
STABILIZATION DISTANCE BETWEEN SURFACES

ALLISON N. MILLER AND MARK POWELL

Abstract. Define the 1-handle stabilization distance between two surfaces properly em-
bedded in a fixed 4-dimensional manifold to be the minimal number of 1-handle stabi-
lizations necessary for the surfaces to become ambiently isotopic. For every nonnegative
integer m we find a pair of 2-knots in the 4-sphere whose stabilization distance equals m.

Next, using a generalized stabilization distance that counts connected sum with arbi-
trary 2-knots as distance zero, for every nonnegative integer m we exhibit a knot Jm in the
3-sphere with two slice discs in the 4-ball whose generalized stabilization distance equals m.
We show this using homology of cyclic covers.

Finally, we use metabelian twisted homology to show that for each m there exists a
knot and pair of slice discs with generalized stabilization distance at least m, with the
additional property that abelian invariants associated to cyclic covering spaces coincide.
This detects di↵erent choices of slicing discs corresponding to a fixed metabolising link on
a Seifert surface.

1. Introduction

Given a compact, smooth, oriented 4-manifold W , every second homology class can be
represented by some embedded surface [GS99, Prop. 1.2.3]. A simple operation called 1-
handle stabilization, illustrated in 3-dimensional space in Figure 1, preserves the homology
class represented by a surface while increasing the genus by one. Roughly, a 1-handle
stabilization removes D2 ˆS

0 from ⌃ and glues in S
1 ˆD

1, with some conditions that allow
this to occur ambiently in W in a controlled way (see Section 2 for formal definitions). A

ù

Figure 1. An embedded surface ⌃ (left) is stabilized by addition of a 1-
handle, resulting in ⌃1 (right).

result of Baykur-Sunukjian [BS15] states that any two embedded surfaces in W representing
the same second homology class become isotopic after finitely many 1-handle stabilizations.

In this paper, we analyze the minimal number of 1-handle additions required to make
two surfaces with the same genera isotopic. We call this the 1-handle stabilization distance,
and show that it induces a metric on the collection of ambient isotopy classes of surfaces
of a fixed genus representing a given second homology class. There are many invariants
capable of distinguishing two surfaces up to ambient isotopy, thereby showing that at least
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one 1-handle addition is required, but it is more challenging to find more substantial lower
bounds on the number of 1-handles needed.

Our first result shows that, even in the simplest possible setting of necessarily null-
homologous 2-spheres in S

4, the 1-handle stabilization distance can be arbitrarily large.

Theorem A. For every nonnegative integer m, there exists a pair of embedded 2-spheres
K1 and K2 in S

4 with 1-handle stabilization distance m.

We prove Theorem A by analyzing the e↵ect of 1-handle stabilization on the Alexander
module of a surface in S

4. Recall that the first Alexander module H1pSn`2z⌫K;Qrt˘1sq is
a classical invariant of an embedded n-sphere K in S

n`2 that measures the homology of
the infinite cyclic cover of the exterior of K, considered as a Qrt˘1s-module. In the case of
n “ 1, the order of this Qrt˘1s-module is exactly the classical Alexander polynomial �Kptq.

In addition to 1-handle stabilization, one might also wish to allow connected sum with
arbitrary knotted 2-spheres, also called 2-knots. In the context of Theorem A this is uninter-
esting: any two 2-knots become isotopic with zero 1-handle additions and a single 2-sphere
addition to each. However, when considering properly embedded discs in D

4 with fixed
boundary we show that the resulting generalized stabilization distance, in which 1-handle
addition counts as 1 and 2-sphere addition counts as 0, has similarly interesting properties.
In particular, the generalized stabilization distance between properly embedded discs in D

4

with fixed boundary can be arbitrarily large. More precisely, a slice disc for a 1-knot J Ä S
3

is a smoothly properly embedded disc D
2 Ä D

4 with boundary the knot J , and we prove
the following.

Theorem B. For every nonnegative integer m, there exists a knot J Ä S
3 and a pair of

slice discs D1 and D2 for J with generalized stabilization distance m.

To prove Theorem B we again rely on the Alexander module, comparing for i “ 1 and 2
the kernels of the inclusion-induced maps

H1pS3z⌫J ;Qrt˘1sq Ñ H1pD4z⌫Di;Qrt˘1sq.
Given any embedded surface ⌃ with boundary J , we then analyze how the kernel of the
inclusion induced map

H1pS3z⌫J ;Qrt˘1sq Ñ H1pD4z⌫⌃;Qrt˘1sq
can change under 1-handle and 2-sphere addition.

One common way to produce a slice disc for a knot is to surger a spanning surface for the
knot along a collection of curves as follows. Given an embedded oriented surface F in S

3

with boundary J , suppose we can find a set of 0-framed curves �i Ä F that form a half-basis
for H1pF ;Zq and which themselves bound disjoint discs �i in D

4. Then the surface

F� :“
´
F r

§

i

p�i ˆ p0, 1qq
¯

Y
´§

i

�i ˆ t0, 1u
¯

Ä D
4
,

is a slice disc for J , after a minor isotopy to smooth corners and make the embedding proper.
The methods of Theorem B can often distinguish slice discs which arise from surgering a
Seifert surface along two di↵erent collections of t�iu curves. However, while fixing the t�iu
there can still be multiple choices for the slice discs �i, and Alexander module techniques
cannot distinguish the resulting slice discs for J .



STABILIZATION DISTANCE BETWEEN SURFACES 3

For our last main result we detect these second order di↵erences between slice discs, and
again show that the distance can be arbitrarily large.

Theorem C. For every nonnegative integer m, there exists a knot J Ä S
3 and a pair of

slice discs D1 and D2 for J with generalized stabilization distance at least m, such that the
kernels

ker
`
H1pS3z⌫J ;Qrt˘1sq Ñ H1pD4z⌫Di;Qrt˘1sq

˘

coincide for i “ 1, 2.

Our primary tool in the proof of Theorem C is metabelian twisted homology, or twisted
homology coming from maps to metabelian groups, i.e. groups G with

G
p2q :“ rrG,Gs, rG,Gss “ 0.

These sorts of representations were notably used by Casson-Gordon [CG78, CG86] to give
the first examples of algebraically slice knots in S

3 which are not actually slice. The cor-
responding twisted homology theories have the nice feature of being relatively computable
while still being powerful enough to obtain strong conclusions, for example distinguishing
mutant knots up to concordance [KL01]. In our case, we take G to be the dihedral group
D2n – Z2 ˙Zn and construct our representations using maps from the first homology of
the double cover of the relevant space to Zn.

We remark that Theorem B is not a corollary of Theorem C, since the former gives us
distance exactly m. Theorem B is also easier to prove, and the method extends straightfor-
wardly to distinguish choices of slice discs for many knots beyond the explicit examples we
give, while Theorem C requires more involved arguments and more specialized constructions.

A slightly di↵erent analysis of stabilization distance between surfaces was undertaken by
[JZ18b], who rather than minimizing the number of 1-handle stabilizations necessary to
make two surfaces isotopic instead minimized the largest genus of any surface appearing in
a sequence of stabilizations and de-stabilizations connecting the two surfaces.

We also wish to advertise the following problem, which relates to recent work by [JZ18a]
and [CP19]. For a slice knot R, let nspRq denote the number of equivalence classes of slice
discs for R, where the equivalence relation is generated by connected sum with knotted
2-spheres and ambient isotopy rel. boundary. Note that nspUq “ 1.

Our examples of Theorem B show that for every integer k there is a knot Rk with
nspRkq • k. In fact, the knot #k946 has 2k natural slice discs obtained by choosing ‘left
band’ or ‘right band’ slice discs for each i “ 1, . . . , k; see Figure 3. By considering the kernels
of the inclusion induced maps on Alexander modules as we do in the proof of Theorem B, one
can see they are all mutually not ambiently isotopic rel. boundary and so nsp#k946q • 2k.

Problem 1.1. Determine the value of nspRq for some nontrivial knot R, or at least whether
nspRq † 8.

Organization of the paper. In Section 2 we give precise definitions for our notions of
stabilization distance. Section 3 constructs a cobordism between surface exteriors corre-
sponding to a stabilization. Our results will follow from analyzing the e↵ects on homology
of these cobordisms. Section 4 recalls the notion of generating rank of a module over a com-
mutative PID, records the facts about generating rank that we shall use, and establishes
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our conventions around twisted homology. Then Section 5 proves Theorem A, Section 6
proves Theorem B, and Section 7 proves Theorem C.

Conventions. All manifolds, unless otherwise stated, are compact, smooth, and oriented.
When N is a properly embedded submanifold of M , we write XN :“ M r ⌫pNq. In our
context, we will frequently have a canonical isomorphism " : H1pXN q Ñ Z and in this case
we let X

n
N denote the corresponding n-fold cyclic cover, for n P N Y t8u. For n P N, we

use Zn to denote the finite cyclic group Z {nZ. Given a surface F , we let gpF q denote its
genus.

Acknowledgements. The second author thanks Federico Cantero Morán and Jason Joseph
for interesting discussions on Theorem A. Both authors thank the referee for a careful read-
ing and many valuable comments. During the preparation of this paper, the first author
was partially supported by NSF grant DMS-1902880.

2. Stabilization distances

Fix a compact, oriented, smooth 4-manifold W . The following definition is motivated by
that of Juhász and Zemke [JZ18b].

Definition 2.1. Let ⌃ be an oriented surface with boundary, smoothly and properly em-
bedded in W . Let B be an embedding of D4 into W such that BB intersects ⌃ transversely
in a 2-component unlink L and B intersects ⌃ in two discs �0 and �1, which can be
simultaneously isotoped within B to lie in BB. Suppose that a 3-dimensional 1-handle
D

2 ˆ I is embedded into the interior of W such that D
2 ˆ tiu “ �i for i “ 0, 1. Then

⌃1 :“ p⌃ X pW rBqq YL pS1 ˆ Iq is a 1-handle stabilization of ⌃. If S1 ˆ I can be isotoped
into BB relative to L, we call the stabilization trivial.

Figure 2. A surface ⌃ with ball B as in Definition 2.1, pre-stabilization.

A trivial 1-handle stabilization does not change the fundamental group of the complement
of the surface, so frequently there will be no sequence of trivial stabilizations relating two
given surfaces. On the other hand, any two homologous surfaces become isotopic after
adding finitely many 1-handles [BS15].

Definition 2.2. Define the 1-handle stabilization distance in NYt0,8u between smoothly
and properly embedded surfaces pF, BF q Ä pW, BW q and pF 1

, BF 1q Ä pW, BW q with BF “
BF 1, homologous in H2pW, BW ;Zq, to be the minimal k P N such that F and F

1 become
ambiently isotopic rel. boundary after each has been stabilized at most k times. We denote
this by d1pF, F 1q. If F and F

1 are not homologous or have di↵erent boundaries then we say
that d1pF, F 1q “ 8.

In particular for any two 2-knots K and J , d1pK, Jq † 8. For distances between slice
discs, we obtain stronger results by defining a coarser notion that permits connected sum
with locally knotted 2-spheres. By adding a locally knotted 2-sphere to a properly embedded
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surface p⌃, B⌃q Ä pW, Bq we mean taking a 2-knot S in S
4 and forming the connected sum

of pairs
pW,⌃q#pS4

, Sq “ pW,⌃#Sq.
Definition 2.3. Let pF, BF q Ä pW, BW q and pF 1

, BF 1q Ä pW, BW q be smoothly and properly
embedded surfaces. If BF “ BF 1 and rF s “ rF 1s P H2pW, BW ;Zq, we define the generalized
stabilization distance d2pF, F 1q in NYt0,8u to be the minimal k P N such that F and F

1

become ambiently isotopic rel. boundary after each has been stabilized at most k times and
had arbitrarily many locally knotted 2-spheres added. If F and F

1 are not homologous or
have di↵erent boundaries then we say that d2pF, F 1q “ 8.

Note that for any two slice discs D1, D2 in D
4 for a fixed knot in S

3, we have that
d2pD1, D2q † 8. It is immediate from the definitions that

d2pF, F 1q § d1pF, F 1q.
We also remark that dJZpF, F 1q § d2pF, F 1q, where dJZ denotes the Juhász-Zemke stabi-
lization distance [JZ18b] between surfaces.

3. Cobordisms corresponding to handle additions

Now we construct cobordisms corresponding to handle additions. The following construc-
tion will be used in our proofs of all three main theorems.

Construction 3.1. [A cobordism between surface exteriors.] LetW be a compact, oriented,
smooth 4-manifold. Suppose that F1 is a smoothly and properly embedded surface in W

with BF1 “ K Ä BW and that F2 has been obtained from F1 by a 1-handle addition such
that gpF2q “ gpF1q ` 1. We define an ambient cobordism T Ä W ˆ I as follows:

T :“ pF1 ˆ r0, 1{2sq Y ppD1 ˆ D
2q ˆ t1{2uq Y pF2 ˆ r1{2, 1sq,

where D
1 ˆ D

2 ãÑ W is an embedding with BD1 ˆ D
2 Ä F1 and D

1 ˆ BD2 Ä F2. (That
is, D1 ˆ D

2 is the 3-dimensional 1-handle h in the definition of 1-handle stabilization.)
Observe that

BT “ pF1 ˆ t0uq YKˆt0u pK ˆ r0, 1sq YKˆt1u F2 ˆ t1u
and so XT : “ pW ˆ Iqr ⌫pT q is a cobordism rel. XK from XF1 to XF2 .

Since T is obtained from F1 ˆ r0, 1{2s by attaching a single 3-dimensional 1-handle to
F1 ˆ t1{2u (and then flowing upwards), it follows from the rising water principle [GS99,
Section 6.2] that XT has a handle decomposition relative to XF1 obtained by attaching
a single 5-dimensional 2-handle to XF1 ˆ I. Notice that the attaching sphere of this 2-
handle determines an element of ⇡1pXF1q of the form � “ µ1�µ

´1

2
�

´1, where µ1 and µ2

are meridians to F1 near the attaching spheres of h and � is a parallel push-o↵ of the core
of h. In particular, � is null-homologous in H1pXF1q. Taking the dual decomposition, we
see that XT also has a handle decomposition relative to XF2 obtained by attaching a single
5-dimensional 3-handle. By excision, we therefore have that

HkpXT , XF1q “
#
Z k “ 2

0 else
and HkpXT , XF2q “

#
Z k “ 3

0 else.

In particular, the inclusion maps XFi Ñ XT induce isomorphisms on first homology. It
will be useful for us later on to know that the inclusion induced map ⇡1pXF1q Ñ ⇡1pXT q
is surjective, as follows immediately from applying the Seifert-van Kampen theorem to
XT “ pXF1 ˆ Iq Y p2-handleq.
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We now comment on basepoints for the fundamental group in this context. Let x0 P
XK Ñ XT ˆ t0u, let ↵ “ tx0u ˆ I Ñ XT ˆ I, and let x1 “ tx0u ˆ 1. We will always
let ⇡1pXKq “ ⇡1pXK , x0q, ⇡1pXF1q “ ⇡1pXF1 , x0q, ⇡1pXT q “ ⇡1pXT , x0q, and ⇡1pXF2q “
⇡1pXF2 , x1q. There are natural inclusion induced maps ◆ : ⇡1pXK , x0q Ñ ⇡1pXT , x0q and
◆1 : ⇡1pXF1 , x0q Ñ ⇡1pXT , x0q. Moreover, we use the arc ↵ to define

◆2 : ⇡1pXF2 , x1q Ñ ⇡1pXT , x1q Ñ ⇡1pXT , x0q.
Later on, we will often omit basepoints from our notation, always using the above arcs and
corresponding inclusion maps. This completes Construction 3.1.

Proposition 3.2. Fix a compact, oriented, smooth 4-manifold W , a ppossibly emptyq link L
in BW , a nonnegative number g, and a homology class A P H2pW, BW ;Zq with BA “ rLs.
The distance function d1 defines a metric on the set of ambient isotopy classes rel. boundary
of embedded oriented surfaces of genus g in W with boundary L that represent the class
A P H2pW, BW ;Zq.
Proof. We use that the distance is finite within the sets considered [BS15]. If d1p⌃,⌃1q “ 0,
then ⌃ and ⌃1 are ambiently isotopic. The distance function is flagrantly symmetric.

To see the triangle inequality, suppose F and F
1 are homologous rel. boundary surfaces

which stabilize via k 1-handle additions to a surface S and F
1 and F

2 are homologous
rel. boundary surfaces which stabilize via h 1-handle additions to S

1. Now consider the
sequence of stabilizations and destabilizations from F to S to F

1 to S
1 to F

2 as a 3-
dimensional cobordism T embedded in W ˆ I. We may perturb the embedding of T so
that F : W ˆ I Ñ I restricts to a Morse function on T , where stabilizations correspond to
index one critical points, and destabilizations correspond to index two critical points. First
we argue that we can rearrange this sequence of stabilizations and destabilizations so that
all the stabilizations come first, followed by destabilizations. Our desired result will then
follow immediately from letting S

2 be the preimage of a regular value taken after all index
one critical points and before all index two critical points, and observing that both F and
F

2 stabilize via pk ` hq 1-handle additions to S
2.

In codimension at least two, critical points of an embedded cobordism can be arranged,
by ambient isotopy, to appear in order of increasing index [Per75], [BP16, Theorem 4.1], by
the following standard argument, which we include for completeness. Choose a gradient-like
embedded vector field subordinate to F [BP16, Definition 3.1]. Rearrangement of critical
points is possible in general if the ascending manifold of the lower critical point is disjoint
from the descending manifold of the higher critical point. Suppose that an index one critical
point of T has critical value t1 higher than critical value t2 of an index two critical point,
and suppose that there are no critical values between t2 and t1. The descending manifold of
the index 1 critical point of a 3-dimensional cobordism intersects a generic level set W ˆttu,
with t2 † t † t1 in a 1-dimensional disc. The descending manifold of the index 2 critical
point intersectsWˆttu also in a 1-dimensional disc. By general position, we can perturb the
gradient-like vector field to make the ascending and descending manifolds disjoint, and we
may do so simultaneously for all such t. It follows that the critical points can be rearranged
by an ambient isotopy, as desired. ⇤

We remark that we do not claim d2 gives rise to a metric. The next proposition tells us
that 2-spheres can be reordered so they come before 1-handle additions.

Proposition 3.3. Suppose that an embedded surface ⌃2 is obtained from a connected sur-
face ⌃1 by some number m of 1-handle additions, followed by connect summing with a local
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2-knot. Then there is an embedded surface ⌃1 that is obtained from ⌃1 by adding a local
2-knot, and such that ⌃2 is obtained from ⌃1 by m 1-handle additions.

Proof. Let ⌃1
1
denote ⌃1 with the 1-handles attached, so ⌃2 is obtained from ⌃1

1
by con-

nected sum with a local 2-knot S. The isotopy class of ⌃1
1
#S is unchanged by where on

⌃1
1
we take the connected sum, so we can assume that our connected sum takes place far

away from the attached 1-handles. But then it is clear that we can attach S first and our
1-handles second. ⇤

4. Generating ranks and twisted homology

4.1. Generating rank of modules over a commutative PID. We recall some facts
about generating ranks of finitely generated modules over commutative PIDs.

Let A be a finitely generated module over a commutative PID S. We say that A has
generating rank k over S if A is generated as an S-module by k elements but not by k ´ 1
elements and write g-rkS A “ k. When S is clear from context, we often abbreviate g-rkS A

by g-rkA.

Lemma 4.1. Let A, B, and C be finitely generated modules over a commutative PID S.

(1) If A surjects onto B then g-rkS B § g-rkS A.
(2) If B § A then g-rkS B § g-rkS A.

(3) Let 0 Ñ A
f›Ñ B

g›Ñ C Ñ 0 be a short exact sequence of S-modules. Then
g-rksC • g-rkSpBq ´ g-rkSpAq.

Proof. The first part follows immediately from the definition of generating rank. The second
part is easy to check using the classification of finitely generated modules over a commutative
PID. The third property follows from taking minimal S-generating sets ta1, . . . , anu and
tc1, . . . , cmu for A and C respectively, picking bi P g

´1pciq for each 1 § i § m, and observing
that tfpa1q, . . . , fpanq, b1, . . . , bmu is an S-generating set for B. ⇤
Remark 4.2. Only (2) uses that S is a PID.

We will also make arguments involving the order of a finitely generated module A over
a commutative PID S. The classification of finitely generated modules over a PID states
that there exist j, k P N and elements s1, . . . , sk P S such that there is a (non-canonical)
isomorphism

A – S
j ‘ TA – S

j ‘
kà

i“1

S{xsiy.

When j ° 0 we say that the order of A is |A| “ 0 and when j “ 0 we say that the order
of A is |A| “ ±k

i“1
si. This is well-defined up to multiplication by units in S. The key

property of order we use is that if f : A Ñ B is a map of S-modules with kerpfq torsion,
then | Impfq| “ |A|{| kerpfq|.

4.2. Twisted homology. Let X be a CW complex with universal cover rX. The cellular
chain complex C˚p rXq is a chain complex of right Zr⇡1pXqs-modules. If X is a finite complex
then C˚p rXq is finitely generated as a Zr⇡1pXqs-module. Let R be a commutative ring with
involution and with unit. Let ↵ : ⇡1pXq Ñ UmpRq be a unitary representation i.e. ↵pg´1q “
↵pgqT . This extends to a homomorphism of rings with involution Zr⇡1pXqs Ñ GLmpRq,
and makes Rm into a pZr⇡1pMqs, Rq-bimodule.



8 ALLISON N. MILLER AND MARK POWELL

Definition 4.3. The kth twisted homology of X with respect to ↵ is

H
↵
k pX;Rq :“ HkpC˚p rXq bZr⇡1pXqs R

mq.
When the ring R is clearly understood, and we are short of space, we shall sometimes

omit R from the notation and write H
↵
k pXq for H↵

k pX;Rq.
If X is a finite complex and R is Noetherian then H

↵
k pX;Rq is finitely generated as an R-

module. If Y Ä X is a subcomplex and we choose a path � : I Ñ X from the basepoint then
↵ determines a representation ⇡1pY q Ñ UmpRq and we write H

↵
k pY ;Rq for the resulting

twisted homology. The inclusion induced map H
↵
k pY ;Rq Ñ H

↵
k pX;Rq depends on the

choice of �, but nonetheless we omit � from the notation.

Remark 4.4. Given X and ↵ : ⇡1pXq Ñ UmpRq as above, let X
↵ Ñ X be the cover

corresponding to kerp↵q. Then Zr⇡1pXqs acts on C˚pX↵q and it follows immediately from
our definitions that

H
↵
k pX;Rq – HkpC˚pX↵q bZr⇡1pXqs R

mq.
It is sometimes more convenient to compute with this smaller covering space.

4.3. Rational Alexander modules. For any knot or slice disc L, let ApLq denote the
Alexander module of L with integral coe�cients and let AQpLq denote the Alexander mod-
ule of L with rational coe�cients. That is, let XL be the exterior of L and as usual
let " : ⇡1pXLq Ñ Z denote the abelianization map. Then ApLq :“ H1pXL,Zrt˘1sq and
AQpLq :“ H1pXL;Qrt˘sq, where for R “ Z,Q the ring Rrt˘1s has a Zr⇡1pXLqs-structure
determined by ". We remark that Q is flat as a Z-module, and so AQpLq – ApLq bZ Q.

5. Pairs of 2-knots with arbitrary 1-handle distance

In this section, we prove that for every nonnegative integer m, there exists a pair of 2-
knotsK and J in the 4-sphere with 1-handle stabilization distancem, which is an immediate
consequence of the following proposition.

Proposition 5.1. For each m P N, there exists a knotted 2-sphere K in S
4 such that

the minimal number of 1-handle stabilizations needed to make K an unknotted surface is
exactly m.

Proof of Theorem A. Let m P N, let K be as in Proposition 5.1, and let J be an unknotted
2-sphere. Since every stabilization of an unknotted 2-sphere is an unknotted surface, we
obtain immediately that d1pK, Jq “ m. ⇤

The next proposition is the key algebraic input into the proof of Proposition 5.1.

Proposition 5.2. Let F1 Ä S
4 be a smoothly embedded oriented surface and suppose that

F2 is obtained from F1 by a 1-handle stabilization. Then there is a polynomial p P Qrt˘1s
and a short exact sequence

0 Ñ Qrt˘1s{xpy Ñ H1pS4r ⌫F1;Qrt˘1sq Ñ H1pS4r ⌫F2;Qrt˘1sq Ñ 0.

Proof. We consider the relative cobordism XT between XF1 and XF2 from Construction 3.1,
with W “ S

4. We will consider the infinite cyclic cover rXT . Recall that XT is obtained from
XF1 ˆ I by attaching a single 5-dimensional 2-handle along � ˆ t1u for � “ µ1�µ

´1

2
�

´1,
where µ1 and µ2 are meridians of F1 in S

4 near the attaching spheres of the 1-handle
and � is a parallel push-o↵ of the core of this 1-handle. Since H1pF1;Zq – Z, and the
attaching sphere of the 2-handle is null homologous, the abelianization homomorphism
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⇡1pXF1q Ñ Z extends to a homomorphism ⇡1pXT q Ñ Z. From now on in this proof we
consider homology with Qrt˘1s-coe�cients induced by this homomorphism. We also note
that the handle decomposition lifts to a relative handle decomposition of rXT with one orbit
of 2-handles under the deck transformation action of Z.

Using this relative handle decomposition we obtain that HkpXT , XF1 ;Qrt˘1sq “ 0 for
k ‰ 2 and H2pXT , XF1 ;Qrt˘1sq – Qrt˘1s. Since dually XT is obtained from XF2 ˆ I by
attaching a single 5-dimensional 3-handle, we have that HkpXT , XF2 Qrt˘1sq “ 0 for k ‰ 3.
Now consider the long exact sequence of the pair pXT , XF1q with Qrt˘1s-coe�cients.

¨ ¨ ¨ Ñ H2pXT q Ñ H2pXT , XF1q Ñ H1pXF1q Ñ H1pXT q Ñ H1pXT , XF1q.
Since H1pXT , XF1q “ 0 and H2pXT , XF1q – Qrt˘1s, and since Qrt˘1s is a PID, this yields
a short exact sequence

0 Ñ Qrt˘1s{xpy Ñ H1pXF1q Ñ H1pXT q Ñ 0

for some p P Qrt˘1s. Now the long exact sequence of the pair pXT , XF2q yields

0 “ H2pXT , XF2q Ñ H1pXF2q Ñ H1pXT q Ñ H1pXT , XF2q “ 0,

from which it follows that the inclusion induced mapH1pXF2q Ñ H1pXT q is an isomorphism,
and so we obtain the desired short exact sequence

0 Ñ Qrt˘1s{xpy Ñ H1pXF1q Ñ H1pXF2q Ñ 0. ⇤
For the reader’s convenience, we now describe two common constructions of slice discs.

Construction 5.3. Given a subset Y Ñ S
3 and J Ñ I that is either an interval ra, bs or a

point tau, write YJ for Y ˆ J Ñ S
3 ˆ I. We think of D4 as D4 – S

3

r0,1s{S3
1
.

The banding construction. Let K be a knot with disjointly embedded bands �1, . . . ,�n
in S

3 such that the result of banding K via t�iuni“1
is the pn ` 1q-component unlink Un`1,

which could be capped o↵ via pn ` 1q discs in S
3. Then, up to smoothing corners,

D :“ Kr0,1{3s Y pYn
i“1�iq1{3 Y pUn`1qr1{3,2{3s Y

`
Yn`1

i“1
D

2
˘
2{3

is a ribbon disc for K.
The surgery construction. Let K be a knot with a genus g Seifert surface F and a

collection of g disjoint curves ↵1, . . . ,↵g Ä F which are 0-framed by F and which generate
a Zg summand of H1pF q. Suppose also that the link Yg

i“1
↵i Ä S

3 is an unlink. Then, up
to smoothing corners,

D “ Kr0,1{3s Y pF r ⌫pYg
i“1
↵iqq1{3 Y Yg

i“1
p↵`

i \ ↵
´
i qr1{3,2{3s Y Yn

i“1pD2 \ D
2q2{3

is a ribbon disc for K. We note that this construction is easily adapted to build a slice disc
for K under the weaker assumption that Yg

i“1
↵i is merely strongly slice.

Example 5.4 (The knot 946 and its two standard slice discs.). Let R :“ 946, and let Dj

for j “ 1, 2 be the slice discs indicated by the left and right bands, respectively, of the
left part of Figure 3. Observe that R has a genus 1 Seifert surface F (illustrated on the
right of Figure 3), and for j “ 1, 2 let D1

j be the slice disc obtained by surgery of F along
↵j . Referring back to Construction 5.3 for our explicit description of Dj and D

1
j , we can

recognize these as isotopic discs in D
4, since

Rr1{6,1{3sYp�jq1{3 Y pU j
2

qr1{3,2{3s Ä Dj and Rr1{6,1{3sYpFr⌫p↵jqq1{3Yp↵`
j \↵´

j qr1{3,2{3s Ä D
1
j

are isotopic rel. boundary as subsets of S3 ˆ r1{6, 2{3s.
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Figure 3. The knot R “ 946 has slice discs D1 (left band) and D2 (right band).

The oriented curves ↵1,↵2 represent a basis for H1pF q with respect to which the Seifert
pairing is given by

A “
„

0 2
1 0

⇢
.

The Alexander module is therefore presented by

tA ´ A
T “

„
0 2t ´ 1

t ´ 2 0

⇢
,

and hence is isomorphic to Zrt˘1s{xt ´ 2y ‘ Zrt˘1s{x2t ´ 1y, where p↵1 and p↵2 represent the
generators of each summand.

Moreover, the inclusion induced maps ◆j : AQpRq Ñ AQpDjq are given by projection onto
summands:

AQpRq – Qrt˘1s{x2t ´ 1y ‘ Qrt˘1s{xt ´ 2y ◆1›Ñ Qrt˘1s{x2t ´ 1y – AQpD1q
px, yq fiÑ x

AQpRq – Qrt˘1s{x2t ´ 1y ‘ Qrt˘1s{xt ´ 2y ◆2›Ñ Qrt˘1s{xt ´ 2y – AQpD2q
px, yq fiÑ y.

Note that kerp◆1q X kerp◆2q “ t0u Ñ AQpRq.
A detailed computation with these slice discs can be found in [CP19, Section 5.1]. To see

that the induced maps are as claimed, we argue by the rising water principle [GS99, Sec-
tion 6.2]. There is a handle decomposition of XDi relative to XR consisting of one 2-handle
attached along p↵i (corresponding to the band), followed by two 3-handles corresponding to
the maxima, and a 4-handle. Only the 2-handle a↵ects first homology, by killing the class
represented by p↵i.

Proof of Proposition 5.1. Let D :“ D2 Ä D
4 be the “right band” slice disc for the 946 knot

shown via a blue band on the left of Figure 3. Let K0 be the 2-knot obtained from doubling
this disc, that is K0 “ D Y946 D Ä D

4 Y D
4 “ S

4. Let K :“ #m
i“1

K0.
First we use Proposition 5.2 to show that if K stabilizes to an unknotted surface by n

1-handle additions then n • m. We know that

H1pS3r ⌫p946q;Qrt˘1sq – Qrt˘1s{x2t ´ 1y ‘ Qrt˘1s{xt ´ 2y
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where the inclusion induced map to H1pD4r ⌫pDq;Qrt˘1sq – Qrt˘1s{xt ´ 2y is given by
projection onto the second factor. By using the Mayer-Vietoris sequence corresponding to
the decomposition

S
4r ⌫K0 “

`
D

4r ⌫pDq
˘

YS3 r ⌫p946q
`
D

4r ⌫pDq
˘
,

we can compute that
H1pS4r ⌫K0;Qrt˘1sq “ Qrt˘1s{pt ´ 2q.

Since Alexander modules are additive under connected sum of 2-knots we therefore have
that

H1pS4r ⌫K;Qrt˘1sq “
mà

i“1

`
Qrt˘1s{pt ´ 2q

˘
.

We therefore need to show that one requires at least m stabilizations to trivialize the
Alexander module of K. Note that the generating rank of H1pS4r ⌫K;Qrt˘1sq is m. We
claim that the result of stabilizing an embedded surface whose Alexander module has gen-
erating rank k is an embedded surface with generating rank at least k ´ 1. To see the
claim, we use Proposition 5.2 and the fact that if a Qrt˘1s-module M has generating rank
k and a submodule N has generating rank 1, then the quotient M{N has generating rank
at least k ´ 1, by Lemma 4.1 (3). By the claim and the fact that the generating rank of
H1pS4r ⌫K;Qrt˘1sq is m, it follows by induction that d1pK, Jq • m.

It remains to show that we can make K unknotted via m 1-handle attachments. Recall
that the slice disc D is constructed by a band move “cutting” one of the bands of the
obvious Seifert surface ⌃ for 946 in Figure 3, and then capping o↵ the resulting 2-component
unlink with disjoint discs. A single stabilization, tubing these two discs together, results
in an embedded genus one surface. This surface could also be obtained by capping o↵
the 2-component unlink with an annulus instead of two discs, and hence is isotopic to the
result of pushing the aforementioned Seifert surface into D

4. We assert that D Y ⌃ Ä
S
4 is an unknotted genus one surface, and prove this by direct manipulation of handle

diagrams for the embedding of the surface in D
4, using the banded knot diagram moves of

Swenton [Swe01].1

The data of an unlink and bands attached to it with the property that the result of per-
forming the corresponding band moves is also an unlink provides instructions for embedding
a surface in S

4: the unlink’s components correspond to 0-handles, the bands to 1-handles,
and the unlink obtained by banding can be capped o↵ with 2-handles in an essentially
unique way, in the sense that any two choices of discs in S

3 capping o↵ the unlink yield
isotopic surfaces in S

4. This uses the main result of [Liv82], that any two sets of embed-
ded discs in S

3 are isotopic rel. boundary in D
4. We remark that isotopy of banded knot

diagrams in S
3 together with cancellation/ creation of band-unknot pairs, sliding of bands

across each other, and the ‘band-swim move’ illustrated in Figure 4 preserve the isotopy
class of the presented surface (see Swenton [Swe01] for more details).

The banded diagram on the far left of Figure 5 givesDY⌃. The top two bands correspond
to the Seifert surface, and the green band is the band of the disc D. The center left of
Figure 5 gives the ‘dual’ band description corresponding to turning our handle diagram
upside down. The center right figure is obtained by an isotopy of the banded diagram in

1The reader who is familiar with doubly slice knots may instead observe that D Y ⌃ is a stabilization of
the unknotted 2-knot obtained by gluing the ‘left band’ and ‘right band’ discs together, and hence is itself
unknotted. We give the longer argument here to be self-contained.
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Ø

Figure 4. A ‘band-swim’ move preserves the isotopy class of a surface pre-
sented by a banded knot diagram.

Figure 5. Simplifying a banded knot diagram for D Y ⌃.

S
3, and we perform a ‘band-swim’ move of the green band through the red band to obtain

the diagram on the far right of Figure 5.
Now obtain the diagram on the left of Figure 6 by an isotopy of the diagram in S

3,
before sliding the green band across the red band to obtain the central diagram. We can

Figure 6. Further simplifications of the banded knot diagram for D Y ⌃,
resulting in the standard diagram for an unknotted torus (right).

then cancel the right-hand unknot with the red band, corresponding to canceling a pair of
0- and 1-handles, in order to obtain the standard diagram for an unknotted torus seen on
the right of Figure 6. ⇤

6. Pairs of slice discs with large generalized stabilization distance

In this section we prove Theorem B. We use the classical Alexander module to show
that for every nonnegative integer m there is a knot K with slice discs D and D

1 such
that d2pD,D

1q equals m. To do this, we investigate the kernel of the induced map on
fundamental groups from the knot exterior to the slice disc exteriors by using the homology
of cyclic covering spaces.

First, we note that connected sum with a knotted 2-sphere has no e↵ect on the kernel of
the map on fundamental groups.

Proposition 6.1. Suppose that F2 has been obtained from F1 by connected sum with a
knotted 2-sphere S. Then

kerpi1 : ⇡1pXKq Ñ ⇡1pXF1qq “ kerpi2 : ⇡1pXKq Ñ ⇡1pXF2qq.



STABILIZATION DISTANCE BETWEEN SURFACES 13

Proof. Let XS :“ S
4z⌫S be the exterior of S in S

4. Construct XF2 from XF1 and XS by
identifying thickened meridians S1 ˆD

2 Ä BXF1 and S
1 ˆD

2 Ä BXS in the boundaries and
smoothing corners. By the Seifert-van Kampen theorem we have that

⇡1pXF2q – ⇡1pXF1q ˚Z ⇡1pXSq.
So ⇡1pXF1q is isomorphic to a subgroup of ⇡1pXF2q in such a way that the inclusion-induced
maps factor as

⇡1pXF1q ãÑ ⇡1pXF1q ˚Z ⇡1pXSq –›Ñ ⇡1pXF2q.
It follows that kerpi1q “ kerpi2q. ⇤

The following proposition is central to the rest of the paper, and so we state it in some
generality. In particular, in later sections we will want to apply this result with twisted
coe�cients, so in the name of e�ciency we state and prove the full version here.

Proposition 6.2. Let F1 and F2 be properly embedded surfaces in D
4 with BFj “ K, where

F2 has been obtained from F1 by g 1-handle additions such that gpF2q “ gpF1q ` g. Let T Ñ
D

4 ˆ I be the 3-manifold built as in Construction 3.1. Suppose that � : ⇡1pXKq Ñ GLmpRq
extends over ⇡1pXT q to a map � : ⇡1pXT q Ñ GLmpRq. For j “ 1, 2 define

Pj :“ ker
´
H
�
1

pXK ;Rq Ñ H
�

1 pXFj ;Rq
¯
.

Then P1 Ñ P2 and, assuming in addition that R is a PID, P2 is generated as an R-module
by P1 Y txiugmi“1

for some choice of xi P P2.

Proof. The case of general g follows immediately from repeated application of the g “ 1
case, which we now prove.

Recall that XT is obtained from XF1 ˆ I by attaching a single 5-dimensional 2-handle
along � ˆ t1u for � a simple closed curve representing r�s “ µ1�µ

´1

2
�

´1 in ⇡1pXF1q, where
µ1 and µ2 are meridians of F1 in D

4 near the attaching spheres of the 1-handle, and � is a
parallel push-o↵ of the core of this 1-handle.

There is a CW pair pXCW
T , XF1q » pXT , XF1q where X

CW
T is a CW complex obtained

by attaching a single 2-cell to XF1 along �. The universal cover rXCW
T Ñ X

CW
T induces a

pull-back covering rXF1 Ñ XF1 , with relative cellular chain complex

C˚p rXCW
T , rXF1q » C˚p rXT ,

rXF1q
with C2p rXCW

T , rXF1q – Zr⇡1pXT qs and Ckp rXCW
T , rXF1q “ 0 for k ‰ 2. By tensoring with R

m

we have that
C

�

k pXCW
T , XF1 ;Rq – Ckp rXCW

T , rXF1q bZr⇡1pXT qs R
m

is isomorphic toRm for k “ 2 and is zero otherwise. Since C�˚ pXT , XF1 ;Rq » C
�˚ pXCW

T , XF1 ;Rq,
we therefore obtain that H�

k pXT , XF1 ;Rq “ 0 for k ‰ 2 and H
�
2

pXT , XF1 ;Rq – R
m.

Since dually XT is obtained from XF2 ˆ I by attaching a single 5-dimensional 3-handle,
we have that H�

k pXT , XF2 ;Rq “ 0 for k ‰ 3. For j “ 1, 2 the long exact sequence in twisted
homology with R-coe�cients corresponding to the triple pXT , XFj , XKq is

¨ ¨ ¨ Ñ H
�

3 pXT , XFj q Ñ H
�

2 pXFj , XKq gj›Ñ H
�

2 pXT , XKq hj›Ñ H
�

2 pXT , XFj q Ñ . . . (1)

and so we see that g2 is surjective.
Now consider the following diagram, which is commutative since all maps are induced

by various inclusions and natural long exact sequences. The horizontal sequences come
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from long exact sequences of various pairs and all homology is appropriately twisted with
coe�cients in R.

H
�
2

pXF1q H
�
2

pXF1 , XKq H
�
1

pXF1q

H
�
2

pXT q H
�
2

pXT , XKq H
�
1

pXKq H
�
1

pXT q

H
�
2

pXF2q H
�
2

pXF2 , XKq H
�
1

pXF2q

g1
B1

BT

j2

j1

jT

g2
B2

Since g2 is surjective, we have that P2 “ kerpj2q “ ImpB2q “ ImpBT q. Also,
P1 “ kerpj1q “ ImpB1q “ ImpBT ˝ g1q Ñ ImpBT q “ P2.

So we have established the first conclusion of this proposition.
To establish the second conclusion, we recall from above that H�

2
pXT , XF1 ;Rq – R

m has
R-generating rank m. Considering the long exact sequence of Equation (1), we see that

cokerpg1q “ H
�

2 pXT , XKq{ Impg1q “ H
�

2 pXT , XKq{ kerph1q – Imph1q Ñ H
�

2 pXT , XF1q
and so cokerpg1q has generating rank no more than m as an R-module, by Lemma 4.1 (2).
We can therefore let taiumi“1

be elements of H2pXT , XKq which represent generators of
cokerpg1q. Hence together with Impg1q the taiumi“1

generate H2pXT , XKq as an R-module.
Therefore BT pImpg1q Y taiumi“1

q generates Im BT “ P2. It follows that

P1 Y tBT paiqumi“1 “ ImpB1q Y tBT paiqumi“1

“ ImpBT ˝ g1q Y tBT paiqumi“1

“ BT pImpg1q Y taiumi“1q
generates ImpBT q “ P2 as an R-module, and so we can let xi “ BT paiq for i “ 1, . . . ,m. ⇤
Proposition 6.3. Let �1 and �2 be slice discs for a knot K. Let Pj :“ kerpAQpKq Ñ
AQp�jqq for j “ 1, 2. Suppose that g-rkpP1q “ g-rkpP2q “ n and that g-rkpP1 X P2q “ k.
Then d2p�1,�2q • n ´ k.

Proof. Suppose that F is a genus g surface to which both �1 and �2 stabilize by g 1-
handle additions and some number of 2-knot additions. We will show that g • n ´ k. By
Proposition 3.3, for j “ 1, 2 there exist a disc �1

j obtained from �j by connected sum with
some number of knotted 2-spheres such that F is obtained from �1

j by g 1-handle additions.
It follows from Proposition 6.1 that for j “ 1, 2 we have

P
1
j :“ kerpAQpKq Ñ AQp�1

iqq “ Pj .

Let P :“ kerpAQpKq Ñ AQpF qq. By Proposition 6.2, we see that both P
1
1
and P

1
2
are

submodules of P . We now argue that the generating rank of P , considered as a Qrt˘1s-
module, is at least 2n ´ k. To see this we show that ImpP 1

1
‘ P

1
2

Ñ P q has generating rank
at least 2n ´ k and apply Lemma 4.1 (2). Let i1 : P 1

1
Ñ P and i2 : P 1

2
Ñ P be the inclusion

maps. Both P
1
1
and P

1
2
are submodules of P , so

kerpi1 ‘ ´i2 : P
1
1 ‘ P

1
2 Ñ P q “ tpp1, p2q P P

1
1 ‘ P

1
2 | i1pp1q “ i2pp2q P P u – P

1
1 X P

1
2.

We obtain a short exact sequence

0 Ñ P
1
1 X P

1
2 Ñ P

1
1 ‘ P

1
2 Ñ Impi1 ‘ ´i2q Ñ 0,
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and conclude by Lemma 4.1 (3) that g-rkpImpi1‘´i2qq • 2n´k. Therefore by Lemma 4.1 (2),
g-rkpP q • 2n ´ k. Note that this uses that Qrt˘1s is a PID.

However, Proposition 6.2 applied with m “ 1 also tells us that there exist some x1, . . . , xg
in P such that P is generated by P

1
1

Y tx1, . . . , xgu. Therefore the generating rank of P is
at most n ` g, and so we have n ` g • g-rkpP q • 2n ´ k, from which it follows as desired
that g • n ´ k. ⇤

The next proposition completes the proof of Theorem B.

Proposition 6.4. Let K0 be the knot 946 and let K “ #n
i“1

K0. Let �1 “ 6ni“1
D1 and let

�2 :“ 6ni“1
D2 be the ‘left band only’ and ‘right band only’ slice discs. Then

d2p�1,�2q “ n.

Proof. First, note that we can obtain both �1 and �2 from surgery on a genus n Seifert
surface for K and so d2p�1,�2q § n.

There is an identification

AQpKq –
nà

i“1

AQpK0q –
nà

i“1

`
Qrt˘1s{x2t ´ 1y ‘ Qrt˘1s{xt ´ 2y

˘

such that

P1 :“ kerpAQpKq Ñ AQp�1qq “
nà

i“1

Qrt˘1s{xt ´ 2y

and P2 :“ kerpAQpKq Ñ AQp�2qq “
nà

i“1

Qrt˘1s{x2t ´ 1y.

In particular, P1 X P2 “ t0u. Now, g-rkpP1q “ g-rkpP2q “ n, and g-rkpP1 X P2q “ 0. It
follows from Proposition 6.3 that d2p�1,�2q • n as required. ⇤

7. Secondary lower bounds using metabelian twisted homology

We now construct subtler examples of pairs of slice discs with high stabilization distance.

7.1. Satellite knots and satellite slice discs. Our examples come from the satellite
construction. Let R and J be knots and let ⌘ Ä S

3rR be an unknotted simple closed
curve in the complement of R. Recall that S3r ⌫p⌘q YXJ – S

3, where the meridian of ⌘ is
identified with the longitude of J , and vice versa. The image of R Ä S

3r ⌫p⌘q under this
homeomorphism is by definition the satellite knot R⌘pJq.

It is a well known fact that if R and J are slice knots and ⌘ is any unknot in the
complement of R, then the satellite knot R⌘pJq is also slice. It will be useful to have an
explicit construction of a slice disc �D for R⌘pJq coming from a choice of slice discs �0 for R
and D for J , together with compatible degree 1 maps f : XR⌘pJq Ñ XR and g : X�D Ñ X�0 .

Construction 7.1 (Satellite slice discs and degree 1 maps). Let R be a knot with slice disc
�0 and let ⌘ be an unknotted curve in S

3r ⌫pRq. Identify D
4 Å �0 as D2 ˆ D

2 in such a
way that when we consider BpD2 ˆ D

2q “ pS1 ˆ D
2q Y pD2 ˆ S

1q we have D
2 ˆ S

1 “ ⌫p⌘q
and so R “ B�0 Ñ S

1 ˆ D
2.

Now let J be a knot with slice disc D. We obtain a slice disc denoted �D for R⌘pJq by
considering

�0 Ñ D ˆ D
2 “ ⌫pDq Ä D

4
.
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Note that X�D “ X�0 YS1ˆD2 XD, where S
1 ˆD

2 is identified with ⌫p⌘q Ñ XR Ä BX�0

and with S
1 ˆ D Ä BXD, and that this identification is evidently compatible with the

decomposition XR⌘pJq “ pXR r ⌫p⌘qq YT 2 XJ .

For every knot J there is a standard degree 1 map f0 : XJ Ñ XU which sends µJ to µU

and �J to �U , and for any slice disc D there is a similar degree one map g0 : XD Ñ XE ,
where E denotes the standard slice disc for the unknot. For the sake of completeness, we
give this construction, emphasizing that one can choose g0 to be an extension of f0.

Parametrize

⌫ pBXJq “ BXJ ˆ r0, �s “ tpp, s, tq P S
1 ˆ pr0, 2⇡s{ „q ˆ r0, �su,

where tpp, 0, 0qu “ �J and tp1, s, 0qu “ µJ . Now let F Ä XJ be a (truncated) Seifert surface
for J with tubular neighborhood ⌫pF q “ F ˆ r0, "s. We can assume that

⌫pF q X ⌫pBXJq “ tpp, s, tq P S
1 ˆ r0, "s ˆ r0, �su,

as illustrated below.

Figure 7. A cross section of XJ near its boundary. Note that the grey
region represents ⌫pJq and is therefore not part of XJ .

We write XU “ S ˆ D for S “ pr0, "s{ „q – S
1 and D “ pS1 ˆ r0, �sq{pS1 ˆ �q – D

2.
Define f0 on ⌫pBXJq by

f0pp, s, tq “
#

ps, pp, tqq if 0 § s § "

p", pp, tqq if " † s,

and then extend over the rest of ⌫pF q “ F ˆ r0, "s by f0py, sq “ ps, p0, �qq. Finally, for any
x in neither ⌫pF q nor ⌫pBXKq, we define f0pxq “ p", p0, �qq.

The construction of g0 is very similar, only with a compact orientable 3-manifold G with
boundary BG “ F YJ D playing the role of the Seifert surface: we extend f0 as defined
above on XJ over XJ ˆ I, then over the rest of ⌫pBXDq, then over ⌫pGq – G ˆ I and then
send the entirety of XDzp⌫pBXDq Y ⌫pGqq to a single point in XE .

Here are the details, which closely parallel the construction of f0, though with extra care
taken to ensure that g0|XJ “ f0:

First parametrize a neighborhood of the slice disc D as D
2 ˆ D

2, naturally a manifold
with corners, such that S1ˆD

2 is a tubular neighborhood of J and S
1ˆS

1 “ BXJ . Consider
a collar on this part of BXD as follows. We think of XD as a manifold with corners, with
BXJ the corner set, dividing BXD as XJ YBXJ D

2 ˆ S
1. Then we consider a collar on the

D
2 ˆ S

1 part of the boundary that restricts on XJ to a collar for BXJ in XJ . Parametrize
this collar as

⌫
`
D

2 ˆ S
1
˘

“ D
2 ˆ S

1 ˆ r0, �s “ tpp, s, tq P D
2 ˆ pr0, 2⇡s{ „q ˆ r0, �su,

where tpp, 0, 0qu is a push-o↵ of the slice disc with boundary �J and tp1, s, 0qu “ µJ .
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Now let G Ä XD be a (truncated) 3-manifold with BG “ F Y tpp, 0, 0qu, with tubular
neighborhood ⌫pGq “ G ˆ r0, "s. We note that the existence of such a 3-manifold follows
from a standard obstruction theoretic argument, see e.g. [Lic97, Lemma 8.14]. We can
assume this restricts to the tubular neighborhood of F used above in the definition of f0,
and that

⌫pGq X ⌫pD2 ˆ S
1q “ tpp, s, tq P D

2 ˆ r0, "s ˆ r0, �su.
We write XE “ S ˆ B for S “ pr0, "s{ „q – S

1 and B “ pD2 ˆ r0, �sq{pD2 ˆ �q – D
3.

Note that we have a natural inclusion D Ä B corresponding to XU “ SˆD Ä SˆB “ XE .
Define g0 on ⌫pD2 ˆ S

1q by

g0pp, s, tq “
#

ps, pp, tqq if 0 § s § "

p", pp, tqq if " † s,

and then extend over the rest of ⌫pGq “ G ˆ r0, "s by g0py, sq “ ps, p0, �qq. Finally, for any
x in neither ⌫pGq nor ⌫pD2 ˆ S

1q, we define g0pxq “ p", p0, �qq.
By using the above decompositionsXR⌘pJq “ pXR r ⌫p⌘qqYT 2XJ andX�D “ X�0YS1ˆD2

XD, we obtain compatible degree 1 maps

f “ IdYf0 : XR⌘pJq Ñ XR and g “ IdYg0 : X�D Ñ X�0 .

This completes Construction 7.1.

Recall that for a connected space X equipped with a surjective map " : ⇡1pXq Ñ Z, we
let ApXq denote the induced Zrt˘1s-twisted first homology, and for a knot or disc L we
often let ApLq denote ApXLq.
Proposition 7.2. Let R, �0, ⌘, J , and D be as above. Suppose that the linking number
of ⌘ and R in S

3 is 0. Letting f and g be the degree 1 maps discussed above, the following
diagram commutes, where the horizontal maps are the usual inclusion induced maps:

ApR⌘pJqq Ap�Dq

ApRq Ap�0q.
f˚ g˚

Moreover, f˚ and g˚ are isomorphisms and so

kerpApR⌘pJqq Ñ Ap�Dqq “ f
´1

˚ pkerpApRq Ñ Ap�0qqq – kerpApRq Ñ Ap�0qq
is independent of the choice of slice disc D for J .

Proof. The fact that the diagram commutes follows immediately from the compatibility
of f and g as defined in Construction 7.1. Since the linking number of R and ⌘ is 0,
the fact that f˚ is an isomorphism is a standard fact (one can also imitate the proof of
Proposition 7.8 in a simpler setting). Briefly, one compares the Mayer-Vietoris sequences
for XR⌘pJq “ XRY⌘ YS1ˆS1 XJ and XR “ XR⌘pUq “ XRY⌘ YS1ˆS1 XU . The fact that the
winding number of ⌘ is zero implies that the induced representations ⇡1pXJq Ñ Z and
⇡1pXU q Ñ Z are trivial, so H1pXJ ;Zrt˘1sq – H1pXU ;Zrt˘1sq – Zrt˘1s.

To see that g˚ induces an isomorphism consider the following diagram, where the rows
are the Mayer-Vietoris sequences in Zrt˘1s-coe�cients corresponding to the decompositions
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X�D “ X�0 YS1ˆD2 XD and X�0 “ X�0 YS1ˆD2 XE . We have replaced the H0 terms with
zeroes, since the maps from H0pS1 ˆ D

2;Zrt˘1sq are injective.

H1pS1 ˆ D
2;Zrt˘1sq H1pX�0 ;Zrt˘1sq ‘ H1pXD;Zrt˘1sq H1pX�D ;Zrt˘1sq 0

H1pS1 ˆ D
2;Zrt˘1sq H1pX�0 ;Zrt˘1sq ‘ H1pXE ;Zrt˘1sq H1pX�0 ;Zrt˘1sq 0

Id‘pg0q˚ g˚

Since the linking number of ⌘ and R is 0, the cores of the copies of S1 ˆD
2 along which the

spaces are glued, when thought of as fundamental group elements, map trivially to Z via the
appropriate version of ". Therefore H1pS1ˆD

2;Zrt˘1sq – H1pS1ˆD
2;ZqbZrt˘1s – Zrt˘1s.

Similarly, since S
1 ˆD

2 Ñ XD and S
1 ˆD

2 Ñ XE are Z-homology equivalences, the maps
⇡1pXDq Ñ Z and ⇡1pXEq Ñ Z are likewise trivial, and so the maps H1pS1 ˆD

2;Zrt˘1sq Ñ
H1pXD;Zrt˘1sq and H1pS1 ˆ D

2;Zrt˘1sq Ñ H1pXE ;Zrt˘1sq are isomorphisms. It follows
that the diagram above reduces to the diagram:

H1pX�0 ;Zrt˘1sq H1pX�D ;Zrt˘1sq “ Ap�Dq

H1pX�0 ;Zrt˘1sq H1pX�0 ;Zrt˘1sq “ Ap�0q.
Id

–

g˚

–

Therefore the right hand vertical map is an isomorphism induced by g, as required. ⇤
Example 7.3. Let R be the slice knot 61, with unknotted curve ⌘ P S

3r ⌫pRq as shown on
the left of Figure 8. We will be interested in the satellite knot R⌘pJq, depicted on the right
of Figure 8, for certain choices of J . Note that ⌘ does not intersect F and so R⌘pJq has a

Figure 8. The knot R “ 61 with a genus 1 Seifert surface F , a 0-framed
curve � on F , and an infection curve ⌘ (left) and the satellite knot R⌘pJq
(right).

genus 1 Seifert surface FJ as shown on the right of Figure 8. The illustrated homologically
essential 0-framed curve on FJ (that, in a mild abuse of notation, we also call �) is isotopic
to the knot J when thought as a curve in S

3.
Let �0 denote the standard slice disc for R, obtained by surgering F along �. Given a

slice disc D for J , in Construction 7.1 we built a slice disc �D for R⌘pJq. In this context,
one can interpret this construction as follows. Push the interior of FJ into the interior of D4,
then remove a small neighborhood of � in FJ . This creates two new boundary components,
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which may be capped o↵ with parallel copies of D to yield �D. We note that a single
1-handle attachment to �D that connects the two parallel copies of D returns the (pushed
in) Seifert surface FJ , and so if D and D

1 are two di↵erent slice discs for J we always have
that d2p�D,�D1q § 1, even if d2pD,D

1q is large.
As in Example 5.4, we can pick a basis for the first homology of the Seifert surface F for

which the Seifert matrix is given by

A “
„

1 1
0 ´2

⇢

and manipulate tA ´ A
T to see that ApRq – Zrt˘1s{xp2t ´ 1qpt ´ 2qy. We have that

Ap�0q – Zrt˘1s{x2t´ 1y, and that the kernel of the inclusion induced map ApRq Ñ Ap�0q
is exactly pt ´ 2qApRq. Details can be found in e.g. [CP19, Section 5.2]. Additionally, by
substituting t “ ´1 into the above computations we discover the homology of the 2-fold
branched covers: H1p⌃2pRqq – Z9 and kerpH1p⌃2pRq;Zq Ñ H1p⌃2pD4

,�0q;Zqq “ 3Z9.

7.2. Metabelian twisted homology. We will use twisted homology coming from metabelian
representations that factor through the dihedral group D2n – Z2 ˙Zn. As noted in the in-
troduction, these representations originate in the work of Casson-Gordon [CG78, CG86].
Our perspective on these representations is particularly indebted to the work of [HKL10],
as well as [KL99, Let00, Fri04].

Construction 7.4. Consider a knot K with preferred meridian µ0, an abelianization map
" : ⇡1pXKq Ñ Z, and a map  : H1pX2

Kq Ñ Zn for some prime n, where X
2

K is the 2-fold
cyclic cover of XK . Assume that the map  factors as

 : H1pX2

Kq Ñ H1p⌃2pKqq �›Ñ Zn,

where the first map is induced by the inclusion X
2

K Ä ⌃2pKq, so that  is determined by �.
Define

�� : ⇡1pXKq Ñ Z2 ˙Zn by ��p�q “ pr"p�qs, pµ´"p�q
0

�qq,

noting that µ´"p�q
0

� P kerp⇡1pXKq Ñ Z2q and so represents an element in ⇡1pX2

Kq. Letting
⇠n “ e

2⇡i{n, we have a standard map

↵ : Z2 ˙ Zn Ñ GL2pZr⇠nsq

pa, bq fiÑ
„

0 1
1 0

⇢a „
⇠
b
n 0
0 ⇠

´b
n

⇢
.

In particular, we obtain a representation ↵� “ ↵ ˝ �� of ⇡1pXKq into GL2pZr⇠nsq. We
will be interested in the corresponding twisted homology H

↵�
˚ pXK ,Zr⇠nsq, especially when

Zr⇠ns is a PID, e.g. when n “ 3 and Zr⇠3s is the ring of Eisenstein integers. For a connected

space X together with a map � : ⇡1pXq Ñ Z2 ˙Zn, we will sometimes let H
�
˚ pX;Zr⇠nsq

be shorthand for H↵˝�
˚ pX;Zr⇠nsq. When the coe�cients are clearly understood and we are

short of space, we shall abbreviate this still further to H
�
˚ pXq.

Remark 7.5. We will often have two compact connected spaces X Ä Y and a map ↵ “
↵ ˝ � : ⇡1pY q Ñ GL2pZr⇠nsq arising as above from " : ⇡1pY q Ñ Z and  : Y 2 Ñ Zn. We
wish to consider the inclusion induced maps

ik : H
↵ ˝i˚
k pX,Zr⇠nsq Ñ H

↵ 
k pY,Zr⇠nsq.
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To understand this map when k “ 0, pick a CW structure on X with a single 0-cell x and 1-
cells g1, . . . , gm and extend it to a CW structure on Y by first adding 1-cells gm`1, . . . , gm`m1 .
Of course, there may be many additional n-cells for n • 2, but these will not impact H0

computations. The relevant twisted cellular chain complexes are

C
↵ ˝i˚
0

pXq – C
↵ 
0

pY q – Zr⇠ns2, C↵ ˝i˚
1

pXq – Zr⇠ns2m, and C
↵ 
1

pY q – Zr⇠ns2pm`m1q

with di↵erential maps given by the matrices

d
X
1 “

“ r↵ pg1q ´ Ids r↵ pg2q ´ Ids . . . r↵ pgmq ´ Ids ‰

d
Y
1 “

“ r↵ pg1q ´ Ids r↵ pg2q ´ Ids . . . r↵ pgmq ´ Ids . . . r↵ pgm`m1q ´ Ids ‰
.

It follows that the map i0 is always a surjection, and is an isomorphism if and only if

SpantImr↵ pgiq ´ Idsumi“1 “ SpantImr↵ pgiq ´ Idsum`m1
i“1

.

In order to ensure that i0 is an isomorphism, it therefore su�ces to check that the two maps
� ˝ i˚ and � have the same image in Z2 ˙Zn. In the rest of this section, whenever we
claim that i0 is an isomorphism it will be because these two images agree, though in the
interest of brevity we will often leave that verification to the reader.

We will need a computation of the twisted homology of a knot complement with respect to
certain abelian representations into GL2pZr⇠nsq. It will be convenient to have the following
notation.

Notation 7.6. Let X be a connected space equipped with a surjection " : ⇡1pXq ⇣ Z,
and let ⇠ be a root of unity. Define A⇠pXq :“ ApXq bZrt˘1s Zr⇠s, where Zr⇠s has the
Zrt˘1s-module structure induced by t ¨ a :“ ⇠a.

Also, for any Zr⇠s-module M , let ÑM denote the module with conjugate Zr⇠s-structure
and let M1‘1̄ :“ M ‘ ÑM .

Lemma 7.7. Let X be a connected space with a surjection " : ⇡1pXq ⇣ Z, and define
� : ⇡1pXq Ñ GL2pZr⇠nsq by

� fiÑ
«
⇠
"p�q
n 0

0 ⇠
´"p�q
n

�
.

Then H
�
1

pX;Zr⇠nsq – A⇠pXq ‘ A⇠̄pXq – A⇠pXq1‘1̄
.

Proof. First, note that H�
1

pX;Zr⇠nsq – H
✓
1

pX;Zr⇠nsq1‘1̄, where ✓ : ⇡1pXq Ñ Zr⇠nsˆ is given

by ✓p�q “ ⇠
"p�q
n . So it su�ces to show that H✓

1
pX;Zr⇠nsq – A⇠pXq.

Let X8 Ñ X be the "-induced Z-cover of X. Note that ✓p�q “ 0 if and only if "p�q ” 0
mod n, and so the ✓-induced cover of X is the n-fold cyclic cover X

n. We can compute
H
✓
1

pX;Zr⇠nsq as

H
✓
1 pX;Zr⇠nsq “ H1

`
C˚pXnq bZrZns Zr⇠ns

˘
“ H1

`
C˚pX8q bZrt˘1s Zr⇠ns

˘
.

The Künneth spectral sequence [Wei94, Theorem 5.6.4, p. 143] tells us that since C˚pX8q
is a bounded below complex of flat (in fact free) Zrt˘1s-modules, there is a boundedly
converging upper right quadrant spectral sequence:

E
2

p,q “ TorZrt˘1s
p pHqpX8q,Zr⇠nsq ñ Hp`qpC˚pX8q bZrt˘1s Zr⇠nsq.
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The only E
2
p,q which could potentially contribute to H1pC˚pX8qbZrt˘1sZr⇠nsq are pp, qq P

tp1, 0q, p0, 1qu. The only relevant di↵erential could be d
2
2,0 : E

2
2,0 Ñ E

2
0,1. However.

E
2

2,0 “ TorZrt˘1s
2

pH0pX8q,Zr⇠nsq “ TorZrt˘1s
2

pZrt˘1s{xt ´ 1y,Zr⇠nsq
“ TorZrt˘1s

2
pZ,Zr⇠nsq “ 0,

since as a Zrt˘1s-module Z has a length 1 projective resolution. Therefore the spectral
sequence collapses on the 1-line at the E

2 page, and it su�ces to compute E
2
0,1 and E

2
1,0.

We have that

E
2

1,0 “ TorZrt˘1s
1

pH0pX8q,Zr⇠nsq
“ TorZrt˘1s

1
pZrt˘1s{xt ´ 1y,Zr⇠nsq

– tx P Zr⇠ns | pt ´ 1q ¨ x “ 0u
– tx P Zr⇠ns | p⇠n ´ 1qx “ 0u “ 0.

Finally, since

E
2

0,1 “ TorZrt˘1s
0

pH1pX8q,Zr⇠nsq – H1pX8q bZrt˘1s Zr⇠ns “ A⇠pXq
we obtain our desired result. ⇤

Recall that given a slice knot R with slice disc �0, a slice knot J with slice disc D,
and an unknot ⌘ in the complement of R, in Construction 7.1 we built degree one maps
f : XR⌘pJq Ñ XR and g : X�D Ñ X�0 . The following proposition analyzes the f - and g-
induced maps on certain twisted first homology modules under some additional conditions.

Proposition 7.8. Let R be a slice knot with slice disc �0 and J be a slice knot with
slice disc D. Let ⌘ be an unknot in the complement of R which generates ApRq. Suppose
that n is prime and � : H1p⌃2pRqq Ñ Zn is a nontrivial map such that �� extends to
� : ⇡1pX�0q Ñ Z2 ˙Zn. There are identifications

H
��˝f˚
1

pXR⌘pJq,Zr⇠nsq – H
��
1

pXR,Zr⇠nsq ‘ A⇠npJq1‘1̄

H
�˝g˚
1

pX�D ,Zr⇠nsq – H
�

1 pX�0 ,Zr⇠nsq ‘ A⇠npDq1‘1̄
.

Moreover, these are natural with respect to inclusion maps; in particular

P :“ ker
´
H
��˝f˚
1

pXR⌘pJq,Zr⇠nsq Ñ H
�˝g˚
1

pX�D ,Zr⇠nsq
¯

splits as the direct sum of the corresponding kernels PR ‘ P
1‘1̄

J , where

PR :“ ker
´

pH��
1

pXR,Zr⇠nsq Ñ H
�

1 pX�0 ,Zr⇠nsq
¯

P
1‘1̄

J :“ ker
´
A⇠npJq1‘1̄ Ñ A⇠npDq1‘1̄

¯
“ ker pA⇠npJq Ñ A⇠npDqq1‘1̄

.

The proof of Proposition 7.8, while somewhat long and notation heavy, essentially follows
from careful consideration of the relationship between four Mayer-Vietoris long exact se-
quences. These sequences are related by the maps induced from the following commutative
diagram, where we remind the reader that horizontal maps are inclusions and vertical maps



22 ALLISON N. MILLER AND MARK POWELL

are defined as in Construction 7.1:

XR⌘pJq “ XR r ⌫p⌘q Y XJ X�0 Y XD “ X�D

XR “ XR r ⌫p⌘q Y XU X�0 Y XE “ X�0 .

f“IdYf0

i⌘ Y iJ

IdYg0“g

i⌘ Y iU

Proof. We abbreviate XR r ⌫p⌘q by XR r ⌘ and let ⇠ “ ⇠n “ e
2⇡i{n.

Since ⌘ P ⇡1pXRqp1q, when we restrict p↵ ˝ ��q ˝ f˚ to ⇡1pXJq we see that every element
of ⇡1pXJq is sent to a matrix of the form

„
⇠
b 0
0 ⇠

´b

⇢

for some b P Zn. In particular, this restriction factors through H1pXJ ;Zq – Z. The
fact that ⌘ generates ApRq implies that the lifts of ⌘ to X

2

R generate TH1pX2

Rq, since
TH1pX2

Rq – ApRq{xt2 ´ 1y [Fri04, Lemma 2.2]. However, the longitudes of ⌘ are identified
with the meridians of J in XR⌘pJq, and so since � is a nontrivial (hence surjective) character,
the map ⇡1pXJq Ñ Zn given by � fiÑ bp�q P Zn is surjective. Henceforth, unless otherwise
specified, all homology in this proof is taken to be twisted with Zr⇠s-coe�cients induced by
(restrictions of) the maps �� and �, composed with f˚ or g˚ as appropriate.

We are in the setting of Lemma 7.7 and therefore H1pXJq – A⇠pJq1‘1̄ and H1pXDq –
A⇠pDq1‘1̄. The decompositions outlined in Construction 7.1 are related by inclusion and
degree one maps in such a way that, when we take homology with twisted Zr⇠s-coe�cients,
we obtain a commutative diagram. Note that the twisted homology H1pXU q “ H1pXEq “
H1pS1 ˆD

2q “ 0, by Lemma 7.7, since each of these spaces have trivial Alexander module.
Also, the maps H0pT 2q Ñ H0pX˚q for ˚ “ U, J and H0pS1 ˆ D

2q Ñ H0pX˚q for ˚ “ E,D

are isomorphisms, as follows from an analysis as in Remark 7.5. All horizontal sequences
are exact, since they arise from Mayer-Vietoris sequences. We have simplified the following
diagram using these observations:

0
H1pX�0q

‘
H1pXDq

H1pX�Dq 0

H1pT 2q
H1pXR r ⌘q

‘
H1pXJq

H1pXR⌘pJqq 0

0 H1pX�q H1pX�q 0

H1pT 2q H1pXR r ⌘q H1pXRq 0.

pId 0q

p⇡� ⇡Dq

g˚

Id

pj⌘ jJ q

pi⌘ iJ q

p⇡⌘ ⇡J q

i

⇡

jR“j⌘

pId 0q i⌘

⇡R

f˚
iR
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For reasons of concision, in the above diagram we use pf1 f2q to variously refer to any of

the maps

„
f1

f2

⇢
, rf1 f2s, or

„
f1 0
0 f2

⇢
as appropriate.

We immediately obtain that

r⇡� ⇡Ds : H1pX�0q ‘ H1pXDq Ñ H1pX�Dq
is an isomorphism, which is the second identification of the proposition. We also see that

H1pXRq “ Imp⇡Rq – H1pXR r ⌘q{ kerp⇡Rq “ H1pXR r ⌘q{ ImpjRq
and similarly that

H1pXR⌘pJqq “ Impr⇡⌘ ⇡J sq –
`
H1pXR r ⌘q ‘ H1pXJq

˘
{ Im

„
jR

jJ

⇢
.

We can directly compute that

H1pT 2q “ H1pC˚pÄT 2q bZr⇡1pT 2qs Zr⇠s2q – pZr⇠s{p⇠ ´ 1qq1‘1̄

is generated as a Zr⇠s-module by ↵ b r0, 1s and ↵ b r1, 0s, where ↵ is the curve on T
2

identified with µ⌘ in XR r ⌘ and �J in XJ . Since r�J s “ 0 P H1pX8
J q, we see that

jJp↵ b r0, 1sq “ jJp↵ b r1, 0sq “ 0 in H1pXJq
and hence that jJ “ 0.

It follows that the map induced by r⇡⌘ ⇡J s from H1pXR r ⌘q{ Impj⌘q ‘ H1pXJq to
H1pXR⌘pJqq is an isomorphism, and that our desired isomorphism is given by the com-

position2

� : H1pXRq ‘ H1pXJq

«
⇡

´1

R 0
0 Id

�

›››››››››Ñ H1pXR r ⌘q{ Impj⌘q ‘ H1pXJq r⇡⌘ ⇡J s››››Ñ H1pXR⌘pJqq.
(2)

It remains to show that �´1pkerpiqq “ kerpiRq ‘ kerpiJq, which will follow from some
diagram chasing,

Claim 7.9. �´1pkerpiqq Ñ kerpiRq ‘ kerpiJq.
Let x P kerpiq. Since p⇡⌘ ‘ ⇡Jq is onto, there exists a P H1pXR r ⌘q and b P H1pXJq such

that p⇡⌘ ‘ ⇡Jqpa, bq “ x. Moreover, p⇡Rpaq, bq “ �´1pxq, so it su�ces to show that

iRp⇡Rpaqq “ 0 P H1pX�0q and iJpbq “ 0 P H1pXDq.
Observe that by the commutativity of our large diagram,

⇡Rpaq “ p⇡R ˝ rId 0sqpa, bq “ pf˚ ˝ r⇡⌘ ⇡J sqpa, bq “ f˚pxq.
Therefore

piR ˝ ⇡Rqpaq “ piR ˝ f˚qpxq “ pg˚ ˝ iqpxq “ g˚p0q “ 0.

2The labels of the maps in Equation (2) are mild abuses of notation. In particular, ⇡R : H1pXR r ⌘q Ñ
H1pXRq is not itself an isomorphism and hence does not have an inverse until we mod out by Impj⌘q,
and r⇡⌘ ⇡J s actually has domain H1pXR r ⌘q ‘ H1pXJq, though it of course induces a well-defined map on
H1pXR r ⌘q{ Impj⌘q ‘ H1pXJq. Nevertheless, we hope the reader finds the reminder of how these maps are
induced su�ciently helpful so as to outweigh the indignity of slightly misleading labels.
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In order to show that iJpbq “ 0, observe that
ˆ

r⇡� ⇡Ds ˝
„

i⌘ 0
0 iJ

⇢˙
pa, bq “ pi ˝ r⇡⌘ ⇡J sqpa, bq “ ipxq “ 0.

But r⇡� ⇡Ds is an isomorphism, and so it follows that
„

i⌘ 0
0 iJ

⇢
pa, bq “ pi⌘paq, iJpbqq “ 0.

So iJpbq “ 0 as desired. This completes the proof of the claim that �´1pkerpiqq Ñ
kerpiRq ‘ kerpiJq.

Claim 7.10. �´1pkerpiqq Ö kerpiRq ‘ kerpiJq.
It su�ces to show that both kerpiRq and kerpiJq are contained in �´1pkerpiqq. Observe

that if b P kerpiJq then

ip�pbqq “ ip⇡Jpbqq “ ⇡DpiJpbqq “ ⇡Dp0q “ 0,

so b P �´1pkerpiqq. Now let ↵ P kerpiRq to show that �p↵q P kerpiq. Let a P H1pXR r ⌘q be
such that ⇡Rpaq “ ↵, and observe that �p↵q “ ⇡⌘paq. We have that

p⇡ ˝ i⌘qpaq “ piR ˝ ⇡Rqpaq “ iRp↵q “ 0.

Since ⇡ is an isomorphism, this implies that i⌘paq “ 0 and hence that

i p�p↵qq “ i p⇡⌘paqq “ ⇡� pi⌘paqq “ ⇡�p0q “ 0,

as desired. This completes the proof of the claim that �´1pkerpiqq Ö kerpiRq ‘ kerpiJq.
The last two claims combine to show that �´1pkerpiqq “ kerpiRq ‘ kerpiJq, which com-

pletes the proof of Proposition 7.8. ⇤
Note that given a properly embedded disc D in D

4 and a knotted 2-sphere S in S
4,

we can decompose XD#S “ XD YS1ˆD2 XS . It follows that the double cover is decom-
posed analogously; gluing in the branch set and applying a straightforward Mayer-Vietoris
argument tells us that

H1p⌃2pD4
, D#Sqq – H1p⌃2pD4

, Dqq ‘ H1p⌃2pS4
, Sqq.

Given � : H1p⌃2pKqqq Ñ Zn that extends to �D : H1p⌃2pD4
, Dqq Ñ Zn, define

�D#S : H1p⌃2pD4
, D#Sqq – H1p⌃2pD4

, Dqq ‘ H1p⌃2pS4
, Sqq �D ‘ 0››››Ñ Zn .

We can now show an analogue of Proposition 6.1 in the context of twisted homology.

Proposition 7.11. Let D be a properly embedded disc in D
4 with boundary K, and let S be a

knotted 2-sphere in S
4. Let � : H1p⌃2pKqq Ñ Zn be a map that extends to �D : H1p⌃2pD4

, Dqq Ñ
Zn, and let �D#S be as above. Then

ker
´
H
��
1

pXKq Ñ H
��D
1

pXDq
¯

“ ker
´
H
��
1

pXKq Ñ H
��D#S

1
pXD#Sq

¯
.

Proof. For a submanifold Y Ä XD#S we can restrict ��D#S to ⇡1pY q and, by a mild abuse

of notation we let H
��D#S
˚ pY q denote the resulting twisted homology with Zr⇠ns-coe�cients.

We shall use the decomposition XD#S “ XDYS1ˆD2XS . First we compute the homology
of S1 ˆ D

2 and XS . Letting t denote the generator of ⇡1pS2 ˆ D
2q – Z, we can pick a cell
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structure for (a space homotopy equivalent to) S
1 ˆ D

2 consisting of a single 0-cell and a
single 1-cell and use this to compute

H
��D#S

1
pS1 ˆ D

2q – kerp��D#S ptq ´ Idq

“ ker

ˆ„
0 1
1 0

⇢ „
⇠
b 0
0 ⇠

´b

⇢
´

„
1 0
0 1

⇢
: Zr⇠ns2 Ñ Zr⇠ns2

˙
, for some b P Z

“ ker

ˆ„
´1 ⇠

´b

⇠
b ´1

⇢˙
–

!
px, yq P Zr⇠ns2 | ⇠bx “ y

)
– Zr⇠ns.

.

Claim 7.12. We have that

H
��D#S

1
pXSq – Zr⇠ns ‘

`
ApSq bZrt˘1s Zr⇠ns2

˘
,

where on the right we have the action of Zrt˘1s on Zr⇠ns2 given by t ¨ rx, ys “ ry, xs.
To see this, use the Künneth spectral sequence [Wei94, Theorem 5.6.4] as in the proof of

Lemma 7.7. Since H0pX8q – Z, we obtain

E
2

0,1 “ ApSq bZrt˘1s Zr⇠ns2

E
2

1,0 “ TorZrt˘1s
1

pH0pX8
S q,Zr⇠ns2q – H

��D#S

1
pS1q – Zr⇠ns

E
2

2,0 “ TorZrt˘1s
2

pH0pX8
S q,Zr⇠ns2q – H

��D#S

2
pS1q “ 0.

Since E
2
2,0 “ 0 it follows that E2

0,1 – E
8
0,1. We also have E

2
1,0 – E

8
1,0. The spectral sequence

therefore gives rise to a short exact sequence of Zr⇠ns-modules

0 Ñ ApSq bZrt˘1s Zr⇠ns2 Ñ H
��D#S

1
pXSq Ñ Zr⇠ns Ñ 0,

which splits since the last module is free. This completes the proof of the claim.
Moreover, comparing the spectral sequences for S

1 ˆ D
2 and XS using naturality, it

follows that the map Zr⇠ns – H
��D#S

1
pS1 ˆD

2q Ñ H
��D#S

1
pXSq is injective and maps onto

Zr⇠ns.
Since the restriction of

��D#S : ⇡1pXD#Sq Ñ Z2 ˙Zn

to ⇡1pXSq is the map � fiÑ pr"Sp�qs, 0q we have that

H
��D#S

0
pS1 ˆ D

2q Ñ H
��D#S

0
pXSq

is an isomorphism, see Remark 7.5. The Mayer-Vietoris sequence for XD#S “ XD YS1ˆD2

XS with Zr⇠ns-coe�cients therefore gives us that

H
��D#S

1
pXD#Sq – H

��D
1

pXDq ‘
`
ApSq bZrt˘1s Zr⇠ns2

˘
,

since H
��D#S

1
pS1 ˆ D

2q – Zr⇠ns maps onto the Zr⇠ns-summand of H
��D#S

1
pXSq.

Since XK Ä XD, the inclusion induced map H
��
1

pXKq Ñ H
��D#S

1
pXD#Sq factors as

H
��
1

pXKq Ñ H
��D
1

pXDq Ñ H
��D
1

pXDq ‘ pApSq bZrt˘1s Zr⇠ns2q – H
��D#S

1
pXD#Sq.
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We saw that the central map is a split injection, the inclusion of the H
��D
1

pXDq direct
summand. It follows that

kerpH��
1

pXKq Ñ H
��D#S

1
pXD#Sqq – kerpH��

1
pXKq Ñ H

��D
1

pXDqq
as desired. ⇤

7.3. Construction of examples and proof of Theorem C. Recall from Notation 7.6
that for a space X and a root of unity ⇠, we define

A⇠pXq :“ ApXq bZrt˘1s Zr⇠s.
Now let J0 be a ribbon knot with preferred ribbon disc D0 such that

A⇠3pJ0q{ ker pA⇠3pJ0q Ñ A⇠3pD0qq
is nonzero. The knot J :“ J0# ´ J0 has two preferred slice (in fact ribbon) discs: D1

consists of D06 ´ D0 and D2 is the standard ribbon disc for any knot of the form K# ´ K

obtained by spinning. Note that ApJq – ApJ0q ‘ ApJ0q, ApD1q – ApD0q ‘ ApD0q, and by
the next lemma ApD2q – ApJ0q.
Lemma 7.13. The spun slice disc satisfies ApD2q – ApJ0q.
Proof. Let J

:
0
be a tangle D

1 Ñ D
3 arising from removing a trivial ball-arc pair pD3

, D
1q

from pS3
, J0q. Note that

ApJ:
0
q “ H1pD3z⌫J:

0
q – ApJ0q

and
D

4z⌫D2 – pD3z⌫J:
0
q ˆ I » D

3z⌫J:
0
.

It follows that ApD2q – ApJ0q as claimed. ⇤
Moreover, the map i1 : ApJq Ñ ApD1q is given by px, yq fiÑ pi0pxq, i0pyqq and the map

i2 : ApJq Ñ ApD2q is given by px, yq fiÑ x ` y.

Example 7.14. One example of such a knot is J0 “ 61. As noted in Example 7.3, ApJ0q “
Zrt˘1s{xp2t ´ 1qpt ´ 2qy, ApD0q “ Zrt˘1s{xt ´ 2y and the map i0 : ApJ0q Ñ ApD0q is given
by multiplication by 2t ´ 1. In particular, we have that

A⇠3pJ0q{ ker pA⇠3pJ0q Ñ A⇠3pD0qq – Zr⇠3s{xp2⇠3 ´ 1qp⇠3 ´ 2q, ⇠3 ´ 2y
– Z7rxs{xx ´ 2y ‰ 0.

Here the Z7 comes from ⇠
2
3

` ⇠3 ` 1 “ 0, combined with ⇠3 ´ 2 “ 0.

Now we prove the following more explicit version of Theorem C.

Theorem 7.15. Let pR, ⌘,�0q be as in Example 7.3 and let J0 be a ribbon knot with
preferred ribbon disc D0 such that A⇠3pJ0q{ ker pA⇠3pJ0q Ñ A⇠3pD0qq is nonzero. Let J “
J0# ´ J0, D1, and D2 be defined as above. Then for any g • 0, the knot K :“ #4g

i“1
R⌘pJq

has ribbon discs �1, the boundary connected sum of 4g copies of �D1, and �2, the boundary
connected sum of 4g copies of �D2, such that

kerpAQpKq Ñ AQp�1qq – kerpAQpKq Ñ AQp�2qq.
and yet

d2p�1,�2q • g.
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As discussed in Example 7.3, since both �D1 and �D2 are obtained from surgery on
a genus 1 Seifert surface for R⌘pJq, we know that d2p�D1 ,�D2q § 1. It follows that
d2p�1,�2q § 4g, though we are not able to determine d2p�1,�2q precisely.

Remark 7.16. The proof that d2p�1,�2q • g is somewhat long and involved, so for the
reader’s convenience we outline the key points in advance:

We suppose that F is a genus h § g surface to which both �1 and �2 stabilize by
addition of h 1-handles and some number of local 2-knots, in order to show h “ g.

For j “ 1, 2 let �1
j be a disc obtained from �j by 2-knot addition which stabilizes to

F via h 1-handle additions. Let T “ T1 Y ´T2 denote the standard cobordism built as
in Construction 3.1, so XT is a cobordism from X�1

1
through XF to X�1

2
. Our first main

argument proving Claim 7.17 below shows that there exists a highly nontrivial character
on H1p⌃2pKqq giving rise to a representation ⇡1pXKq Ñ Z2 ˙Z3 that extends over XT to
a map � with certain nice properties.

Just as in the proof of Theorem B, we compare kerpH�
1

pXKq Ñ H
�
1

pX�1qq and kerpH�
1

pXKq Ñ
H

�
1

pX�2qq. Essentially by Proposition 7.11 and the careful construction of �, we are able

to work with kerpH�
1

pXKq ◆1›Ñ H
�
1

pX�1
1
qq and kerpH�

1
pXKq ◆2›Ñ H

�
1

pX�1
2
qq instead. By the

construction of our examples, work before the statement of Theorem 7.15, and Proposi-
tion 7.8, we can show that kerp◆2q{pkerp◆1q X kerp◆2qq has generating rank x at least 2g. We
then use Proposition 6.2 to show that kerp◆F q both contains kerp◆2q and is generated by
kerp◆1q together with some other 2h elements. It follows that kerp◆2q{pkerp◆1q X kerp◆2qq has
generating rank x no more than 2h, and hence 2g § x § 2h so g § h. We assumed h § g

so g “ h as desired.

Proof of Theorem 7.15. Fix g P N, and let K, �1, and �2 be as above. Define N “ 4g,
⇠ :“ ⇠3, and recall that for any knot or slice disc L we have A⇠pLq :“ ApLq bZrt˘1s Zr⇠s. By
Proposition 7.2 we have identifications

ApKq –
Nà

i“1

ApR⌘pJqq –
Nà

i“1

ApRq

and Ap�jq –
Nà

i“1

Ap�Dj q –
Nà

i“1

Ap�0q for j “ 1, 2

in such a way that kerpApKq Ñ Ap�1qq and kerpApKq Ñ Ap�2qq are both identified with
a sum

ÀN
i“1

kerpApRq Ñ Ap�0qq, and in particular are equal. Since AQpLq – ApLq bQ for
any knot or slice disc L, our first conclusion follows.

Now suppose that F is a genus h § g surface to which both �1 and �2 stabilize by
addition of h 1-handles and some number of local 2-knots. We shall show under these
assumptions that h • g. As in the proof of Proposition 6.3, for j “ 1, 2 there exist discs �1

j

obtained from �j by connected sum with local 2-knots such that F is obtained from �1
j by

h 1-handle additions. For j “ 1, 2 we write �1
j “ �j#Sj for some local 2-knot Sj .

Note that f : XR⌘pJq Ñ XR lifts to give a degree one map X
2

R⌘pJq Ñ X
2

R, which ex-

tends to give sf : ⌃2pR⌘pJqq Ñ ⌃2pRq. Moreover, Proposition 7.2 implies that sf induces an
isomorphism on first homology. So we obtain an isomorphism

f : H1p⌃2pKqq – ‘N
i“1H1p⌃2pR⌘pJqqq ‘N

i“1
sf˚››››Ñ ‘N

i“1H1p⌃2pRqq – H1p⌃2pRN qq
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where we let RN denote the connected sum of N copies of R.
Let T1 and T2 be appropriate unions of the simple cobordisms built in Construction 3.1,

such that XT1 is a cobordism from X�1
1
to XF rel. XK and XT2 is a cobordism from X�1

2

to XF rel. XK . We let XT :“ XT1 YXF ´XT2 .

Claim 7.17. There exists a map

� “ p�iqNi“1 : ‘N
i“1 H1p⌃2pRqq Ñ Z3

with at least 2g of the �i nonzero such that ��˝f : ⇡1pXKq Ñ Z2 ˙Z3 extends over ⇡1pXT q
to a map � : ⇡1pXT q Ñ Z2 ˙Z3 and for j “ 1, 2 the composition

⇡1pXSj q Ñ ⇡1pX�j q ˚Z ⇡1pXSj q – ⇡1pX�1
j
q Ñ ⇡1pXT q �›Ñ Z2 ˙Z3

is given by � fiÑ pr"p�qs, 0q.
We will always construct our extensions in stages, first extending over

Y “ X�1
1

Y pXK ˆ Iq Y X�1
2

and then extending over the rest of XT .
Note that H1p⌃2pRqq – Z9 and that it follows from Proposition 7.2 that

ker
`
H1p⌃2pKqq Ñ H1p⌃2pD4

,�jqq
˘

– ker
´ Nà

i“1

H1p⌃2pRqq Ñ
Nà

i“1

H1p⌃2pD4
,�0qq

¯
(3)

–
Nà

i“1

3Z9 . (4)

It follows that for j “ 1, 2 and for any character � : H1p⌃2pRN qq Ñ Z3 we have that � ˝ f
extends to a map �j on H1p⌃2pD4

,�jqq, up to a priori extending its range to Z3a for some
a • 1. However, since our slice discs �j are in fact ribbon discs, the inclusion induced map
⇡1pXKq Ñ ⇡1pX�j q is surjective for j “ 1, 2. So we can take a “ 1.

Note that any map � ˝ f : H1p⌃2pKqq Ñ Z3 induces Ü� ˝ f : H1pX2

Kq Ñ Z3 by precom-
position with the natural inclusion induced map H1pX2

Kq Ñ H1p⌃2pKqq. Since inclusion
induces isomorphisms of H1pXKq with H1pXT q, in order to show that a given ��˝f extends
over ⇡1pXT q it su�ces to extend the corresponding Ü� ˝ f first over ⇡1pX2

�1
1

YpX2

K ˆIqYX
2

�1
2
q

and then over ⇡1pX2

T q.
Now, consider the Mayer-Vietoris sequence for X2

�1
1

Y pX2

K ˆ Iq Y X
2

�1
2
, which we note is

di↵eomorphic to X
2

�1
1

YX2
K
X

2

�1
2
:

H1pX2

Kq i1
1‘i1

2›››Ñ H1pX2

�1
1
q ‘ H1pX2

�1
2
q j1‘j2›››Ñ H1pX2

�1
1

YX2
K
X

2

�1
2
q Ñ 0.

For j “ 1, 2 we have that H1pX2

�1
j
q – H1pX2

�j
q ‘ H1p⌃2pS4

, Sjqq in such a way that

i
1
j : H1pX2

Kq Ñ H1pX2

�1
j
q is given by ij ‘ 0, where ij : H1pX2

Kq Ñ H1pX2

�j
q is the inclusion-

induced map. We therefore obtain, recalling that the map H1pX2

Kq Ñ H1pX2

�j
q is surjective

since �j is a ribbon disc, that

H1pX2

�1
1

YX2
K
X

2

�1
2
q – H1pX2

�1
q ‘ H1p⌃2pS4

, S1qq ‘ H1p⌃2pS4
, S2qq.

Therefore any Ü� ˝ f can be extended over

X
2

�1
1

Y pX2

K ˆ Iq Y X
2

�1
2

“ pX2

�1
Y X

2

S1
q Y pX2

K ˆ Iq Y pX2

�2
Y X

2

S2
q Ä BX2

T
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so that the extension is trivial on the H1p⌃2pS4
, S1qq‘H1p⌃2pS4

, S2qq-summand. Moreover,
such a map extends over H1pX2

T q if and only if it vanishes on

H :“ ker
`
H1pX2

�1
1

Y pX2

K ˆ Iq Y X
2

�1
2
q Ñ H1pX2

T q
˘
.

Note that our maps Ü� ˝ f have been chosen to vanish on H1p⌃2pS4
, S1qq ‘ H1p⌃2pS4

, S2qq,
and hence vanish on H if and only if they vanish on

H X H1pX2

�1
q “ ker

`
H1pX2

�1
q Ñ H1pX2

T q
˘
.

Moreover, ker
`
H1pX2

�1
q Ñ H1pX2

T q
˘
is isomorphic to a quotient of kerpH1pX2

Kq Ñ H1pX2

T qq.
For a space X with surjection " : H1pXq Ñ Z, we consider the map

e “ eX : ⇡1pXq Ñ GL2pZq

� fiÑ
„

0 1
1 0

⇢"p�q
.

Note that the eX maps for X “ XK , X�1
j
, XF , XT are compatible, since inclusion XK ãÑ X˚

induces an isomorphism on first homology. The proof of Proposition 6.2 implies that

kerpHe
1pXKq Ñ H

e
1pXT1qq – kerpHe

1pXKq Ñ H
e
1pXF qq – kerpHe

1pXKq Ñ H
e
1pXT2qq.

Proposition 6.2 also tells us that this kernel is generated by kerpHe
1
pXKq Ñ H

e
1
pX�1

1
qq along

with some 2h elements txku2hk“1
Ñ H

e
1
pXKq.

By the topologists’ Shapiro lemma [DK01, p. 100], there is a canonical identification
H

e
1
pXq – H1pX2q for all X, and so

kerpH1pX2

Kq Ñ H1pX2

T1
qq – kerpH1pX2

Kq Ñ H1pX2

F qq – kerpH1pX2

Kq Ñ H1pX2

T2
qq

and this kernel is generated by kerpH1pX2

Kq Ñ H1pX2

�1
1
qq along with some 2h elements

txku2hk“1
Ñ H1pX2

Kq.
Therefore, since every map H1pX2

Kq Ñ Z3 extends over H1pX2

�1
1

YX2
K
X

2

�1
2
q in our pre-

scribed fashion, in order to ensure that Ü� ˝ f extends over H1pX2

T q it is enough to have
pÜ� ˝ fqpxkq “ 0 for all k “ 1, . . . , 2h. It follows from Equation (3) that HompH1p⌃2pKqq,Z3q –
ZN
3 . Using our assumption that h § g, we have

N ´ 2h “ p4gq ´ 2h • p4gq ´ 2g • 2g.

A linear algebraic argument as in the proof of [KL05, Theorem 6.1] shows that if A is
an abelian group with HompA,Fq – FN then, given any m elements a1, . . . , am P A there
exists a character � “ p�iqNi“1

P HompA,Fq such that �pajq “ 0 for all j “ 1, . . . ,m and
such that at least N ´ m of the �i maps are nonzero. It therefore follows that there exists
some � “ p�iqNi“1

such that � ˝ f vanishes on tx1, . . . , x2hu and at least N ´ 2h • 2g of the
�i are nonzero. This completes the proof of Claim 7.17.

Let � “ p�iqNi“1
be such a map. By reordering the summands, without loss of generality

we may assume that �1, . . . ,�m are nonzero for some m • 2g and that �m`1, . . . ,�N are
zero. Let � :“ ��˝f and let � : ⇡1pXT q Ñ Z2 ˙Z3 be the corresponding extension of � over
⇡1pXT q.

Observe that XK is the union of N copies of XR⌘pJq, glued along pN ´1q copies of S1 ˆI,
and that, for j “ 1, 2, X�1

j
is the union of N copies of X�Dj

, glued along pN ´ 1q copies of
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S
1 ˆ I ˆ I, along with a single copy of XSj glued along S

1 ˆ D
2 away from all the other

identifications. These decompositions are compatible.
Let �i denote the restriction of � to the fundamental group of the ith copy of XR⌘pJq

and respectively let �i denote the restriction of � to the ith copy of ⇡1pX�Dj
q. Recall

that there are some choices of basepoints and paths implicit here – see the note at the end
of Construction 3.1. It is then straightforward to argue that our maps are related by the
following commutative diagram, where unlabeled arrows are induced by inclusion and ��i

denotes the unique extension of ��i to ⇡1pX�0q:

⇡1pXR⌘pJqq ⇡1pXRq Z2 ˙Z3

⇡1pX�Dj
q ⇡1pX�0q Z2 ˙Z3 .

f˚

�i

��i
“

�i

g˚ ��i

For 1 § i § m, the map �i is nontrivial and so Proposition 7.8 implies that

H
�i
1

pXR⌘pJqq – H
��i
1

pXRq ‘ A⇠pJq1‘1̄ and H
�i
1

pX�Dj
q – H

��i
1

pX�0q ‘ A⇠pDjq1‘1̄

in such a way that kerpH�i
1

pXR⌘pJqq Ñ H
�i
1

pX�Dj
qq is identified with

ker
´
H
��i
1

pXRq Ñ H
��i
1

pX�0q
¯

‘ kerpA⇠pJq Ñ A⇠pDjqq1‘1̄
.

Now consider a portion of the Mayer-Vietoris sequences in twisted homology for XK “
YN

i“1
XR⌘pJq and X�j “ YN

i“1
X�Dj

for j “ 1, 2:

‘N´1

i“1
H
�i
1

pS1 ˆ Iq ‘N
i“1

H
�i
1

pXR⌘pJqq H
�
1

pXKq

‘N´1

i“1
H

�i
1

pS1 ˆ I ˆ Iq ‘N
i“1

H
�i
1

pX�Dj
q H

�
1

pX�j q.
Id

u

‘n
i“1◆

i
j

v

◆j

Uj Vj

In the above diagram, by a mild abuse of notation we refer to the restriction of �i to
⇡1pS1 ˆ Iq as just �i, and similarly for �i|⇡1pS1ˆIˆIq.

We wish to show that kerp◆2q{pkerp◆1q Xkerp◆2qq has generating rank at least 2g. In order

to do this, we focus on a submodule Q of ‘N
i“1

H
�i
1

pXR⌘pJqq and analyze how vpQq intersects
kerp◆1q and kerp◆2q.
Claim 7.18. The module Q :“ ‘m

i“1
A⇠pJq1‘1̄ Ä ‘N

i“1
H
�i
1

pXR⌘pJqq is carried isomorphically

by v to a subgroup of H�
1

pXKq such that for q P Q we have that vpqq P kerp◆jq if and only if
q P ker

`
‘N

i“1
◆
i
j

˘
.

First, use Proposition 6.2 to decompose

Nà

i“1

H
�i
1

pXR⌘pJqq –
mà

i“1

`
H
��i
1

pXRq ‘ A⇠pJq1‘1̄
˘

‘
Nà

i“m`1

H
�i
1

pXR⌘pJqq.
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We can then observe that since

pS1 ˆ Iqi Ä pXRqi X pXRqi`1 Ä pXR⌘pJqqi X pXR⌘pJqqi`1

we have

kerpvq “ Impuq Ñ
mà

i“1

H
��i
1

pXRq ‘
Nà

i“m`1

H
�i
1

pXR⌘pJqq.

Similarly, we have that

kerpVjq “ ImpUjq Ñ
mà

i“1

H
��i
1

pX�0q ‘
Nà

i“m`1

H
�i
1

pX�Dj
q.

That is, kerpvq and kerpVjq respectively intersect the A⇠pJq1‘1̄ and A⇠pDjq1‘1̄ summands
trivially.

In order to show that ◆ijpxq “ 0 if and only if ◆jpvpxqq “ 0, suppose that x is an element

of the ith copy of A⇠pJq1‘1̄ for some 1 § i § m. One direction follows immediately from
the commutativity of our diagram: if ◆ijpxq “ 0, then ◆jpvpxqq “ Vjp◆ijpxqq “ Vjp0q “ 0. So

suppose now that ◆jpvpxqq “ 0. It follows that ◆ijpxq P kerpVjq “ ImpUjq, and so there exists

y P ‘n´1

i“1
H1pS1q such that Ujpyq “ ◆

i
jpxq. Observe that ◆ijpx´ upyqq “ ◆

i
jpxq ´Ujpyq “ 0, so

x ´ upyq P kerp◆ijq. However, since

◆
i
jpxq P

mà

i“1

A⇠pDjq1‘1̄

and

◆
i
jpupyqq “ Ujpyq P ImpUjq Ñ

mà

i“1

H
��i
1

pX�0q ‘
Nà

i“m`1

H
�i
1

pX�Dj
q

we must have ◆ijpxq “ 0 “ Ujpyq, as desired. This completes the proof of Claim 7.18.

For j “ 1, 2 we have by Claim 7.18 that

Pj :“ vpQq X kerp◆jq – Q X v
´1pkerp◆jqq “ Q X

mà

i“1

kerp◆ijq. (5)

We now argue that the subset P2{pkerp◆1q XP2q of kerp◆2q{pkerp◆1q Xkerp◆2qq has generating
rank at least 2g, noting that by Lemma 4.1 (2) this implies as desired that kerp◆2q{pkerp◆1qX
kerp◆2qq has generating rank at least 2g.

By the splitting of the kernel from Proposition 7.8 we have that

Q X
mà

i“1

kerp◆ijq “
mà

i“1

A⇠pJq1‘1̄ X
mà

i“1

kerp◆ijq “
mà

i“1

ker
´
A⇠pJq1‘1̄ Ñ A⇠pDjq1‘1̄

¯
. (6)

From our computations of the maps A⇠pJq Ñ A⇠pDjq before the statement of Theorem 7.15,
we also have

ker
´
A⇠pJq1‘1̄ Ñ A⇠pDjq1‘1̄

¯
“

#
kerp◆⇠

0
: A⇠pJ0q Ñ A⇠pD0qq1‘1̄

j “ 1

tpx,´xq | x P A⇠pJ0qu j “ 2.
(7)
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Observe that by Claim 7.18 together with Equations (5) and (7) we have

P2{ pkerp◆1q X P2q “ P2{ pkerp◆1q X vpQq X kerp◆2qq
“ P2{ pP2 X P1q

–
mà

i“1

tpx,´xq | x P A⇠pJ0qu{
mà

i“1

 
px,´xq | x P kerp◆⇠

0
q
(

–
mà

i“1

A⇠pJ0q{ kerp◆⇠
0
q.

SinceA⇠pJ0q{ kerp◆⇠
0
q is nonzero, the classification theorem of finitely generated modules over

commutative PIDs implies that the generating rank of P2{ pkerp◆1q X P2q is m • n “ 2g.

Now we finish the proof that h • g by showing that the generating rank of kerp◆2q{pkerp◆1qX
kerp◆2qq is no more than 2h. Let PF :“ kerpH�

1
pXKq Ñ H

�
1

pXF qq. By Proposition 6.2 ap-

plied to �1
1
and F , we have that PF is generated as a Zr⇠s-module by kerpH�

1
pXKq Ñ

H
�
1

pX�1
1
qq together with some 2h elements x1, . . . , x2h. Here we use that the ring of Eisen-

stein integers Zr⇠s is a Euclidean domain and is therefore a PID. However, by Proposi-
tion 7.11 we have that

ker
`
H
�
1

pXKq Ñ H
�

1 pX�1
1
q
˘

“ ker
`
H
�
1

pXKq Ñ H
�

1 pX�1q
˘

“ kerp◆1q.
So for any submodule P of PF , the quotient module P {pP X kerp◆1qq is isomorphic to a
submodule of PF { kerp◆1q and hence, by Lemma 4.1 (2), has generating rank at most 2h.
But Proposition 6.2 applied to �1

2
and F together with the fact that by Proposition 7.11

ker
`
H
�
1

pXKq Ñ H
�

1 pX�1
2
q
˘

“ ker
`
H
�
1

pXKq Ñ H
�

1 pX�2q
˘

“ kerp◆2q
implies that kerp◆2q is contained in PF . We can therefore conclude as desired that

2h • g-rk pkerp◆2q{ pkerp◆2q X kerp◆1qqq • 2g. ⇤.
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