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Abstract. The trace of the n-framed surgery on a knot in S3 is a 4-manifold
homotopy equivalent to the 2-sphere. We characterise when a generator of the second
homotopy group of such a manifold can be realised by a locally flat embedded 2-
sphere whose complement has abelian fundamental group. Our characterisation is
in terms of classical and computable 3-dimensional knot invariants. For each n,
this provides conditions that imply a knot is topologically n-shake slice, directly
analogous to the result of Freedman and Quinn that a knot with trivial Alexander
polynomial is topologically slice.

1. Introduction

Question. Let M be a compact topological 4-manifold and let x 2 ⇡2(M). Can x be
represented by a locally flat embedded 2-sphere?

Versions of this fundamental question have been studied by many authors, such
as [KM61, Tri69, Roh71, HS71]. The seminal work of Freedman and Quinn [Fre82,
FQ90] provided new tools with which to approach this problem. In independent work
of Lee-Wilczyński [LW90, Theorem 1.1] and Hambleton-Kreck [HK93, Theorem 4.5],
the methods of topological surgery theory were applied to provide a complete answer
for simply connected, closed 4-manifolds, in the presence of a natural fundamental
group restriction. That is, they classified when an element of the second homotopy
group of such a 4-manifold can be represented by a locally flat embedded sphere whose
complement has abelian fundamental group. Lee-Wilczyński [LW97] later generalised
their theorem to apply to simply connected, compact 4-manifolds with homology sphere
boundary. In this article, we expand our understanding to another general class of 4-
manifolds with boundary.

Our main result is an answer to the sphere embedding question for 4-manifolds
called knot traces, with x a generator of the second homotopy group. Let ⌫K be an
open tubular neighbourhood of a knot K in S

3 and let n be an integer. The n-framed
knot trace Xn(K) is the smooth 4-manifold obtained by attaching a 2-handle D2⇥D

2

to the 4-ball along ⌫K ⇢ S
3, using framing coe�cient n and smoothing corners. The

boundary of Xn(K) is the n–framed surgery S
3
n(K) := (S3r⌫K) [ D

2 ⇥ S
1, where

@D
2 ⇥ {1} is attached to the n-framed longitude of K.

Theorem 1.1. Let K be a knot in S
3 and let n be an integer. A generator of ⇡2(Xn(K))

can be represented by a locally flat embedded 2-sphere whose complement has abelian
fundamental group if and only if:

(i) H1(S3
n(K);Z[Z/n]) = 0; or equivalently for n 6= 0,

Q
{⇠|⇠n=1}�K(⇠) = 1;

(ii) Arf(K) = 0; and
(iii) �K(⇠) = 0 for every ⇠ 2 S

1 such that ⇠n = 1.
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The theorem is stated in terms of some well-known knot invariants, that arise from
a Seifert matrix V for K. The Alexander polynomial �K(t) 2 Z[t, t�1] can be most
quickly defined as det(tV �V

T ). Then the Arf invariant of K in Z/2 is 0 if �K(�1) ⌘
±1 mod 8 and is 1 if �K(�1) ⌘ ±3 mod 8. Finally the Tristram-Levine signature,
for ⇠ 2 S

1 ✓ C, is the signature of the Hermitian matrix (1� ⇠)V + (1� ⇠)V T . These
invariants are independent of the choice of Seifert surface and Seifert matrix, and they
are straightforward to compute from a knot diagram.

For certain choices of n, there are logical dependencies among the conditions (i), (ii),
and (iii) above. When n = 0, condition (i) states that H1(S3

0(K);Z[Z]) = 0, which is
equivalent to �K(t) = 1, which in turn implies both conditions (ii) and (iii). When
n = ±1, conditions (i) and (iii) are automatically satisfied.

When n 6= 0, condition (i) is equivalent to the condition that ⌃|n|(K), the n-fold
cyclic branched cover of S

3 with branching set K, is an integral homology sphere.
This is due to the classical formula |H1(⌃|n|(K);Z)| =

Q
{⇠|⇠n=1}�K(⇠) due to [Goe34,

Fox56]. When n 6= 0 is even, (i) implies (ii), as follows. The expression
Q

{⇠|⇠n=1}�K(⇠)
equals the resultant Res(�K(t), tn � 1) 2 Z. Whenever m divides n, tm � 1 divides
t
n � 1, and so by the characterising properties of resultants we have

Res(�K(t), tn � 1) = Res(�K(t), tm � 1) · Res(�K(t), (tn � 1)/(tm � 1)).

Since Arf(K) = 1 implies that Res(�K(t), t2 � 1) = �K(�1) 6= 1, it follows that
Arf(K) = 1 further implies that Res(�K(t), tn � 1) =

Q
{⇠|⇠n=1}�K(⇠) is not equal to

1 for n even.
Throughout the paper we will assume knots are oriented in order to make various

constructions in the standard way. However, none of the conditions (i), (ii), or (iii)
depends on a given orientation for the knot, and so the characterisation provided by
Theorem 1.1 is independent of this choice.

The remainder of the introduction proceeds as follows. In Section 1.1, we discuss
the applications of Theorem 1.1 to the study of whether a knot is shake slice. In
Section 1.2 we give a quick proof of the main theorem for the case n = 0, and then
some further results that we have obtained when n = ±1. In Section 1.3 we outline
the topological surgery theory strategy we use to prove our main result.

1.1. Shake slice knots. The embedding question for a generator of the second ho-
motopy group of a knot trace is of interest via the lens of knot theory.

Definition 1.2. A knot K is n-shake slice if a generator of ⇡2(Xn(K)) ⇠= Z can be
realised by a locally flat embedded 2-sphere S. We say a knot K is Z/n-shake slice if
in addition ⇡1(Xn(K)rS) ⇠= Z/n.

For every n 2 Z, the fundamental group of the complement of an embedded sphere
generating ⇡2(Xn(K)) abelianises to Z/n, so our condition that ⇡1(Xn(K)) ⇠= Z/n is
just a more specific way to express the abelian condition on the fundamental group.

Theorem 1.1 can be viewed as a characterisation of when a knotK is Z/n-shake slice.
Although the term ‘n-shake slice’ was not coined until much later, classical obstructions
to being n-shake slice were already obtained in the 1960s. In the course of proving The-
orem 1.1 we obtained several new proofs of these classical results. Robertello [Rob65]
showed that the Arf invariant obstructs K from being n-shake slice, for every n. We
give a new proof of Robertello’s result in Proposition 6.5 for all n, and we outline a
second new proof in Remark 4.7 for even n. Both proofs are di↵erent from Robertello’s.
Saeki [Sae92] has yet another proof in the smooth category that uses the Casson in-
variant.



EMBEDDING SPHERES IN KNOT TRACES 3

Tristram [Tri69] showed that the signatures �K(⇠mp ), for p a prime power dividing n,
obstruct K being n-shake slice. We provide a di↵erent proof in Section 3 that also
explains Tristram’s theorem in the context of our results. Our proof is similar to that
sketched by Saeki in [Sae92, Theorem 3.4].

For n = 0, it remains unknown in both the smooth and topological categories
whether every 0-shake slice knot is slice. An immediate consequence of our theorem is
that a knot is Z-shake slice if and only if it is Z-slice: both correspond to Alexander
polynomial one.

Now we describe some further consequences of Theorem 1.1 that are proved as
corollaries in Section 2. First, we provide new examples of the di↵erence between the
smooth and topological categories. Recall that a knot is smoothly n-shake slice if a
generator of ⇡2(Xn(K)) ⇠= Z can be realised by a smoothly embedded 2-sphere S.

Corollary 2.3. For every n > 0 there exist infinitely many knots that are n-shake
slice but neither smoothly n-shake slice nor (topologically) slice. These knots may be
chosen to be distinct in concordance.

We then show that being n-shake slice for infinitely many n 2 Z does not imply
slice.

Corollary 2.4. There exist infinitely many non-slice knots, each of which is n-shake
slice for infinitely many n 2 Z. Moreover, these knots may be chosen to be distinct in
concordance.

A question of Hedden [Max16] asks whether the concordance class of a knot must
be determined by the infinite tuple of homology cobordism classes (S3

p/q(K))p/q2Q. We
provide evidence for a negative answer to this question as follows, in what we believe
is the first example of non-concordant knots with the property that infinitely many of
their integer surgeries are homology cobordant.

Corollary 2.5. There exist infinitely many knots {Ki}, mutually distinct in concor-
dance, and an infinite family of integers {nj} such that S3

nj
(Ki) is homology cobordant

to S
3
nj
(U) for all i, j 2 Z.

We remark that 0 is not an element of our family of integers {nj}: S3
0(K) is homology

cobordant to S
3
0(U) if and only if K is slice in an integral homology 4-ball (which,

incidentally, implies that S
3
n(K) is homology cobordant to S

3
n(U) for all n 2 Z.) It

is currently an open question in both categories whether there exists a non-slice knot
that is slice in a homology ball.

We then show that, for most m and n, the m-shake slice and n-shake slice conditions
are independent.

Corollary 2.8. If m does not divide n then there exist infinitely many knots which
are n-shake slice but not m-shake slice. These knots may be chosen to be distinct in
concordance.

The di↵erence between n-shake slice and Z/n-shake slice can also be investigated
using Theorem 1.1. For composite n the theorem says there are extra signatures away
from the prime power divisors of n whose vanishing is necessary for an n-shake slice
knot to be moreover Z/n-shake slice; cf. [Sae92, Proposition 3.7]. Consider that every
slice knot is n-shake slice for all n, but according to Cha-Livingston [CL04], for any
choice of composite n and root of unity ⇠n, there exist slice knots K with �K(⇠n) 6= 0.
We will prove that examples of this sort are not peculiar to composite n.

Corollary 2.10. For all n 6= ±1, there exists a slice, and therefore n-shake slice, knot
that is not Z/n-shake slice.
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1.2. The cases n = 0 and n = ±1. The cases n = 0 and n = ±1 for Theorem 1.1 are
special, in that they can be proved relatively quickly by appealing directly to results
of Freedman and Quinn. We provide a quick proof for n = 0 now. Recall that when
n = 0 the three conditions in Theorem 1.1 reduce to �K(t) = 1.

Example 1.3 (The case n = 0). First assume a generator of ⇡2(X0(K)) is represented
by an embedded sphere whose complement has fundamental group Z. Since n = 0, the
normal bundle of this sphere is trivial. Perform surgery on X0(K) along this 2-sphere
to obtain a pair (V, S3

0(K)) where ⇡2(V ) = 0, and ⇡1(V ) ⇠= Z, generated by a meridian
of K. Now attach a 2-handle to a meridian in the boundary. The cocore of the 2-
handle is a slice disc D

0 for K in a homotopy 4-ball B0 such that ⇡1(B0 r D
0) ⇠= Z.

Hence �K(t) = 1.
Now assume �K(t) = 1. By [Fre84, Theorem 7][FQ90, 11.7B] (see also [GT04,

Appendix]), K has a slice disc D in D
4 with ⇡1(D4 rD) ⇠= Z. Cap this disc o↵ with

the core of the 2-handle to obtain the desired sphere in X0(K). This completes the
proof of Theorem 1.1 for n = 0.

To see a similarly quick proof for n = ±1, the reader is invited to skip ahead
to Example 8.1. In this case, we rely on the result of Freedman that as S

3
±1(K) is

an integer homology sphere, it must bound a contractible 4-manifold. When n =
±1 we have obtained a wholly di↵erent proof of Theorem 1.1 using Seifert surface
constructions. These methods, detailed in Section 8, lead to the two results described
next.

For each n, one can measure how far a knot K is from being n-shake slice by con-
sidering the minimal genus of a locally flat embedded surface generating H2(Xn(K)).
This minimum is called the (topological) n-shake genus g

n
sh(K). For n = 1 we have a

precise understanding of this invariant.

Proposition 8.7. For every knot K there exists a locally flat embedded torus in X1(K)
that generates H2(X1(K)) and has simply connected complement. In particular,

g
1
sh(K) = Arf(K) 2 {0, 1}.

Now for a slice knot K, and for each n, a slice disc capped o↵ by the core of the
2-handle in Xn(K) geometrically intersects the cocore once. This suggests a way to
measure of how far an n-shake slice knot K is from being slice, by taking the mini-
mum over all embedded spheres S generating ⇡2(Xn(K)) of the geometric intersection
number of S with the cocore of the 2-handle of Xn(K). We call this minimum the
n-shaking number of K.

Since the algebraic intersection of S with the cocore of the 2-handle of Xn(K) is
algebraically one, the shaking number measures the di↵erence between geometric and
algebraic intersection numbers. For closed surfaces, this di↵erence was investigated
in [MS99, Str03, Hor15, Sun10].

For a knot K, gtop4 (K) denotes the (topological) 4-genus or slice genus, the mini-
mal genus among compact, oriented, locally flat surfaces in D

4 with boundary K. The
(topological) Z-slice genus gZ4 (K) is the minimal genus among such surfaces whose com-
plement has infinite cyclic fundamental group. Computable upper bounds for g

Z
4 (K)

are discussed in [FL18], and include 2gZ4 (K)  deg(�K) [Fel16]. For n = 1, as well
as proving again that a knot with vanishing Arf invariant is 1-shake slice, the Seifert
surface method provides explicit upper bounds on the 1-shaking number.

Proposition 8.8. For a knot K with Arf(K) = 0 we have

2gtop4 (K) + 1  1-shaking number of K  2gZ4 (K) + 1.
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In particular, for each integer k � 0 there exists a 1-shake slice knot Kk such that the
1-shaking number of Kk is exactly 2k + 1.

Note that for every n, the n-shaking number is always odd since the algebraic
intersection of the generator of ⇡2(Xn(K)) with the cocore of the 2-handle is 1. Thus
this is a complete realisation result for 1-shaking numbers.

1.3. Proof outline. Having already proved Theorem 1.1 for the case of n = 0 above,
we now restrict to n 6= 0. The components of the ‘only if’ direction are proven re-
spectively in Proposition 3.3, Proposition 6.5, and Proposition 3.5. As mentioned
previously, with di↵erent approaches Proposition 6.5 is due to Robertello [Rob65] and
Proposition 3.5 is due to Tristram [Tri69] (see also [Sae92]).

Now we will outline the proof of the ‘if’ direction. Given a group ⇡ and closed
3-manifolds M1 and M2, together with homomorphisms 'i : ⇡1(Mi) ! ⇡, we say a
cobordism W from M1 to M2 is over ⇡ if W is equipped with a map ⇡1(W ) ! ⇡

restricting to the given homomorphisms on the boundary.
The key idea of our proof is that for a fixed knot K, a generator of ⇡2(Xn(K)) can

be represented by a locally flat embedded 2-sphere S with ⇡1(Xn(K)rS) ⇠= Z/n if
and only if there exists a homology cobordism V from S

3
n(K) to the lens space L(n, 1)

over Z/n, extending standard maps ⇡1(S3
n(K)) ! Z/n and ⇡1(L(n, 1)) ! Z/n, such

that ⇡1(V ) ⇠= Z/n and V [L(n,1) Dn is homeomorphic to Xn(K), where Dn denotes
the D

2-bundle over S2 with euler number n.
The proof of the “if” direction involves constructing such a cobordism V when the

list of invariants in Theorem 1.1 vanish. Here is an outline.

(1) Show there exists a cobordismW between S
3
n(K) and the lens space L(n, 1) and

a mapW ! L(n, 1)⇥[0, 1] that restricts to a degree one normal map (Definition
4.2) f : S3

n(K) ! L(n, 1) ⇥ {0} and the identity map L(n, 1) ! L(n, 1) ⇥ {1}
(Section 4). This uses the assumption that Arf(K) = 0 when n is even and no
assumptions when n is odd.

(2) Use the computation of the simple surgery obstruction groups L
s
4(Z[Z/n]) in

terms of multisignatures to show that we can replace W with a homology
cobordism V between S

3
n(K) and L(n, 1) over Z/n, with V homotopy equivalent

to L(n, 1)⇥I (Section 5). This uses the assumptions thatH1(S3
n(K);Z[Z/n]) =

0 and �K(⇠mn ) = 0 for all m.
(3) Let X := V [L(n,1) Dn. Note that a generator for ⇡2(X) is represented by an

embedded sphere in Dn. Use Boyer’s classification (Theorem 7.1) to conclude
that X is homeomorphic to Xn(K) (Section 6). This uses the assumption that
Arf(K) = 0 when n is odd and no additional assumptions when n is even.
More precisely, according to the classification, X is homeomorphic to Xn(K)
automatically when n is even, and if and only if ks(X) = ks(Xn(K)) = 0
when n is odd; the latter equality follows since Xn(K) is smooth. We show in
Proposition 6.8 that Arf(K) = ks(X).

An interesting aspect of the proof (of both the “if” and “only if” directions) of
Theorem 1.1 is that the Arf invariant appears in di↵erent places for n odd and n even.
However, in each case its vanishing is required.

Recent work of Kim and Ruberman [KR19] uses similar techniques to prove the
existence of topological spines in certain 4-manifolds. Their argument is in some ways
structurally quite similar to ours, since both works follow a surgery theoretic strategy.
There is no overlap between our results: every knot trace Xn(K) admits a PL-spine
consisting of the cone on K union the core of the attached 2-handle, as is crucially used
in [KR19]. Moreover, there is a key di↵erence: Kim and Ruberman have flexibility



6 FELLER, MILLER, NAGEL, ORSON, POWELL, AND RAY

in their choice of a second 3-manifold, whereas we have a fixed choice of S3
n(K) and

L(n, 1).

Conventions. From Section 3 onwards, we assume for convenience that n > 0. The
case of n = 0 was proved in Example 1.3. When n < 0, the argument is the same as
for �n. Throughout, manifolds are compact and oriented, and knots are oriented.

Acknowledgments. We are grateful to Peter Teichner for explaining a proof of the
n = ±1 case to us in 2016, and to Danny Ruberman and Fico González-Acuña for
interesting discussions. This project started during the “Workshop on 4-manifolds”
at the Max Planck Institute for Mathematics in Bonn in the autumn of 2019, and
we thank the organisers of this workshop and the MPIM. ANM is supported by NSF
DMS-1902880. PF and MN gratefully acknowledge support by the SNSF Grant 181199.

2. Corollaries to Theorem 1.1

Before embarking on the main work of proving Theorem 1.1, we use it to prove
several knot theoretic corollaries. For a knot K in S

3, let Cn,1(K) denote the (n, 1)-
cable of K.

Corollary 2.1. Let K be any knot and let n be an integer. Suppose that n is even or
Arf(K) = 0. Then Cn,1(K) is Z/n-shake slice.

Proof. We use the formulae for the Alexander polynomial and signatures of a satellite
knot, due respectively to Seifert [Sei50] and Litherland [Lit79], to verify the conditions
of Theorem 1.1 for Cn,1(K).

Since Cn,1(U) = U we have �Cn,1(K)(t) = �K(tn) and �Cn,1(K)(!) = �K(!n) for

all ! 2 S
1. Letting !n denote a primitive nth root of unity, we therefore have for

1  k  n that
�Cn,1(K)(!

k
n) = �K(!nk

n ) = �K(1) = 0.

We have that
nY

k=1

�Cn,1(K)(!n) =
nY

k=1

�K(!n
n) = 1.

Levine [Lev66, Proposition 3.4] showed that Arf(J) = 0 if and only if �J(�1) ⌘ ±1
(mod 8), and so since

�Cn,1(K)(�1) = �K((�1)n) =

(
�K(�1) n odd

1 n even.

we obtain as desired that Arf(Cn,1(K)) = 0. ⇤
Remark 2.2. Gordon [Gor83] observed that for any knot K

S
3
n(Cn,1(K)) = L(n, 1)#S

3
1/n(K).

This gives a slightly more direct argument that Cn,1(K) is Z/n-shake slice whenever n
is even or Arf(K) = 0, as follows. Let C be the contractible 4-manifold with boundary
S
3
1/n(K) guaranteed by [Fre82, Theorem 1.40], and define V to be the boundary con-

nected sum of L(n, 1)⇥ I and C. The manifold V is now a homology cobordism from
S
3
n(Cn,1(K)) to L(n, 1) that is homotopy equivalent to L(n, 1)⇥ I. This allows one to

skip the work of Sections 4 and 5 constructing a homology cobordism and go straight
to proving that V [ Dn is homeomorphic to Xn(Cn,1(K)) using the results we prove
in Section 6 and Boyer’s classification (Theorem 7.1), which when n is odd requires
Arf(Cn,1(K)) = Arf(K) = 0.
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We can use Corollary 2.1 to obtain many new examples of n-shake slice knots.

Corollary 2.3. For every n 6= 0 there exist infinitely many topological concordance
classes of knots that are n-shake slice but not smoothly n-shake slice.

Proof. In both the smooth and topological categories a knot K is n-shake slice if and
only if �K is (�n)-shake slice. So it su�ces to show the n > 0 case as follows.

We can use the description of S3
n(Cn,1(K)) from Remark 2.2 to show that Cn,1(K)

is often not smoothly n-shake slice. Given an integer homology sphere Y , Ozsváth-
Szabó associate a so-called d-invariant d(Y ) 2 Q, with the property that d(Y ) = 0
if Y bounds a rational homology ball [OS03a]. We show that if Cn,1(K) is smoothly
n-shake slice for some n > 0, then d(S3

1(K)) = 0 as follows.
Suppose that Cn,1(K) is smoothly n-shake slice via a sphere S in Xn(J). The

exterior of S can be quickly confirmed to be a smooth homology cobordism between
S
3
n(J) and L(n, 1); see Lemma 3.1. Therefore S

3
n(Cn,1(K)) = L(n, 1)#S

3
1/n(K) and

S
3
n(U) = L(n, 1) are homology cobordant via some smooth W . By summing W with

�L(n, 1)⇥ I along D
4⇥ I ⇢ W , we further obtain that S3

1/n(K) is smoothly rationally

homology cobordant to S
3. Therefore, d(S3

1/n(K)) = d(S3) = 0. Furthermore, since

n > 0 we have d(S3
1/n(K)) = d(S3

1(K)) by [NW15, Proposition 1.6].
Now for each j 2 N let Kj := T2,8j+1. Note that since Kj is alternating and the

ordinary signature �Kj (�1) < 0, [OS03b, Corollary 1.5] implies that d(S3
1(K)) 6= 0. So

Cn,1(Kj) is not smoothly n-shake slice, despite being Z/n-shake slice by Corollary 2.1.
One can use Litherland’s satellite formula [Lit79] to compute that the first jump of the
Tristram-Levine signature function of Cn,1(Kj) occurs at e

2⇡i✓j , where ✓j = 1
2n(8j+1) .

Therefore the knots Cn,1(Kj) are distinct in concordance. ⇤

In another direction, we are able to show that there exist non-slice knots which
are nevertheless n-shake slice for infinitely many n 2 Z. It is presently unknown in
either category whether 0-shake slice implies slice, and so the question of whether being
n-shake slice for all n 2 Z implies slice appears both interesting and di�cult.

Corollary 2.4. There exist knots that are Z/n-shake slice for every prime power
n 2 Z, but are not slice. Moreover, these knots may be chosen to represent infinitely
many concordance classes.

Proof. Let J be a knot with Alexander polynomial equal to the m
th cyclotomic poly-

nomial, where m is divisible by at least 3 distinct primes. Since J# � J does not
have trivial Alexander polynomial, there exist infinitely many non-concordant knots
sharing its Seifert form [Kim05]. We show that any such knot K is Z/n-shake slice for
all prime powers n.

By [Liv02], we have |H1(⌃|n|(J))| = 1, so condition (i) of Theorem 1.1 follows
immediately:

Y

{⇠|⇠n=1}

�K(⇠) = |H1(⌃|n|(K))| = |H1(⌃|n|(J))|2 = 1.

For conditions (ii) and (iii), observe that since K shares a Seifert form with the knot
J#� J , we have that Arf(K) = 0 and for every ! 2 S

1 we have

�!(K) = �!(J) + �!(�J) = 0. ⇤

We remark that it is open whether there is a smoothly non-slice knot that is smoothly
n-shake slice for infinitely many n. The smooth analogue of the next result is also open.
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Corollary 2.5. There exist infinitely many knots {Ki}, mutually distinct in concor-
dance, and an infinite family of integers {nj} such that S3

nj
(Ki) is homology cobordant

to S
3
nj
(U) for all i, j 2 N.

Proof. This follows immediately from Corollary 2.4 and Lemma 3.1. ⇤
We are also able to show that homology cobordism of the n-surgeries is often not

enough to determine that a knot is n-shake slice, as follows.

Corollary 2.6. For each odd n 2 N, there exists K such that S3
n(K) and S

3
n(U) are

topologically homology cobordant but K is not n-shake slice. In fact, for each odd n

there exist knots representing infinitely many concordance classes that satisfy this.

Proof. By the proof of Theorem 1.1, if n is odd andK is a knot with
Q

{⇠|⇠n=1}�K(⇠) =

1 and �K(⇠) = 0 for all nth roots of unity ⇠, then S
3
n(K) and S

3
n(U) = L(n, 1)

are homology cobordant. As discussed in the proof of Corollary 2.3, for every knot
J the knot K = Cn,1(J) satisfies these conditions. However, if Arf(J) 6= 0, then
since Arf(K) = Arf(J) we obtain that Cn,1(J) is not n-shake slice (or even, for the
cognoscenti, n-shake concordant to the unknot). Therefore the set {Cn,1(T2,8j+3}j�1

is an infinite collection of such knots, all distinguished in concordance by the first
jump of their Tristram-Levine signature functions, which occur at e

2⇡iyj , where yj =
1

2n(8j+3) . ⇤

We remark that in the examples of Corollary 2.6, S3
n(K) and S

3
n(U) are homology

cobordant not just with integer coe�cients, but also with Z[Z/n]-coe�cients.
We also compare the di↵erence between m-shake slice and n-shake slice for m 6= n.

Corollary 2.7. If m | n and K is Z/n-shake slice, then K is Z/m-shake slice.

Proof. First, note that if n = 0 and K is Z/n-shake slice then �K(t) = 1, and so the
conditions (i), (ii), and (iii) of Theorem 1.1 are satisfied for all m 2 Z.

So assume n 6= 0. Since
Q

{⇠|⇠m=1}�K(⇠) divides
Q

{⇠|⇠n=1}�K(⇠) and both are
integers, if the criterion (i) holds for n, then it also holds for m. The signature and
Arf invariant conditions are immediate. ⇤
Corollary 2.8. If m does not divide n then there exist infinitely many knots that
are n-shake slice but not m-shake slice. These knots may be chosen to be distinct in
concordance.

Proof. Let q be a prime power which divides m but not n. Let K be any knot with
Arf(K) = 0 and �K(e2⇡ik/q) 6= 0 for all k = 1, . . . , q � 1. Such knots are easy to find,
for example by taking K = T2,8N+1 for su�ciently large N . Now let J = Cn,1(K), and
note that since Arf(K) = 0, Corollary 2.1 tells us that J is n-shake slice. However,
�Cn,1(K)(e

2⇡i/q) = �K(e2⇡in/q) 6= 0, since q does not divide n. So J is not m-shake
slice.

We can obtain {Jj}j2N representing infinitely many concordance classes of n-shake
but not m-shake slice knots by letting Jj = Cn,1(T2,8(N+j)+1) for su�ciently large
N . As in the proof of Corollary 2.3, these knots are distinguished in concordance by
the first jump of the Tristram-Levine signature, which occurs for Jj at e

2⇡ixj , where
xj =

1
2n(8(N+j)+1) . ⇤

Remark 2.9. For many pairs (n,m) such that m does not divide n, one can also
find examples of n-shake slice knots which are not m-shake slice by considering certain
linear combinations of (2, 2k+1) torus knots. For example, one can verify that Kn :=
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6T2,4n+1#� 4T2,6n+1 satisfies the conditions of Theorem 1.1 for n, and hence is Z/n-
shake slice. Additionally, computation of Tristram-Levine signatures shows that if m
does not divide 2n, then Kn is not m-shake slice.

Finally, we show in almost all cases that Z/n-shake slice is a strictly stronger con-
dition than n-shake slice.

Corollary 2.10. A knot is (±1)-shake slice if and only if it is Z/1-shake slice. For
all other n there exists a slice, and therefore n-shake slice, knot that is not Z/n-shake
slice.

Proof. The ‘if’ direction of the first sentence is obvious. For the other direction, observe
that an embedded sphere S representing a generator of ⇡2(X±1(K)) has a normal
bundle ⌫S with euler number ±1 (see Lemma 6.1). Since ⌫S ! S is a homotopy
equivalence, ⌫S is simply connected. Since the euler number is ±1, @(D⌫S) ⇠= S

3,
where D⌫S denotes the disc bundle of the normal bundle. We know that X±1(K) is
simply connected. Apply the Seifert-Van Kampen theorem to the decomposition

X±1(K) = (X±1(K)rD⌫S) [S3⇥(1,1) ⌫S

to deduce that ⇡1(X±1(K)rD⌫S) ⇠= ⇡1(X±1(K)rS) ⇠= {1} ⇠= Z/1. This proves the
reverse direction.

For the second sentence, the knot K = 41#41 is slice and hence n-shake slice
for all n. But K has |H1(⌃n(K))| 6= 1 for all n > 1, and hence is not Z/n-shake
slice for |n| > 1 by condition (iii) of Theorem 1.1. Recall that when n = 0, the
conditions of Theorem 1.1 reduce to triviality of the Alexander polynomial. But since
�K(t) = (t2 � 3t+ 1)2, this knot K is not Z/0-shake slice either. ⇤

When n = ±1, the conditions (i) and (iii) of Theorem 1.1 are automatically satisfied,
so Corollary 2.10 immediately gives the following.

Corollary 2.11. A knot K is (±1)-shake slice if and only if it is Z/(±1)-shake slice
if and only if Arf(K) = 0.

If a knot is n-shake slice then it has vanishing Arf invariant [Rob65], so Corollary 2.11
immediately gives the following.

Corollary 2.12. If a knot K is n-shake slice for some integer n, then it is (±1)-shake
slice.

Changing the orientation on an n-trace Xn(K) results in the trace X�n(�K), and so
K is n-shake slice if and only if �K is (�n)-shake slice. Surprisingly, the conditions in
Theorem 1.1 show that an even stronger symmetry holds, as in the following corollary.

Corollary 2.13. A knot K is Z/n-shake slice if and only if it is Z/(�n)-shake slice.

Here of course Z/n ⇠= Z/(�n), but the 4-manifoldsXn(K) andX�n(K) are generally
di↵erent. In particular, we know of no reason to believe that a knot is n-shake slice if
and only if it is (�n)-shake slice.

For any n, it remains unknown in both the smooth and topological category whether
n-shake slice knots have n-shake slice connected sum. As the invariants involved in
conditions (i), (ii), and (iii) of Theorem 1.1 are all additive under connected sum we
have the following immediate corollary.

Corollary 2.14. If K and J are Z/n-shake slice, then so is K#J .
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3. Obstructions to Z/n-shake sliceness

In this section we prove that the conditions listed in Theorem 1.1 on the knot
signatures and the Alexander polynomial are indeed necessary conditions for a knot
to be Z/n-shake slice. Some of these results have been shown by Tristram [Tri69]
and Saeki [Sae92]; we include our own proofs for completeness, for the convenience of
the reader, and to introduce the identification of certain Atiyah-Singer/Casson-Gordon
signatures with Tristram-Levine knot signatures that will be needed later on. As stated
in the conventions section, we henceforth assume that n > 0.

Lemma 3.1. If a knot K is n-shake slice via an embedded sphere S in Xn(K) then
W := Xn(K)r ⌫(S) is a homology cobordism from S

3
n(K) to L(n, 1). If K is further

Z/n-shake slice via S, then ⇡1(W ) ⇠= Z/n.

Proof. The first statement follows from computation using the Mayer-Vietoris sequence
for Xn(K) = W [ ⌫(S). The second statement is immediate from the definition. ⇤

Remark 3.2. In this section, we only use the hypothesis that the manifolds S
3
n(K)

and L(n, 1) are homology cobordant via a homology cobordism W with ⇡1(W ) ⇠= Z/n.
This hypothesis is su�cient to establish conditions (i) and (iii) of Theorem 1.1 However,
one cannot make this weaker assumption, at least when n is odd, if we wish to conclude
that Arf(K) = 0. In particular, for every knot K we know that S

3
1(K) is homology

cobordant to L(1, 1) = S
3 by a simply connected cobordism [Fre82, Theorem 1.40]

(see also [FQ90, 9.3C]), but of course some knots have Arf invariant 1. On the other
hand, the existence of a smooth homology cobordism would be enough to imply that
Arf(K) = 0 [Sae92].

Proposition 3.3. Let K be a knot such that S3
n(K) and L(n, 1) are homology cobordant

via a homology cobordism W with ⇡1(W ) ⇠= Z/n. Then H1(S3
n(K);Z[Z/n]) = 0 =

H1(⌃n(K);Z).

Proof. We will show that the n-sheeted cyclic cover Yn := (S3
n(K))n of S3

n(K) has
trivial integral homology. Since H1(Yn;Z) = 0 implies that H1(S3

n(K);Z[Z/n]) = 0,
this will imply the first part of our desired result. By the universal coe�cient theorem,
it su�ces to show that H1(Yn;Fp) = 0 for all primes p.

Let p be a prime. For each k 2 N and space X, let bpk(X) denote the dimension of

Hk(X;Fp) as a Fp-vector space. Let fW be the Z/n-cover of W , and observe that since
fW is simply connected we have H1(fW ;Fp) = 0. It follows that

0 = n · �(W ) = �(fW ) = 1 + b
p
2(
fW )� b

p
3(
fW ).

Here the first equality holds since W has the same Euler characteristic as a closed
3-manifold. By considering the long exact sequence of the pair (W, @W ), we obtain
that

H
3(fW ;Fp) ⇠= H1(fW, @fW ;Fp) ⇠= Fp,

and hence that b
p
2(
fW ) = 0. It then follows from the same long exact sequence that

b
p
1(@

fW ) = b
p
1(Yn t S

3) = 0, and so we have established the first claim.
Let E(K) denote the exterior of the knot K in S

3 and µK and �K denote the
meridian and longitude respectively. By definition the manifold S

3
n(K) = E(K) [

(S1 ⇥ D
2), where {pt} ⇥ @D

2 is identified with nµK + �K and S
1 ⇥ {pt} with �K .

Therefore, we have that

Yn = (E(K) [ (S1 ⇥D
2))n = En(K) [ (S1 ⇥D

2),
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where {pt}⇥ @D
2 is identified with fµn

K + e�K and S
1 ⇥ {pt} with e�K , where e· denotes

a lift to the n-fold cover En(K) ! E(K).
We also have that

⌃n(K) = En(K) [ (S1 ⇥D
2)

where {pt} ⇥ @D
2 is identified with fµn

K and S
1 ⇥ {pt} with e�K . Since e�K is null-

homologous in En(K), we see that H1(⌃n(K)) and H1(Yn) are isomorphic quotients
of H1(En(K)). ⇤

We extract the next statement from the proof of Proposition 3.3 for later use.

Corollary 3.4. Let K be a knot such that S3
n(K) and L(n, 1) are homology cobordant

via a homology cobordism W with ⇡1(W ) ⇠= Z/n and let fW denote the Z/n-cover of

W . Then H2(fW ;Fp) = 0 for every prime p.

We would now like to prove the following. Note that the first statement implies
that if a knot K is n-shake slice then �!(K) = 0 for every q

th root of unity !, where
q is a prime power dividing n. This was originally proved using di↵erent methods by
Tristram [Tri69].

Proposition 3.5 ([Tri69]). Let K be a knot such that S3
n(K) and L(n, 1) are homology

cobordant via a homology cobordism W . Then �!(K) = 0 for every q
th root of unity

!, where q is a prime power dividing n. If ⇡1(W ) ⇠= Z/n, then �!(K) = 0 for every
n
th root of unity !.

Our strategy in proving Proposition 3.5 will be to relate the Tristram-Levine sig-
nature of K at the n

th roots of unity to the Atiyah-Singer/Casson-Gordon signa-
tures [AS68, CG78] of the 3-manifold S

3
n(K). We will then use the n-fold cyclic cover

of the hypothesised homology cobordism W between S
3
n(K) and L(n, 1), capped o↵ in

a certain nice way, to compute these Casson-Gordon signatures. We therefore recall
the definition of the Casson-Gordon signatures of a 3-manifold, as given in [CG78]. For
every n 2 N we think of the cyclic group Z/n as coming with a canonical multiplicative
generator t.

To a closed oriented 3-manifold Y and a map � : H1(Y ) ! Z/n, we wish to associate
�k(Y,�) 2 Q for k = 1, . . . , n� 1. Let eY ! Y be the covering induced by �, and note
that there is a canonical covering transformation ⌧ of eY corresponding to t 2 Z/n.

Now suppose there exists a Z/n branched covering of 4-manifolds eZ ! Z, branched
over a surface F contained in the interior of Z, and such that @( eZ ! Z) = (eY ! Y ).
Suppose in addition that the covering transformation e⌧ : eZ ! eZ that induces rotation
through 2⇡/n on the fibres of the normal bundle of eF is such that it restricts on eY to
⌧ . An explicit construction as given, for example, in the proof of [CG78, Lemma 3.1],
shows that such a branched cover does always exist. Then H2( eZ;C) decomposes asLn�1

k=0 Vk, where Vk is the ⇠
k
n-eigenspace of the e⌧ -induced action on second homology,

and as before ⇠n := e
2⇡i/n. Let �k( eZ) denote the signature of the intersection form of

eZ restricted to Vk. Define, for k = 1, . . . , n� 1, the signature defect

(3.6) �k(Y,�) := �(Z)� �k( eZ)� 2([F ] · [F ])k(n� k)

n2
.

Casson-Gordon [CG78] used the Atiyah-Singer G-signature theorem [AS68] to show
that �k(Y,�) is an invariant of the pair (Y,�) for each 0 < k < n.
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Proposition 3.7. Let K be a knot and W be a cobordism between S
3
n(K) and L(n, 1)

over Z/n. Let ⇠n = e
2⇡i/n and 1  k  n� 1. Then

�⇠kn
(K) = �k(fW )� �(W ),

where �k(fW ) is the signature of the intersection form of the Z/n-cover of W induced
by the map H1(W ) ! Z/n when restricted to the ⇠

k
n-eigenspace of the action of the

generator of the group of deck transformations on H2(fW,C).

Proof. Our proof follows from computing �k(S3
n(K),�), where � : H1(S3

n(K)) ! Z/n
is the canonical map sending the meridian µK to 1 2 Z/n, in two di↵erent ways.

First, observe that in this setting the surgery formula of [CG78, Lemma 3.1] is
particularly simple and reduces to

�k(S
3
n(K),�) = 1� �⇠kn

(K)� 2k(n� k)

n
.(3.8)

Secondly, let fW ! W be the n-fold cyclic cover. We have that

@(fW ! W ) = (Ŝ3
n(K) ! S

3
n(K)) t (S3 ! L(n, 1)).

Now let Xn(U) denote the n-trace of the unknot, i.e. the disc bundle Dn over S2 with
euler number n. Let S be the n-framed embedded 2-sphere in Xn(U). There is an
n-fold cyclic branched cover eXS of Xn(U) along S, which restricts on the boundary to
the same (unbranched) cover S3 ! L(n, 1) we saw above. Note that eXS is a punctured
CP2.

We can therefore use Z := W [L(n,1) Xn(U) and eZ = fW [S3 eXS to compute

�k(S3
n(K),�) using (3.6). Note that H2( eZ) ⇠= H2(fW ) � Z, where the generator of

the Z summand is represented by the lift of S and hence has self-intersection +1, in-
tersects trivially with all elements of H2(fW ), and is preserved under the action of the
covering transformation so lies in the 1-eigenspace. Consequently, for 0 < k < n we
have �k( eZ) = �k(fW ) and hence

�k(S
3
n(K),�) = �(Z)� �k( eZ)� 2([S] · [S])k(n� k)

n2

= (�(W ) + 1)� �k(fW )� 2nk(n� k)

n2
.(3.9)

Since �k(S3
n(K),�) is well-defined, by comparing the formulae of Equations 3.8

and 3.9 we obtain as desired that

�⇠kn
(K) = �k(fW )� �(W ). ⇤

Versions of the next lemma have appeared in many places, the earliest of which we
know of is [Lev94, Lemma I.4.3 and II.3.2]. See also [COT03, Proposition 2.10].

Lemma 3.10. Let i : X ! Y be a map of (spaces homotopy equivalent to) finite CW
complexes that induces isomorphisms i⇤ : Hk(X;Z) ! Hk(Y ;Z) for all k. Suppose
" : H1(Y ;Z) ! Z/q is a surjective map inducing Z/q-covers eY ! Y and eX ! X.

If q is a prime power, then the induced map

ei⇤ : Hk( eX;Q) ! Hk(eY ;Q)

is an isomorphism for all k.
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Proof. Let ↵ : H1(Y ) ! GLq(Q) be the map obtained by composing " with the regular
representation

Z/q ! GLq(Q)

k 7!

2

666664

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0

3

777775

k

.

As usual, this regular representation endows Qq with the structure of a free Q[Z/q]-
module of rank one.

By Friedl-Powell [FP12, Proposition 4.1], (applied with, in their notation, H = {1}),
we have that

i⇤ : H⇤(X;Qq) ! H⇤(Y ;Qq)

is an isomorphism. Then for Z 2 {X,Y }, we have natural identifications

H⇤(Z;Qq) = H⇤(C⇤( eZ,Q)⌦Q[Z/q] Qq) = H⇤(C⇤( eZ,Q)⌦Q[Z/q] Q[Z/q]) = H⇤( eZ,Q),

and the desired result follows. ⇤

Proof of Proposition 3.5. Let fW denote the Z/n cover of W . Note that since W is
a homology cobordism between S

3
n(K) and L(n, 1) we have that H2(W ) = 0 and so

certainly �(W ) = 0.

The case when ⇡1(W ) ⇠= Z/n follows quickly: Corollary 3.4 tells us thatH2(fW ;Fp) =

0 for all primes p, and hence that H2(fW ;Z) = 0 and so H2(fW ;C) = 0. Therefore, by
Proposition 3.7 we have for k = 1, . . . , n� 1 that

�⇠kn
(K) = �k(fW )� �(W ) = 0� 0 = 0.

So we now assume only that W is a homology cobordism, with no condition on
the fundamental group. Let q be a prime power dividing n, and let 1  k  q � 1
be relatively prime to q. Let � : H1(S3

n(K)) ! Z/q be the map sending the class
[µK ] of the meridian of K to +1 2 Z/q. We now argue exactly as in the proof of
Proposition 3.7 to show that

(�(W ) + 1)� �k(fW )� 2k(q � k)

q
= �k(S

3
n(K),�) = 1� �⇠kq

(K)� 2k(q � k)

q

and hence, since H2(W ;Q) = 0, that

�⇠kq
(K) = �k(fW )� �(W ) = �k(fW ).

But by Lemma 3.10, since the inclusion induced map

i⇤ : H⇤(L(n, 1);Z) ! H⇤(W ;Z)

is an isomorphism and q is a prime power, we have that

ei⇤ : H⇤(L̂(n, 1);Q) ! H⇤(fW ;Q)

is also an isomorphism. But since L̂(n, 1) is itself a lens space (or S3 if n = q), we have

that H2(L̂(n, 1);Q) = 0 and so H2(fW ;Q) = 0 as well. Thus the ⇠
k
n-eigenspace Vk = 0,

and so as desired

�⇠kq
(K) = �k(fW ) = 0. ⇤
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4. Setting up the surgery problem

We will use surgery theory to construct the exterior of the desired embedded sphere
in an n-trace. We will eventually apply surgery in the topological category, but our
initial input manifolds will be smooth. We thus now recall the input to a surgery
problem in the smooth category. There is an analogous theory in the topological
category, and we will discuss this below at the point when it becomes necessary.

Definition 4.1. Given a smooth m-manifold X, the tangent bundle is classified up to
isomorphism by a homotopy class of maps ⌧X : X ! BO(m) ⇢ BO. The unique stable
bundle ⌫X : X ! BO such that ⌧X�⌫X : X ! BO is null-homotopic is called the stable
normal bundle of X. The manifold X can be stably framed if ⌫X is null-homotopic,
and a choice of null homotopy is called a stable framing. A choice of stable framing
for X is determined by a choice of stable trivialisation of the tangent bundle; that is,
a choice of k and vector bundle isomorphism TX � Rk ⇠= Rm+k.

Recall that an oriented m-manifold X with (possibly empty) boundary has a funda-
mental class, denoted [X, @X] 2 Hm(X, @X;Z), capping with which induces (twisted)

Poincaré-Lefschetz duality isomorphismsHm�k(X, @X;Z[⇡1(X)])
⇠=�! Hk(X;Z[⇡1(X)])

and H
m�k(X;Z[⇡1(X)])

⇠=�! Hk(X, @X;Z[⇡1(X)]) for every k.

Definition 4.2. A map (f, @f) : (X, @X) ! (Y, @Y ) of smooth oriented m-manifolds
with (possibly empty) boundary is called degree one if f⇤([X, @X]) = [Y, @Y ]. Given a
degree one map f , a normal structure is an isomorphism of stable bundles ⌫X ' ⌫Y �f .
A degree one map with choice of normal structure is called a degree one normal map.
We will often write (X, f) for the data of a degree one normal map (suppressing the
choice of stable bundle isomorphism).

For a topological space Y , a bordism Z between closed m-manifolds X and X
0 is

over Y if there is a proper map F : Z ! Y ⇥ I such that F (X) ⇢ Y ⇥ {0} and
F (X 0) ⇢ Y ⇥ {1}. If Y and Z are smooth oriented m-manifolds and the map F is a
degree one normal map, then we call (Z,F ) a degree one normal bordism from (X,F |X)
to (X 0

, F |X0).

Remark 4.3. Given a degree one map (f, @f) : (X, @X) ! (Y, @Y ), if ⌫Y is null-
homotopic, then so is ⌫Y � f . So f admits a normal structure if and only if X can be
stably framed.

Furthermore, we will sometimes be interested in picking a normal structure on f

that is compatible with a given one on @f . To understand this, suppose we are given a
choice of stable framing on Y . This induces a choice of stable framing on @Y . Suppose
we have a degree one map @f : @X ! @Y . A choice of normal structure on @f is
equivalent to a choice of stable framing on @X. Suppose such a choice has been made.
Then a degree one map (f, @f) : (X, @X) ! (Y, @Y ) admits a normal structure inducing
the given one on the boundary if and only if X can be stably framed compatibly with
@X.

Note that the lens space L(n, 1) is di↵eomorphic to the result of n-surgery along the
unknot. In our applications, the target manifold for the map in the surgery problem will
be either (L(n, 1),?) or (L(n, 1)⇥ I, L(n, 1)⇥ {0, 1}). The tangent bundles of L(n, 1)
and of L(n, 1) ⇥ I are trivial, so in particular these manifolds can be stably framed.
Choose once and for all a stable framing for L(n, 1), and hence one for L(n, 1)⇥ I.

Lemma 4.4. For any knot K, there exists a degree one normal map f : S3
n(K) !

L(n, 1) that is a Z-homology equivalence and that extends to a homotopy equivalence
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f : Xn(K) ! Dn, where Dn is the D
2-bundle over S

2 with euler number n. Addition-
ally, one can arrange that the cocore of the 2-handle of Xn(K) maps to the cocore of
the 2-handle in the standard handle decomposition for Dn.

Proof. There is a standard degree one map from E(K) ! E(U) that realises the
homology equivalence E(K) ! S

1 and is the identity map on the boundary; see
e.g. [MP19, Construction 7.1] for the details. As submanifolds of S3, both E(K) and
E(U) have stably trivial tangent bundles and can thus be stably framed. So this degree
one map can be given a choice of normal structure by Remark 4.3. Now extend this
degree one normal map to the Dehn filling.

We construct the homotopy equivalence f . By construction, f : S3
n(K) ! S

3
n(U) =

L(n, 1) sends a meridian of K to a meridian of the unknot U . We also have a handle
decomposition of Xn(K) relative to its boundary consisting of a 2-handle, attached
along a meridian of K, and a 4-handle. Define f : Xn(K) ! Xn(U) = Dn by mapping
the 2-handles and the 4-handles homeomorphically to each other. To do this, first note
that the attaching circle of the 2-handle of Xn(U) is a meridian of U , so the attaching
circle of the 2-handle of Xn(K) is sent to the attaching circle of the 2-handle of Xn(U).
Also the framings agree, so we can extend over the 2-handle. Then note that attaching
the 2-handles undoes the Dehn surgeries, converting both S

3
n(K) and S

3
n(U) to S

3.
The 4-handles are attached to these copies of S3. Since every orientation-preserving
homeomorphism of S3 is isotopic to the identity, we may extend the map over the
4-handles. Observe that f is a homotopy equivalence by Whitehead’s theorem. ⇤

Recall the Whitehead group Wh(Z/n) is a certain quotient of the algebraic K-
group K1(Z[Z/n]). When H1(S3

n(K);Z[Z/n]) = 0, a map f as in Lemma 4.4 induces
a chain homotopy equivalence ef⇤ : C⇤(S3

n(K);Z[Z/n]) ! C⇤(L(n, 1);Z[Z/n]) and thus
determines a Z[Z/n]-coe�cient Whitehead torsion ⌧(f) := ⌧( ef⇤) 2 Wh(Z/n). We will
need the following technical lemma later.

Lemma 4.5. If the knot K satisfies H1(S3
n(K);Z[Z/n]) = 0, then a map f as in

Lemma 4.4 has trivial Z[Z/n]-coe�cient Whitehead torsion ⌧(f) = 1 2 Wh(Z/n).

Proof. Fix a cell complex A ⇠= S
1 ⇥ S

1 and extend it to a cell complex B ⇠= S
1 ⇥D

2.
Denote by Y (K) and Y (U) any fixed choice of cell structures for E(K) and E(U) (we
will make quite specific choices later). For each of J = U,K, let M(J) denote the
cell complex obtained as the mapping cylinder of a map A ! Y (J) which is a cellular
approximation to the inclusion S

1 ⇥ S
1 ! E(J).

Each of these spaces has a Z/n cover, determined by ⇡1(L(n, 1)) ⇠= Z/n and com-
posing with, where appropriate, the map f . Choose a lift of the cell structure on A

to the Z/n cover, and denote this by eA. Extend this lift to B, M(J) and M(U) and

write eB, M̂(J) and M̂(U) for the corresponding covering spaces. Write ef for a lift of
f to the Z/n covers.

0 C⇤( eA) C⇤( eB)� C⇤(M̂(K)) C⇤(Ŝ3
n(K)) 0

0 C⇤( eA) C⇤( eB)� C⇤(M̂(U)) C⇤(L̂(n, 1)) 0

0 C (Id) C (Id)� C (( ef |
M̂(K)

)⇤) C ( ef⇤) 0.

Id Id�( ef |
M̂(K)

)⇤ ef⇤
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In this diagram we use cellular chain complexes and C denotes taking an algebraic
mapping cone. Strictly, we have replaced the maps ef and ef |

M̂(K)
by cellular approx-

imations. This is thus a diagram in the category of finite, finitely generated, based
Z[Z/n]-coe�cient chain complexes. All complexes in the lower sequence are acyclic so
by the multiplicativity of torsion under such exact sequences, and the fact that the iden-
tity map has vanishing torsion, we obtain ⌧(f) = ⌧( ef⇤) = ⌧(( ef |

M̂(K)
)⇤) 2 Wh(Z/n).

We now choose convenient cell structures for E(K) and E(U). Let Y (K) and
Y (U) be the cell structures associated to Wirtinger presentations of the respective
knot groups (see e.g. proof of [Tur01, Theorem 16.5]), where for K we choose an
arbitrary such presentation and for U we choose the presentation of Z with no relations.
By [Tur01, Lemma 8.4], the Whitehead torsions ⌧(M(J), Y (J)) = 1 for each of J =

K,U , so we have that ⌧(( ef |
M̂(K)

)⇤) may be computed by a cellular map F : Ŷ (K) !

Ŷ (U) representing ef |
Ê(K)

. This map is given by

C⇤(Y (K)) 0
Lm

j=1 Z[Z/n]
Lm+1

i=1 Z[Z/n] Z[Z/n] 0

C⇤(Y (U)) 0 0 Z[Z/n] Z[Z/n] 0.

F

@2(t) t�1

(1 ... 1) 1

t�1

where we are writing Z[Z/n] = Z[t, t�1]/(tn � 1), m+1 is the number of generators in
the Wirtinger presentation for ⇡1(K), and @2(t) is determined by the relations in that
presentation. Up to basis change, and a simple homotopy equivalence, the algebraic
mapping cone C (F ) is

0
Lm

j=1 Z[Z/n]
Lm

i=1 Z[Z/n] 0 0 0
@0
2(t)

where @0
2(t) is the e↵ect of deleting a row from the matrix @2(t), after the basis change.

We then compute that ⌧(( ef |
M̂(K)

)⇤) = ⌧(F ) = [@0
2(t)] 2 Wh(Z/n).

When G is an abelian group, the determinant map det : K1(Z[G]) ! (Z[G])⇥ is
a split surjection (see e.g. [Mil66, p. 359]), and for any finite cyclic G the kernel of
this map vanishes [Oli88, Theorem 5.6]. So the determinant gives an isomorphism
K1(Z[Z/n]) ⇠= (Z[Z/n])⇥. The matrix @

0
2(t) is a presentation matrix for the Alexan-

der module of K when considered over the ring Z[t, t�1]. From this, and using the
left regular representation of Z[Z/n], we may consider @

0
2 as an mn ⇥ mn matrix

over Z, such that the absolute value of the determinant | det(@0
2)| is the order of the

first homology of the n-fold branched cover H1(⌃n(K);Z). This, in turn, is the or-
der of H1(S3

n(K);Z[Z/n]), which we have assumed to be 1. Thus, as an element
of K1(Z[Z/n]) ⇠= (Z[Z/n])⇥, we have that ⌧(F ) = det(@0

2(t)) = ±1, under this iso-
morphism. Finally, both +1 and �1 become the trivial element on passage to the
Whitehead group Wh(Z/n), so we obtain the desired result. ⇤
Lemma 4.6. When Arf(K) = 0, there exists a degree one normal map (S3

n(K), f)
satisfying the conditions of Lemma 4.4, and that is degree one normal bordant over
L(n, 1) to the identity map (L(n, 1), Id).

Proof. Write f : S3
n(K) ! L(n, 1) for the degree one normal map obtained in Lemma

4.4. By Remark 4.3, if we can show there is a degree one map F : W ! L(n, 1) ⇥ I

describing a stably framed cobordism over L(n, 1) from (S3
n(K), f) to (L(n, 1), Id), we

will be done. (Note, we may change the choice of stable framing on S
3
n(K) during the

course of the proof.)
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Consider the closed 3-manifold

NK := E(K) [S1⇥S1 S
1 ⇥ S

1 ⇥ I [S1⇥S1 �E(U),

glueing so that the result is homeomorphic to the 0-framed surgery S
3
0(K), but we

decompose it in this way for later. Choose a framing of the tangent bundle of NK

that is a product framing on S
1 ⇥ S

1 ⇥ I. This determines an element of [NK , g] 2
⌦fr
3 (S

1 ⇥D
2 ⇥ I), where the map g : NK ! S

1 ⇥D
2 ⇥ I = E(U)⇥ I has image

@(S1 ⇥D
2 ⇥ I) = S

1 ⇥D
2 [ S

1 ⇥ S
1 ⇥ I [ �S

1 ⇥D
2
,

and is obtained by glueing together the standard degree one map E(K) ! E(U) =
S
1⇥D

2, the identity on S
1⇥S

1⇥I, and the canonical identification E(U) ! S
1⇥D

2.
We have ⌦fr

3 (S
1 ⇥D

2 ⇥ I) ⇠= ⌦fr
3 (S

1). The map from S
1 to a point induces a split

short exact sequence 0 ! e⌦fr
3 (S

1) ! ⌦fr
3 (S

1) ! ⌦fr
3 ! 0. Thus ⌦fr

3 (S
1) ⇠= ⌦fr

3 � ⌦fr
2 ,

where we have used the isomorphism e⌦fr
3 (S

1) ⇠= e⌦fr
2 (S

0) ⇠= ⌦fr
2 , coming from the fact

that ⌦fr
⇤ (�) is a generalised homology theory and thus satisfies the suspension axiom.

Under this isomorphism, the projection of [NK , g] to ⌦fr
3
⇠= Z/24 is given by the framed

bordism class of NK . Since any element in ⌦fr
3
⇠= Z/24 can be realised by a suitable

framing on S
3, the framing of NK can be modified in a small neighbourhood until the

element in ⌦fr
3
⇠= Z/24 vanishes; see e.g. [CP14, p. 13] for details.

The map from ⌦fr
2
⇠= e⌦fr

2 (S
0) ⇠= e⌦fr

3 (S
1) ! ⌦3(S1) is given by applying the reduced

suspension, sending the class of f : F 2 ! pt to f ⇥ Id : F ⇥ S
1 ! S

1 in ⌦3(S1),
and framing F ⇥ S

1 via the product framing with the trivial framing on S
1. Under

the projection ⌦3(S1) ! ⌦fr
2 , the class [NK , g] is thus mapped to a framed surface

F given by taking the transverse preimage of a regular point in S
1 under g. Recall

that g was obtained using the standard degree one normal maps E(K) ! E(U) and
E(U) ! E(U). Under these, generic transverse point preimages are Seifert surfaces,
FK and FU , respectively for the knots K and U . Thus the projection to ⌦fr

2 is the Arf
invariant of the framed surface F = FK [ ({pt}⇥ S

1) [ �FU . Since we assumed that
Arf(K) = 0 this component already vanishes in ⌦fr

2 . So overall we obtain [NK , g] =
0 2 ⌦fr

3 (S
1 ⇥D

2 ⇥ I)
Write W

0 for a framed null bordism of (NK , g) over S
1 ⇥ D

2 ⇥ I. Now attach
D

2 ⇥ S
1 ⇥ I to S

1 ⇥ S
1 ⇥ I such that D

2 ⇥ S
1 ⇥ {t} attaches to S

1 ⇥ S
1 ⇥ {t}

with the n-framing, and similarly attach the n-framed D
2 ⇥ S

1 ⇥ I to the codomain
S
1⇥D

2⇥I. This yields a map F : W ! L(n, 1)⇥I that describes a framed cobordism
from (S3

n(K), f) to (L(n, 1), Id), over L(n, 1). To see that the cobordism is framed,
note that we can glue the two framings together along the product framing on both
pieces W 0 and D

2 ⇥ S
1 ⇥ I.

We finally also note that the map F : W ! L(n, 1) is degree one. This can be
computed by considering the naturality of the long exact sequences in homology of the
pairs (W, @W ) and (L(n, 1) ⇥ I, L(n, 1) ⇥ {0, 1}), and the fact that both components
of @F are already known to be degree one. ⇤
Remark 4.7. For even n, there is a sequence of group homomorphisms

⌦fr
3 (L(n, 1)) ⌦fr

3 (B(Z/n)) ⌦fr
3 (B(Z/2)) ⌦Spin

3 (B(Z/2))

given from left to right by: the inclusion of L(n, 1) as the 3-skeleton, the surjective
group homomorphism Z/n ! Z/2, and the forgetful map.

An argument similar to that of [HS13, Lemma 4.2] can be made to determine that

⌦Spin
3 (B(Z/2)) ⇠= ⌦Pin�

2
⇠= Z/8. This argument would take us too far afield here,

but we allow ourselves to consider the consequences. Under this isomorphism, the
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element of Z/8 is detected by the Brown invariant of a Pin� structure on the surface
in M that is the transverse preimage of RP2 ✓ RP3, the 3-skeleton of B(Z/2). Let
(M, f) 2 ⌦Spin

3 (B(Z/2)) with f
�1(RP2) = N ⇢ M . The Pin� structure on N gives a

Z/4 enhancement of the Z/2 intersection form on N , which counts the number of half
twists modulo 4 of the bands. If the surface N is orientable, then the enhancement
lies in 2Z/4 and the Brown invariant lies in 4Z/8 ⇠= Z/2, computing the Arf invariant
of the surface N with respect to the Spin structure on N pulled back from M [KT90,
3].
In our case, the map f is the one from Lemma 4.4, and is constructed as a Pontryagin-

Thom collapse on a normal neighbourhood of a Seifert surface, followed by the exten-
sion to the Dehn filling. Thus in this case, the surface N = f

�1(RP2) ⇢ S
3
n(K) is

represented by a capped o↵ Seifert surface for K. This shows that the obstruction to
vanishing of (S3

n(K), f) 2 ⌦Spin
3 (B(Z/2)) is given by the Arf invariant of the knot.

For even n, Remark 4.7 shows that the bordism of Lemma 4.6 cannot exist unless
Arf(K) = 0. This is not so for n odd, and to demonstrate this we now include
an alternative existence proof for degree one normal bordism, with no Arf invariant
assumption, when n is odd.

Lemma 4.8. For n odd, there exists a degree one normal map (S3
n(K), f) that satisfies

the conditions of Lemma 4.4 and is degree one normal bordant over L(n, 1) to the
identity map (L(n, 1), Id).

Proof. Write f : S3
n(K) ! L(n, 1) for the degree one normal map obtained in Lemma

4.4. Again, by Remark 4.3, the objective is to show there is a degree one map
F : W ! L(n, 1)⇥I describing a stably framed cobordism over L(n, 1) from (S3

n(K), f)
to (L(n, 1), Id).

We show that there is a choice of stable framing for S3
n(K) such that [S3

n(K), f ] �
[L(n, 1), Id] = 0 2 ⌦fr

3 (L(n, 1)).
Consider the Atiyah-Hirzebruch spectral sequence for ⌦fr

⇤ (�), with E
2 page E

2
p,q =

Hp(L(n, 1);⌦fr
q ) and converging to ⌦fr

p+q(L(n, 1)). By inspection of the di↵erentials, this

sequence collapses already at the E2 page, so the groups Hp(L(n, 1);⌦fr
q ) form iterated

graded quotients for a filtration of ⌦fr
3 (L(n, 1)). We note that by the Pontryagin-Thom

theorem, we have ⌦fr
q = Z,Z/2,Z/2,Z/24 when q = 0, 1, 2, 3 respectively.

We analyse the groups on the E2 page in turn by considering the CW decomposition
of L(n, 1) with a single p-cell ep for each of p = 0, 1, 2, 3 and recalling that the E1 page
is given by

E
1
p,q = C

cell
p (L(n, 1);Z)⌦ ⌦fr

q
⇠= e⌦fr

q (S
0) ⇠= e⌦fr

p+q(e
p
/@e

p) ⇠= ⌦fr
p+q(X

(p)
, X

(p�1))

where X
(p) denotes the p-skeleton of L(n, 1). The groups on the E

2 page can be
considered as a sequence of obstructions to finding a framed null-bordism of S3

n(K) t
�L(n, 1) over L(n, 1) so we analyse these obstructions in turn.

At q = 0, a representative class for [S3
n(K), f ] � [L(n, 1), Id] 2 ⌦fr

3 (L(n, 1)) is given
by a cycle in E

1
3,0 = ⌦fr

3 (X
(3)

, X
(2)). The resulting class in E

2 vanishes if we can do

surgery on the disjoint union S
3
n(K) t �L(n, 1) in a way that respects the degree one

normal maps to L(n, 1) and such that the e↵ect of surgery maps to the 2-skeleton
of L(n, 1). In other words we seek to compatibly stably frame the connected sum
S
3
n(K)#(�L(n, 1)). The obstruction to doing this is the di↵erence of f⇤[S3

n(K)] �
Id⇤[L(n, 1)] 2 H3(L(n, 1);⌦fr

0 ), which vanishes because the maps f and Id are degree
one.
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Next, for q = 1 and q = 2 homology computations using that n is odd show that both
H2(L(n, 1);⌦fr

1 ) = 0 and H1(L(n, 1);⌦fr
2 ) = 0, so there is no obstruction here. Thus

we may assume we have done surgery on S
3
n(K) t (�L(n, 1)) over L(n, 1) to obtain

some closed, connected Y together with a degree one normal map g : Y ! L(n, 1),
where the map g : Y ! L(n, 1) has codomain the 0-skeleton, and [Y, g] = [S3(K), f)]�
[L(n, 1), Id] 2 ⌦fr

3 (L(n, 1)).
Finally, for q = 3, the last E

2 page obstruction is given by a class in E
1
0,3 =

⌦fr
3 (X

(0)
, ;) which is equal to [Y ] 2 ⌦fr

3
⇠= Z/24. By framed bordism invariance,

this is equal to [S3
n(K)] � [L(n, 1)] 2 H0(L(n, 1);⌦fr

3 )
⇠= ⌦fr

3
⇠= Z/24. Similarly to the

proof of Lemma 4.6, the framing near a point in S
3
n(K) may be modified in a small

neighbourhood to force vanishing of this obstruction.
As the various representative elements of [S3

n(K), f ]� [L(n, 1), Id] 2 ⌦fr
3 (L(n, 1)) can

be made to vanish on the E2 page, this class vanishes in ⌦fr
3 (L(n, 1)), and we obtain

the required bordism. Similarly to the proof of Lemma 4.6, this bordism over L(n, 1)
is seen to be a degree one normal bordism. ⇤

From this point onwards we require the definition of a degree one normal map in the
topological category. The necessary definitions are identical to those in Definitions 4.1
and 4.2, except now we use the topological stable normal bundle, which is a topological
R1-bundle classified by a map into the classifying space BTOP; see e.g. [FNOP19,
Definition 7.12]. There is a forgetful map BO ! BTOP, under which the stable
normal vector bundle of a smooth manifold is sent to the stable topological normal
bundle of the underlying topological manifold. The results derived so far in this section
thus descend to statements in the topological category.

Proposition 4.9. Let K be a knot, and let n be odd. There is a degree one normal
bordism F : W ! L(n, 1) ⇥ I from the map f : S3

n(K) ! L(n, 1) of Lemma 4.4 to
Id : L(n, 1) ! L(n, 1), such that ⇡1(W ) ⇠= Z/n and �(W ) = 0. The same is true for n

even when Arf(K) = 0.

Proof. When n is odd, we use Lemma 4.8, and when n is even we use Lemma 4.6, to
obtain a (smooth) degree one normal bordism W . Now perform (smooth) 1-surgeries
on the interior of W to modify the fundamental group to Z/n while still retaining a
degree one normal map. We abuse notation and continue to write F : W ! L(n, 1)⇥I

for this degree one map, so that now ⇡1(W ) ⇠= Z/n. Next take connected sums with
the degree one normal map E8 ! S

4 (or the oppositely oriented version �E8 ! S
4),

in order to kill the signature of W . Here E8 denotes the E8 manifold, that is, a closed,
simply connected topological 4-manifold with intersection form given by the E8 matrix.
The result may no longer be smooth, but now has all the desired properties. ⇤

The objective is now to perform 2-surgeries on W , so that after the surgeries the
map W ! L(n, 1)⇥ I is a homotopy equivalence. This will imply that W is a Z[Z/n]-
coe�cient homology bordism from S

3
n(K) to L(n, 1). To analyse whether this is pos-

sible, we proceed as in [Wal99, 5]. Since H2(L(n, 1) ⇥ I;Z[Z/n]) = 0, the surgery
kernel module (see [Wal99, 5]) is equal to H2(W ;Z[Z/n]) and the middle-dimensional
Z[Z/n]-coe�cient intersection pairing

� : H2(W ;Z[Z/n])⇥H2(W ;Z[Z/n]) ! Z[Z/n].
is equal to the surgery kernel pairing. This intersection form, together with the Wall
self-intersection form µ, determine a quadratic form (H2(W ;Z[Z/n]),�, µ) over Z[Z/n].
In the next lemma we confirm this quadratic form gives a well-defined element in a
surgery obstruction group. The obstruction group is analysed in the next section of
the article.
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Lemma 4.10. Let K ⇢ S
3 be a knot satisfying H1(S3

n(K);Z[Z/n]) = 0 and suppose
there is a degree one normal bordism (W,F ) as in Proposition 4.9. Then the quadratic
form (H2(W ;Z[Z/n]),�, µ) is nonsingular and simple, thus it determines a well-defined
surgery obstruction in the group L

s
4(Z[Z/n]).

Proof. The quadratic form is nonsingular because H1(S3
n(K);Z[Z/n]) = 0, by assump-

tion. We claim this quadratic form is moreover simple (with respect to some stable
Z[Z/n] basis). Indeed, the manifold with boundary (W,S

3
n(K) t �L(n, 1)) is a sim-

ple Poincaré pair [KS77, Essay III, Theorem 5.13], so it remains to check that the
Z[Z/n]-homology equivalence on the boundary

f t Id : S3
n(K) t �L(n, 1) ! L(n, 1) t �L(n, 1)

has vanishing Whitehead torsion. But the identity map has vanishing Whitehead
torsion, and so does f by Lemma 4.5. ⇤

5. The surgery obstruction

For all n, the surgery obstruction group L
s
4(Z[Z/n]) has been computed and is given

by a collection of signatures known as the multisignature. In this section we describe
the multisignature and then relate it to Tristram-Levine signatures of a knot in the
case of interest to us.

5.1. The multisignature for a general finite group. We first recall some repre-
sentation theory. Let ⇡ be any finite group and let C⇡ be the complex group ring.
The elements of the representation ring RC⇡ are formal additive di↵erences of finitely
generated C⇡-modules. The product structure is given by tensor product; we note the
formal addition also agrees with the direct sum of modules.

Given a finitely generated C⇡-module V , we obtain the underlying complex vector
space, denoted VC, by forgetting the ⇡ action. For example, the rank 1 free module V =
C⇡ has underlying |⇡|-dimensional complex vector space, which has a natural basis
given by the group elements of ⇡. We are emphasising the distinction between V and
VC to avoid confusion between rank and dimension, and to increase clarity in later
proofs. A C⇡-module V determines a C⇡-module structure on the complex conjugate
vector space VC, and this is called the complex conjugate representation. Those C⇡-
modules that are isomorphic to their own complex conjugate representation form a
subring R

+
C⇡ ⇢ RC⇡ called the purely real representation ring. Given a C⇡-module V ,

the character is �V : ⇡ ! C, where �V (g) is the trace of the endomorphism of V given
by g.

Now let � : V ⇥ V ! C⇡ be a hermitian form on a finitely generated C⇡-module V .
The form (V,�) determines a ⇡-equivariant hermitian form (VC,�C) over C, where

�C : VC ⇥ VC
��! C⇡ trace���! C

and where “trace” denotes taking the coe�cient of the neutral element e 2 ⇡. We may
take V

+ and V
�, the maximal positive definite and negative definite subspaces with

respect to �C. These subspaces are moreover ⇡-invariant and hence are themselves
C⇡-modules. We define the representation-valued multisignature:

mult(V,�) = V
+ � V

� 2 RC⇡.

Given a nonsingular hermitian form (V,�) representing an element of Ls
4(Z[⇡]), we

may complexify to obtain a hermitian form over C⇡, and then take the representation-
valued multisignature. This determines a group homomorphism

mult : Ls
4(Z[⇡]) ! RC⇡.
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Taking characters determines an injective ring homomorphismRC⇡ ! Homclass(⇡,C),
where the latter denotes the ring of Z-linear combinations of complex-valued functions
on ⇡ that are constant on conjugacy classes of ⇡. We call the image of mult(V,�)
under this homomorphism the character-valued multisignature.

5.2. The multisignature for a finite cyclic group. We now restrict our attention
to ⇡ = Z/n and choose a generator t, obtaining an isomorphism C[Z/n] ⇠= C[t]/(tn �
1). Let � represent the character of the irreducible C[t]/(tn � 1)-module C, where
t acts by exp(2⇡i/n). The characters for the irreducible C[Z/n]-modules are then
�
0
,�

1
,�

2
, . . . ,�

n�1, and the ring of complex class functions for Z/n is well-known to
be isomorphic to Z[�]/(1 + �+ �

2 + · · ·+ �
n�1).

Proposition 5.1. Let (V,�) be a hermitian form over C[Z/n], with associated ⇡-
equivariant complex hermitian form (VC,�C). The coe�cient ↵k of the character-
valued multisignature

mult(V,�) = ↵0 · �0 + ↵1 · �1 + · · ·+ ↵n�1 · �n�1 2 Z[�]/(1 + �+ �
2 + · · ·+ �

n�1)

is equal to the ordinary signature of the restriction of �C to the exp(2⇡ik/n)-eigenspace
of the action of t on VC.

Proof. Recall the positive and negative definite C[Z/n]-modules V
+ and V

�. There
is then a decomposition into irreducible components V

± ⇠=
Ln�1

k=0 V
±
k , where V

±
k de-

notes the component that corresponds to the character �k. The representation-valued
multisignature then decomposes as

mult(V,�) = V
+ � V

� =
n�1X

k=0

(V +
k � V

�
k ) 2 RC(Z/n)

Taking characters, we see that ↵k = dimC(V
+
k )�dimC(V

�
k ). In other words, ↵k is the

ordinary signature of the restriction of �C to Vk = V
+
k � V

�
k . Note that, viewing Vk

as a complex vector subspace Vk ⇢ VC, it is the exp(2⇡ik/n)-eigenspace of the action
of the generator t 2 Z/n on VC. ⇤

Example 5.2. Suppose (V,�) as in Proposition 5.1 and A(t) is a hermitian matrix
over C[Z/n] ⇠= C[t]/(tn� 1) representing (V,�). Then the signature of �C restricted to
Vk is given by the signature of the complex hermitian matrix A(exp(2⇡ik/n)).

Example 5.3. LetW be a compact oriented 4-manifold with a homomorphism � : ⇡1(W ) !
Z/n. This determines an n-fold cyclic cover fW ! W with covering transformation

⌧ : fW ! fW . The complex vector space VC := H2(fW ;C) has an action of Z/n gener-

ated by ⌧⇤ = t, and the middle-dimensional intersection pairing �C of fW is equivariant
with respect to this. Thus (W,�) determines a multisignature via (VC,�C). The co-
e�cients of this multisignature may be computed using Proposition 5.1 and Example
5.2.

For odd n, the next result is due to Wall [Wal99, Theorem 13A.4(ii)] and inde-
pendently to Bak [Bak78]. For n a power of 2, it was explicitly derived in [Wal76,
Corollary 3.3.3] and the techniques for the general even n case were outlined. This
general even n case is stated in [HT00, p. 3] and implicitly calculated there.

Theorem 5.4 ([HT00, 10, 12]). For n any positive integer, the group homomorphism

mult : Ls
4(Z[Z/n]) ! Z[�]/(1 + �+ �

2 + · · ·+ �
n�1)
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determined by the character-valued multisignature factors through the purely real rep-
resentations R

+
C (Z/n) ⇢ RC(Z/n). There is moreover an isomorphism

L
s
4(Z[Z/n]) ⇠=

⇢
4Z(n�1)/2 � 8Z n odd,
4Z(n�2)/2 � 8Z� 8Z n even,

given by the function

(V,�) 7!
⇢

(↵1,↵2 . . . ,↵(n�1)/2,↵0) n odd,
(↵1,↵2 . . . ,↵(n�2)/2,↵n/2,↵0) n even.

where ↵k is the coe�cient of �k in mult(V,�).

Remark 5.5. The reader may be wondering why only half the character coe�cients
of mult(V,�) appear in the above isomorphism. It is a consequence of the fact that the
character-valued multisignature factors through R+

C (Z/n), that the complex irreducible
representations will appear as conjugate pairs in mult(V,�):

mult(V,�) =

8
>><

>>:

↵0 · �0 +
P(n�1)/2

k=0 ↵k(�k + �
�k) n odd,

↵0 · �0 + ↵n/2 · �n/2 +
P(n�2)/2

k=0 ↵k(�k + �
�k) n even.

In other words, for all k we have that ↵k = ↵�k.

5.3. The multisignature as Tristram-Levine signatures. For this section, let K
be a knot and let W be a bordism from S

3
n(K) to L(n, 1) over the group Z/n. Such

a bordism in particular has a multisignature as in Example 5.3. Now we relate the
Tristram-Levine signatures of K to the multisignature of W .

Lemma 5.6. Let K be a knot and let W be a cobordism from S
3
n(K) to L(n, 1) over

the group Z/n. Assume that �(W ) = 0. When 0 < k < n, the coe�cient ↵k 2 Z of
the multisignature of W at �

k coincides with the Tristram-Levine signature of K at
⇠
k
n, where ⇠n = exp(2⇡i/n).

Proof. Noting that by hypothesis �(W ) = 0, we have by Proposition 3.7 that

�⇠kn
(K) = �k(fW )� �(W ) = �k(fW ).

Proposition 5.1 tells us that �k(fW ) is the coe�cient of the character �
k in the mul-

tisignature as claimed. ⇤
We summarise the results in the previous three sections for our purposes.

Proposition 5.7. Let K be a knot and let f : S3
n(K) ! L(n, 1) be a degree one normal

map. Suppose W is a degree one normal bordism from (S3
n(K), f) to (L(n, 1), Id) with

�(W ) = 0. Then the associated surgery obstruction

(H2(W ;Z[Z/n]),�, µ) 2 L
s
4(Z[Z/n])

is trivial if and only

�⇠kn
(K) = 0 for every

⇢
k = 1, . . . , (n� 1)/2 n odd,
k = 1, . . . , n/2 n even,

where �⇠kn
(K) denotes the Tristram-Levine signature of K at ⇠kn, for ⇠n = exp(2⇡i/n).

Proof. By Theorem 5.4, a class in L
s
4(Z[Z/n]) vanishes if and only if there is vanishing

of the associated multisignature coe�cients:

(↵1,↵2 . . . ,↵(n�1)/2,↵0) for n odd,
(↵1,↵2 . . . ,↵(n�2)/2,↵n/2,↵0) for n even.
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The coe�cient ↵0 corresponds to the trivial character and thus corresponds to the
eigenspace of the t action on (H2(W ;Z[Z/n]) with eigenvalue 1. The signature of the
Z[Z/n]-coe�cient intersection form of W restricted to this component is then just the
ordinary signature of W , whose vanishing is in the hypotheses.

For k 6= 0, the coe�cient ↵k is equal to �⇠kn
(K), by Lemma 5.6. ⇤

Proposition 5.8. For odd n, suppose that H1(S3
n(K);Z[Z/n]) = {0} and �⇠kn

(K) = 0

for all 0 < k < n, and ⇠n a primitive nth root of unity. Then S
3
n(K) is homology

cobordant to L(n, 1) via a cobordism V homotopy equivalent to L(n, 1) ⇥ I, via a ho-
motopy equivalence restricting to the identity map on L(n, 1) and the standard degree
one collapse map on S

3
n(K). The same is true for even n when Arf(K) = 0.

In fact, Propositions 3.5 and 3.3 show that this is an ‘if and only if’.

Proof. Lemma 4.4 shows how to construct the degree one normal collapse map f : S3
n(K) !

L(n, 1). In Proposition 4.9, with the assumption that Arf(K) = 0 when n even, we
further constructed a degree one normal bordism W over L(n, 1) from (S3

n(K), f) to
(L(n, 1), Id), such that ⇡1(W ) ⇠= Z/n, and �(W ) = 0.

By the discussion at the end of Section 4, using the fact that H1(S3
n(K);Z[Z/n]) =

{0}, the obstruction to performing further surgeries onW to improve it to be homotopy
equivalent to L(n, 1) lies in the group L

s
4(Z[Z/n]).

The vanishing of the surgery obstruction from Proposition 5.7 and the fact that Z/n
is a good group implies that we can perform surgery on the interior of W to obtain a
cobordism V that is homotopy equivalent to L(n, 1) [FQ90, Chapter 11]. In particular,
V is a Z[Z/n]-homology cobordism from S

3
n(K) to L(n, 1). ⇤

6. The Arf and ⌧ invariants

6.1. The ⌧ invariant. Recall that a locally flat sphere in a topological 4-manifold
M is said to be generically immersed if all its self-intersections are transverse double
points. A locally flat union of discs in M is said to be generically immersed if its self-
intersections are transverse double points and if the boundaries are mutually disjoint
and embedded.

We refer the reader to [FQ90, Chapter 1] for standard notions such as the intersection
and self-intersection numbers � and µ for generically immersed spheres in an ambient
topological 4-manifold. We will use the following lemma.

Lemma 6.1 ([FQ90, p. 22]). For a generically immersed sphere S in a topological
4-manifold, we have that

�(S, S) = µ(S) + µ(S) + e(⌫S)

where the last term denotes the euler number of the normal bundle ⌫S of S.

We also use the fact that a locally flat submanifold of a topological 4-manifold has a
linear normal bundle, as well as notions of topological transversality, immersions, and
so on, for which we refer the reader to [FQ90].

The key tool in this section is the ⌧ invariant of a generically immersed sphere with
vanishing self-intersection number in a topological 4-manifold. This was originally
defined by [Mat78] and [FK78], and then significantly generalised by Schneiderman
and Teichner [ST01]. We define ⌧ in our setting, referring the reader to [ST01] for a
more general definition.

Definition 6.2. A generically immersed sphere S in a topological 4-manifold M is
said to be s-characteristic, or spherically characteristic, if S · R ⌘ R · R mod 2 for
every immersed sphere R in M .
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Proposition 6.3 ([ST01, Theorem 1, Remark 5]). Let M be a simply connected topo-
logical 4-manifold and suppose that S is a generically immersed s-characteristic 2-
sphere in M with µ(S) = 0. Consider the quantity

⌧(S, {Wi}) :=
X

i

S · W̊i mod 2,

where {Wi} is a set of framed, generically immersed Whitney discs in M , pairing the
self-intersection points of S, and such that each Wi intersects S transversely in double
points in the interior of {W̊i}. Such a family of Whitney discs exists since µ(S) = 0.

The value of ⌧(S, {Wi}) 2 Z/2 does not depend on choices of pairing of double
points, Whitney arcs, or Whitney discs.

Consequently we write ⌧(S) 2 Z/2, dropping the discs {Wi} from the notation.
When we judge that the manifold M is not immediately clear from the context, we
use the notation ⌧M (S) instead of ⌧(S).

Indeed, ⌧(S) is an invariant of the homotopy class [S] 2 ⇡2(M), as follows. Each
class in ⇡2(M) can be represented by a generic immersion of a sphere S in M by [FQ90,
Immersion lemma, p. 13]. Perform local cusp moves to ensure that µ(S) = 0 and
then compute ⌧(S). Representatives of a given homotopy class with vanishing self-
intersection number are regularly homotopic [FQ90, Proposition 1.7], where by def-
inition, a regular homotopy in the topological category is a concatenation of finger
moves and (embedded) Whitney moves. (If M admits a smooth structure, a generic
regular homotopy can be decomposed into a sequence of such moves, and every regu-
lar homotopy can be perturbed to such a homotopy [GG73, Section III.3].) It is clear
that either such move preserves ⌧(S). Consequently, the invariant ⌧ is well-defined on
homotopy classes, and we sometimes use the notation ⌧(x) for an s-characteristic class
x 2 ⇡2(M) for a simply connected topological 4-manifold M .

In particular, if such an x 2 ⇡2(M) is represented by a locally flat, embedded
sphere, then ⌧(x) = 0, and thus ⌧ gives an obstruction for a homotopy class to contain
a locally flat embedding. Observe that ⌧ does not see the orientation of a sphere,
that is, ⌧(x) = ⌧(�x) for an s-characteristic class x 2 ⇡2(M) in a simply connected
topological 4-manifold M .

Next we recall a well-known formulation of the Arf invariant of a knot.

Proposition 6.4 ([Mat78, FK78][CST14, Lemma 10]). Let K be a knot in S
3 bounding

a generically immersed disc � in D
4 with µ(�) = 0. Since µ(�) = 0, there exists a

collection {Wi} of framed, generically immersed Whitney discs pairing up the self-
intersections of � and intersecting � in transverse double points in the interior of
{W̊i}. Then

Arf(K) =
X

i

� · W̊i mod 2.

For a sketch of a proof, see [CST14, Lemma 10]. We give a brief outline here for the
convenience of the reader. The Arf invariant of a knotK is equal to

P
i lk(ai, a

+
i ) lk(bi, b

+
i )

mod 2 where {ai, bi} is a symplectic basis for the first homology of some Seifert sur-
face F of K, represented by simple closed curves with |ai t bj | = �ij [Lic93, Sec-
tion 10, p. 105]. Given such a surface F and curves {ai, bi}, construct an immersed
disc bounded by K by pushing the interior of F into D

4 and surgering along correctly
framed immersed discs bounded by the curves {ai} (correct framing can be arranged
by boundary twisting). Construct Whitney discs for the self-intersections using the
immersed discs bounded by the {bi}. Then all intersections are created in pairs, except
for the

P
lk(ai, a

+
i ) lk(bi, b

+
i ) intersections created when adjusting the framings of the
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discs bounded by {ai, bi}. This equals the Arf invariant of K via the Seifert form
definition.

That the count in Proposition 6.4 is well-defined follows from glueing together two
generically immersed discs bounded by K, producing an s-characteristic generically
immersed sphere in S

4 with vanishing ⌧ (since ⇡2(S4) = 0).
The next lemma shows, in particular, that knots with Arf invariant 1 are not n-shake

slice. This was shown by Robertello [Rob65] using a di↵erent proof.

Proposition 6.5 ([Rob65]). Let n be an integer. Let S be an immersed sphere
representing a generator of ⇡2(Xn(K)) ⇠= Z for a knot K with µ(S) = 0. Then
⌧(S) = Arf(K).

Proof. Given any null homotopy of K in D
4, the union with the core of the 2-handle

of Xn(K) is a sphere S generating ⇡2(Xn(K)) but it might not have vanishing self-
intersection number. However, n = �(S, S) = 2µ(S) + e(⌫S), since Xn(K) is simply
connected (see Lemma 6.1). Adding a local cusp to S changes µ(S) by ±1 and the euler
number e(⌫S) by ⌥2, but does not change the homotopy class of S. Add local cusps
as necessary to produce a sphere SK , also generating ⇡2(Xn(K)), with µ(SK) = 0 and
e(SK) = �(SK , SK) = n. Perform the local cusps inside D

4, so SK still intersects the
2-handle of Xn(K) only in the core.

Next, we claim that SK is s-characteristic. To see this, let R be an immersed sphere
in Xn(K). Then since SK generates ⇡2(Xn(K)) ⇠= Z there is some a 2 Z such that R
has homotopy class a[SK ]. Then SK · R = an and R · R = a

2
n, which have the same

parity. So SK is indeed s-characteristic.
By definition, ⌧(SK) is computed as

⌧(SK) =
X

i

SK · W̊i mod 2,

where {Wi} is some collection of framed, generically immersed Whitney discs pairing
up all the self-intersections of SK and intersecting SK in transverse double points in
the interior of the {Wi}. Since the self-intersections of SK lie in the 0-handle D

4 of
Xn(K), we may and shall assume that the discs {Wi} also lie in D

4. In that case, the
value of ⌧(SK) is computed purely in D

4 and equals Arf(K) by Proposition 6.4. ⇤

Recall that by Freedman’s classification [Fre82] of closed, simply connected 4-manifolds,
there exists a closed topological 4-manifold homotopy equivalent but not homeomor-
phic to CP2, known as the Chern manifold, and denoted ⇤CP2. To build ⇤CP2, attach
a 2-handle to D

4 along a +1-framed knot J in S
3 = @D

4 with Arf(J) = 1, such as
the figure eight knot, and cap o↵ the boundary, which is a homology 3-sphere, with a
contractible 4-manifold C, which can be found by [Fre82, Theorem 1.40], [FQ90, 9.3C].

The next lemma shows how to use the ⌧ invariant to distinguish between the man-

ifolds CP2#CP2 and ⇤CP2#CP2.

Lemma 6.6. Let x, ⇤x, and x denote generators of, respectively, ⇡2(CP2) ⇠= ⇡2(⇤CP2) ⇠=
⇡2(CP2) ⇠= Z. Then x+x and ⇤x+x are s-characteristic classes in ⇡2(CP2#CP2) and

⇡2(⇤CP2#CP2) respectively. Moreover, ⌧(x+ x) = 0 while ⌧(⇤x+ x) = 1.

Proof. Let S denote the sphere CP1 ⇢ CP2 ⇢ CP2#CP2 and let S denote the sphere

CP1 ⇢ CP2 ⇢ CP2#CP2. Then without loss of generality, x = [S] and x = [S].

First we consider CP2#CP2. The pair {x, x} generates ⇡2(CP2#CP2). Then

(x+ x) · (ax+ bx) ⌘ a+ b ⌘ a
2 + b

2 ⌘ (ax+ bx) · (ax+ bx) mod 2.
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Thus, x + x is s-characteristic in ⇡2(CP2#CP2). Then ⌧(x + x) = 0 since the class

x+ x can be represented by an embedded sphere in CP2#CP2 produced by tubing S

and S together.
As described above, ⇤CP2 is built by capping o↵ the surgery trace X1(J) of some

knot J with Arf(J) = 1 by a contractible 4-manifold. Inclusion induces an isomor-
phism ⇡2(X1(J)) ⇠= ⇡2(⇤CP2), and, as before, the generator is s-characteristic. By
Proposition 6.5, the image of ⇤x in X1(J) can be represented by a sphere ⇤S ⇢ X1(J)
with trivial self-intersection number and self-intersections paired by a family of Whit-
ney discs {Wi} so that

P
⇤S ·W̊i mod 2 = Arf(J) = 1. Since X1(J) ⇢ ⇤CP2, both ⇤S

and the same Whitney discs are contained within ⇤CP2.

The pair {⇤x, x} generates ⇡2(⇤CP2#CP2) and the corresponding intersection form
is [+1]� [�1]. The same calculation as above shows that ⇤x+ x is s-characteristic in

⇡2(⇤CP2#CP2).

Now, to compute ⌧(⇤x+x), we tube together ⇤S and S in ⇤CP2#CP2. Call the result
⇤S + S. Since S is embedded and S and ⇤S are disjoint, the discs {Wi} from above
form a complete set of Whitney discs for the self-intersections of ⇤S + S. Moreover,
the discs {Wi} do not intersect S. It follows that ⌧(⇤x+ x) = Arf(J) = 1. ⇤

6.2. Equating the Arf and Kirby-Siebenmann invariants. Now we bring in the
ingredients from the previous two sections. Our aim is to apply the ⌧ invariant to
prove that Arf(K) computes the Kirby-Siebenmann invariant of a certain 4-manifold.

Recall that we built a homology cobordism V between S
3
n(K) and the lens space

L(n, 1) in Proposition 5.8. The following technical lemma will be used below to show
that the union of V and Dn, the D

2-bundle over S
2 with euler number n is homeo-

morphic to CP2#CP2 when n is odd and Arf(K) = 0.

Lemma 6.7. Let n be an odd integer. Let Dn denote the D
2-bundle over S2 with euler

number n. Suppose that S
3
n(K) is homology cobordant to L(n, 1) via a cobordism V

which is homotopy equivalent to L(n, 1) ⇥ I via a homotopy equivalence h restricting
to the identity on L(n, 1) and the map f on S

3
n(K) from Lemma 4.4. Let Z denote the

space �Xn(K) [S3
n(K) V [L(n,1) Dn.

If Arf(K) = 0 then Z is homeomorphic to CP2#CP2. If Arf(K) = 1 then Z is

homeomorphic to ⇤CP2#CP2.

Proof. Recall from Lemma 4.4 that the map f : S3
n(K) ! L(n, 1) extends to a homo-

topy equivalence f : Xn(K) ! Dn (this is merely the collapse map). Observe that
Dn [L(n,1) L(n, 1) ⇥ I [L(n,1) Dn is an alternate decomposition of the double of Dn,

which is homeomorphic to S
2e⇥S

2 since n is odd.
Now we define a function G : Z ! S

2e⇥S
2.

Z := �Xn(K) [ V [ Dn

S
2e⇥S

2 := �Dn [ L(n, 1)⇥ I [ Dn

G f h Id

We now show that G is a homotopy equivalence. Note that Z is constructed from
V [ Dn by adding a 2-handle and then a 4-handle, namely, the handles constituting
Xn(K) turned upside down. It is then easy to compute using the Seifert-van Kampen
theorem and the Mayer-Vietoris sequence that ⇡1(Z) = 1, H2(Z) ⇠= Z�Z, H4(Z) = Z.
All other reduced homology groups vanish. Thus, Z has the same homology groups
as S

2e⇥S
2. Note further that H2(Z) is generated by [S] and [�], where S is the base
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sphere of Dn and � is represented by the union of the cocore of the 2-handle of Xn(K)
and some null-homology for the meridian µK of K in the surgery diagram for S3

n(K)
in V [Dn. We will choose a specific � presently.

We know that H2(S2e⇥S
2) ⇠= Z� Z. Consider again the decomposition

S
2e⇥S

2 = �Dn [L(n,1) L(n, 1)⇥ I [L(n,1) Dn.

Let C denote the cocore of the 2-handle of Dn. The boundary is the meridian µU of
the unknot U in the surgery diagram for L(n, 1) as the boundary of Dn. We see that
H2(S2e⇥S

2) is generated by S, the base sphere of Dn, and �0 := �C [ µU ⇥ I [ C.
Note that �0 ·�0 = 0. Now define � := G

�1(�0). By construction, f�1(µU ) = µK .

Moreover, f
�1

(C) is a cocore of the 2-handle of Xn(K) by Lemma 4.4. Thus G�1(µU⇥
I [ C) is a null-homology for µK ⇢ S

3
n(K) in V [ Dn and � has the form promised

in the previous paragraph. Consequently, H2(Z) ⇠= Z� Z is generated by {S,�} and
H2(S2e⇥S

2) ⇠= Z�Z is generated by {S,�0). By construction, G(S) = S and G(�) =
�0. The map G also induces an isomorphism H4(Z) ! H4(S2e⇥S

2), which follows
from a calculation using naturality of the Mayer-Vietoris sequences corresponding to
the decompositions of Z and S

2e⇥S
2 in the definition of G above. Thus we have shown

that G induces isomorphisms on the homology groups of Z and S
2e⇥S

2. Since Z and
S
2e⇥S

2 are simply connected, this completes the proof thatG is a homotopy equivalence
by Whitehead’s theorem and the fact that any 4-manifold is homotopy equivalent to
a cell complex. Moreover, since G is a homotopy equivalence, � ·� = �0 ·�0 = 0.

From now on we work only within the space Z. Note that Z is a closed, simply con-
nected, topological 4-manifold with intersection form [+1]� [�1]. By the classification

of such 4-manifolds [Fre82], Z is homeomorphic to either CP2#CP2 or ⇤CP2#CP2.
The remainder of the proof will use Lemma 6.6 to determine the homeomorphism type
of Z. To do this we need to find elements of ⇡2(Z) with self-intersection ±1.

Let S0 denote an immersed sphere within �Xn(K) ⇢ Z representing a generator of
⇡2(�Xn(K)). We know that S0 · S0 = �n within Z. Here the sign has changed since
Z contains the oriented manifold �Xn(K) rather than Xn(K). The pair {[S], [�]} is
a basis for H2(Z) and we calculate that [S0] = [S] � n[�]. Here we have also used
the facts that S

0 ·� = 1, S ·� = 1, and S · S = n. Add local cusps to arrange that
µ(S0) = 0 and thus S0 · S0 = e(S0) = �n.

Next we seek the classes in H2(Z) ⇠= ⇡2(Z) with self-intersection ±1. Since n is odd,
it can be represented as n = 2k+1 for some integer k. Straightforward algebra implies
that [S]� k[�] = [S0] + (k+1)[�] is the unique class, up to sign, with self-intersection
+1 and that [S0] + k[�] = [S] � (k + 1)[�] is the unique class, up to sign, that has
self-intersection �1. That is,

(a[S] + b[�])2 = ±1 ) a
2
n+ 2ab = ±1 ) b =

±1

2a
� an

2

and so b 2 Z only if a = ±1.
Our goal is to compute the ⌧ invariant of the sum of these classes, since this de-

termines the homeomorphism type of Z by Lemma 6.6. We must first check that the
sum is s-characteristic. This is virtually the same computation as in Lemma 6.6. We
compute the sum ([S]�k[�])+([S0]+k[�]) = [S]+[S0]. Let a[S]+b[�] be any class in
⇡2(Z). Then ([S]+ [S0]) · (a[S]+b[�]) ⌘ a mod 2 and (a[S]+b[�]) · (a[S] + b[�]) ⌘ a

2

mod 2. Since a ⌘ a
2 mod 2, this shows that [S] + [S0] is s-characteristic.

Finally, we compute ⌧(([S] � k[�]) + ([S0] + k[�])) = ⌧([S] + [S0]). Represent the
class [S] + [S0] by a sphere ⌃ obtained by tubing together S and S

0. Observe that
µ(⌃) = 0 since µ(S0) = µ(S) = �(S, S0) = 0.
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In order to compute ⌧(⌃), pair up the self-intersections of ⌃ by framed, generically
immersed Whitney discs with pairwise disjoint and embedded boundaries. All the self-
intersections of ⌃ arise from self-intersections of S0 since S is embedded and S and S

0

are disjoint. We have Whitney discs {Wi} for the self-intersections of S0 within D
4 ⇢

�Xn(K) and by Proposition 6.5, we know that Arf(K) =
P

i S
0 · W̊i mod 2. Then

⌧(⌃) = Arf(K) and by Lemma 6.6, Z is homeomorphic to CP2#CP2 if Arf(K) = 0

and to ⇤CP2#CP2 if Arf(K) = 1. This completes the proof. ⇤
Proposition 6.8. Let n be odd. Let Dn denote the D

2-bundle over S2 with euler num-
ber n. Suppose that S3

n(K) is homology cobordant to L(n, 1) via a cobordism V which
is homotopy equivalent to L(n, 1)⇥I via a homotopy equivalence h that restricts to the
identity on L(n, 1) and to the degree one normal map j on S

3
n(K) from Lemma 4.4.

Let X be the union of V and Dn. Then Arf(K) = ks(X).

Proof. Consider the union Z := �Xn(K) [ X. Since ks(Xn(K)) = 0, we have that
ks(Z) = ks(X) by additivity of the Kirby-Siebenmann invariant [FNOP19, Theo-
rem 8.2]. From Lemma 6.7, we know that if Arf(K) = 0, then Z is homeomorphic to

CP2#CP2, which is smooth and thus ks(Z) = 0. If Arf(K) = 1, we saw that Z is home-

omorphic to ⇤CP2#CP2 and we have that ks(⇤CP2#CP2) = ks(⇤CP2) + ks(CP2) = 1
since the Kirby-Siebenmann invariant is additive under connected sum. This completes
the proof. ⇤

7. Proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following result of Boyer.

Theorem 7.1 ([Boy86, Theorems 0.1 and 0.7; Proposition 0.8(i)]). For i = 1, 2, let
Vi be a compact, simply connected, oriented, topological 4-manifold with boundary a
rational homology 3-sphere.

An orientation preserving homeomorphism f : @V1 ! @V2 extends to an orientation
preserving homeomorphism F : V1 ! V2 if and only if the following two conditions
hold.

(1) There exists an isomorphism ⇤ : H2(V1) ! H2(V2), inducing an isometry of
intersection forms such that the following diagram commutes:

0 H2(V1) H2(V1, @V1) H1(@V1) 0

0 H2(V2) H2(V2, @V2) H1(@V2) 0,

⇤ f⇤⇤⇤

where ⇤⇤ indicates the Hom-dual of ⇤, together with the implicit use of the iden-
tifications H2(Vi, @Vi) ⇠= H

2(Vi) ⇠= Hom(H2(Vi),Z), coming from Poincaré-
Lefschetz duality, and the universal coe�cient theorem respectively.

(2) Either the intersection form on H2(V1) is even or ks(V1) = ks(V2).

In our applications, the homeomorphism f we propose to extend will be the identity
map. We remark that when using this theorem, the specific homeomorphism f , or
more precisely the induced map f⇤, is highly significant. We illustrate this with an
example.

Example 7.2. A construction of Brakes gives examples of knotsK, J ⇢ S
3 with home-

omorphic n-surgeries but with non-homeomorphic n-traces, as follows. By [Bra80,
Example 3], for any two distinct integers a and b with |a|, |b| > 1, the knots Ka,b :=
Ca,ab2+1(Tb,b+1) and Kb,a := Cb,a2b+1(Ta,a+1) have homeomorphic (a2b2 � 1)-surgeries.
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Brakes’ homeomorphism induces a map on the first homology groups of the boundary,
which are isomorphic to Z/(a2b2 � 1) that is given by [µ(Ka,b)] 7! ab[µ(Kb,a)]. The-
orem 7.1 immediately implies that this homeomorphism of the boundaries does not
extend to the traces. We now argue that no homeomorphism of the boundaries can
extend to the traces by computing certain Tristram-Levine signatures of the knots.

It is straightforward to verify that Theorem 7.1 implies that if f : S3
n(K) ! S

3
n(J) is a

homeomorphism which extends to a homeomorphism of the n-traces, then f⇤([µK ]) =
±[µJ ] 2 H1(S3

n(J)). An argument as in Proposition 3.7 then shows that if K and
J have homeomorphic n-traces then �⇠(K) = �⇠(J) for every n

th root of unity ⇠.
However, a straightforward computation using Litherland’s formula for the signatures
of a satellite knot and the well-known formula for the signatures of a torus knot [Lit79]
shows that

�⇠35224
(K3,5) = �64 6= �60 = �⇠35224

(K5,3).

and hence K3,5 = C3,76(T5,6) and K5,3 = C5,46(T3,4) do not have homeomorphic 224-
traces despite having homeomorphic 224-surgeries. We remark to those interested in
shake concordance that this example shows that even homeomorphism of the n-surgery
is not enough to imply n-shake concordance for general n 2 Z.

After this brief interlude, we prove the main theorem.

Proof of Theorem 1.1. Suppose that the generator of ⇡2(Xn(K)) can be represented
by a locally flat embedded sphere S such that ⇡1(Xn(K)rS) ⇠= Z/n. Then Propo-
sitions 3.3 and 3.5 establish conditions (i) and (iii) respectively, using Lemma 3.1.
Condition (ii) is established in Proposition 6.5 for all n, and another proof is outlined
in Remark 4.7 for even n.

Now consider the converse. Using Conditions (i) and (iii), Proposition 5.8 constructs
a homology cobordism V between S

3
n(K) and L(n, 1) along with a homotopy equiva-

lence to L(n, 1)⇥ I restricting to the identity map on L(n, 1) and the standard degree
one collapse map on S

3
n(K). Let X denote the union of V and the disc bundle Dn over

S
2 with Euler number n. Note that ⇡1(X) = {1}, ⇡2(X) = Z, and the intersection

form is [n], which presents the linking form [1/n] on S
3
n(K).

Suppose n is even. Then Boyer’s classification (Theorem 7.1) implies that X ⇠=
Xn(K), extending the identity map on the boundary. Suppose n is odd. By Proposi-
tion 6.8, Arf(K) = 0 implies that ks(X) = 0, which implies by Boyer’s classification
(Theorem 7.1) that X ⇠= Xn(K), extending the identity map on the boundary. In
either case, the image of the zero section of Dn in Xn(K) gives rise to a locally flat
embedded sphere in Xn(K) representing a generator of ⇡2(Xn(K)). ⇤

8. ±1-shake sliceness

Recall that when n = ±1, the three conditions of Theorem 1.1 reduce to Arf(K) = 0.
As noted in the introduction, there is a quick proof that if Arf(K) = 0 then K is 1-
shake slice.

Example 8.1 (The ‘if’ direction when n = 1). Let K be a knot with Arf(K) = 0.
Since S

3
1(K) is a homology sphere, it bounds a contractible 4-manifold C, by [Fre82,

Theorem 1.40] (see also [FQ90, 9.3C]). By removing a small ball from C we obtain
a simply connected homology cobordism V from S

3
1(K) to S

3 = S
3
1(U). Define

X := V [S3 X1(U) ⇠= C#CP2, and observe that X is a simply connected 4-manifold
with boundary S

3
±1(K) and intersection form [1]. By Boyer’s classification (Theorem

7.1), the manifold X is homeomorphic to X1(K) if and only if the Kirby-Siebenmann
invariant ks(X) = ks(X1(K)) = 0.
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Since the Kirby-Siebenmann invariant is additive under connected sum [FNOP19,
Theorem 8.2] and CP2 is smooth, we have ks(X) = ks(C) + ks(CP2) = ks(C). More-
over C is contractible and hence is a topological spin manifold. By [FQ90, p. 165]
and [GA70], ks(C) = µ(S3

1(K)) = Arf(K) = 0, where µ(S3
1(K)) is the Rochlin invari-

ant of the homology sphere S3
1(K). Thus we have a homeomorphism X ! X1(K) and

the image of CP1 ⇢ CP2 is an embedded sphere with simply connected complement
representing the generator of ⇡2(X1(K)).

8.1. A Seifert surface approach. Now we describe yet another proof that, if Arf(K) =
0, then K is 1-shake slice. This proof is Seifert surface based and has the advantage
that we control the number of intersections of the resulting 2-sphere with the cocore
of the 2-handle, yielding an upper bound on the 1-shaking number of knots. A similar
proof for Theorem 1.1 when |n| � 2, including similar control on the n-shaking number
of Z/n-shake slice knots, seems possible in principle, but we have not managed to find
it yet.

Definition 8.2. A (2k + 1)-component n-shaking of a knot K is a link S2k+1,n(K)
obtained by taking 2k + 1 push-o↵s with respect to the n-framing, oriented so that
k+1 push-o↵s are oriented the same as K, and k push-o↵s are oriented in the opposite
direction.

The link S2k+1,n(K) is the (untwisted) satellite link with companion K and pat-
tern S2k+1,n as in Figure 1. It is determined up to isotopy by K, n, and k.

. . .. . .

Figure 1. The pattern S3,1

Now we explain the well-known relationship between the existence of an embedded
sphere in the n-trace Xn(K) and shakings S2k+1,n(K). Recall that a link L is weakly
slice if L bounds a locally flat planar surface in D

4.

Lemma 8.3. Let K be an oriented knot. There exists a surface of genus g that
represents the generator of H2(Xn(K);Z) if and only if, for some k � 0, the shak-
ing S2k+1,n(K) ⇢ S

3 bounds a surface of genus g in D
4. Consequently, K is n-shake

slice if and only if K admits a weakly slice n-shaking S2k+1,n(K) for some k 2 Z.
Proof. The if direction follows from the observation that any filling surface in D

4 for
the shaking S2k+1,n(K) can be capped of with 2k+1 parallel copies of the two-handle
to produce a surface that represents the generator of H2(Xn(K);Z).

For the only if direction, let F be a surface of genus g that represents the generator
of H2(Xn(K);Z). Isotope F so that it is transverse to the cocore of the 2–handle.
Cut Xn(K) along the cocore C to obtain back D

4. This punctures F to a surface F
0.

The surface F
0 has the same genus as F and is bounded by the shaking S2k+1,n(K),

where 2k + 1 is the geometric intersection number of F with the cocore C. ⇤



EMBEDDING SPHERES IN KNOT TRACES 31

For 1-shakings, we provide the following explicit variant of our main result Theo-
rem 1.1. Recall that the (topological) Z–slice genus g

Z
4 (L) of a link L is the smallest

genus among Z-slice surfaces for L. Here, a Z–slice surface for L is a properly, locally
flatly embedded, compact, connected, and orientable surface in D

4 with boundary L

and infinite cyclic fundamental group of the complement. For knots, the topological
Z-slice genus equals the algebraic genus galg [FL19], which is a quantity depending only
on the S-equivalence class of the Seifert form of knots and that in particular satisfies
g
Z
4 (K) = galg(K)  deg(�K)/2  g3(K). Here g3 denotes the 3-genus.
For our purposes, it will su�ce to define galg(K) to be the minimal g such that there

exists a Seifert surface S for K and a basis for H1(S) with respect to which the Seifert

form is given by


A B

B
T

C

�
, where C is a 2g ⇥ 2g matrix and A is Alexander trivial,

i.e. det(tA�A
T ) is some power of t. From this definition, one can see that galg(K) gives

a lower bound on the topological Z-slice genus of K: A corresponds to a subsurface
SA of S with boundary @SA = JA, where JA has trivial Alexander polynomial, and so
surgering S along JA gives a Z-slice surface for K of genus g. See [FL18] for details
on galg.

Proposition 8.4. Let K be a knot with algebraic genus galg(K). Suppose galg(K) �
h > 0. Then there exists a Z-slice surface with genus h for the 1-shaking of K with
2(galg(K)�h)+ 1-components. If K has trivial Arf invariant, then the statement also
holds for h = 0, i.e. there exists a Z-slice genus 0 surface for a 2galg(K)+1-component
1-shaking of K.

Let K be a knot satisfying the assumptions of Proposition 8.4. Thus, we obtain a
Z-slice surface S with boundary a 1–shaking of K and genus h. Now cap o↵ S with
parallel copies of the core of the 2-handle of X1(K) to obtain a closed Z-slice surface
of genus h in X1(K), which represents a generator of H2(X1(K);Z). We have shown
the following corollary.

Corollary 8.5. For a knot K with galg(K) � h > 0, the generator of H2(X1(K);Z)
can be represented by a locally flat genus h surface whose complement is simply con-
nected and that has geometric intersection number 2(galg(K)�h)+1 with the cocore of
the 2-handle. If K has trivial Arf invariant, then the statement also holds for h = 0.

Proposition 8.4 and Corollary 8.5 give an explicit bound on the genus and the
number of points of intersection with the cocore of the 2-handle in terms of galg(K), a
quantity accessible in terms of Seifert matrices, and which is bounded above by the 3-
genus. In particular, this together with the next remark yield Propositions 8.7 and 8.8
from the introduction.

Remark 8.6. For a locally flat genus g surface F that represents a generator of
H2(Xn(K);Z) and that intersects the cocore of the 2-handle transversely 2k+1 times,
one has gtop4 (K)  g + k. Here g

top
4 (K) denotes the (topological) slice genus of a knot

K.
Indeed, as in the proof of Lemma 8.3, we find a locally flat connected surface in D

4

with genus g and boundary the shaking L = S2k+1,n(K). Since 2k saddle/band moves
turn L into K, we find a genus g+k locally flat surface in D

4 with boundary K. Hence
g
top
4 (K)  g + k.

Proposition 8.7. For every knot K there exists a locally flat embedded torus in X1(K)
that generates H2(X1(K)) and has simply connected complement. In particular,

g
1
sh(K) = Arf(K) 2 {0, 1}.
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Proof. For knots with Arf invariant 1, setting h = 1 in Corollary 8.5 provides a locally
flat torus with simply connected complement representing a generator ofH2(X1(K);Z).
For knots with Arf invariant 0, we even find a locally flat sphere whose complement is
simply connected by setting h = 0 in Corollary 8.5. ⇤
Proposition 8.8. For a knot K with Arf(K) = 0 we have

2gtop4 (K) + 1  1-shaking number of K  2gZ4 (K) + 1 = 2galg(K) + 1  2g3(K) + 1.

In particular, for each integer k � 0 there exists a 1-shake slice knot Kk such that the
1-shaking number of Kk is exactly 2k + 1.

Proof. Corollary 8.5 gives a sphere that has geometric intersection number 2(galg(K))+
1 with the cocore of the 2-handle. Hence the 1-shake slice number of knots with Arf
invariant 0 is less than or equal to 2galg(K) + 1. We already know that g

Z
4 (K) =

galg(K)  g3(K) from [FL19]. To obtain the first inequality, note that for any 2-

sphere that realises the 1-shake slice number 2k + 1, we have g
top
4 (K)  0 + k = k by

Remark 8.6.
For the second sentence, take Kk to be an Arf invariant 0 knot with g

top
4 (K) =

g3(K) = k. For example, let Kk be the k-fold connected sum of 52, the twist knot
with 5 crossings. This satisfies |�(K)| = 2g3(K) = 2, and thus g

top
4 (K) = g3(K) = 1

by the Murasugi-Tristram inequality relating the signature and the slice genus. ⇤
Next we describe a Seifert surface (and the corresponding Seifert matrix) for S2k+1,n(K).

For this, one could iterate a construction of Tristram [Tri69, Definition 3.1] and extract
the Seifert form from his proof of signature invariance [Tri69, Theorem 3.2], but, for
the convenience of the reader, we give an argument in Lemma 8.9 below. Although, we
will only need the case n = 1 here, we give the general statement for future reference.

For any k and n, S2k+1,n is a winding number 1 pattern, and so we can construct a
Seifert surface F2k+1,n for S2k+1,n(K) as the union of two pieces. The first is a surface
in the solid torus identified with ⌫(K), and illustrated in Figure 2. The second is a
Seifert surface for K outside a tubular neighbourhood ⌫K.

Let Zn 2 GL(n,Z) be the permutation matrix corresponding to the cyclic permuta-
tion � = (1 . . . n), with entries are given by (Zn)i,j = �i,�(j). That is,

Zn =

0

BBBBB@

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

1

CCCCCA
.

Lemma 8.9. Let V be a Seifert matrix for the knot K. The Seifert surface F2k+1,n

for the (2k+1)-component n-shaking of K depicted in Figure 2 has Seifert form given
by the matrix

(8.10) V �
kM

j=1

✓
0 Idn
Zn 0

◆
.

Proof. The Seifert surface F2k+1,n agrees with a Seifert surface S for K outside a
tubular neighbourhood ⌫K. We compute the Seifert form (x, y) 7! lk(x, y+) of F2k+1,n.
The generators of H1(F2k+1,n;Z) are given by the generators vi of S, and the additional

generators ↵j
i and �

j
i , depicted in Figure 2, where i = 0, . . . , n� 1 and j = 1, . . . , k.

Denote the span hv1, . . . , v2gi by C, where g is the genus of the Seifert surface of K

used to construct F2k+1,n. Also, for each j = 1, . . . , k denote the span h↵j
i ,�

j
i | i =
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Figure 2. The portion of the Seifert surface F2k+1,n contained in ⌫(K),
drawn for n = 2 and k = 3. Each +1-box denotes a positive full twist
on 2k strands. The left and right edges of the figure are identified. The
figure also shows curves, ↵i

j and �
i
j , on the Seifert surface forming part

of a generating set for H1(F2k+1,n;Z). The dashed line on the top is
glued to a Seifert surface for K.

0, . . . , n � 1i by Dj . We say that two, possibly non-distinct curves �1 and �2 are
orthogonal if lk(�1, �

+
2 ) = 0 = lk(�+1 , �2).

Examination of F2k+1,n gives us the following vanishing linking numbers.

(1) For any i, j, k the curve vk is orthogonal to ↵
j
i and �

j
i since there exists a 3-ball

containing each ↵
j
i or �j

i which is disjoint from the surface S.

(2) For any i, i
0
, j, j

0 we have that �j
i and �

j0

i0 are orthogonal.

(3) For i 6= i
0 and arbitrary j, j

0 we have that ↵j
i and ↵

j0

i0 are orthogonal.

(4) For arbitrary i, j we have that lk(↵j
i , (↵

j
i )

+) = 0 i.e. ↵j
i is self-orthogonal.

(5) For arbitrary i, j, j
0 we have that ↵j

i and ↵
j0

i are orthogonal, since ↵j
i

+
is isotopic

to any ↵
j0

i

+
in S

3r↵
j
i and the self-linking of ↵j

i vanishes.

(6) For j 6= j
0 and arbitrary i, i

0 we have lk
�
↵
j
i ,�

j0

i0
+�

= lk
�
�
j
i ,↵

j0

i0
+�

= 0.

In particular, we have that the first homology splits as an orthogonal sum

H1(F2k+1,n;Z) = C �
kM

j=1

Dj ,

where the Seifert form on C is given by the Seifert matrix V of K with respect to the
basis v1, . . . , v2g.

What remains is to compute the Seifert form on Dj . Fix a j, and from now on sup-
press the index j from the notation. Recalling that � is the cyclic permutation (1 . . . n),
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we compute

lk(↵i,�
+
i0 ) =

(
1 i = i

0
,

0 otherwise
and lk(�i,↵

+
i0 ) =

(
1 i

0 = i+ 1 = �(i),

0 otherwise.

This shows that the Seifert form for F2k+1,n is indeed represented by the matrix in the
statement of the lemma. ⇤

Proof of Proposition 8.4. The case galg(K) = 0 follows from the result of Freedman
and Quinn that �K(t) = 1 if and only if K is the boundary of a Z-slice disc [Fre84,
Theorem 7],[FQ90, 11.7B], since, by definition, a knot K has algebraic genus 0 if and
only if �K(t) = 1. So, we consider the case g := galg(K) > 0.

Let V be a 2m ⇥ 2m Seifert matrix of K that realises the algebraic genus of K in
the following way: the top left square block P of V of size 2(m � g) ⇥ 2(m � g) is
Alexander trivial, that is det(tP � P

T ) = t
m�g. Additionally, arrange that the anti-

symmetrisation of V is a direct sum of P � P
T and the standard 2g ⇥ 2g symplectic

form. Denoting the lower right 2g⇥ 2g square block of V by B, the latter amounts to
requiring that

B =

✓
S A+ Idg
A

T ⇤

◆
,

where A is a g ⇥ g matrix and S is a g ⇥ g symmetric matrix.
By applying a base change that preserves the intersection form B�B

T , we can and
do arrange for the first g�h diagonal entries of S to be even. To see this, note that one
easily arranges for all but at most one diagonal entries of S to be even, and one may
further arrange for the last entry to be even if and only if the Arf invariant is trivial.
This can be checked using the formula for the Arf invariant in terms of a symplectic
basis [Lic93, Section 10, p. 105] and is only needed in the case that h = 0.

Let L be the 2(g � h) + 1-component 1-shaking of K. With everything set up as

above, we now look at the 2(m+g�h)-Seifert matrixM of L given by V �
Lg�h

j=1

✓
0 1
1 0

◆

by (8.10). To establish that L admits a Z-slice surface of genus h, it su�ces to find a
2(m� h)⇥ 2(m� h) Alexander trivial subblock of M by [FL18, Theorem 1].

For this, perform the base change corresponding to adding the basis element e2m+2l�1

to the basis element e2(m�g)+l for each l = 1, . . . , g � h. This corresponds to chang-
ing both entries M2(m�g)+l,2(m+l) and M2(m+l),2(m�g)+l from 0 to 1. The result is the
following Seifert matrix for L, which we again denote by M .

2

666666666666666666666666666664

2(m�g)
z }| {
P

g
z }| {

C

g
z }| {

⇤

2(g�h)
z }| {

0
0 1

0 1

CT S A + Idg
. . .

⇤ AT ⇤ 0

0 0 1
1 1 0

0 0 0 0 1
1 1 0

. . .
. . .

3

777777777777777777777777777775
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By adding multiples of the (2m+2l)th basis element appropriately to the first 2m� h

basis elements, for l = 1, . . . , g�h, we can arrange that the first g�h rows and columns
of C, A, and S become 0, while no other entries in the first 2m� h rows and columns
of M are modified. This is possible since S is symmetric and its first g � h diagonal
entries are even. We keep referring to the resulting matrix by M and conclude the
proof by noting that the sub-block Msub of M corresponding to the sub-basis

(e1, . . . , e2(m�g)| {z }
2m�2g

, e2(m�g)+1, . . . , e2(m�g)+g�h| {z }
g�h

, e2(m�g)+g+1, . . . , e2m�h| {z }
g�h

)

is Alexander trivial.
In other words, the block Msub is the 2(m� h)⇥ 2(m� h)–matrix that is obtained

from M by deleting the rows and columns 2(m� g) + g � h+ 1 through 2m� g and
deleting all rows and columns with index 2m � h + 1 or larger. This submatrix is of
the form

Msub =

0

@
P 0 ⇤
0 0 Idg�h

⇤ 0 ⇤

1

A ,

and so satisfies det(tMsub �M
T
sub) = det(tP � P

T )tg�h = t
m�h. ⇤
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Birkhäuser Verlag, Basel, 2001. Notes taken by Felix Schlenk.

[Wal76] C. T. C. Wall. Classification of Hermitian Forms. VI. Group rings. Ann. of Math. (2),
103(1):1–80, 1976.

[Wal99] C. T. C. Wall. Surgery on compact manifolds, volume 69 of Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, second edition, 1999. Edited and
with a foreword by A. A. Ranicki.

Department of Mathematics, ETH Zürich, Switzerland
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