . . , 2n�3.
This matrix is of the following form:

2

6666666666666666664

0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⇤n�1,1 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤n�1,n ⇤ ⇤ ⇤ ⇤ ⇤
0 �t 0 0 0 0 0 0 0 0 0 0
0 0 �t 0 0 0 0 0 0 0 0 0
0 0 0 �t 0 0 0 0 0 0 0 0
0 0 0 0 �t 0 0 0 0 0 0 0
0 0 0 0 0 �t 0 0 0 0 0 0

⇤2n�2,1 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤2n�2,n ⇤ ⇤ ⇤ ⇤ ⇤

3

7777777777777777775

.
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10 P. ACETO, J. MEIER, A. N. MILLER, M. MILLER, J. PARK, AND A. I. STIPSICZ

Notice that only the ⇤-entries with indices have an impact on A(K). In particular, A(K) is
generated by an�1 and bn�1, in the language of the notation introduced just after Theorem 3.7.

For n = 11, 17, 23 one continues to perform column moves until the above matrix is simplified to
the following form: 2

6666666666666666664

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

pn(t) ⇤ ⇤ ⇤ ⇤ ⇤ 0 ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 ⇤ ⇤ ⇤ ⇤ ⇤ pn(t) ⇤ ⇤ ⇤ ⇤ ⇤

3

7777777777777777775

,

where

pn(t) =

(n�1)/2Y

k=0

⇣
t
2 + (⇠kn � 1 + ⇠

�k

n )t+ 1
⌘
.

This and all further computations in Subsection 3.1 were done in a Jupyter notebook and is available
on the third author’s website. In particular, this implies that �Kn(t) = pn(t)2, which one can verify
for general n 2 N by using the formula for the Alexander polynomial of a periodic knot in terms of
the multivariable Alexander polynomial of the quotient link [37].

Using the above matrix, we obtain for our values of interest that

A(K) ⇠= Z[t±1]/hpn(t)i � Z[t±1]/hpn(t)i,
where the two summands are respectively generated by a := an�1 and b := bn�1.

Remark 3.8 (The action of r⇤ on A(K)). We can also compute the action induced by the order n
symmetry r on A(K). In particular, we can observe that r(b↵n�1) is a curve whose only non-trivial
linkage is �1 with ↵n�1 and +1 with ↵n�2. Similar observations can be made for r(b�n�1), and so

it follows that the induced action of r on [b↵n�1], [b�n�1] 2 H1(S3 r ⌫(F );Z) is given by

r⇤([b↵n�1]) = �[b↵n�1] + [b↵n�2] and r⇤([b�n�1]) = �[b�n�1] + [b�n�2].

Therefore, the action of r⇤ on the generators of A(K) is given by

r⇤(an�1) = �an�1 + an�2 and r⇤(bn�1) = �bn�1 + bn�2.

Moreover, by considering the (n� 1)th and (2n� 2)th columns of tA�A
T , we obtain the relations

tan�2 + (1� t)an�1 + tbn�1 = 0,

an�2 � an�1 + bn�2 + (t� 1)bn�1 = 0.

Simple algebraic manipulations give us that

r⇤(an�1) = �an�1 + an�2 = �t
�1

an�1 � bn�1, (1)

r⇤(bn�1) = �bn�1 + bn�2 = t
�1

an�1 + (1� t)bn�1. (2)

Moreover, we obtain that if v = f1(t)an�1 + g1(t)bn�1 and w = f2(t)an�1 + g2(t)bn�1 then

Bl(v, w) =


f1(t)
g1(t)

�
T

·

c11 c12

c21 c22

�
·

f2(t�1)
g2(t�1)

�
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BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS 11

where cij = (t � 1)(A � tA
T )�1

(i(n�1),j(n�1)). We remark that the interested reader can use this

formula to algebraically verify the geometrically immediate fact that Bl(r⇤(v), r⇤(w)) = Bl(v, w)
for all v, w 2 A(K).

In applying Theorem 3.6 we will take q = 3, that is, we will consider the 3-fold cyclic branched
cover ⌃3(K) of S3 branched along K, and will derive the sliceness obstruction from that cover.
From now on, we take n to be 11, 17, or 23. We expect that the subsequent computations of this
section will hold for general n ⌘ 5 (mod 6), but we have not verified these results for n > 23.

We wish to transfer our information about (A(K),Bl) to tell us about (H1(⌃3(K);Z),�). First,
we have that

H1(⌃3(K);Z) ⇠= A(K)/ht3 � 1i
⇠= A(K)/ht2 + t+ 1i
⇠= Z[t±1]/hpn(t), t2 + t+ 1i � Z[t±1]/hpn(t), t2 + t+ 1i

where the two summands are generated by a and b, the images of an�1 and bn�1 in H1(⌃3(K);Z)
or, equivalently, the homology classes of the lifts of the curves b↵n�1 and b�n�1 to the preferred copy
of S3 r ⌫(F ) in ⌃3(K).

A straightforward computation using our explicit formula for pn(t) when n = 11, 17, 23 shows
that

Z[t±1]/hpn(t), t2 + t+ 1i ⇠= Zn[t
±1]/ht2 + t+ 1i

and hence that

H1(⌃3(K);Z) ⇠= Zn[t
±1]/ht2 + t+ 1i � Zn[t

±1]/ht2 + t+ 1i.
In particular, as a group H1(⌃3(K);Z) ⇠= (Zn)4, with natural generators a, ta, b, and tb.
The following result, which is slightly reformulated from [13], lets us compute the torsion linking

form � with respect to our preferred basis.

Proposition 3.9 ([13, Chapter 2.6]). Suppose that q is a prime power and let x, y 2 H1(⌃q(K);Z).
Choose ex, ey 2 A(K) which lift x and y, and write

Bl(ey, ex) = p(t)

�K(t)
2 Q(t)/Z[t±1].

Since t
q � 1 and �K(t) are relatively prime, one can find r(t) 2 Z[t±1] and c 2 Z such that

�K(t)r(t) ⌘ c (mod t
q � 1). Writing p(t)r(t) ⌘

P
q

i=1 ↵it
i (mod t

q � 1), for i = 0, . . . , q � 1 we
obtain

�q(x, t
i
y) =

↵q�i

c
2 Q /Z . ⇤

When we apply this process to our formula for Bl, we obtain that with respect to the Zn-basis
{a, ta, b, tb} our linking form is given by the matrix

L =
1

n

2

664

�1 �k �k k

�k �1 0 �k

�k 0 1 k

k �k k 1

3

775 ,

where n = 2k + 1. We remind the reader that, while we expect this formula to hold for general
n ⌘ 5 (mod 6), we only establish it for n = 11, 17, 23.

Remark 3.10 (The invariant metabolizers of H1(⌃3(Kn);Z)). We now wish to understand the
invariant metabolizers of H1(⌃3(Kn);Z) in order to e↵ectively apply Theorem 3.6.

First, we make the key observation that the induced action of r on H1(⌃3(Kn);Z) preserves the
linking form. This can be seen from a geometric viewpoint, since the action of r on the exterior XKn
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12 P. ACETO, J. MEIER, A. N. MILLER, M. MILLER, J. PARK, AND A. I. STIPSICZ

lifts to the infinite cyclic cover X
1
Kn

to induce a Blanchfield pairing preserving action on A(Kn).
It can also be verified algebraically, using our formulas (1) and (2), which hold equally well for the
induced action of r on H1(⌃3(Kn);Z) once we apply the relation t

3 = 1, and our explicit formula
for the linking form. Since r⇤ also commutes with the action of t, we have that r⇤ acts on the set
P of all covering transformation invariant metabolizers.

Recalling that n 2 {11, 17, 23}, we note that since n ⌘ 5 (mod 6) the polynomial t2 + t + 1 is
irreducible in Zn[t±1]. Therefore, since n is prime, we see that Zn[t±1]/ht2+t+1i has no non-trivial
proper submodules. Therefore, if (k0 + k1)a + (j0 + j1)b 2 M for some integers k0, k1, j0, j1 and
some proper submodule M , then either k0 = k1 = 0 and b 2 M or a + (j00 + j

0
1)b 2 M for some

integers j00, j
0
1.

It follows that there are exactly n
2 + 1 order n

2 submodules of H1(⌃3(K);Z): first, for any
n0, n1 2 Zn we have

Pn0,n1 := spanZn[t±1]{a+ (n0 + n1t)b} = spanZn
{a+ n0b+ n1tb, ta� n1b+ (n0 � n1)tb}

and secondly we have
P

0 := spanZn[t±1]{b} = spanZn
{b, tb}.1

Using the matrix L, we see that �(b, b) = 1
n

6= 0 2 Q /Z, and so P
0 is not a metabolizer.

Moreover, observe that the condition

�(a+ (n0 + n1t)b, a+ (n0 + n1t)b) =

2

664

1
0
n0

n1

3

775

T

· L ·

2

664

1
0
n0

n1

3

775 = 0 2 Q /Z

gives us a 2-variable (n0 and n1) quadratic polynomial over Zn, and hence has at most 2n solutions.
We have therefore shown that

|P|  2n.

Moreover, since the map r⇤ acts on P , n is prime, and (r⇤)n = Id, we know that the orbit of a
metabolizer must be either of order n or order 1. A short algebraic argument shows that r⇤(Pn0,n1) =
Pn0,n1 if and only if n0 = n1 = 1: the ‘if’ direction follows immediately from Equation (1) and (2),
and for the ‘only if’ direction, we compute

r⇤(a+ n0b+ n1tb) = (1� n0 + n1)a+ (1� n0)ta+ (�1 + n0 + n1)b+ (�n0 + 2n1)tb

and observe that if this element belongs to Pn0,n1 then by looking at the a and ta coe�cients we
see that it must equal

(1� n0 + n1)(a+ n0b+ n1tb) + (1� n0)(ta� n1b+ (n0 � n1)tb).

Contemplation of the coe�cients of b and tb in these two expressions shows that they can only be
equal if n0 = n1 = 1. One can quickly verify that P1,1 is in fact a metabolizer, and so we see that
the action of r⇤ on P has exactly one orbit of order 1. The remaining metabolizers (of which there
are at most 2n� 1 must be partitioned into orbits of order n, and so there are at most 2 orbits. It
is not hard to explicitly verify that P�1,�1 is also a metabolizer and so there are exactly two orbits.

We summarize this work in the following proposition.

Proposition 3.11. Let n = 11, 17, or 23. Then the action of r⇤ on P, the set of invariant
metabolizers for H1(⌃3(Kn);Z), has exactly two orbits. The first orbit has order 1 and consists of

P+ = P1,1 = spanZn
{a+ b+ tb, ta� b}.

1Although at first glance the reader may be surprised by the seeming asymmetry between a and b, we note that
we could have equivalently enumerated our order n2 submodules by Qm0,m1 := spanZn[t±1]{b + (m0 + m1t)a} and
Q0 = spanZ[t±1]{a}.
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BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS 13

The second orbit has order n and consists of {ri⇤(P�)}n�1
i=0 , where

P� := P�1,�1 = spanZn
{a� b� tb, ta+ b}. ⇤

It is extremely easy to construct characters

� : H1(⌃3(Kn);Z) ! Zn

vanishing on either P+ or P�: choose �(b) and �(tb) freely and �(a) and �(ta) are determined.

Definition 3.12. Define �± : H1(⌃3(Kn);Z) ! Zn as follows:

�±(a) = ±1,�±(ta) = 0,�±(b) = 0, and �±(tb) = �1. (3)

Note that �+ vanishes on P+ and �� vanishes on P�. To avoid confusion, we point out here
that the ‘d’ of Definitions 3.2 and 3.3 and Theorem 3.6 happens to be n for us.

3.2. Computation of twisted Alexander polynomials. We are now ready to begin computing
certain twisted Alexander polynomials. It is helpful to have the following naming conventions that
are standard in this subfield. Given a knot K in S

3 bounding a Seifert surface F , we write:

⌫(K) to denote an open tubular neighborhood of K,
⌫(F ) to denote an open tubular neighborhood of F ,
XK to denote S

3 r ⌫(K),
X

n

K
to denote the n-fold cyclic cover of XK , and

XF to denote S
3 r ⌫(F ).

Given a character � : H1(⌃3(K);Z) ! Zn, we apply [17] to obtain a representation

�� : ⇡1(XK) ! GL(3,Q(⇠n)[t
±1])

as follows. Fix a basepoint x0 chosen for convenience in XF and let ex0 denote the lift of x0 to the
0th copy of S3r ⌫(F ) in X

3
K

⇢ ⌃3(K). Let ✏ : ⇡1(XK) ! Z be the canonical abelianization map,
and let µ0 be a preferred meridian of K based at x0. Given a simple closed curve � in S

3rK based
at x0 and with lk(K, �) = 0, we can obtain a well-defined lift e� of � to ⌃3(K), giving a map

l : ker(✏) ! H1(⌃3(K);Z).
We note for the sake of clarity that the map l does not in general coincide with our previous method
of converting elements ofH1(S3r ⌫(F );Z) to elements ofH1(⌃3(K);Z), unless � is actually disjoint
from F . In particular, l(µ0gµ

�1
0 ) = t · l(g) despite the fact that µ0gµ

�1
0 and g certainly represent

the same class in H1(S3r ⌫(F );Z).
Our choice of µ0 allows us to define a map

� : ⇡1(XK) ! ZnH1(⌃3(K);Z)

g 7! (t✏(g), l(µ�✏(g)
0 g)),

where the product structure on ZnH1(⌃3(K);Z) is given by

(tm1 , x1) · (tm2 , x2) = (tm1+m2 , t
�m2 · x1 + x2).

We then define �� = f� � �, where

f� : ZnH1(⌃3(K);Z) ! GL(3,Q(⇠n)[t
±1])

(tm, x) 7!

2

4
0 0 t

1 0 0
0 1 0

3

5
m
2

64
⇠
�(x)
n 0 0

0 ⇠
�(t·x)
n 0

0 0 ⇠
�(t2·x)
n

3

75 . (4)

The following well-known result (see e.g. [17, 26]) reduces computation of twisted Alexander
polynomials to Fox calculus and matrix algebra.

4 Aug 2020 05:50:43 PDT
200430-Park Version 3 - Submitted to Algebr. Geom. Topol.



14 P. ACETO, J. MEIER, A. N. MILLER, M. MILLER, J. PARK, AND A. I. STIPSICZ

Proposition 3.13 ([17, Section 9]). Let ⇡1(XK) = hg1, . . . , gc(K) : r1, . . . , rc(K)i be a Wirtinger
presentation . Assume that �� : ⇡1(XK) ! GL(q,F[t±1]) is induced by a non-trivial character �.
Then there is a natural extension � : Z[⇡1(XK)] ! Mq(F[t±1]) where Mq(F[t±1]) is the set of q by
q matrices with entries from F[t±1], and the reduced twisted Alexander polynomial of (K,�) is

e��

K
(t) =

det
⇣ h

�
⇣

@ri
@gj

⌘i
c(K)

i,j=2

⌘

(t� 1) det(��(g1)� Id).
⇤

We see that in order to compute a twisted Alexander polynomial one must determine ��(gi) for
all the generators gi in a Wirtinger presentation of ⇡1(XK). If one is not particularly attached to
a given description of H1(⌃n(K);Z), [17] gives a straightforward way to do this. However, we have
very specific �±, defined in terms of a particular generating set for H1(⌃3(K);Z), and so we must
be a little more careful than is usually necessary.

Our basepoint x for S
3 r ⌫(K) lies far below the diagram, which we think of as lying almost

in the plane of the page. All of our curves are based at x0, though as usual we sometimes draw
meridians to components of the knots as unbased curves, with the understanding that they are
based via the ‘go straight down to the basepoint’ path.

Figure 5. Wirtinger generators gi.

Remark 3.14 (Computing the image of Wirtinger generators under ��±). Let {gi}2ni=1 be the
Wirtinger generators for ⇡1(XK , x0), some of which are illustrated in Figure 5, and µ0 be the pre-
ferred meridian that represents g1. In order to compute our desired twisted Alexander polynomials,
we need to know ��(gi) for all i = 1, . . . , 2n. Since K is the closure of a 3-braid, once we specify the
image of the three top strand generators g1, g2, g3 under ��, the rest of the computation is simple.
In fact, since g2 = g

�1
1 g4g1, it su�ces to determine the image of g1, g3, and g4.

By considering Equation (4), we see that ��(gi) is determined by the tuple

(⇤)i :=
�
�(l(g�1

1 gi)),�(t · l(g�1
1 gi)),�(t

2 · l(g�1
1 gi)

�
.

We now describe (⇤)1, (⇤)3, and (⇤)4, and use the above discussion to compute ��(gi) for each
Wirtinger generator gi. We obtain immediately that

(⇤)1 = (�(l(g�1
1 g1)),�(t · l(g�1

1 g1)),�(t
2 · l(g�1

1 g1))) = (0, 0, 0) 2 Z3
n.

Given a simple closed curve � based at x0 and disjoint from F , recall that we obtain a curve e� in
⌃3(K) by lifting � to our preferred copy of S3 r ⌫(F ). As before, we let a denote the homology
class of the lift of b↵n�1 and b denote the homology class of the lift of b�n�1 in H1(⌃3(K);Z). Let �a
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BRANCHED COVERS BOUNDING RATIONAL HOMOLOGY BALLS 15

be a simple closed curve that represents g1g
�1
4 and ��a be its reverse, chosen to be disjoint from F

as in Figure 5. Then we have that �a = [e�a] 2 H1(⌃3(K);Z) and

a = [e��a] = l(g4g
�1
1 ) = l(g1(g

�1
1 g4)g

�1
1 ) = t · l(g�1

1 g4) 2 H1(⌃3(K);Z).

Therefore

(⇤)4 = (�(l(g�1
1 g4)),�(t · l(g�1

1 g4)),�(t
2 · l(g�1

1 g4))) = (�(t�1 · a),�(a),�(t · a))
= (��(a)� �(t · a),�(a),�(t · a)) 2 Z3

n.

Similarly, let �b be a simple closed curve that represents g4g3g
�1
1 g

�1
4 and is disjoint from F , as in

Figure 5. So we have that

b = [e�b] = l(g4g3g
�1
1 g

�1
4 ) = t · l(g3g�1

1 ) = t · l(g1(g�1
1 g3)g

�1
1 ) = t

2 · l(g�1
1 g3) 2 H1(⌃3(K);Z).

Hence

(⇤)3 = (�(l(g�1
1 g3)),�(t · l(g�1

1 g3)),�(t
2 · l(g�1

1 g3))) = (�(t · b),�(t2 · b),�(b))
= (�(t · b),��(b)� �(t · b),�(b)) 2 Z3

n.

We can now straightforwardly compute ��(gi) for the rest of the Wirtinger generators gi.

We have now done all the work necessary to compute the reduced twisted Alexander polynomials
e��±
Kn

(t) 2 Q(⇠n)[t±1] what remains is simply to write down a Wirtinger presentation, construct a
matrix as in Proposition 3.13, and take its determinant. However, we do not do this directly,
instead choosing a slightly more e�cient approach that allows us to work over finite fields.

3.3. Working over finite fields. To apply Theorem 3.6, we must obstruct polynomials from
factoring in a certain way over Q(⇠d)[t±1]. It is easier to obstruct the existence of factorizations in
Zp[t±1], where computer programs are for finiteness reasons capable of proving that no factorization
of a given kind exists, and the following propositions allow us to make this transition.

Proposition 3.15 ([17, Lemma 8.6]). Let d, s be primes and suppose s = kd + 1. Choose ✓ 2 Zs

so that ✓ 2 Zs is a primitive d
th root of unity modulo s. The choice of s and ✓ defines a map

⇡✓ : Z[⇠d][t±1] ! Zs[t±1] where 1 is mapped to 1 and ⇠d is mapped to ✓.
Let d(t) 2 Z[⇠d][t±1] be a polynomial of degree 2N such that ⇡✓(d(t)) 2 Zs[t±1] also has degree

2N . If d(t) 2 Q(⇠d)[t±1] is a norm then ⇡✓(d(t)) 2 Zs[t±1] factors as the product of two polynomials
of degree N . ⇤
Proposition 3.16. Given a knot K, a preferred meridian µ0, and a map � : H1(⌃q(K);Z) ! Zd

where d is a prime, we obtain as above a reduced twisted Alexander polynomial e��

K
(t). By rescaling,

assume that e��

K
(t) is an element of Z[⇠d][t±1].

Let s = kd + 1, ✓ 2 Zs, and ⇡✓ : Z[⇠d][t±1] ! Zs[t±1] be as in Proposition 3.15. Suppose that

⇡✓

⇣
e��

K
(t)

⌘
is a degree 2b c(K)�3

2 c polynomial which cannot be written as a product of two degree

b c(K)�3
2 c polynomials in Zs[t±1]. Then e��

K
(t) 2 Q(⇠d)[t±1] is not a norm.

Here, degree is taken to be the degree of a Laurent polynomial – i.e. degmax� degmin. Proposition
3.16 is useful for e�cient computations, since in our setting det(��(g1) � Id) = t � 1 and one can
compute

⇡✓

⇣
e��

K
(t)

⌘
=

det
⇣ h

⇡✓

⇣
�
⇣

@ri
@gj

⌘⌘i
c(K)

i,j=2

⌘

(t� 1)2
=

det
⇣ h

�
⇣
⇡✓

⇣
@ri
@gj

⌘⌘i
c(K)

i,j=2

⌘

(t� 1)2

in particular computing determinants of matrices with entries in Zs[t±1] rather than in Q(⇠d)[t±1].

4 Aug 2020 05:50:43 PDT
200430-Park Version 3 - Submitted to Algebr. Geom. Topol.



16 P. ACETO, J. MEIER, A. N. MILLER, M. MILLER, J. PARK, AND A. I. STIPSICZ

Proof of Proposition 3.16. By Proposition 3.15, to establish our desired result under the above
hypotheses it su�ces to show that the degree of e��

K
(t) is equal to 2b c(K)�3

2 c, i.e. that the reduced
twisted Alexander polynomial does not drop degree under ⇡✓. By considering Proposition 3.13 and
recalling that we chose g1 so that the determinant of ��(g1)� Id is t� 1, we see that the degree of
e��

K
(t) is no more than c(K)� 3 as follows.

The degree of e��

K
(t) is 2 less than the degree of det

h
�
⇣

@ri
@gj

⌘i
c(K)

i,j=2
. The Wirtinger presentation

of ⇡1(XK) has c(K) generators and c(K) relations of the form ri = gaigbig
�1
ci

g
�1
bi

for some ai, bi, ci.

Moreover, since gaigbig
�1
ci

g
�1
bi

= 1 one can verify that for any gj 2 ⇡1(XK)

@

⇣
gaigbig

�1
ci

g
�1
bi

⌘

@gj
=

@

⇣
(gaigbi)(gbigci)

�1
⌘

@gj
=

@ (gaigbi)

@gj
� @(gbigci)

@gj
=

@gai

@gj
+ (gai � 1)

@gb

@gj
� gbi

@gci

@gj
.

Therefore for any i, j we have that

�

✓
@ri

@gj

◆
=

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

2

64
1 0 0

0 1 0

0 0 1

3

75 if j = ai,

2

64
0 0 t

1 0 0

0 1 0

3

75

2

64
⇠
⇤
d

0 0

0 ⇠
⇤⇤
d

0

0 0 ⇠
⇤⇤⇤
d

3

75�

2

64
1 0 0

0 1 0

0 0 1

3

75 if j = bi,

2

64
0 0 t

1 0 0

0 1 0

3

75

2

64
⇠
⇤
d

0 0

0 ⇠
⇤⇤
d

0

0 0 ⇠
⇤⇤⇤
d

3

75 if j = ci,

and is the 3 ⇥ 3 zero matrix if j 62 {ai, bi, ci}. In particular, �
⇣

@ri
@gj

⌘
has at most one entry which

is of the form ↵t for ↵ 2 Q(⇠d) and all its other entries are elements of Q(⇠d). It follows that the
degree of

det


�

✓
@ri

@gj

◆�
c(K)

i,j=2

is no more than c(K)� 1 and so the degree of e��

K
(t) is no more than c(K)� 3.

Since polynomials of the form f(t)f(t) certainly have even degrees, either e��

K
(t) is not a norm,

or we have

2

�
c(K)� 3

2

⌫
= deg ⇡✓

⇣
e��

K
(t)

⌘
 deg e��

K
(t)  2

�
c(K)� 3

2

⌫
,

and hence we have equality throughout. ⇤

Table 1 gives the degrees of the irreducible factors of ⇡✓
⇣
e��±
Kn

(t)
⌘
over Zs[t±1], which is all we

will need to prove our main theorem. We refer the interested reader to the Appendix A for the
actual factorizations.

3.4. Proof of the main theorems. We are now ready to embark upon proving the main theorems
of this paper.

Proof of Theorem 3.1. Let n 2 {11, 17, 23} and let K = Kn. Let r : XK ! XK denote the order n
symmetry of the knot exterior given in Figure 3 by rotation by 2⇡/n. As discussed above, r extends
to an order n symmetry of ⌃3(K) and induces a covering transformation invariant, linking form
preserving isomorphism r⇤ : H1(⌃3(K);Z) ! H1(⌃3(K);Z). Let P be a covering transformation
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n ± s = kn+ 1 ✓ 2 Zs degree sequence of ⇡✓
⇣
e��±
Kn

(t)
⌘

11 + 23 2 (2,2,3,3,8)

� 2 (4,14)

17 + 103 8 (2,3,9,16)

� 9 (2, 28)

23 + 47 4 (1, 1,11,29)

� 2 (1, 1, 2, 12, 12, 14)

Table 1. The degree sequences of ⇡✓
⇣
e��±
Kn

(t)
⌘
.

invariant metabolizer of H1(⌃3(K);Z). By Proposition 3.11, we see that either P = P+ or there
exists some k = 0, . . . , n� 1 such that P = r

k
⇤(P�).

In the former case, let �+ be the character defined in Equation (3) and note that �+ vanishes

on P = P+. Moreover, the computations in Table 1, the observation that 2b c(Kn)�3
2 c = 2b2n�3

2 c =
2(n�2), and Proposition 3.16 together imply that e��

+

K
(t) does not factor as a norm over Q(⇠n)[t±1].

In the latter case, let �� : H1(⌃3(K);Z) ! Zn be the character defined in Equation (3) that
vanishes on P�. Since r

k
⇤(P�) = P , we have that � := �� � r�k

⇤ vanishes on P . Moreover, since r

is a di↵eomorphism of the 0-surgery, we have that e��

K
(t) = e���

K
(t). So again the computations in

Table 1 and Proposition 3.16 imply that e��

K
(t) does not factor as a norm over Q(⇠n)[t±1].

Therefore, for each invariant metabolizer of H1(⌃3(K);Z) we have constructed a character of
prime power order vanishing on that metabolizer so that the corresponding reduced twisted Alexan-
der polynomial of K is not a norm. By Theorem 3.6, we conclude that K is not slice. ⇤

Recall that J = 817#8r17. Kirk and Livingston [27] proved J is not slice by showing that for each
invariant metabolizer of P  H1(⌃3(J);Z) ⇠= (Z13)4 there exists a character � : H1(⌃3(J);Z) ! Z13

such that �|P = 0 and e��

J
(t) 2 Q(⇠13)[t±1] is not a norm. Now we are ready to prove our main

theorem.

Proof of Theorem 1.4. For the duration of this proof we refer to J as KJ for ease of notation in
the formulae below.

Suppose that

K = a7K7#a11K11#aJKJ#a17K17#a23K23

is slice for a7, a11, aJ , a17, a23 2 {0, 1}. If a11 = aJ = a17 = a23 = 0, then Sartori’s work [41] implies
that a7 = 0, since K7 is not slice. So we can assume that there exists i0 2 {11, J, 17, 23} such that
ai0 6= 0.

Let

I := {i 2 {7, 11, J, 17, 23} | ai 6= 0}

and P be an invariant metabolizer for H1(⌃3(K);Z). With the understanding of ZJ = Z13, we
have

H1(⌃3(K);Z) ⇠=
M

i2I
H1(⌃3(Ki);Z) ⇠=

M

i2I
(Zi)

4
,

and since 7, 11, 13, 17, and 23 are relatively prime, P 0 := P \H1(⌃3(Ki0);Z) is an invariant metab-
olizer for H1(⌃3(Ki0);Z).
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18 P. ACETO, J. MEIER, A. N. MILLER, M. MILLER, J. PARK, AND A. I. STIPSICZ

Moreover, if �0 : H1(⌃3(Ki0);Z) ! Zi0 is a character vanishing on P
0, then we can construct a

character � vanishing on P by decomposing

H1(⌃3(K);Z) ⇠=
M

i2I
H1(⌃3(Ki);Z)

and letting

�|H1(⌃3(Ki);Z) =

(
�
0

i = i0

0 i 6= i0.

Moreover, for such a character we let �i denote �|H1(⌃3(Ki);Z) and observe that by [32, Corollary 1]
we have

e��

K
(t) =

Y

i

e��|i
Ki

(t) = e��
0

Ki0
(t).

It therefore su�ces to show that for any invariant metabolizer of H1(⌃3(Ki0);Z) there exists a
character �0 to Zi0 vanishing on that metabolizer such that the resulting reduced twisted Alexander

polynomial e��
0

Ki0
(t) does not factor as a norm over Q(⇠i0)[t

±1].

This is exactly what we did in the proof of Theorem 3.1 for i0 = 11, 17, 23 and what Kirk and
Livingston did in [27] for the case of i0 = J thereby completing the proof. ⇤

Appendix A. The images of the reduced twisted Alexander polynomials in Zs[t±1].

For the convenience of the reader, we give the irreducible factors of the images of the reduced

twisted Alexander polynomials ⇡✓
⇣
e��

±

K
(t)

⌘
2 Zs[t±1]. These computations, necessary in order to

obtain the degree sequences of Table 1, were done in Maple worksheets that are available on the
third author’s website.

(±, s, ✓) Irreducible factors of ⇡✓
⇣
e��

±

K11
(t)

⌘
2 Zs[t±1]

(+,23,2)

degree 2 t
2 + 13t+ 1, t2 + 3t+ 11

degree 3 t
3 + 14t2 + 3, t3 + 22t2 + 22t+ 22

degree 8 t
8 + 22t7 + 4t6 + 14t5 + 3t4 + 3t3 + 16t2 + t+ 20

(�,23,2)

degree 4 t
4 + 17t3 + 4t2 + 17t+ 1

degree 14 t
14 + 7t13 + 5t12 + 7t11 + 7t10 + 22t9 + 22t8 + 7t7

+22t6 + 22t5 + 7t4 + 7t3 + 5t2 + 7t+ 1
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(±, s, ✓) Irreducible factors of ⇡✓
⇣
e��

±

K17
(t)

⌘
2 Zs[t±1]

(+,103,8)

degree 2 t
2 + 98t+ 5

degree 3 t
3 + 12t2 + 36t+ 93

degree 9 t
9 + 33t8 + 94t7 + 32t6 + 61t5 + 20t4 + 63t3 + 48t2 + 19t+ 94

degree 16 t
16 + 74t15 + 26t14 + 92t13 + 31t12 + 85t11 + 86t10 + 34t9 + 35t8

+67t7 + 99t6 + 64t5 + 67t4 + 11t3 + 95t2 + 8t+ 19

(�,103,9)

degree 2 t
2 + 13t+ 1

degree 28 t
28 + 61t27 + 97t26 + 22t25 + 25t24 + 27t23 + 73t22 + 47t21 + 79t20 + 31t19

+99t18 + 36t17 + 54t16 + 40t15 + 40t14 + 40t13 + 54t12 + 36t11 + 99t10

+31t9 + 79t8 + 47t7 + 73t6 + 27t5 + 25t4 + 22t3 + 97t2 + 61t+ 1

(±, s, ✓) Irreducible factors of ⇡✓
⇣
e��

±

K23
(t)

⌘
2 Zs[t±1]

(+,47,4)

degree 1 t+ 21, t+ 29

degree 11 t
11 + 37t10 + 43t9 + 5t8 + t

7 + 42t6 + 34t5 + 43t4 + 5t3 + 34t2 + 44t+ 9

degree 29 t
29 + 25t28 + 9t27 + 19t26 + 38t25 + 46t24 + 27t23 + 40t22 + 41t21 + 18t20

+17t19 + t
18 + 34t17 + 6t16 + 21t15 + 25t14 + 18t13 + 25t12 + 34t11 + 9t10

+12t9 + 41t8 + 46t7 + 10t6 + 40t5 + 21t4 + 10t3 + t
2 + 40t+ 13

(�,47,2)

degree 1 t+ 46, t+ 46

degree 2 t
2 + t+ 1

degree 12 t
12 + 3t11 + 27t10 + 19t9 + 38t8 + 25t7 + 25t6 + 40t5 + 16t4 + 25t3

+44t2 + 28t+ 23, t
12 + 38t11 + 6t10 + 44t9 + 15t8 + 14t7 + 44t6

+44t5 + 18t4 + 9t3 + 40t2 + 41t+ 45

degree 14 t
14 + 2t13 + 2t12 + 43t11 + 42t10 + 36t9 + 30t8 + 33t7 + 30t6

+36t5 + 42t4 + 43t3 + 2t2 + 2t+ 1
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