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Structure function data provide insight into the nucleon quark distribution. They are relatively straight-
forward to extract from the world’s vast, and growing, amount of inclusive lepto-production data. In turn,
structure functions can be used to model the physical processes needed for planning and optimizing future
experiments. In this paper a machine learning algorithm capable of predicting, using a unique set of param-
eters, the F2 structure function, for four-momentum transfer 0.055 ≤ Q2 ≤ 800.0 GeV2 and for Bjorken x
from 2.8 × 10−5 to the pion threshold is presented. The model was trained and reproduces the hydrogen
and the deuterium data at the 7 % level, comparable with the average uncertainty of the experimental data.
Extending the model to other nuclei or expanding the kinematic range are straightforward. The model is at
least ten times faster than existing structure functions parameterizations, making it an ideal candidate for
event generators and systematic studies.
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I. INTRODUCTION

Inclusive electron scattering experiments have been
used for more than fifty years to gain insight into the
structure of subatomic particles. As far back as the 1960s
this type of experiments, carried out at the Stanford Lin-
ear Accelerator (SLAC), provided the experimental evi-
dence for the existence of quarks1,2.

Starting with the experimental cross–section for in-
clusive scattering one can define and extract the so–
called structure function(s), which parameterize the spa-
tial extent of the target. Using the wealth of data ac-
cumulated, several structure function models have been
developed. Some of these models are predominantly
phenomenological3–5 while others build the structure
function starting from the underlying parton distribu-
tion functions (PDFs). “Hybrid” approaches that com-
bine the different approaches traditionally used in the
deep inelastic and resonance regimes are also available6.
For a recent review of these see7 and references therein.

The current work uses machine learning (ML) to de-
velop a structure function model, named “inclusiveAI”.
The model aims to provide accurate F2 predictions over
as large a Bjorken x and four momentum transfer, Q2,
kinematic region as possible. This includes both deep in-
elastic scattering (DIS) data as well as resonance region
data. The model is built ab initio to handle both hydro-
gen and deuterium data and it can be easily extended to
heavier nuclei. The model does not make assumptions,
implicit or explicit, about the data, and a unique set of
parameters is used to predict the structure function re-
gardless of the target or the kinematic regime. While this
model does not directly provide PDFs, it is fast and rea-
sonably accurate, making it attractive for use in applica-
tions where very large number of predictions are needed
(event generators, acceptance simulation, radiative cor-
rection estimation).

This paper is structured as follows. In Section 2 we
briefly review the basics of inclusive electron scatter-
ing and main approaches in structure function modeling.
Section 3 describes the input data set while Section 4
introduces the machine learning approach used in this
study. Section 5 presents the structure function results
including the associated uncertainty studies that were
undertaken. The last section presents our conclusions.

II. INCLUSIVE ELECTRON SCATTERING AND

STRUCTURE FUNCTION MODELS.

The data used in this study come primarily from fixed
target charged lepton–nucleon scattering experiments: a
lepton of energy E scatters from a stationary nucleon and
is detected at an angle ϑ with an energy E′, while the fi-
nal hadronic state is not detected. In the one–photon ex-
change approximation the lepton–nucleon scattering pro-
cess is mediated by the exchange of a virtual photon and
can be represented by the Feynman diagram shown in
Fig. 1, where l, l′ are the incident and scattered leptons
respectively, N is the target nucleon (of mass M), and X
represents the recoiling system. Some of the kinematic
variables used to describe the inclusive lepton-nucleon
scattering process are: the four momentum transferred
from the lepton to the target nucleon, Q2, the fraction
of the nucleon’s momentum carried by the struck quark,
x, the energy lost by the lepton, ν = E − E′, and the
invariant mass squared of the hadronic final state, W 2:

Q2 = 4EE′ sin2 ϑ/2 (1)

x =
Q2

2Mν
(2)
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FIG. 1: Feynman diagram for inclusive lepton–nucleon scat-
tering in one–photon–exchange approximation.

W 2 = M2 + 2Mν −Q2 (3)

Using this approximation the differential cross section
can be expressed in terms of structure functions F1 and
F2, which parameterize the spatial extent of the charge
distribution of partons inside the nucleon:

d2σ

dΩdE′
= σMott

( 2

M
F1(x,Q

2) tan2
ϑ

2

+
1

ν
F2(x,Q

2)
)

,

(4)

with σMott the cross section for scattering off of a point–
like particle. F1 and F2 can be related to the cross section
for absorbing either a transversely (σT ) or a longitudi-
nally polarized virtual photon (σL)

8.
In the quark–parton model one can write the structure

functions as combinations of the underlying quark and
anti–quark distribution functions. Various groups have
used this formalism to extract parton distribution func-
tions (PDFs). A list and brief discussion of the most re-
cent PDF parameterizations available, including Machine
Learning approaches, can be found in7. These parame-
terizations focus on the deep inelastic scattering process
(large Q2 and W 2) and are not suitable in the resonance
region.
Phenomenological models of the inclusive cross section

in the resonance region have been developed, with the
most recent ones by Christy and Bosted3,4. These mod-
els describe the cross section as a resonant contribution
overlayed on top of a non-resonant background. The

structure functions can then be obtained from the dif-
ferential cross section using the ratio of the longitudinal
and transverse cross sections, R = σL/σT .
Both approaches can be computationally intensive

when calculating experimental observables such as cross–
section or structure functions. This is due to the convo-
lutions required for each and every prediction. For PDF–
based models this convolution is carried out over the par-
ton distributions themselves. For the phenomenological
parameterizations convolutions over the Fermi distribu-
tion are needed when calculating structure functions for
deuteron/heavier nuclei. This can significantly impact
several important data analysis steps where a very large
number of predictions are needed, such as radiative cor-
rection estimation and detector response function mod-
eling (i.e. acceptance calculations).

III. INPUT DATA SELECTION

To develop the machine learning model described in
this work the input data was selected and curated as
follows:

• The data must be published or available from pub-
lic sources/databases.

• The data must provide either the F2 structure
function or the differential cross–section. For
the datasets providing only the latter the R1998
parameterization9 was used to extract F2, with a
small increase in the uncertainty budget.

• For each data point the statistical and systematic
uncertainties, including any overall normalization
errors, when known, were added in quadrature to
obtain the total uncertainty. This was subsequently
used to estimate the precision of the model as de-
scribed in Section V.

• Only data above the pion threshold was used.

• No additional Q2 or x cuts were imposed, resulting
in the most extensive data set available.

• Even though this study is limited to hydrogen and
deuterium data, an extension to heavier targets is
easily achievable.

The data set selected includes both electron–nucleon
as well as muon–nucleon experiments, originating from
several international laboratories:
SLAC11–13, DESY14, CERN15–17, and JLab18–21. With
such a large dataset, spanning several decades and labo-
ratories, some “tensions” between datasets covering the
same or adjacent phase space regions can be expected
and have been documented11,23–25. As it is difficult, if
not impossible to carry out a full, ab initio, re-analysis
of decades–old experiments in this study the input data
was left “as is”, not modified or renormalized post hoc. In
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Lastly, most of the theoretical insights are cast at the
parton distribution level. For all cases where experi-
mental observables, such as structure functions or cross–
sections, need to be evaluated, cpu–intensive convolu-
tions are required. This greatly increases the compu-
tational resources needed, especially for applications in
which very large number of events are generated (Monte
Carlo simulations, radiative corrections, etc.).

B. Artificial Neural Network architecture

In recent years artificial intelligence/machine learning
approaches have seen increased use in many fields, in-
cluding substantial strides in nuclear and particle physics
(pattern recognition, event reconstruction and topol-
ogy, accelerator control and maintenance27). Significant
strides have been made even in the specific area of struc-
ture function modeling28.
The ML approach used here attempts to address or cir-

cumvent the issues listed in IVA and provide fast, accu-
rate structure function predictions for the structure func-
tion F2. The model is completely data–driven, with no
assumptions (or biases) of any underlying physics. The
implementation is based on Artificial Neural Networks
(ANN) and a back-propagation algorithm for the opti-
mization of the network parameters.
The most important design constraints and features

are presented below, grouped separately into physics
choices and machine learning/implementation choices.
As using ML is a relatively new addition to the com-
putational capabilities of nuclear/particle physicists the
latter set of choices will be more extensively detailed,
highlighting the differences (and introducing some Data
Analytics–specific vocabulary) between ML and tradi-
tional fitting procedures that readers might be familiar
with.
Physics choices:

• the ML code shall provide F2 predictions over as
large Q2 (from Q2 < 1 to Q2 ∼ 1, 000 GeV 2) and
x (from very small (∼ 10−5) to the pion threshold)
as possible.

• the ML input set shall incorporate all available
charged lepton–nucleon data (DIS, resonance re-
gion, using electron as well as muon beams) that
provides either the structure function F2 itself or
the differential cross–section (from which the struc-
ture function can be obtained). In the latter cases
the generally accepted/used R19989 function was
used for the ratio of the longitudinal and transverse
cross–sections.

• the ML shall consider both hydrogen and deu-
terium data, with no bias or explicit provisions
for either. Furthermore, the model shall provide
a transparent way of generalizing the approach to
other nuclei (see ML implementation below).

• the total uncertainty associated with the input data
shall be used in assessing the error associated with
the ML predictions. No attempt to second–guess
or re–scale the original, published, data shall be
implemented.

ML implementation choices:

• the ML model shall consist of an assembly of ANN
with varying topologies. Simple majority voting
(average) shall be used as the final ML prediction.
Alternatively, one can pick a single topology as
“the” model and use the spread in the F2 predic-
tions of the remaining architectures as a measure
of the uncertainty.

• the ML model shall be implemented using “indus-
try standard” tools and libraries and should be able
to complete its training using modest computation
means.

• the ML model shall run in a consistent manner and
shall have a way of assessing the quality of its pre-
dictions.

• the ML model uncertainties shall be commensu-
rable/better than the total uncertainty associated
with the input data points themselves.

• the ML model shall try to minimize the mean
square error (MSE) as it is an unbiased statistic.

From the ML/data analytics standpoint, F2 prediction
is a supervised learning exercise where one seeks to in-
fer the best possible values for the parameters of one’s
learning function given a set of “labels” (i.e. the observ-
able(s) to be fitted, in this case F2) and their correspond-
ing “features” (i.e. the variables on which the observable
depends). As the labels are known in advance for each
set of inputs the ML method is deemed “supervised”.
Furthermore, given that the structure function F2 takes
real values, the ML algorithm is a regression rather than
a classification.
Given that the behavior of the structure function, even

considering the resonance region, is reasonably smooth
and continuous, and given the time and hardware con-
straints of the project, a relatively simple ML was cho-
sen, namely a fully connected ANN with one input layer,
one output layer, and a number of hidden layers. While
the number of neurons in the input and output layers
are determined by the number of features and, respec-
tively, by the number of labels (one), the number of
hidden layers was varied: networks with up to ten hid-
den layers were tested. The number of neurons per layer
was varied as well. Shallow networks (one or two hidden
layers) required a relatively large number of neurons to
achieve any significant performance. For one hidden layer
network topologies with up to 1000 neurons/layer were
tested while for two hidden layer networks widths of up
to 70× 70 neurons were used. For networks deeper than
two hidden layers topologies with 4 to 15 neurons/layer
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