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Abstract: Land-surface parameters derived from digital land surface models (DLSMs) (for example,
slope, surface curvature, topographic position, topographic roughness, aspect, heat load index, and
topographic moisture index) can serve as key predictor variables in a wide variety of mapping and
modeling tasks relating to geomorphic processes, landform delineation, ecological and habitat
characterization, and geohazard, soil, wetland, and general thematic mapping and modeling. However,
selecting features from the large number of potential derivatives that may be predictive for a specific
feature or process can be complicated, and existing literature may offer contradictory or incomplete

guidance. The availability of multiple data sources and the need to define moving window shapes, sizes,
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and cell weightings further complicate selecting and optimizing the feature space. This review focuses on
the calculation and use of DLSM parameters for empirical spatial predictive modeling applications, which
rely on training data and explanatory variables to make predictions of landscape features and processes
over a defined geographic extent. The target audience for this review is researchers and analysts
undertaking predictive modeling tasks that make use of the most widely used terrain variables.

To outline best practices and highlight future research needs, we review a range of land-surface
parameters relating to steepness, local relief, rugosity, slope orientation, solar insolation, and moisture and
characterize their relationship to geomorphic processes. We then discuss important considerations when
selecting such parameters for predictive mapping and modeling tasks to assist analysts in answering two
critical questions: What landscape conditions or processes does a given measure characterize? How might
a particular metric relate to the phenomenon or features being mapped, modeled, or studied? We
recommend the use of landscape- and problem-specific pilot studies to answer, to the extent possible,
these questions for potential features of interest in a mapping or modeling task. We describe existing
techniques to reduce the size of the feature space using feature selection and feature reduction methods,
assess the importance or contribution of specific metrics, and parameterize moving windows or
characterize the landscape at varying scales using alternative methods while highlighting strengths,
drawbacks, and knowledge gaps for specific techniques. Recent developments, such as explainable
machine learning and convolutional neural network (CNN)-based deep learning, may guide and/or

minimize the need for feature space engineering and ease the use of DLSMs in predictive modeling tasks.

Keywords: Geomorphometry; Land-Surface Parameters; Digital Land Surface Model; Digital Elevation
Model; Landforms; Spatial Predictive Modeling: Machine Learning
1. Introduction

Land-surface parameters, or geomorphometric variables, can be important indicators or predictor
variables for a wide variety of spatial predictive modeling and thematic mapping tasks (Ironside et al.,
2018; Florinsky, 2017; Franklin, 2020). For example, such variables have been documented to be of value

2
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for mapping or predicting landforms (e.g., Cavalli et al., 2017; Clubb et al., 2014; McKean and Roering,
2004; Purinton and Bookhagen, 2017; Sofia, 2020), geomorphic processes (e.g., Dragut and Blaschke,
2006; Eisank et al., 2011; Gergek et al., 2011; Maxwell et al., 2020b), geohazards (e.g., Brock et al.,
2020; Goetz et al., 2015; Maxwell et al., 2020c, 2021), soil properties (e.g., Florinsky et al., 2002;
Gesseler et al., 1995; Vermeulen and Van Niekerk, 2017), ecological and habitat characteristics (e.g.,
Ironside et al., 2018; Evans and Cushman, 2009), and wetland extent (e.g., Maxwell et al., 2016; Maxwell
and Warner, 2019; Riley et al., 2017; Wright and Gallant, 2007). The development of consistent, detailed,
and publicly available digital land surface models (DLSMs), such as those being curated by the 3D
Elevation Program (3DEP) (Arundel et al., 2015) in the United States (USA), has greatly increased the
availability of data for undertaking operational mapping and modeling tasks over large spatial extents
(Csillik and Dragut, 2018; Franklin, 1987; Guth, 2006; Hofle and Rutzinger, 2011; James et al., 2012).
Data have been and continue to be generated at a variety of spatial resolutions and levels of generalization
or detail; for example, the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM),
which covers 80% of the globe between 60° north and 56° south, offers spatial resolutions of one arc-
second (roughly 30-by-30 meter pixels) and three arc-seconds (roughly 90-by-90 meter pixels) (Farr et
al., 2007). Similarly, the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global
Digital Elevation Model (ASTER GDEM) offers a 30 m spatial resolution (“ASTER Global Digital
Elevation Map” ). In contrast, light detection and ranging (LiDAR) can offer a high (i.e., sub-meter)
spatial resolution along with the ability to map features below tree canopies using multiple returns from a
single laser pulse (Hofle and Rutzinger, 2011). The availability of DLSM datasets representing
landscapes at different times can support the quantification of landscape change resulting from
anthropogenic alterations and natural geomorphic processes (James et al., 2012; Maxwell and Strager,
2013; Perignon et al., 2013; Ross et al., 2016; Williams, 2012; Yang et al., 2021).

Despite the demonstrated utility of DLSMs and derived land-surface parameters, making use of these
data for specific mapping or modeling tasks is complex. First, the analyst must select a DLSM source.
Fine spatial resolution or detail may enhance the visibility of desired features but can also be unnecessary

3
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or even a hindrance. Second, a wide variety of parameters can be generated such that determining a
reasonable or suitable variable subset, or feature space, for a specific task can be difficult. Prior research
may offer inadequate or contradictory guidance (see for example Franklin (2020) and Maxwell et al.
(2020)), and a suitable subset of features is commonly not known a priori, requiring the analyst to
investigate a large number of inputs or develop a feature set that may be suboptimal. Such
experimentation can be time consuming and computationally intensive. Third, many land-surface
parameters may be highly correlated, which can cause problems when used as input for algorithms or
modeling methods that are not robust to multicollinearity. Fourth, many parameters make use of local
moving windows or kernels that compare a center cell to its neighbors. For such variables, the analyst
may struggle to specify an appropriate window shape and size, be unsure of whether the cells in the
window should be weighted based on distance from the center cell, and be faced with a wide array of
weighting options if weighting appears to be warranted. Alternatively, analysts may explore other means
to characterize the landscape at multiple scales that do not rely on traditional moving window-based
analysis (e.g., resampling DLSMs to a coarser spatial resolution or smoothing the surface using a filter).
Lastly, due to issues of spatial heterogeneity, relationships and patterns may not be consistent across
landscapes or physiographies. Given the richness of available options and, in many cases, the lack of
guidance provided by prior research, variable selection and generation can be a daunting task (Albani et
al., 2004; Ironside et al., 2018; Evans and Minar, 2011; Florinsky, 2017; Franklin, 1987, 2020; Hengl et
al., 2009; MacMillan and Shary, 2009; Olaya and Conrad, 2009; Pike et al., 2009; Wilson and Gallant,
2000).

Prior studies—and two key texts—provide reviews of land-surface parameters and their uses. Chapters
3 and 4 in Wilson and Gallant’s Terrain Analysis: Principles and Applications text (Wilson and Gallant,
2000) explain and review a wide range of parameters. Hengl and Reuter’s (2009) Geomophometry:
Concepts, Software, and Applications provides a detailed treatment of geomorphometry, with Chapters 6
through 8 focused on land-surface parameters specifically (Hengl and Reuter, 2009). Florinsky (2017)
provides a mathematical treatment, categorization, and review of a wide range of geomorphometric
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methods and metrics in order to foster a deeper understanding of their meaning and correct use. Ironside
et al. (2018) review the use of land-surface parameters in ecological applications and highlight that the
optimal subset of variables is often case- and/or landscape-specific. Franklin (2020) explores the use of
these parameters in geophysical and biophysical remote sensing studies and highlights the need to select
features based on a clear conceptualization of how each variable may influence the phenomenon being
studied or predicted and why its inclusion is likely beneficial. Sofia (2020) reviews the use of
geomorphometry for deriving insight into Earth surface process dynamics through both direct analysis of
parameters and their use in empirical models. Xiong et al. (2021) argue for a shift in focus from mapping
and quantifying landscape characterisitics to using DLSMs and analytical techniques to model the
mechanisms that generate landforms and further our understanding of geomorphic processes. Whether the
goal is mapping a landscape property or generating mechanistic insight, both require the judicious use of
parameters derived from DLSMs.

Expanding upon prior studies and reviews, we focus on how to select and use land-surface parameters
as inputs to empirical spatial predictive mapping and modeling tasks, including geomorphic mapping and
modeling, spatial probabilistic modeling, and thematic mapping or landscape classification tasks such as
vegetation or forest type differentiation, wetland delineation, and land use/land cover (LULC) data
production. In contrast to other recent geomorphometry-relevant reviews (e.g., Florinsky, 2017; Ironside
et al., 2018; Franklin, 2020; Sofia, 2020; and Xiong et al., 2021), we focus on parameterization issues
specific to empirical modeling tasks including selecting input elevation data, impacts of data
generalization and spatial resolution on calculated metrics and resulting models, parameterization of
moving windows, alternative means to characterize landscapes at multiple scales, and feature selection
and reduction. This review is of specific value to those with a need to characterize the landscape to
undertake empirical modeling tasks, especially in cases where a priori knowledge of the most important
land-surface parameters for a given task is not available.

Empirical modeling relies on samples, or training data, and explanatory variables to make predictions
of continuous measures (regression), differentiate categories (classification), or estimate probabilities
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(probabilistic predictive modeling). Commonly employed techniques include linear and multiple linear
regression, geographically weighted regression, logistic regression, generalized additive models (GAMs),
machine learning (e.g., artificial neural networks (ANN), support vector machines (SVM), decision trees
(DT), random forest (RF), and boosted DTs), and deep learning. For spatial predictive modeling
specifically, the output will be predictions over a map extent relative to some aggregating unit, such as
pixels/cells or areal features (Chang, 2008; James et al., 2013; Lillesand et al., 2015; Maxwell et al.,
2018).

Based on results from prior studies, we highlight best practices and suggest future research needs. In
Section 2 (Digital Land Surface Models and Derived Parameters), we provide an overview of DLSMs and
the types of land-surface parameters that can be derived from them. In Section 3 (Considerations for
Calculating, Selecting, and Implementing Land-Surface Parameters for Empirical Modeling), we discuss
selecting variables, means of feature selection or reduction, issues of scale and spatial resolution, defining
and parameterizing moving windows, alternatives to moving windows, and comparing multiple DEMs to
assess landscape change. In Section 4 (Recommendations and Research Needs), we summarize best
practices and highlight knowledge gaps.

2. Digital Land Surface Models and Derived Parameters
2.1. Digital Land Surface Models

A digital representation of the bare-earth surface elevation is commonly called a digital terrain model
(DTM). In contrast, a surface that includes aboveground features, such as trees and buildings, is referred
to as a digital surface model (DSM). The term digital elevation model (DEM) is more generic and can be
used to refer to a DTM or a DSM. In this review, we use the term digital land surface model (DLSM), as
opposed to DTM, to denote a representation of the bare-earth surface as suggested by Pike et al. (2009),
as this is the preferred term within the geomorphometry community (Pike et al. 2009; Hengl and Reuter
2009). In order to estimate the height of features above the landscape surface, a DLSM can be subtracted
from a DSM to obtain a normalized digital surface model (nDSM), in which the measurements represent
height above the ground surface. If only trees or forest canopy are represented as aboveground features,

6



156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

an nDSM may be referred to as a canopy height model (CHM) (Chang, 2008; Wilson and Gallant, 2000).
DLSMs of difference are produced by subtracting two DLSMs representing different time periods and
provide a measure of elevation loss or gain at each cell (Williams, 2012).

Elevation data can be represented as discrete point measurements, isolines or contour lines, or
continuous surfaces. The triangulated irregular network (TIN) vector-based model allows for
measurements at discrete data points to be interpolated to a continuous surface using a triangular mesh,
where each triangular facet is defined by the three point measurements that form its vertices. However,
most analytical methods for generating land-surface parameters rely on a raster-based data model where
each cell has a defined size (e.g., 10-by-10 meters) and holds an elevation measurement. What the
elevation measurement represents for each cell is not always clear; for example, the elevation could
represent an average over the cell or the elevation at the center of the cell, which could impact the
interpretation and use of the surface (Chang, 2008). Here, we will make use of this raster-based
representation of terrain surfaces. Raster data models can be augmented to represent vectors (i.e.,
quantities that have both magnitude and direction) as opposed to scalar quantities. This augmentation of
the raster data model is known as vector fields and allows for vector algebra and calculus to be
implemented to calculate land-surface parameters (Li and Hodgson, 2004; Hu et al., 2021). For example,
Hu et al. (2021) proposed a method for calculating plan curvatures using vector fields. Raster-based
vectors are also implicitly used in dynamical landscape evolution models in which the divergence of
sediment fluxes between raster cells governs topographic change (e.g., Tucker and Hancock, 2010).

A variety of methods are available to estimate the elevation of the landscape surface and generate
DLSMs and/or DSMs. The traditional approach uses passive remote sensing and photogrammetry that
exploits the stereo parallax in overlapping stereo images to estimate heights. This same general approach
is used in the creation of DSMs using many overlapping drone images, a process known as structure from
motion (SfM). Active remote sensing methods used to generate elevation datasets include interferometric
synthetic aperture radar (InSAR), which makes use of differences in phase between returning backscatter
waveforms, and LiDAR, which uses laser range distancing to produce point clouds representing x, y, z
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coordinates in three-dimensional space. Since many systems can also record multiple returns from a
single laser pulse, returns from subcanopy features—and even the ground surface—can potentially be
recorded, allowing for the mapping of geomorphic features and terrain surfaces otherwise obscured by
vegetation. Traditional photogrammetry, SfM, and InSAR do not allow for canopy penetration, which
hinders the production of DLSMs in forested areas (Chang, 2008; Hofle and Rutzinger, 2011; Lillesand et
al., 2015).

Figure 1 demonstrates the quality and variety of information that can be obtained from multiple-return
aerial LIDAR. Our examples use LiDAR data for an area near Seneca Rocks in West Virginia, USA. For
comparison, in Figure 1 we have also included an aerial orthophotograph provided by the National
Agriculture Imagery Program (NAIP). The DLSM, visualized here using a hillshade, highlights the detail
of the bare-earth surface captured. The DSM, also displayed as a hillshade, highlights the generally rough
nature of the vegetation surface compared to the generally much smoother bare earth. The nDSM
represents heights above ground while the spectral information associated with the intensity of the near
infrared laser returns is visualized using a first return intensity image, which has some correlation with

land cover and surface materials (Lillesand et al., 2015).
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Figure 1. Example variables derived from LiDAR data. Image data are provided for comparison and are from the
National Agriculture Imagery Program (NAIP). DLSM = Digital Land Surface Model, DSM = Digital Surface
Model, nDSM = normalized Digital Surface Model. The DLSM and DSM are visualized using a hillshade (HS). All
LiDAR derivatives were generated using ArcGIS Pro (“ArcGIS Pro help—ArcGIS Pro | Documentation™ ).

2.2. Land-Surface Parameters



203 In this section, we review the most commonly used land-surface parameters that can be calculated

204  from DLSMs. As noted above, there are a wide variety of surfaces that can be generated (Wilson and

205 Gallant, 2000); it is not possible to provide a detailed treatment of all possible features. We focus on

206  selected metrics that explain or quantify key aspects of the land surface such as steepness, local relief,

207 rugosity, slope orientation, solar insolation, and moisture. While this overview focuses on the most

208  commonly used metrics that quantify different aspects of the land surface, our later discussion of feature
209  selection and reduction methods is applicable to a much broader range of land-surface parameters.

210 2.2.1. Visualizing Bare-Earth Surfaces

211 Creating effective visualizations of DLSMs is critical for allowing both intuitive user understanding of
212 the data (Roering et al., 2013) and effective modeling (Maxwell et al., 2020b). Multiple methods exist for
213 visualizing DLSMs (Figure 2). A hillshade (HS) represents illumination of a terrain surface; the

214 illumination of a given cell depends on the position of the illuminating source and the terrain steepness
215 and orientation at the cell location. In order to potentially improve the visualization of the landscape for
216 all slopes, regardless of the compass direction at which they are oriented, a multidirectional hillshade

217 (MDHS) can be calculated through averaging, or weighted averaging, of multiple HSs generated using
218 different illuminating geometries. Visualization of the DLSM may be further improved by using

219 transparency and combining a HS or MDHS with a color ramp representing elevation measurements, a
220  surface known as a hypsometrically-tinted hillshade (HTHS). It is also possible to include measures of
221 surface curvature or topographic position, both discussed below, to further differentiate or highlight

222 ridges and valleys. Contour lines can be included to further improve interpretability (Brewer, 2005;

223 Chang, 2008; Howard et al., 2008).

224 As an alternative to HS-based DLSM visualizations, a slopeshade (SIpS) can be calculated from a

225 topographic slope surface (Figure 2), which is discussed below. To create a SlpS, a topographic slope

226  raster grid is symbolized using a light-to-dark color ramp where lighter shades represent flatter terrain and

227 darker shades represent steeper surfaces. SlpSs do not require defining the position of an illuminating

10



228 source and are illumination-invariant (Doctor and Young, 2013; Maxwell et al., 2020b; Reed and Kite,

229 2020).

HS MDHS HTHS

WE - ol

230

231 Figure 2. Example terrain visualizations for manual interpretation. HS = hillshade, MDHS = multi-directional

232 hillshade, HTHS = hypsometrically-tinted hillshade, SlpS = Slopeshade, HTHS+TPI = hypsometrically-tinted

233 hillshade plus topographic position index (TPI), HTHS+Contours = hypsometrically-tinted hillshade plus contours.
234 All visualizations were created using ArcGIS Pro (“ArcGIS Pro help—ArcGIS Pro | Documentation”).

235 2.2.2. Topographic Slope

236 Figure 3 shows some common land-surface parameters that can be calculated from DLSMs. One of
237 the most common derivatives is an estimate of the local topographic steepness or slope (Slp) (Equation 1).
238 Slope is a simple yet critical terrain variable, as it is often a key predictor of landslides and other

239 geohazards that spatial modeling seeks to map and predict (Maxwell et al., 2020c, 2021; Stanley and

240  Kirschbaum, 2017). Slope is also key from a geomorphic perspective. Sediment transport and erosion

241  rates on hillslopes and in river channels typically increase at least linearly with slope (Andrews and
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Bucknam, 1987; Lague et al., 2003; Lague and Davy, 2003); the relationship between slope and upslope
drainage area is the fundamental determinant of geomorphic process across most landscapes

(Montgomery and Dietrich, 1992; Tucker and Bras, 1998; Willgoose et al., 1991).

Slp (radians) = arctan( (j—j)z + (:—;)2), (D

As the 1% derivative of the elevation surface, slope is commonly calculated using elevation values in a
3-by-3 cell window, bivariate quadratic equations, or the partial differential of elevation relative to the x
and y planes (Equation 1). Mean slope (MnSlp) is an average slope produced by calculating the mean
slope from a Slp grid within moving windows to obtain a smoother representation of steepness.
Alternatively, slope can be calculated using a larger window, which leads to a similar generalization
(Chang, 2008; Wilson and Gallant, 2000).

2.2.3. Surface Curvature

Surface or topographic curvature (Crv) generally relates to the shape of the local land surface with
respect to terrain convexity or concavity. Curvature describes the convergent or divergent nature of the
topographic surface, thereby providing an important indicator of dominant geomorphic processes
(Hooshyar and Wang, 2016; Tarolli et al., 2012), landscape hydrology (Bogaart and Troch, 2006;
Heerdegen and Beran, 1982), and soil properties (Gesseler et al., 1995). Curvature can reflect rates of soil
production and erosion (Dietrich et al., 1995; Heimsath et al., 1997; Thaler et al., 2021). Hilltop
curvature, for example, is correlated with the hilltop erosion rate such that “sharper” ridgetops reflect
more rapid erosion (Gabet et al., 2021; Hurst et al., 2013; Struble et al., 2021).

Curvature is the 2™ derivative of elevation and relates to the deviation of a terrain line from being
straight or a terrain surface from being flat (Guth, 2009; Hofierka et al., 2009; Minar et al., 2020, 2013;
Wood, 2009, 1996; Zevenbergen and Thorne, 1987). Curvature calculations are complicated as different
measures can be obtained based on how curvature is defined relative to the direction of maximum slope.
Most calculations rely on fitting polynomials (Ehsani and Quiel, 2008; Evans, 1972; Hurst et al., 2012;

Minar et al., 2020; Roering et al., 1999; Tarolli et al., 2012; Wilson et al., 2007). However, other methods
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are available. For example, Struble and Roering (2021) proposed a method based on continuous wavelet
transforms. Additional complexity stems from the fact that many measures of curvature have been
defined with different names used to represent the same measure, the same name used to define different
measures, variability or even errors in how measures are calculated, and poorly documented calculation
methods (Minar et al., 2020). Many of these curvatures are heavily correlated, as is evident in the
examples in Figure 3. There also exist disconnects between theory and application. For example, the
curvature measures used in studies and operational projects are often dictated by the software
environment(s) available as opposed to correlation with the phenomenon being investigated, mapped, or
modeled (Guth, 2009; Hofierka et al., 2009; Minar et al., 2020, 2013; Wood, 2009, 1996; Zevenbergen
and Thorne, 1987).

Minaér et al. (2020) provide a review, critique, and systemization of curvature measures. They suggest
that curvature measures can be grouped into three broad categories based on similar interpretations of
convex and concave landforms: plan, profile, and twisting. Generally, plan curvatures, such as normal
contour or plan curvature, are calculated in the direction of minimum gravitational potential energy, or
perpendicular to the direction of maximum slope. Profile curvatures, such as normal slope line or profile
curvature, are calculated in the direction of maximum slope. Twisting curvatures, such as rotor curvature,
relate to local “twisting” of the terrain surface and are calculated relative to a direction neither parallel to
nor perpendicular to the direction of maximum slope. Twisting curvatures are mixed second derivatives
of elevation and relate to changes in the aspect or direction of maximum slope, but unlike plan and profile
curvature are relatively poorly understood and demonstrate uncertain utility in the context of
geomorphometric analysis, spatial mapping, and modeling. Other curvature measures are combinations of
the three basic types (Minar et al., 2020).

This highlights the complexity of choosing curvature measures for specific tasks. Minar et al. (2020)
summarize typical uses and synthesize how landforms or surface processes may be reflected in specific
curvature measures. We suggest that this source be consulted for choosing a subset of curvature measures.
2.2.4. Topographic Position and Variability
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The topographic position index (TPI) serves as a measure of local or hillslope-scale topographic
position (Wilson and Gallant, 2000). TPI is calculated by subtracting the mean of all elevation
measurements within a moving window (zue.:) from the center cell elevation (z) (Equation 2). Larger,
positive values indicate higher topographic positions (e.g., ridges) while larger, negative values indicate
lower positions (e.g., valleys) (De Reu et al., 2013; Hengl et al., 2009; Lopez and Berry, 2002; MacMillan
and Shary, 2009; Riley et al., 2017; Wilson and Gallant, 2000).

TPI =z — zyean (2)

The topographic roughness index (TRI) represents the variance (c?) in elevation measurements (z)
within a local window (Equation 3). Terrain roughness can be indicative of landscape-scale underlying
geologic conditions (Kreslavsky et al., 2013), geomorphic process dominance (Milodowski et al., 2015),
and the cumulative influence of surface processes over time (Johnstone et al., 2018; LaHusen et al.,
2016). Higher values indicate higher local rugosity, or a more rugged or variable terrain surface
(Blaszczynski, 1997; Hengl et al., 2009; MacMillan and Shary, 2009; Riley et al., 1999; Wilson and
Gallant, 2000). Surface relief ratio (SRR) offers another measure of rugosity (Equation 4) (MacMillan
and Shary, 2009; Pike et al., 2009; Pike and Wilson, 1971; Wilson and Gallant, 2000). SRR—which is
equivalent to the hypsometric integral (Pike and Wilson, 1971)—can roughly indicate the state of relief in
an area and may therefore correlate with lithologic or tectonic boundary conditions (Chen et al., 2003;
Lifton and Chase, 1992). Surface area ratio (SAR) (Equation 5) is the ratio of the estimated landscape
surface area to the planar area at a cell location (Jenness, 2004).

TRI = 6%(z) (3)

SRR = Zmean—Zmin (4)

Zmax~Zmin

Cell Size?
SAR = .
Cos(Slope in Degrees)

(&)
The topographic dissection index (TDI) (Equation 6) is a measure of how high above the bottom of a

landscape a given point sits, which may be related to incision such as by channels. Lower values indicate

more incision (Evans, 1972; MacMillan and Shary, 2009; Wilson and Gallant, 2000).
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TDI = 2=Zmin__ (6)

Zmax—Zmin

Metrics derived from the gray level co-occurrence matrix (GLCM) after Haralick et al. (1973) provide
another means to generate local textural measures from raster datasets. The GLCM is a table of the
frequency within a local window of the occurrence of all combinations of elevations for neighboring
pixels. Neighboring pixels are defined as two locations at a specified offset (distance apart) and direction,
though it is common to average multiple directions. Because the GLCM table has N-by-N entries, where
N is the number of possible elevation values in the DLSM, it is useful to limit the table size by re-scaling
the elevations to a limited range of possible values. Once the table has been generated for a pixel and its
local window, a variety of derived metrics can be calculated (Table 1). The measures can be grouped into
three categories as measures of contrast, orderliness, and descriptive statistics (Hall-Beyer, 2017; Warner,
2011). Hall-Beyer (2017) suggests including one measure of contrast, one measure of orderliness, and
two to three descriptive statistics to summarize the GLCM.

The application of GLCM textures to DLSMs has been explored by numerous authors. For example,
Kai et al. (2013) assessed the use of GLCM-based, DLSM-derived textural measures for landform
classification and noted the value of the measures. Zhao (2017) incorporated these measures into a
geographic object-based image analysis (GEOBIA) framework for extracting terraces within the Loess
Plateau in China.

Table 1. Example texture measures calculated from the gray level co-occurrence matrix (GLCM).

Group Variable Description

Contrast Contrast Yo = )?
Dissimilarity ViZopijli = Jl
Homogeneity N-1 _ Pij

Li=0 14 (i-j)2

Orderliness Angular Second
ZN—l 2
i,j=0Pij
Moment
Entropy ?,’f:lo pij(—In (p;;))
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Descriptive

Mean Ni(pipwy s ZNZi(pi)
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i = GLCM row number; j = GLCM column number; p; ; = probability of (rescaled) elevation values i and j being

neighbors at the specified offset and direction; N = number of rows (also the number of columns and the maximum
number of potential values the rescaled elevation values can take on); 4 =mean, ¢ = variance.

2.2.5. Geomorphons

The variables discussed above provide continuous measures or indices of landscape characteristics. In
contrast, geomorphologic phenotypes, or geomorphons (Figure 3), represent a categorization of terrain
features or landform types that are size-, orientation-, and local relief-invariant. A cell is compared to its
neighbors in eight directions to characterize the patterns on the landscape and determine in which
directions elevation is higher, lower, or at the same altitude as the reference cell location. So as not to
limit the analysis to a 3-by-3 cell window and to allow for mapping similar landforms with variable sizes
or scales, a line-of-sight method is used as opposed to the direct cell neighbors. A total of 498 patterns are
categorized, which can then be subsequently grouped into common terrain features or landforms
(Jasiewicz et al., 2013; Jasiewicz and Stepinski, 2013).

Geomorphons have been shown to be useful for many mapping and modeling problems. For example,
Libohova et al. (2016) demonstrated the value of the classification method for predicting soil properties
on a glacial moraine while Sardsan et al. (2019) documented its use for drumlin extraction. Chea and
Sharma (2019) noted association of geomorphons with socio-economic and built-environment

characteristics.
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Figure 3. Example metrics that characterize local relief, terrain shape, and landforms. DLSM = digital land surface
model, Slp = topographic slope, SipMn = mean topographic slope, ProCrv = profile curvature, PInCrv = plan
curvature, LongCrv = longitudinal curvature, CSCrv = cross-sectional curvature, MinCrv = minimum curvature,
MaxCrv = maximum curvature, TPI = topographic position index, TDI = topographic dissection index, TRI =
topographic roughness index, SRR = surface relief ratio, and SAR = surface area ratio. Surface curvatures, TPI, and
geomorphons were calculated using SAGA (Olaya and Conrad, 2009). Slp was calculated using ArcGIS Pro
(“ArcGIS Pro help—ArcGIS Pro | Documentation” ) while all other measures were calculated using R (R Core

Team, 2020) and the spatialEco package (Evans, 2020).
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2.2.6. Topographic Aspect, Insolation, and Moisture

The orientation of topography with respect to incoming solar energy is an important control on
geomorphology, hydrology, and landscape ecology (Gallardo-Cruz et al., 2009; Kumari et al., 2020;
Langston et al., 2015; Pelletier et al., 2018). Table 2 lists and provides descriptions or equations for a
selection of the most common variables associated with topographic aspect, solar insolation, or moisture.
Topographic aspect (Asp) represents the compass bearing or direction that a slope is facing (Chang, 2008;
Hengl et al., 2009; MacMillan and Shary, 2009; Wilson and Gallant, 2000). Asp and associated measures
are particularly useful for hydrologic and ecological modeling tasks, since aspect is related to the amount
of solar insolation, sun exposure, subsurface moisture content, and, in some cases, precipitation at a site
(Bennie et al., 2008; Ironside et al., 2018; Evans and Cushman, 2009; Franklin, 2020; Stage, 1976). For
example, Evans and Cushman (2009) used a variety of aspect-related variables to aid in the prediction of
conifer tree species occurrence. One complexity with using Asp in a predictive model is its circular nature
(e.g., a slope aspect of 359° is closer in orientation to 2° than an orientation of 10° is to 2°). As a result, it
is common to transform Asp to a linear variable for inclusion in predictive modeling tasks. Examples
include northwardness (AspN) (Stage, 1976), eastwardness (AspE) (Stage, 1976), and the topographic
radiation aspect index (TRASP) (Roberts and Cooper, (1989); Evans, 2021, 2020; Evans and Cushman,
2009; Roberts and Cooper, 1989)

The heat load index (HLI) provides further refinement by incorporating latitude, Slp, and Asp to
estimate potential annual direct incident radiation (McCune and Keon, 2002). The HLI calculation
suggested by McCune and Keon (2002) transforms Asp so that the largest values are associated with
southwest orientations, the warmer orientation in the northern hemisphere, and the lowest values are
associated with northeast orientations, the cooler slopes. Similarly, the site exposure index (SEI) estimates
solar insolation by rescaling Asp relative to a north-south axis and then multiplying by Slp (Ironside et al.,
2018; Franklin, 2020).

The topographic wetness index (TWI) takes into account contributing area, which is discussed below,
as a measure of surface or shallow subsurface flow accumulating at a cell location, and topographic slope,
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as a measure of how easily or quickly moisture leaves a cell. TWI has been shown to be useful when the

phenomenon of interest is likely affected by moisture conditions, such as mapping vegetation

communities and wetlands (Corcoran et al., 2011; Ironside et al., 2018; Evans and Cushman, 2009;

Franklin, 2020; Moore et al., 1993).

Table 2. Land-surface parameters that characterize slope orientation, solar insolation, and moisture.

Land-Surface Parameter Abbreviation Description/Equation
: _ 360 29z 92
Topographic Aspect Asp 270 = ——x arctan*(Z~, - y)
Northwardness AspN sin(Asp)
Easterwardness AspE cos(Asp)
Topographic Radiation Aspect _ W _
TRASP 1~ cos ((gp) X (4sp —30))
Index 2
Index for annual direct incoming
Heat Load Index HLI solar radiation based on latitude,
slope, and aspect
Site Exposure Index SEI Slp x cos(m %)
Topographic Wetness Index TWI Ln(w)

tan (Slp)
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Figure 4. Example metrics that characterize solar insolation and moisture. Asp = slope aspect, TWI = topographic

wetness index, TRASP = topographic radiation aspect index, HLI = head load index, and SEI = site exposure index.
Asp was calculated using ArcGIS Pro (“ArcGIS Pro help—ArcGIS Pro | Documentation” ) while TRASP, HLI, and
SEI were calculated using the spatialEco (Evans, 2020) package in R (R Core Team, 2020). TWI was calculated
using SAGA (Olaya and Conrad, 2009).

For ecological mapping and modeling tasks, it is often desirable to incorporate variables that have
clear associations with abiotic conditions that impact ecological processes and community composition
(Ironside et al., 2018; Dyer, 2019). Examples of these are the water balance at a site—as estimated from
temperature and radiation, which drive moisture demand, and precipitation and soil water storage, which
dictate water availability (Dyer 2019). Methods have been developed to estimate water balance-related
measures; however, additional data beyond a DLSM are required. For example, Dyer (2019) developed
an ArcGIS toolbox to generated raster-based estimates of monthly potential evapotranspiration,
representing demand, based on the Thornthwaite approach (Mather 1978) and the Turc equation (Turc

1961). Input data requirements include DLSMs, soil available water capacity derived from digital soil
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datasets, temperature and precipitation estimates, such as those provided by PRISM

(https://prism.oregonstate.edu/), global horizontal irradiance, and relative humidity. The DLSM data

specifically are used to estimate monthly total radiation at each cell using the hemispherical viewshed
algorithm (Rich et al. 1994 and Fu and Rich 2002). Once potential evapotranspiration is estimated, it is
possible to generate estimates of actual evapotranspiration and water deficit or surplus monthly and
annually (Dyers 2019).

2.2.7. Surface Hydrology

Calculating DLSM-based variables related to surface water hydrology is critical for analyzing and
modeling the flow of water, sediment, and nutrients across landscapes (Béhner and Antoni¢, 2009;
Chang, 2008; Gruber and Peckham, 2009). Figure 5 illustrates variables associated with surface
hydrology. In order to model the flow of water on the landscape surface and allow flow propagation
through the entire drainage network, small depressions or pits can be removed to create a hydrologically
corrected, or filled, DLSM. The depression filling process also allows identification of pits or sinks which
may correlate with real topographic features of interest. Depressions in DTMs are often real rather than
spurious and have important implications for hydrology and geomorphic processes (for example, in karst
landscapes (Lyew-Ayee et al., 2007)). An alternative to pit filling that leaves depressions intact is to route
flow through them using so-called “fill-and-spill” algorithms while leaving the DLSM itself unmodified
(e.g., Barnes et al., 2021, 2020; Callaghan and Wickert, 2019).

Flow direction (FlowDir) represents the direction of flow from a cell into one or multiple adjacent
cells based on elevation differences between each cell and its neighbors. Flow accumulation (FlowAcc),
or contributing area, counts the number of cells or amount of land area that contributes flow to each cell.
Different algorithms are available to make these calculations; for example, the D8 method (single-flow-
direction routing considering eight neighbors) only allows for flow to be directed to one adjacent cell
while the D-Infinity method (a multiple-flow-direction method) allows for flow partitioning to multiple
neighboring cells (Chang, 2008; Gruber and Peckham, 2009; Tarboton et al., 2016; Tarboton, 2005,
1997). Qin et al. (2006) proposed an augmentation of multiple-flow direction algorithms, which was
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subsequently implemented in ArcGIS Pro, that allows for adaption of the flow-partitioning exponent
based on local land surface characteristics. Some issues have been documented with the D8 and other
single-flow-direction methods including generation of parallel lines along principal directions; the
inability to model divergent flow over convex slopes and ridges; and poor performance in highly variable
topography, floodplains, and wetlands (Chang, 2008). Many of these issues have been addressed by
various other flow routing schemes (see Wilson et al. (2007)). In general, D-Infinity is the most
commonly used algorithm for applications in small drainage areas and/or in low-gradient areas where
sheet or divergent flow may occur (Wilson et al., 2007).

Once FlowDir and FlowAcc raster grids are created, a variety of additional outputs can be derived
from them. By setting a flow accumulation threshold or a slope-area threshold (Montgomery and
Foufoula-Georgiou, 1993), a synthetic stream network can be generated. Next, each individual segment in
the drainage network can be assigned a unique code, a product known as stream link (StrmL). Other
products include stream order (StrmQO), flow distance, or the upstream or downstream distance to a cell
along the flow path, watershed or catchment boundaries (Chang, 2008; Gruber and Peckham, 2009;
Tarboton et al., 2016; Tarboton, 2005, 1997), and indices of channel form—such as steepness—that
might reveal geologic and geomorphic conditions (e.g., Kirby and Whipple, 2012; Perron and Royden,
2013).

It has been noted that traditional methods of generating surface hydrologic variables, such as FlowDir
and FlowAcc, may be suboptimal for processing high spatial resolution and detailed digital terrain data,
such as those derived from LiDAR. This results from the high level of local detail or noise as well as the
difficulty in hydrologically correcting such surfaces. As a result, new methods are being developed and
investigated to analyze such data (Clubb et al., 2014; Passalacqua et al., 2010; Pelletier, 2013). As one
representative example, Sangireddy et al. (2016) introduced the open-source GeoNet software for
generating surface hydrologic variables using a combination of nonlinear filtering, detecting channelized
cells using a statistical analysis of surface curvature, and detecting channel heads and channel networks
using a geodesic minimization principle.
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Figure 5. Example surface hydrologic derivatives. All metrics were calculating using ArcGIS Pro (“ArcGIS Pro
help—ArcGIS Pro | Documentation™ ). Results are for a catchment in West Virginia, USA.
3. Considerations for Calculating, Selecting, and Implementing Land-Surface Parameters for
Empirical Modeling
3.1. Selecting Variables
3.1.1. Selecting Land-Surface Parameters Overview

The large number of variables that can be derived from DLSMs to characterize the landscape surface
complicates the process of selecting variables for inclusion in empirical predictive modeling or mapping
tasks. Lecours et al. (2017) suggest that land-surface parameters are generally highly correlated and that a
subset of six or seven carefully selected measures will capture most of the information content present in
the DLSM data; however, this may not hold true for all mapping or modeling tasks, and the optimal
feature subset may not be readily evident. Franklin (2020) and Xiong et al. (2021) suggests that land-
surface parameter selection should be guided by what topographic factors influence the phenomenon
being studied, modeled, or mapped, and Franklin (2020) further suggests additional guidance from

existing literature, visual and statistical exploration of the DLSM data, and field observations. This
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section is structured with that framework in mind. Table 3 highlights some of the parameters discussed
above with example uses and associations with landscape and geomorphic processes.

Table 3. Land-surface parameters and example uses and associations with landscape characteristics and
geomorphic processes. This table summarizes content presented in Section 2 and also draws from prior
texts (e.g., Hengl and Reuter, 2009; Wilson and Gallant, 2000), reviews (e.g., Florinsky, 2017 Ironside et

al., 2018; Franklin, 2020; Sofia, 2020; and Xiong et al., 2021), and Minar et al. (2020).

Land-Surface

Group Example Uses and Associations
Parameter
Steepness Slope Geohazards, sediment transport, erosion rates
Plan Curvatures Dispersion of materials and energy across the
slope, cross-slope landforms
Movement of material and energy downslope,
Surface .
Profile Curvature down-slope landforms, geohazards, geomorphic
Curvature .
process dominance
Twisting Curvatures Tw1st1ng of mass flow, geologic stmctures, -
underlying geology, process domain boundaries
Local . .. . .
ocal Topographic Position ~ Ridge vs. valley, hillslope-scale processes,
Topographic : .
-, Index environmental gradients
Positions
Topographic Roughness Underlying geology, geomorphic process
Index dominance, impact of surface processes over time
Rugosity Surface Relief Ratio State of .relief, location of tectqnic anc.l lithologic
boundaries, state of topographic transience
Surface Area Ratio Slope breaks, rock outcrops, scarps
Incision Topographic Dissection ~ Recent stream incision, fluvial processes and
Index erosion, state of topographic transience
Aspect Incoming solar radiation, sun exposure, subsurface
P moisture content, precipitation
Orientation Northwardness Same as Asp, but a linear variable
Eastwardness Same as Asp, but a linear variable
T hic Radiati . . . .
opographic Radiation Incoming solar insolation and moisture content
Aspect Index
Heat Load Index Potjcntiz.ﬂ. annual dir§ct incident r'a.diation, energy
. availability, vegetation communities
Insolation . S
. Incoming solar radiation based on aspect and
Site Exposure Index S . .
slope, energy availability, vegetation communities
Topographic Wetness ~ Steady state moisture, mapping of vegetation
Index communities and wetlands
. Amount of flow accumulating to a location,
Moisture

moisture content, stream initiation, river discharge,
process transition from hillslope to fluvial
dynamics

Flow Accumulation
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Existing literature can offer guidance; however, prior research often offers conflicting advice. For
example, studies have consistently noted the value of Slp for mapping and predicting wetland occurrence
(e.g., Maxwell et al., 2016; Wright and Gallant, 2007). In contrast, TWI, which would logically be
considered for wetland prediction due to the likely association with areas of high flow accumulation, has
been shown to be useful in some studies but not others. Rampi et al. (2014) and Knight et al. (2013) both
note the value of TWI while Maxwell et al. (2016) and Wright and Gallant (2007) found the variable to be
of little value. It is not always clear why certain variables are found to be useful or only useful in some
studies; this could relate to differences in the presentation of features in different landscapes, the
modeling methods or algorithms being used, and/or the characteristics of the DLSM data. For example,
Maxwell et al. (2016) noted a high degree of local noise in TWI for their probabilistic wetland mapping in
West Virginia, USA. This local noise may have reduced the value of the variable. Smoothing the TWI
values or the original DLSM may have reduced local noise and increased the predictive value of the
variable in the model (Maxwell et al., 2016).

Similarly, there does not appear to be a consensus as to the most useful variables for predicting slope
failure, or landslide, susceptibility or occurrence. Generally, the incorporation of land-surface parameters
has been shown to improve models; for example, Goetz et al. (2011) noted that empirical models that
incorporate land-surface parameters as predictor variables often outperform methods that rely on physical
models of slope failure. Slp, Asp, and surface curvatures have consistently been shown to have value for
slope failure predictive modeling (Gessler et al., 1995; Goetz et al., 2015, 2011; Maxwell et al., 2020c).
However, a consistent, optimal set of variables that goes beyond this list has not been identified, and
suitable predictors may depend on the landscape being predicted and/or the nature of the slope failures
present. It may therefore prove useful to use feature selection methods to find the variables most effective
for a particular study.

3.1.2. Variable Selection Methods and Considerations

Reducing the size of the feature space offers a number of potential benefits, including minimizing the

computation and memory requirements for training models, generating simpler or more parsimonious
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models for interpretability and reproducibility, and/or minimizing problems arising from the “curse of
dimensionality” (James et al., 2013; Maxwell et al., 2018). The “curse of dimensionality”, or Hughes
phenomenon, is the observation that increasing the number of predictor variables beyond a threshold
sometimes decreases the accuracy of models because, even though more information is potentially
provided, the problem must be solved in a larger, more complex feature space. This issue is of particular
concern when a small number of training samples is available to characterize a complex feature space
(i.e., a dataset with many variables) (Hughes, 1968). Some methods are particularly susceptible to this
problem; for example, k-nearest neighbor (k&-NN) classification accuracy generally declines as the feature
space becomes very large, while random forest has generally been shown to be more robust (Maxwell et
al., 2018).

Given the complexity of this topic, a complete treatment of feature selection methods is outside the
scope of this review. For reviews focusing on feature selection methods, please see Chandrashekar and
Sahin (2014), Khalid et al. (2014), and Cai et al. (2018). We provide a brief review here. Supervised
feature selection methods, which rely on labeled data, can be grouped into three broad categories: filter,
wrapper, and embedded methods. Filter methods use a statistical measure to rank variables and assess the
correlation between each predictor variable and the response variable. Examples include correlation
coefficients and the mutual information metric. Advantages of filter methods are that they can be
computationally light and avoid overfitting to the training data; however, not all measures take into
account correlation between predictor variables, which can result in redundant computations or a
suboptimal feature space. Also, the learning algorithm is not considered, so the selected feature space may
not be optimal for a specific learning algorithm (Guyon and Elisseeff 2003; Chandrashekar and Sahin
2014; Khalid et al. 2014; Cai et al. 2018). In contrast to filter methods, wrapper methods use the learning
algorithm and resulting model performance, as measured with assessment metrics, to select features. This
requires testing different predictor variable combinations, which can be computationally intensive, slow,
or unfeasible. In order to alleviate the need to test all variable combinations, heuristic methods have been
proposed, such as genetic algorithms (Goldberg, 2006) and particle swarm optimization (Kennedy and
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Eberhart 1995), which may not yield the optimal variable subset but offer an approximation that can be
feasibly calculated. In order to suggest a single subset, different methods are available to add or remove
variables. For example, backward selection iteratively removes variables from the full set while forward
selection iteratively adds variables. Issues with wrapper methods include computational intensity, which
is only partially alleviated using heuristic methods, and the possibility of overfitting to the training data,
or reduced generalization to new samples (Chandrashekar and Sahin 2014; Khalid et al. 2014; Cai et al.
2018). Lastly, embedded methods incorporate the feature selection process as a component of model
training (e.g., recursive feature elimination methods using SVM or RF). There are also unsupervised or
semi-supervised methods, which can be used when a full set of labelled training data are not available
(Law et al. 2004; Chandrashekar and Sahin 2014; Khalid et al. 2014; Cai et al. 2018).

Other than the considerations outline above, there are some other key factors to consider when
choosing a feature selection method including the impact of variable correlation and the stability of the
result. Stability relates to the consistency in selected features when using different training datasets or
subsets. Kalousis et al. (2005) and Chandrashekar and Sahin (2014) both offer discussions of stability
while Dunne et al. (2002) suggest solutions to this issue for wrapper methods specifically. It is also
sometimes of interest to take into account not just model performance but the complexity of the model. A
model using less predictor variables may be desirable due to reduced computational time and model
complexity at the expense of a slight reduction in accuracy. For example, Murphy et al. (2010) integrated
a parameter into a random forest-based variable select process that allows the user to specify the level of
reduced accuracy that is acceptable in order to increase parsimony. This method is available in the R (R
Core Team, 2020) rfUtilities package (Evans and Murphy, 2015). Georganos et al. (2018) documented
that the feature selection method used can impact both model accuracy and parsimony. They proposed a
metric, classification optimization score (COS), that takes into account both model accuracy and
parsimony with the goal of selecting a feature space with minimal processing time and storage while

maintaining accuracy.
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A key issue associated with selecting a subset of variables is determining the importance of variables
for the task of interest. As noted by Debeer and Strobl (2020) the concept of variable importance in
machine learning and predictive modeling is not generally clearly defined. Marginal importance is the
impact of a specific predictor variable on the dependent variable without considering the other variables
in the model. In contrast, partial or conditional importance is the added value gained by including a
specific predictor variable for predicting the dependent variable considering all other variables in the
model. When no correlation exists between the predictor variables, marginal and partial importance are
equivalent (Debeer and Strobl, 2020).

As an example, within the RF framework variable importance can be assessed by randomly
permutating the values associated with a specific variable then predicting the withheld, or out-of-bag,
data. With this random permutation of the variable, greater decreases in model performance for predicting
the withheld data, or increases in the misclassification rate, serve as an estimate of variable importance
(Breiman, 2001). When variables are correlated, this measure cannot be interpreted as a truly marginal or
partial importance estimate (Strobl et al. 2008; Debeer and Strobl 2020). Although it cannot be interpreted
as one of these endmembers, Strobl et (2008) suggest that it is a more marginal estimate of importance.
Strobl et al. (2008, 2009), with additional augmentations presented in Debeer and Strobl (2020), introduce
a variable importance estimation method based on a conditional inference trees implementation of RF and
the permutation-based importance estimation process that provides estimates of both partial and marginal
importance. However, these importance estimates remain an approximation, as obtaining true marginal or
partial importance is difficult due to the complexity of the DT ensemble and the difficulty of completely
accounting for predictor variable correlation (Strobl et al. 2008; Debeer and Strobl 2020). This method is
implemented in the R (R Core Team, 2020) party (Strobl et al. 2009) and permimp (Debeer and Strobl
2020) packages.

3.1.3. Variable Reduction Methods

As an alternative to selecting a subset of important variables from the feature space, it is also possible

to generate new features from the original predictor variables. This process is generally termed feature
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reduction. Example methods include independent component analysis (ICA) (Hyvarinen and Oja 2000),
isomap embedding (Silva and Tenenbaum 2003), and spatial sign processing (Sarneels et al. 2006). The
recipes package (Kuhn and Wickham 2021), which is part of tidymodels (Kuhn and Wickham 2020) in R
(R Core Team, 2020), offers implementations of a variety of feature reduction methods for use in machine
learning research and processing pipelines. One common feature reduction method is principal
component analysis (PCA), in which the goal is to transform the original variables into new, uncorrelated
features defined by linear combinations of the input features. The underlying assumption is that correlated
variability is a measure of the importance of information, and that this can be used to identify a subset of
the transformed, decorrelated variables that summarizes the majority of the original variance (F.R.S,
1901).

As an example of the use of PCA, Figure 6 shows a correlation matrix for a subset of 12 land-surface
parameters calculated within our example study area near Seneca Rocks in West Virginia, USA.
Correlations were calculated using Spearman’s rank correlation (Zar, 1972). The figure shows that the
variables are generally not strongly correlated with each other (they are mostly represented by colors
close to white), though Slp is strongly positively correlated with TRI and SAR, and ProCrv and TDI both
tend to be correlated with TPI and SRR, as indicated by blue colors. In contrast, TRI, SAR, and Slp are all
strongly negatively correlated with TRASP, as indicated by red colors. Despite the impression from
Figure 6 that most variables are not strongly correlated, the scree plot (Figure 7) demonstrates that a large
proportion of the variance in the dataset is explained by a subset of principal components. The first
principal component explains 25.9% of the total variance in the data while the first seven collectively

explain 91.6% of the variance. This suggests that the 12 variables have considerable redundancy.
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Figure 7. Scree plot describing the percent of variance in the original variables explained by the first ten principal
components.
3.1.4. Explaining Models and Feature Contribution

A critique of machine learning methods — such as RF, SVM, and ANN - is their black box nature
(James et al., 2013; Maxwell et al., 2018). Although ancillary output, such as variable importance
estimates, can increase the interpretability of models, there has been a recent push for more interpretable
machine learning. Nori et al. (2019) suggest a framework to make black box predictions more
interpretable and suggest the use of (1) the LIME method, which attempts to explain individual
predictions using a linear and local approximation of a model and allows for interpreting feature
contributions additively, and (2) SHAP (Shapley Additive Explanations) values, which offer a measure of
variable importance using cooperative game theory. They also suggest using sensitivity analysis and
partial dependency plots to further explain models (Lundberg et al., 2019; Lundberg and Lee, 2017; Nori
et al., 2019). Partial dependency plots visualize how the dependent variable is impacted by a single
predictor variable. To accomplish this, the dependent variable is predicted using a model in which values
for the predictor of interest are maintained while the other variables are replaced with their average value

(Friedman, 2001).
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Recently, the explainable boosting machine (EBM) algorithm has been proposed as a fully
interpretable, or glass box, predictive model. EBM is a generalized additive model (GAM) where the
function associated with each feature is estimated using bagging or gradient boosting and training on one
predictor variable at a time using a low learning rate. The contribution of each predictor variable in the
model can be explored by plotting the resulting function to show how values of the predictor variable
correlate with the predicted outcome value (Nori et al., 2019).

Figure 8 shows some example outputs generated alongside the EBM model for a prediction of slope
failure occurrence based on LiDAR-derived land-surface parameters. These data are from a probabilistic
prediction of slope failure occurrence for the Valley and Ridge region of West Virginia (Maxwell et al.,
2020c). Steeper slopes (Figure 6(a)) and greater topographic roughness values (Figure 6(b)) are
associated with slope failures. A score of 1 suggests a high predicted probability of slope failure
occurrence. HLI is not very predictive of slope failure occurrence (Figure 6(c)) since there is little
variability in the slope failure prediction with changes in this variable. The EBM model can also
incorporate interactions; for example, Figure 6(d) describes the interaction between Slp and TRI for
predicting slope failures. Steeper slopes tend to be less associated with slope failure occurrence if rugosity

1s low.
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Figure 8. Example plots associated with explainable boosting machines (EBM). A score of 1 indicates a predicted
high likelihood of slope failure occurrence while -1 indicates a high likelihood of not slope failure occurrence. (@)
Slope (Slp) impact on resulting prediction. (5) Topographic roughness index (TRI) impact on resulting prediction.
(c) Heat load index (HLI) impact on resulting prediction. (d) Interaction between Slp and TRI.
3.2. Spatial Resolution, Level of Detail, and Moving Windows
3.2.1. DLSM Spatial Resolution and Level of Detail

As more digital elevation datasets become available, more choices exist for input data for analyses.
Factors to consider in choosing data include spatial resolution (i.e., the cell size of the input DLSM) and
the associated level of detail (i.e., the smallest landscape units or features that can be discerned, which is
impacted by the spatial resolution and amount of smoothing or generalization resulting from data
collection and pre-processing operations), as well as geographic coverage and consistency. High spatial
resolution, LIDAR-derived data are not yet globally available, whereas some moderate resolution
datasets, such as ASTER GDEM, provide near-global coverage, which is important to ensure consistent
mapping or modeling in projects that cover large extents. LIDAR data collected with different sensors,

collection parameters, or flight specifications will have different levels of detail. If raster-based DLSMs
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are generated from datasets such as LiDAR-derived point clouds, the analyst must choose an interpolation
method (e.g., inverse distance weighting (IDW), spline, or kriging) and the output spatial resolution or
cell size. It might also be desirable to resample, aggregate, or generalize high spatial resolution data. For
example, data may be generalized using a mean or Gaussian moving window filter (Chang, 2008;
Lillesand et al., 2015; Pike et al., 2009; Reuter et al., 2009; Wilson and Gallant, 2000). Some recent
studies have argued for using TINSs to calculate land-surface parameters given their multi-scale nature (Hu
et al., 2021). Customarily, TINs have been converted to raster-based DLSMs prior to the calculation of
parameters; however, Hu et al. (2021) argue that methods should make use of the vertices defining the
TIN facets. Future work in this area may aid in improving the characterization of land surfaces at variable
scales.

The level of detail, spatial resolution, and cell size of a dataset may or may not impact resulting model
performance. For example, Knight et al. (2013) found that the source and spatial resolution of DLSM data
had little impact on wetland mapping results and that the inclusion of terrain derivatives —regardless of
their spatial resolution and source — improved classification performance over just using optical data.
Similarly, Maxwell and Warner (2019) compared DLSMs from different sources (LiDAR vs.
photogrammetry) and spatial resolutions (1 m, 3 m, and 10 m) as input for probabilistic prediction of
wetland occurrence and found that neither the source nor the spatial resolution had a large impact on the
resulting model accuracy, though finer spatial resolution data were generally more useful for mapping
smaller wetlands. In contrast to these studies, Brock et al. (2020) suggest that the source and spatial
resolution of digital elevation data impact the accuracy of landslide susceptibility models and call for
greater care in selecting input DLSM data for such tasks. We argue that the importance of source and
spatial resolution will partially depend on the landscape features or patterns being monitored. For wetland
mapping, general characteristics, such as Slp and topographic position, may be predictive of occurrence
and be adequately characterized with coarser and/or more generalized data. In contrast, landslide
susceptibility models may require more detailed datasets to characterize predictive patterns, such as
scarps, slope breaks, and geologic unit contacts.
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Regardless of whether or not the final output model, prediction, or map is affected by the source and
spatial resolution of the digital elevation data, these properties do affect land-surface parameter values
(Habib et al., 2018; Kienzle, 2004; Sarasan et al., 2019). Habib et al. (2018) documented impacts of
DLSM spatial resolution, interpolation, and filtering on the accuracy of the estimated elevation surface.
Moore et al. (1993) and Kienzle (2004) both document impacts of spatial resolution on a variety of
calculated derivatives, including Slp, Asp, PInCrv, ProCrv, and TWI. Kienzle (2004) conclude that the
optimal raster cell size depends on the complexity of the land surface and the parameters calculated.
Sarasan (2019) noted the impact of spatial resolution on calculating geomorphons to support the mapping
of drumlins.

3.2.2. Moving Windows and Land Surface Characterization at Multiple Scales

Several decisions must be made when defining a moving window or kernel over which to calculate
land-surface parameters (Figure 9), leading to an effectively infinite number of possible parameter
combinations. Possible window shapes include circles, rectangles or squares, and annuli. The size of the
window is specified differently depending on the shape used. Circular window size is defined using the
radius while rectangular or square window size is defined using the height and width. An annulus window
size is defined using an inner and outer radius. Units are generally length units, such as meters, or number
of cells. Once a shape and size are selected, it is generally possible to apply different weighting
techniques to control the relative impact of each cell within the window on the resulting calculations.
Using no weighting implies that all cells will have the same weight no matter their distance from the
center cell, while the weights in a linear model decline linearly with distance from the center cell. In
inverse distance weighting (IDW) the weighting is inversely proportional to the distance to the center cell
raised to a specified power. Higher powers put more weight on cells nearer to the center cell (Chang,

2008). Other options include exponential and Gaussian weighting (Chang, 2008; Lillesand et al., 2015).
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Figure 9. Example window shapes and distance weighting methods.

Weighting methods are not available in all software tools. One notable exception is SAGA; for
example, the TPI calculation available in this tool allows a selection from no weighting, IDW with
variable powers, exponential, or Gaussian (Olaya and Conrad, 2009). Also, the Landserf software offers
tools for selecting window sizes and assessing sensitivity (Wood, 2009). Recently, the ArcGIS Pro
software has added the Surface Parameters Tool, which can be used as a replacement for the Slope,
Aspect, and Curvature tools. In contrast to these tools, Surface Parameters allows for changing the square
window size and is not limited to a 3-by-3 meter window. Further, it can make use of an adaptive
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neighborhood in which the window size used at each cell location can vary based on the local variability
in elevation. At locations with more local variability, a smaller window size will be used whereas a larger
window size will be used when local variability is lower. A user can define the largest allowed window
size, and the tool will adjust the window size for each moving window in an attempt to minimize surface
variability while maintaining the largest window size possible (“ArcGIS Pro help—ArcGIS Pro |
Documentation”; Wilson and Gallant 2000).

Figure 10 compares TPI calculations using different window shapes (circle, square, and annulus) and
sizes with no weighting or adaptive neighborhood applied. Similar landscape patterns are represented
irrespective of the parameters used; for example, higher values indicate more prominent topographic
positions, such as ridges, and lower values indicate lower positions, such as valleys. Visually, the shape of
the window has less impact than the size of the window, as increasing the cell size yields a more general

representation that is less affected by local features.
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Figure 10. Comparison of TPI calculated using different window shapes and sizes. TPI was calculated with circular
radii of 7, 21, and 35 cells, square widths/heights of 10, 20, and 30 cells, and annulus windows with a 2-cell inner
radius and 10-, 20-, and 30-cell outer radii.

Our review of published studies indicates that different window sizes and/or shapes are not commonly
explored, and that many authors do not justify the window size and/or shape used, and in some cases do
not even specify the size and shape used. On the other hand, some studies have used multiple window
sizes in an attempt to characterize the land surface at multiple scales. For example, Maxwell et al. (2016),
Maxwell and Warner (2019), Maxwell et al. (2020c), and Maxwell et al. (2021) used multiple window
sizes, which were selected based on a consideration of typical ridge-to-valley distances within the
landscape being studied. These studies justify this method based on the scale of interest, as they all were
interested in summarizing patterns at the range of scales associated with typical hillslopes and were less
concerned with local patterns or variability. Maxwell et al. (2016) and Maxwell and Warner (2019) also
averaged the variables calculated across window sizes to generate a single summary metric. For the
prediction of slope failure occurrence using digital elevation data and RF machine learning, Maxwell et
al. (2020c) calculated a variety of metrics using circular windows, no weighting, and radii of 7, 11, and 21
cells from DLSM data with a 2 m spatial resolution. For this specific predictive modeling task, their
results suggest that incorporating multiple scales generally improved model performance based on area
under the receiver operating characteristic (ROC) curve; overall accuracy; and precision, recall, and F1
score for the slope failure class. Models trained using smaller window sizes (i.e., 7 or 11 cell radii)
generally outperformed models using the larger 21 cell radius window size, highlighting the value of
characterizing more local patterns for this specific task.

Albani et al. (2004) notes that the size of the window impacts both the resulting measures and the
propagation of errors in the original DLSM-based elevation measurements through the modeling process.
Measurements calculated using smaller window sizes tend to be more affected by elevation measurement
errors. Further, errors or patterns resulting from the interpolation method used or patterns in the point or

contour data used to generate the raster surface are more evident when using smaller windows. They
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suggest that the choice of window size is partially dictated by the tradeoff between minimizing the impact
of error and obtaining the level of topographic detail desired. They also propose a method for assessing
the loss of topographic detail based on an analysis of residuals and spatial autocorrelation in local
windows.

Several methods have been investigated to determine optimal window sizes or to characterize the land
surface at different scales or levels of generalization including changing the size of the moving window,
using low-pass filters to generalize DLSMs, and reducing the spatial resolution via resampling. For the
mapping of soil properties using land-surface parameters, it has been demonstrated that using appropriate
scales or window sizes can improve predictive performance (Behrens et al., 2018a; Behrens et al., 2018b;
Dornik et al., 2022). Behrens et al. (2018a, 2018b) propose a method of multi-scale landscape
characterization, termed mixed scaling, that makes use of down-sampling the DLSM using Gaussian
pyramid scaling, which relies on convolving a matrix of elevation values using a Gaussian blur filter.
Rows and columns are then removed to generate octaves that represent the land surface at different scales.
In order to transform the results back to the original spatial resolution, up-sampling is then performed by
inserting rows and columns with zero values, reapplying a Gaussian filter, and multiplying by 4 to correct
for the insertion of zero values. Additional intermediate scales can be generated using resampled versions
of the original DLSM (Behrens et al., 2018a; Behrens et al. 2018b). Behrens et al. (2018a; 2018b) and
Dornik et al. (2022) argue that this method yields intuitive land-surface parameters without processing
artifacts.

Dragut et al. (2006; 2011) and Dragut and Eisank (2011) explored geomorphic and landform mapping
using geographic object-based image analysis (GEOBIA) methods in which terrain data are segmented
into objects or regions of similarity and then later classified. Such methods require the analyst to consider
the scale or scales of interest. Towards this goal, Dragut et al. (2011) proposed a scale selection method
based on local spatial autocorrelation and local variance. The process involves up-sampling the gridded
data using resampling or changing the scale parameter in the segmentation algorithm, calculating local
variance within 3-by-3 cell windows or derived image segments, calculating a rate of change in local
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variance from one level to the next, and plotting the resulting values against the scale level. Peaks in this
graph indicates scales that may have geomorphic meaning.

Other moving-window-like filtering operations that operate at a defined scale, such as wavelet
transforms of the elevation field, can be used to identify geomorphic process dynamics from digital
elevation models by extracting the dominant landforms at a variety of scales. These procedures are
typically used to distinguish local-scale (e.g., motion along a single fault) from regional-scale (e.g., rock
uplift driven by mantle dynamics) controls on topography (Moodie et al., 2018; Struble and Roering,
2021; Wegmann et al., 2007). Filtering the land surface with wavelet transforms removes the signature of
all topographic features with a spatial dimension less than the chosen wavelength (e.g., Wegmann et al.,
2007). Rather than choose a single wavelength a priori, most studies that filter topography to deduce
geomorphic dynamics produce filtered DLSMs for a variety of filter wavelengths and compare the results
to determine which landscape features persist as wavelength increases (e.g., Struble and Roering, 2021).
These filtered DLSMs can then be interpreted by analysts or used as independent variables for predictive
modeling.

3.3. Multi-Temporal Terrain Data

The advent of widely available airborne and drone-based LiDAR data, as well as drone-based
structure-from-motion photogrammetry, has led to a proliferation of studies that leverage multitemporal
DSMs and DLSMs to assess landscape change—either natural (e.g., Cavalli et al., 2017; Croke et al.,
2013; James et al., 2012; Perignon et al., 2013; Turowski and Cook, 2017; Yang et al., 2021) or human-
induced (e.g., Maxwell and Strager, 2013; Ross et al., 2016)—over time. Figure 11 provides an example
of DLSMs of difference where two surfaces representing different terrain conditions from different dates
are subtracted to quantify elevation gains and losses. This specific example relates to mountaintop
removal surface coal mining in southern West Virginia, USA, which results in the excavation of
mountaintops and the filling of adjacent valleys with displaced overburden rock material (Maxwell and
Strager, 2013; Ross et al., 2016). The DLSM data pre- and post-mining were derived from LiDAR and
are represented using HSs. The DLSMs were differenced to produce a DLSM of difference. A change
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threshold was then applied to differentiate areas of no change, elevation gain (fill), and elevation loss (cut
or excavation). From such surfaces, it is possible to estimate land area and volumetric landscape change
(Williams, 2012).

The magnitude of elevation change that can be detected by differencing DLSMs depends on the
accuracy of the input DLSM data where the minimal level of detection is estimated from the root mean
square errors (RMSEs) of the elevation measurements from the input DLSMs (Equation 7). Changes
greater than the error threshold are deemed to have resulted from landscape change while differences
below the threshold are assumed to be the result of error or noise. This method generally results in a
conservative estimate of change. Another option is to use a confidence interval or probabilistic threshold
calculated using the elevation differences and the combined error (Equation 8). Assuming a normal
distribution allows for the calculation of t-values for a two-tailed Student’s t-distribution and the
determination of an appropriate elevation threshold to represent a desired confidence interval (e.g., 95%).
It may be possible to detect changes below the error threshold if alterations are more widespread and

larger than a single cell (Williams, 2012).

Minimal Level of Detection = \/(RMSEWQ)Z + (RMSEZDO“)2 @)

|Zpost—Zprel
14 14 8

t =
\/ (RMSEpre)Z +(RMSEpost)2

The amount of error may not be consistent across entire DLSM extents due to changes in the density
of measurements, combination of multiple data sources into a single DLSM, or changes in land cover or
terrain conditions. For example, ground measurements under a tree canopy will likely be sparser in
comparison to those in open areas for data interpolated from LiDAR point clouds. Estimates of subcanopy
ground elevations are of specific concern when using methods that are not canopy penetrating, such as
InSAR. More error is anticipated when comparing older, photogrammetrically-derived datasets with each

other or with newer LiDAR-derived DLSMs. Uncertainty can also be caused by misregistration errors or
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838 Figure 11. Example multi-temporal DLSM analysis to assess topographic change resulting from surface coal mining
839 in southern West Virginia, USA. The pre- and post-mining land surfaces were derived from LiDAR point clouds

840  provided by the West Virginia GIS Technical Center (WVGISTC).

841 4. Recommendations and Research Needs

842 4.1. Recommendations

843 4.1.1 Feature Selection and Reduction
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Predictive mapping and modeling require selecting predictor variables from among a bewildering
array of DLSMs and DLSM-derived land-surface parameters. Variable selection can be guided by prior
understanding of what landscape characteristics may impact the phenomenon being studied, modeled, or
mapped with additional guidance from existing literature. If it is unclear what variables should be
included, the recommended best practice is to undertake a pilot study over a manageable spatial extent or
multiple extents that are representative of the landscape being investigated. As highlighted above, a
variety of feature selection or reduction methods are available; however, it is important to consider
strengths and weaknesses (e.g., computational time, impact of multicollinearity, overfitting, and
consideration of parsimony) for specific tasks. When assessing variable importance, researchers and
analysts must determine whether marginal importance, partial importance, or some mix of these end
members should be assessed. For greater control over the assessment of variable importance, especially
when predictor variables are correlated, we recommend the RF-based method proposed by Debeer and
Strobl (2020) be considered. Recent advancements in explainable machine learning, such as EBMs (Nori
et al. 2019), can also be used to better understand the response of the dependent variable to each predictor
variable and each predictor’s contribution to the resulting prediction.

One issue with undertaking a pilot study, performing feature selection, and/or performing feature
reduction (e.g., generating uncorrelated variables with PCA) is that a large number of variables will need
to be calculated to perform the analysis. The pilot investigation may speed up the later processes of
optimizing models, training models, and inferring to new data over large spatial extents. However, the
pilot study can still be complex and computationally intensive since a large number of land-surface
parameters, including potentially repeated calculation of the same parameters at different scales, must be
generated. In this case, a user may decide that an optimal feature space is not necessary if the set of
variables included provides adequate performance based on assessment metrics and output. Or, analysts
may be willing to accept a feature space that has not been optimized or evaluated if adequate results can
be obtained without a pilot study or exploratory analysis.

4.1.2. Selecting and Documenting Input DLSM Data
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Selection of input DLSM data should be guided by the availability of consistent data covering the full
extent of interest, the size or scale of the features or phenomenon being investigated, the level of detail or
degree of generalization desired, and the accuracy and quality of the available data. Detailed, high spatial
resolution surfaces, such as those derived from LiDAR, can be resampled or aggregated to a coarser
spatial resolution and/or generalized using filters if desired. Resampling and aggregation decreases the
number of cells that need to be processed, resulting in reduced computational time and costs, especially
when predicting over large spatial extents. Higher spatial resolution may not be beneficial due to more
local noise and detail that may hinder the modeling of more general patterns (Albani et al., 2004;
Grohmann et al., 2011; Habib et al., 2018; McDermid and Franklin, 1994; Newman et al., 2018). In
contrast, mapping or predicting smaller features on the landscape, such as sink holes (e.g., [ronside et al.,
2018) or slope failures (e.g., Brock et al., 2020; Maxwell et al., 2020c, 2021), may require detailed, high
spatial resolution data. The impact of spatial resolution and level of detail are likely problem specific;
thus, if researchers have reason to believe that high spatial resolution is not necessary, does not merit the
extra computational cost, and/or that reduced resolution may actually improve results, pilot studies should
be implemented to systematically assess this sensitivity.

DLSM data used in studies and applied mapping or modeling projects should be fully described
including collection methods and dates, original spatial resolution, and horizontal and vertical accuracies.
If pre-processing is performed, such as resampling or aggregating, interpolation of contours or point
clouds to generate raster surfaces, or local smoothing with filters, the entire processing chain should be
clearly described and ideally scripted in an open-source, reproducible manner. To foster transparency and
reproducibility, researchers should make source code, scripts, and/or input and output data available and
include explanations and metadata.

4.1.3. Parameterizing Moving Windows and Characterizing the Landscape at Varying Scales

Configuring local moving windows —or window-like scales for various DLSM filtering approaches—
can be complex due to the number of options available including window shape, window size, and cell
weighting techniques. Prior studies may offer only limited guidance as noted by Ironside et al. (2018).
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Analysts should consider using larger window sizes to potentially reduce the impact of errors in the input
DLSM and artifacts from the interpolation process. It is also important to consider the scale of the
features of interest, as characterization of finer scale features or phenomena may require a small window
size. Some prior authors have explored averaging calculations across multiple window sizes and/or
including multiple versions of the input, calculated using different window sizes, in the feature space
(e.g., Maxwell et al., 2016, 2020c, 2021; Maxwell and Warner, 2019). In the context of GEOBIA and
segmentation of DTM data, Dragut et al. (2011) suggest a method to select appropriate scales using
measures of local variance and spatial autocorrelation. We specifically recommend further exploration
and adoption of the multi-scale landscape characterization methods proposed by Behrens et al. (2018a,
2018b) and implemented for predicting soil parameters. These methods are conceptually sound and allow
for generation of intuitive land-surface parameters with reduced processing artifacts. We argue that there
is a need for a standard method to be adopted to characterize multi-scale land-surface characteristics and
that a movement away from traditional, window-based methods may be merited.
4.1.4. Generating DLSMs of Difference

DLSMs of difference can be useful for mapping and quantifying landscape change resulting from
natural processes (e.g., James et al., 2012; Perignon et al., 2013) or anthropogenic impacts (e.g., Maxwell
and Strager, 2013; Ross et al., 2016). However, it is important to consider the impact of registration, co-
registration, and elevation measurement errors in the resulting difference surfaces. Derived estimates of
erosion and deposition (in the case of natural processes) or cut-and-fill (in the case of human disturbance)
extents should make use of thresholds defined by the errors associated with the input DLSM data
(Equations 8 and 9). Errors will be especially pronounced when differencing historic,
photogrammetrically-derived surfaces or comparing them to more recent LiDAR or InSAR data. Error
rates may not be consistent across the DLSMs due to the merging of multiple datasets or differences in
land cover and/or terrain conditions. It is important to clearly document the accuracies of the input
surfaces and the assumptions made when generating DLSMs of difference.
4.2. Research Needs
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4.2.1. Multi-Scale Land-Surface Characterization

As noted by Ironside et al. (2018), there is a need to further explore the impact of window shape, size,
and cell weightings on calculated land-surface parameters and predictive models and offer guidance on
appropriate parameterization. We argue that this is a major hinderance in effectively incorporating land-
surface parameters into research and applied mapping and modeling tasks; further, this issue is especially
daunting to those new to geomorphometry and DLSM analysis and processing. Given the large number of
configuration options, we argue that it is currently not possible to generate a truly optimal set of multi-
scale land-surface parameters. Thus, broader exploration and refinement of methods not reliant on
traditional moving windows, such as those proposed by Behrens et al. (2018a, 2018b), should be a major
research objective in geomorphometry, as this could greatly ease the creation and use of land-surface
parameters across disciplines.
4.2.2. Model Generalization

There is a need to explore how well feature spaces and models trained in a given landscape extrapolate
or generalize to new regions with different geologic and climatic conditions and resulting physiographies.
For example, Maxwell et al. (2021) quantified reductions in slope failure occurrence predictive model
performance when models trained in different physiographic regions of West Virginia, USA were
extrapolated to other regions within the state even though the most important features were fairly
consistent. Lack of generalization is consistently an issue in developing models to apply to new datasets
or landscapes, perhaps resulting from overfitting and differing landscape conditions, feature signatures,
and spatial heterogeneity (James et al., 2013; Maxwell et al., 2018). This currently limits the utility of
empirical modeling based on machine learning. Improving generalization is key to further
operationalizing machine learning-based predictive modeling.
4.2.3. Deep Learning

Given the large number of variables that can be calculated and the need for parameterization,
modeling and mapping methods that require less feature space engineering (i.e., generating, preparing,
selecting, and augmenting input variables) should be investigated. For example, deep learning methods
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that make use of convolutional neural networks (CNNs) may require a smaller subset of input land-
surface parameters to obtain adequate results than traditional machine learning methods (Maxwell et al.,
2020b; Zhang et al., 2016; Zhu et al., 2017). CNNs model patterns in data by learning weights associated
with moving windows or kernels. This allows for the modeling of relationships or patterns in multiple
dimensions including two-dimensional space, three-dimensional space, time, the spectral domain,
elevation, and depth at a variety of scales. Such methods have recently led to rapid advances in computer
vision and autonomous vehicle technologies (Hoeser et al., 2020; Hoeser and Kuenzer, 2020; Ma et al.,
2019; Zhang et al., 2016; Zhu et al., 2017). Since the majority of local terrain measures rely on moving
windows, it may be possible for CNNs to learn useful local patterns from a small set of terrain
representations, such as HSs and SlpSs, as opposed to being provided a large feature space of pre-defined
land-surface parameters. Based on our own visual interpretation of high spatial resolution DLSMs and
derivatives for geologic, geohazard, and surficial geologic mapping, certain derivatives can offer key
visual, textural, or contextual clues for mapping and delineation. Exploring how CNN-based deep
learning may or may not mimic human interpretation would be enlightening.

Researchers are beginning to explore the use of deep learning methods for geomorphic and landform
mapping or the extraction of specific features. For example, Maxwell et al. (2020a) investigated the use of
the Mask R-CNN (He et al., 2017) instance segmentation deep learning algorithm for extracting valley fill
faces, geomorphic features resulting from mountaintop removal surface coal mining reclamation, using
only a SlpS as input. They documented strong performance for extracting the extent of these features with
some reduction in performance when applying the model to new geographic extents to assess
generalization. Li et al. (2020) proposed a general framework for landform mapping using deep learning
and noted improved performance in comparison to RF, a traditional machine learning method that does
not incorporate convolutional operations to learn spatial patterns. Deep learning has also been explored
for identifying features of archeological interest from digital terrain data (e.g., Guyot et al., 2021). These
recent deep learning studies are building upon earlier landform mapping work relying on GEOBIA and
segmentation techniques (e.g., Dragut, 2011; Dragut et al., 2011; Dragut and Blaschke, 2006; Dragut and
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Eisank, 2011; Gergek et al., 2011; Pedersen, 2016; Verhagen and Dragut, 2012) and merit continued
exploration. A key need is to explore the impact of feature space and terrain representations provided as
predictor variables, the use of transfer learning techniques, in which models are initialized using weights
learned from other datasets to potentially reduce overfitting and the need for large training datasets (Tan
et al., 2018), the applications of unsupervised and semi-supervised techniques, and the development of
data augmentation methods appropriate for digital terrain data. Research associated with specific CNN
architectures, convolutional operations, and combining manual feature space engineering with CNN-
based pattern recognition is also needed.
4.2.4. Land-Surface Change Detection

Landscape and land cover change detection is a common application of multitemporal, remotely
sensed imagery, such as multispectral imagery collected from satellite platforms with consistent return
intervals (Lillesand et al., 2015). As discussed above, change detection of digital terrain surfaces has
primarily relied on differencing DLSMs while taking into account the impact of error (Williams, 2012) to
differentiate true change from error or noise. However, there is a need to explore other means of
assessing, quantifying, or documenting landscape change, such as deep learning methods. Some prior
studies have explored change using categorical representations of the landscape; for example, Maxwell
and Strager (2013) assessed landscape change resulting from mountaintop removal surface coal mining
by comparing landforms generated from pre- and post-mining DLSMs. There is a need to further explore
change detection techniques relying on categorical representations such as geomorphons. GEOBIA and
deep learning techniques for mapping or extracting landforms or specific landscape features need further
research in the context of assessing and quantifying natural landscape change and anthropogenic
landscape alterations.
5. Conclusions

Empirical predictive mapping and modeling rely on training data and predictor variables, which can
include land-surface parameters derived from DLSMs. Our goal was to explore the use of digital
elevation data and associated derivatives for use in empirical predictive models. If adequate DLSM data
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are available, a variety of spatially continuous parameters can be derived, many of which have been
shown to be predictive of landscape processes and features of interest in ecology, geomorphology,
vegetation mapping, geohazard prediction, and spatial probabilistic modeling in general. However,
selecting features is complex due to the large number of potential parameters to choose from and the
potential impacts of DLSM data source, spatial resolution, and level of detail and parameterization of
moving windows or application of other methods to characterize the landscape at multiple scales. The
existing literature may offer contradictory or incomplete guidance. The recommendations made here can
be used to guide researchers and analysts in developing a feature space for specific mapping or modeling
tasks. It is our hope that better characterization of the land surface using metrics that are predictive of the
phenomena and/or features of interest will improve feature space design and ultimately boost model
efficiency and performance.
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