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Abstract: Land-surface parameters derived from digital land surface models (DLSMs) (for example, 18 

slope, surface curvature, topographic position, topographic roughness, aspect, heat load index, and 19 

topographic moisture index) can serve as key predictor variables in a wide variety of mapping and 20 

modeling tasks relating to geomorphic processes, landform delineation, ecological and habitat 21 

characterization, and geohazard, soil, wetland, and general thematic mapping and modeling. However, 22 

selecting features from the large number of potential derivatives that may be predictive for a specific 23 

feature or process can be complicated, and existing literature may offer contradictory or incomplete 24 

guidance. The availability of multiple data sources and the need to define moving window shapes, sizes, 25 
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and cell weightings further complicate selecting and optimizing the feature space. This review focuses on 26 

the calculation and use of DLSM parameters for empirical spatial predictive modeling applications, which 27 

rely on training data and explanatory variables to make predictions of landscape features and processes 28 

over a defined geographic extent. The target audience for this review is researchers and analysts 29 

undertaking predictive modeling tasks that make use of the most widely used terrain variables.  30 

To outline best practices and highlight future research needs, we review a range of land-surface 31 

parameters relating to steepness, local relief, rugosity, slope orientation, solar insolation, and moisture and 32 

characterize their relationship to geomorphic processes. We then discuss important considerations when 33 

selecting such parameters for predictive mapping and modeling tasks to assist analysts in answering two 34 

critical questions: What landscape conditions or processes does a given measure characterize? How might 35 

a particular metric relate to the phenomenon or features being mapped, modeled, or studied? We 36 

recommend the use of landscape- and problem-specific pilot studies to answer, to the extent possible, 37 

these questions for potential features of interest in a mapping or modeling task. We describe existing 38 

techniques to reduce the size of the feature space using feature selection and feature reduction methods, 39 

assess the importance or contribution of specific metrics, and parameterize moving windows or 40 

characterize the landscape at varying scales using alternative methods while highlighting strengths, 41 

drawbacks, and knowledge gaps for specific techniques. Recent developments, such as explainable 42 

machine learning and convolutional neural network (CNN)-based deep learning, may guide and/or 43 

minimize the need for feature space engineering and ease the use of DLSMs in predictive modeling tasks.  44 
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1. Introduction  48 

Land-surface parameters, or geomorphometric variables, can be important indicators or predictor 49 

variables for a wide variety of spatial predictive modeling and thematic mapping tasks (Ironside et al., 50 

2018; Florinsky, 2017; Franklin, 2020). For example, such variables have been documented to be of value 51 
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for mapping or predicting landforms (e.g., Cavalli et al., 2017; Clubb et al., 2014; McKean and Roering, 52 

2004; Purinton and Bookhagen, 2017; Sofia, 2020), geomorphic processes (e.g., Drăguţ and Blaschke, 53 

2006; Eisank et al., 2011; Gerçek et al., 2011; Maxwell et al., 2020b), geohazards (e.g., Brock et al., 54 

2020; Goetz et al., 2015; Maxwell et al., 2020c, 2021), soil properties (e.g., Florinsky et al., 2002; 55 

Gesseler et al., 1995; Vermeulen and Van Niekerk, 2017), ecological and habitat characteristics (e.g., 56 

Ironside et al., 2018; Evans and Cushman, 2009), and wetland extent (e.g., Maxwell et al., 2016; Maxwell 57 

and Warner, 2019; Riley et al., 2017; Wright and Gallant, 2007). The development of consistent, detailed, 58 

and publicly available digital land surface models (DLSMs), such as those being curated by the 3D 59 

Elevation Program (3DEP) (Arundel et al., 2015) in the United States (USA), has greatly increased the 60 

availability of data for undertaking operational mapping and modeling tasks over large spatial extents 61 

(Csillik and Drăguț, 2018; Franklin, 1987; Guth, 2006; Höfle and Rutzinger, 2011; James et al., 2012). 62 

Data have been and continue to be generated at a variety of spatial resolutions and levels of generalization 63 

or detail; for example, the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), 64 

which covers 80% of the globe between 60° north and 56° south, offers spatial resolutions of one arc-65 

second (roughly 30-by-30 meter pixels) and three arc-seconds (roughly 90-by-90 meter pixels) (Farr et 66 

al., 2007). Similarly, the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global 67 

Digital Elevation Model (ASTER GDEM) offers a 30 m spatial resolution (“ASTER Global Digital 68 

Elevation Map” ). In contrast, light detection and ranging (LiDAR) can offer a high (i.e., sub-meter) 69 

spatial resolution along with the ability to map features below tree canopies using multiple returns from a 70 

single laser pulse (Höfle and Rutzinger, 2011). The availability of DLSM datasets representing 71 

landscapes at different times can support the quantification of landscape change resulting from 72 

anthropogenic alterations and natural geomorphic processes (James et al., 2012; Maxwell and Strager, 73 

2013; Perignon et al., 2013; Ross et al., 2016; Williams, 2012; Yang et al., 2021).  74 

Despite the demonstrated utility of DLSMs and derived land-surface parameters, making use of these 75 

data for specific mapping or modeling tasks is complex. First, the analyst must select a DLSM source. 76 

Fine spatial resolution or detail may enhance the visibility of desired features but can also be unnecessary 77 
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or even a hindrance. Second, a wide variety of parameters can be generated such that determining a 78 

reasonable or suitable variable subset, or feature space, for a specific task can be difficult. Prior research 79 

may offer inadequate or contradictory guidance (see for example Franklin (2020) and Maxwell et al. 80 

(2020)), and a suitable subset of features is commonly not known a priori, requiring the analyst to 81 

investigate a large number of inputs or develop a feature set that may be suboptimal. Such 82 

experimentation can be time consuming and computationally intensive. Third, many land-surface 83 

parameters may be highly correlated, which can cause problems when used as input for algorithms or 84 

modeling methods that are not robust to multicollinearity. Fourth, many parameters make use of local 85 

moving windows or kernels that compare a center cell to its neighbors. For such variables, the analyst 86 

may struggle to specify an appropriate window shape and size, be unsure of whether the cells in the 87 

window should be weighted based on distance from the center cell, and be faced with a wide array of 88 

weighting options if weighting appears to be warranted. Alternatively, analysts may explore other means 89 

to characterize the landscape at multiple scales that do not rely on traditional moving window-based 90 

analysis (e.g., resampling DLSMs to a coarser spatial resolution or smoothing the surface using a filter). 91 

Lastly, due to issues of spatial heterogeneity, relationships and patterns may not be consistent across 92 

landscapes or physiographies. Given the richness of available options and, in many cases, the lack of 93 

guidance provided by prior research, variable selection and generation can be a daunting task (Albani et 94 

al., 2004; Ironside et al., 2018; Evans and Minár, 2011; Florinsky, 2017; Franklin, 1987, 2020; Hengl et 95 

al., 2009; MacMillan and Shary, 2009; Olaya and Conrad, 2009; Pike et al., 2009; Wilson and Gallant, 96 

2000).  97 

Prior studies—and two key texts—provide reviews of land-surface parameters and their uses. Chapters 98 

3 and 4 in Wilson and Gallant’s Terrain Analysis: Principles and Applications text (Wilson and Gallant, 99 

2000) explain and review a wide range of parameters. Hengl and Reuter’s (2009) Geomophometry: 100 

Concepts, Software, and Applications provides a detailed treatment of geomorphometry, with Chapters 6 101 

through 8 focused on land-surface parameters specifically (Hengl and Reuter, 2009). Florinsky (2017) 102 

provides a mathematical treatment, categorization, and review of a wide range of geomorphometric 103 
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methods and metrics in order to foster a deeper understanding of their meaning and correct use. Ironside 104 

et al. (2018) review the use of land-surface parameters in ecological applications and highlight that the 105 

optimal subset of variables is often case- and/or landscape-specific. Franklin (2020) explores the use of 106 

these parameters in geophysical and biophysical remote sensing studies and highlights the need to select 107 

features based on a clear conceptualization of how each variable may influence the phenomenon being 108 

studied or predicted and why its inclusion is likely beneficial. Sofia (2020) reviews the use of 109 

geomorphometry for deriving insight into Earth surface process dynamics through both direct analysis of 110 

parameters and their use in empirical models. Xiong et al. (2021) argue for a shift in focus from mapping 111 

and quantifying landscape characterisitics to using DLSMs and analytical techniques to model the 112 

mechanisms that generate landforms and further our understanding of geomorphic processes. Whether the 113 

goal is mapping a landscape property or generating mechanistic insight, both require the judicious use of 114 

parameters derived from DLSMs. 115 

Expanding upon prior studies and reviews, we focus on how to select and use land-surface parameters 116 

as inputs to empirical spatial predictive mapping and modeling tasks, including geomorphic mapping and 117 

modeling, spatial probabilistic modeling, and thematic mapping or landscape classification tasks such as 118 

vegetation or forest type differentiation, wetland delineation, and land use/land cover (LULC) data 119 

production. In contrast to other recent geomorphometry-relevant reviews (e.g., Florinsky, 2017; Ironside 120 

et al., 2018; Franklin, 2020; Sofia, 2020; and Xiong et al., 2021), we focus on parameterization issues 121 

specific to empirical modeling tasks including selecting input elevation data, impacts of data 122 

generalization and spatial resolution on calculated metrics and resulting models, parameterization of 123 

moving windows, alternative means to characterize landscapes at multiple scales, and feature selection 124 

and reduction. This review is of specific value to those with a need to characterize the landscape to 125 

undertake empirical modeling tasks, especially in cases where a priori knowledge of the most important 126 

land-surface parameters for a given task is not available. 127 

 Empirical modeling relies on samples, or training data, and explanatory variables to make predictions 128 

of continuous measures (regression), differentiate categories (classification), or estimate probabilities 129 
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(probabilistic predictive modeling). Commonly employed techniques include linear and multiple linear 130 

regression, geographically weighted regression, logistic regression, generalized additive models (GAMs), 131 

machine learning (e.g., artificial neural networks (ANN), support vector machines (SVM), decision trees 132 

(DT), random forest (RF), and boosted DTs), and deep learning. For spatial predictive modeling 133 

specifically, the output will be predictions over a map extent relative to some aggregating unit, such as 134 

pixels/cells or areal features (Chang, 2008; James et al., 2013; Lillesand et al., 2015; Maxwell et al., 135 

2018).  136 

Based on results from prior studies, we highlight best practices and suggest future research needs. In 137 

Section 2 (Digital Land Surface Models and Derived Parameters), we provide an overview of DLSMs and 138 

the types of land-surface parameters that can be derived from them. In Section 3 (Considerations for 139 

Calculating, Selecting, and Implementing Land-Surface Parameters for Empirical Modeling), we discuss 140 

selecting variables, means of feature selection or reduction, issues of scale and spatial resolution, defining 141 

and parameterizing moving windows, alternatives to moving windows, and comparing multiple DEMs to 142 

assess landscape change. In Section 4 (Recommendations and Research Needs), we summarize best 143 

practices and highlight knowledge gaps.  144 

2. Digital Land Surface Models and Derived Parameters 145 

2.1. Digital Land Surface Models 146 

A digital representation of the bare-earth surface elevation is commonly called a digital terrain model 147 

(DTM). In contrast, a surface that includes aboveground features, such as trees and buildings, is referred 148 

to as a digital surface model (DSM). The term digital elevation model (DEM) is more generic and can be 149 

used to refer to a DTM or a DSM. In this review, we use the term digital land surface model (DLSM), as 150 

opposed to DTM, to denote a representation of the bare-earth surface as suggested by Pike et al. (2009), 151 

as this is the preferred term within the geomorphometry community (Pike et al. 2009; Hengl and Reuter 152 

2009). In order to estimate the height of features above the landscape surface, a DLSM can be subtracted 153 

from a DSM to obtain a normalized digital surface model (nDSM), in which the measurements represent 154 

height above the ground surface. If only trees or forest canopy are represented as aboveground features, 155 
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an nDSM may be referred to as a canopy height model (CHM) (Chang, 2008; Wilson and Gallant, 2000). 156 

DLSMs of difference are produced by subtracting two DLSMs representing different time periods and 157 

provide a measure of elevation loss or gain at each cell (Williams, 2012). 158 

Elevation data can be represented as discrete point measurements, isolines or contour lines, or 159 

continuous surfaces. The triangulated irregular network (TIN) vector-based model allows for 160 

measurements at discrete data points to be interpolated to a continuous surface using a triangular mesh, 161 

where each triangular facet is defined by the three point measurements that form its vertices. However, 162 

most analytical methods for generating land-surface parameters rely on a raster-based data model where 163 

each cell has a defined size (e.g., 10-by-10 meters) and holds an elevation measurement. What the 164 

elevation measurement represents for each cell is not always clear; for example, the elevation could 165 

represent an average over the cell or the elevation at the center of the cell, which could impact the 166 

interpretation and use of the surface (Chang, 2008). Here, we will make use of this raster-based 167 

representation of terrain surfaces. Raster data models can be augmented to represent vectors (i.e., 168 

quantities that have both magnitude and direction) as opposed to scalar quantities. This augmentation of 169 

the raster data model is known as vector fields and allows for vector algebra and calculus to be 170 

implemented to calculate land-surface parameters (Li and Hodgson, 2004; Hu et al., 2021). For example, 171 

Hu et al. (2021) proposed a method for calculating plan curvatures using vector fields. Raster-based 172 

vectors are also implicitly used in dynamical landscape evolution models in which the divergence of 173 

sediment fluxes between raster cells governs topographic change (e.g., Tucker and Hancock, 2010). 174 

A variety of methods are available to estimate the elevation of the landscape surface and generate 175 

DLSMs and/or DSMs. The traditional approach uses passive remote sensing and photogrammetry that 176 

exploits the stereo parallax in overlapping stereo images to estimate heights. This same general approach 177 

is used in the creation of DSMs using many overlapping drone images, a process known as structure from 178 

motion (SfM). Active remote sensing methods used to generate elevation datasets include interferometric 179 

synthetic aperture radar (InSAR), which makes use of differences in phase between returning backscatter 180 

waveforms, and LiDAR, which uses laser range distancing to produce point clouds representing x, y, z 181 
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coordinates in three-dimensional space. Since many systems can also record multiple returns from a 182 

single laser pulse, returns from subcanopy features—and even the ground surface—can potentially be 183 

recorded, allowing for the mapping of geomorphic features and terrain surfaces otherwise obscured by 184 

vegetation. Traditional photogrammetry, SfM, and InSAR do not allow for canopy penetration, which 185 

hinders the production of DLSMs in forested areas (Chang, 2008; Höfle and Rutzinger, 2011; Lillesand et 186 

al., 2015). 187 

Figure 1 demonstrates the quality and variety of information that can be obtained from multiple-return 188 

aerial LiDAR. Our examples use LiDAR data for an area near Seneca Rocks in West Virginia, USA. For 189 

comparison, in Figure 1 we have also included an aerial orthophotograph provided by the National 190 

Agriculture Imagery Program (NAIP). The DLSM, visualized here using a hillshade, highlights the detail 191 

of the bare-earth surface captured. The DSM, also displayed as a hillshade, highlights the generally rough 192 

nature of the vegetation surface compared to the generally much smoother bare earth. The nDSM 193 

represents heights above ground while the spectral information associated with the intensity of the near 194 

infrared laser returns is visualized using a first return intensity image, which has some correlation with 195 

land cover and surface materials (Lillesand et al., 2015). 196 
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 197 

Figure 1. Example variables derived from LiDAR data. Image data are provided for comparison and are from the 198 

National Agriculture Imagery Program (NAIP). DLSM = Digital Land Surface Model, DSM = Digital Surface 199 

Model, nDSM = normalized Digital Surface Model. The DLSM and DSM are visualized using a hillshade (HS). All 200 

LiDAR derivatives were generated using ArcGIS Pro (“ArcGIS Pro help—ArcGIS Pro | Documentation” ). 201 

2.2. Land-Surface Parameters 202 
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In this section, we review the most commonly used land-surface parameters that can be calculated 203 

from DLSMs. As noted above, there are a wide variety of surfaces that can be generated (Wilson and 204 

Gallant, 2000); it is not possible to provide a detailed treatment of all possible features. We focus on 205 

selected metrics that explain or quantify key aspects of the land surface such as steepness, local relief, 206 

rugosity, slope orientation, solar insolation, and moisture. While this overview focuses on the most 207 

commonly used metrics that quantify different aspects of the land surface, our later discussion of feature 208 

selection and reduction methods is applicable to a much broader range of land-surface parameters.  209 

2.2.1. Visualizing Bare-Earth Surfaces 210 

Creating effective visualizations of DLSMs is critical for allowing both intuitive user understanding of 211 

the data (Roering et al., 2013) and effective modeling (Maxwell et al., 2020b). Multiple methods exist for 212 

visualizing DLSMs (Figure 2). A hillshade (HS) represents illumination of a terrain surface; the 213 

illumination of a given cell depends on the position of the illuminating source and the terrain steepness 214 

and orientation at the cell location. In order to potentially improve the visualization of the landscape for 215 

all slopes, regardless of the compass direction at which they are oriented, a multidirectional hillshade 216 

(MDHS) can be calculated through averaging, or weighted averaging, of multiple HSs generated using 217 

different illuminating geometries. Visualization of the DLSM may be further improved by using 218 

transparency and combining a HS or MDHS with a color ramp representing elevation measurements, a 219 

surface known as a hypsometrically-tinted hillshade (HTHS). It is also possible to include measures of 220 

surface curvature or topographic position, both discussed below, to further differentiate or highlight 221 

ridges and valleys. Contour lines can be included to further improve interpretability (Brewer, 2005; 222 

Chang, 2008; Howard et al., 2008).  223 

As an alternative to HS-based DLSM visualizations, a slopeshade (SlpS) can be calculated from a 224 

topographic slope surface (Figure 2), which is discussed below. To create a SlpS, a topographic slope 225 

raster grid is symbolized using a light-to-dark color ramp where lighter shades represent flatter terrain and 226 

darker shades represent steeper surfaces. SlpSs do not require defining the position of an illuminating 227 
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source and are illumination-invariant (Doctor and Young, 2013; Maxwell et al., 2020b; Reed and Kite, 228 

2020).  229 

 230 

Figure 2. Example terrain visualizations for manual interpretation. HS = hillshade, MDHS = multi-directional 231 

hillshade, HTHS = hypsometrically-tinted hillshade, SlpS = Slopeshade, HTHS+TPI = hypsometrically-tinted 232 

hillshade plus topographic position index (TPI), HTHS+Contours = hypsometrically-tinted hillshade plus contours. 233 

All visualizations were created using ArcGIS Pro (“ArcGIS Pro help—ArcGIS Pro | Documentation”).  234 

2.2.2. Topographic Slope 235 

Figure 3 shows some common land-surface parameters that can be calculated from DLSMs. One of 236 

the most common derivatives is an estimate of the local topographic steepness or slope (Slp) (Equation 1). 237 

Slope is a simple yet critical terrain variable, as it is often a key predictor of landslides and other 238 

geohazards that spatial modeling seeks to map and predict (Maxwell et al., 2020c, 2021; Stanley and 239 

Kirschbaum, 2017). Slope is also key from a geomorphic perspective. Sediment transport and erosion 240 

rates on hillslopes and in river channels typically increase at least linearly with slope (Andrews and 241 
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Bucknam, 1987; Lague et al., 2003; Lague and Davy, 2003); the relationship between slope and upslope 242 

drainage area is the fundamental determinant of geomorphic process across most landscapes 243 

(Montgomery and Dietrich, 1992; Tucker and Bras, 1998; Willgoose et al., 1991).  244 

Slp (radians) = arctan(√(
𝜕𝑧

𝜕𝑥 
)

2
+ (

𝜕𝑧

𝜕𝑦 
)

2
), (1) 245 

As the 1st derivative of the elevation surface, slope is commonly calculated using elevation values in a 246 

3-by-3 cell window, bivariate quadratic equations, or the partial differential of elevation relative to the x 247 

and y planes (Equation 1). Mean slope (MnSlp) is an average slope produced by calculating the mean 248 

slope from a Slp grid within moving windows to obtain a smoother representation of steepness. 249 

Alternatively, slope can be calculated using a larger window, which leads to a similar generalization 250 

(Chang, 2008; Wilson and Gallant, 2000).  251 

2.2.3. Surface Curvature 252 

Surface or topographic curvature (Crv) generally relates to the shape of the local land surface with 253 

respect to terrain convexity or concavity. Curvature describes the convergent or divergent nature of the 254 

topographic surface, thereby providing an important indicator of dominant geomorphic processes 255 

(Hooshyar and Wang, 2016; Tarolli et al., 2012), landscape hydrology (Bogaart and Troch, 2006; 256 

Heerdegen and Beran, 1982), and soil properties (Gesseler et al., 1995). Curvature can reflect rates of soil 257 

production and erosion (Dietrich et al., 1995; Heimsath et al., 1997; Thaler et al., 2021). Hilltop 258 

curvature, for example, is correlated with the hilltop erosion rate such that “sharper” ridgetops reflect 259 

more rapid erosion (Gabet et al., 2021; Hurst et al., 2013; Struble et al., 2021). 260 

Curvature is the 2nd derivative of elevation and relates to the deviation of a terrain line from being 261 

straight or a terrain surface from being flat (Guth, 2009; Hofierka et al., 2009; Minár et al., 2020, 2013; 262 

Wood, 2009, 1996; Zevenbergen and Thorne, 1987). Curvature calculations are complicated as different 263 

measures can be obtained based on how curvature is defined relative to the direction of maximum slope. 264 

Most calculations rely on fitting polynomials (Ehsani and Quiel, 2008; Evans, 1972; Hurst et al., 2012; 265 

Minár et al., 2020; Roering et al., 1999; Tarolli et al., 2012; Wilson et al., 2007). However, other methods 266 
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are available. For example, Struble and Roering (2021) proposed a method based on continuous wavelet 267 

transforms. Additional complexity stems from the fact that many measures of curvature have been 268 

defined with different names used to represent the same measure, the same name used to define different 269 

measures, variability or even errors in how measures are calculated, and poorly documented calculation 270 

methods (Minár et al., 2020). Many of these curvatures are heavily correlated, as is evident in the 271 

examples in Figure 3. There also exist disconnects between theory and application. For example, the 272 

curvature measures used in studies and operational projects are often dictated by the software 273 

environment(s) available as opposed to correlation with the phenomenon being investigated, mapped, or 274 

modeled (Guth, 2009; Hofierka et al., 2009; Minár et al., 2020, 2013; Wood, 2009, 1996; Zevenbergen 275 

and Thorne, 1987).  276 

Minár et al. (2020) provide a review, critique, and systemization of curvature measures. They suggest 277 

that curvature measures can be grouped into three broad categories based on similar interpretations of 278 

convex and concave landforms: plan, profile, and twisting. Generally, plan curvatures, such as normal 279 

contour or plan curvature, are calculated in the direction of minimum gravitational potential energy, or 280 

perpendicular to the direction of maximum slope. Profile curvatures, such as normal slope line or profile 281 

curvature, are calculated in the direction of maximum slope. Twisting curvatures, such as rotor curvature, 282 

relate to local “twisting” of the terrain surface and are calculated relative to a direction neither parallel to 283 

nor perpendicular to the direction of maximum slope. Twisting curvatures are mixed second derivatives 284 

of elevation and relate to changes in the aspect or direction of maximum slope, but unlike plan and profile 285 

curvature are relatively poorly understood and demonstrate uncertain utility in the context of 286 

geomorphometric analysis, spatial mapping, and modeling. Other curvature measures are combinations of 287 

the three basic types (Minar et al., 2020).  288 

This highlights the complexity of choosing curvature measures for specific tasks. Minár et al. (2020) 289 

summarize typical uses and synthesize how landforms or surface processes may be reflected in specific 290 

curvature measures. We suggest that this source be consulted for choosing a subset of curvature measures.  291 

2.2.4. Topographic Position and Variability 292 
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The topographic position index (TPI) serves as a measure of local or hillslope-scale topographic 293 

position (Wilson and Gallant, 2000). TPI is calculated by subtracting the mean of all elevation 294 

measurements within a moving window (zmean) from the center cell elevation (z) (Equation 2). Larger, 295 

positive values indicate higher topographic positions (e.g., ridges) while larger, negative values indicate 296 

lower positions (e.g., valleys) (De Reu et al., 2013; Hengl et al., 2009; Lopez and Berry, 2002; MacMillan 297 

and Shary, 2009; Riley et al., 2017; Wilson and Gallant, 2000). 298 

TPI = z – zmean (2) 299 

The topographic roughness index (TRI) represents the variance (σ2) in elevation measurements (z) 300 

within a local window (Equation 3). Terrain roughness can be indicative of landscape-scale underlying 301 

geologic conditions (Kreslavsky et al., 2013), geomorphic process dominance (Milodowski et al., 2015), 302 

and the cumulative influence of surface processes over time (Johnstone et al., 2018; LaHusen et al., 303 

2016). Higher values indicate higher local rugosity, or a more rugged or variable terrain surface 304 

(Blaszczynski, 1997; Hengl et al., 2009; MacMillan and Shary, 2009; Riley et al., 1999; Wilson and 305 

Gallant, 2000). Surface relief ratio (SRR) offers another measure of rugosity (Equation 4) (MacMillan 306 

and Shary, 2009; Pike et al., 2009; Pike and Wilson, 1971; Wilson and Gallant, 2000). SRR—which is 307 

equivalent to the hypsometric integral (Pike and Wilson, 1971)—can roughly indicate the state of relief in 308 

an area and may therefore correlate with lithologic or tectonic boundary conditions (Chen et al., 2003; 309 

Lifton and Chase, 1992). Surface area ratio (SAR) (Equation 5) is the ratio of the estimated landscape 310 

surface area to the planar area at a cell location (Jenness, 2004).  311 

TRI = σ2(z) (3) 312 

SRR = 
𝑧𝑚𝑒𝑎𝑛−𝑧𝑚𝑖𝑛 

𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛
 (4) 313 

SAR = 
Cell Size2 

Cos(Slope in Degrees)
 (5) 314 

The topographic dissection index (TDI) (Equation 6) is a measure of how high above the bottom of a 315 

landscape a given point sits, which may be related to incision such as by channels. Lower values indicate 316 

more incision (Evans, 1972; MacMillan and Shary, 2009; Wilson and Gallant, 2000).  317 
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TDI = 
𝑧−𝑧𝑚𝑖𝑛 

𝑧𝑚𝑎𝑥−𝑧𝑚𝑖𝑛
 (6) 318 

Metrics derived from the gray level co-occurrence matrix (GLCM) after Haralick et al. (1973) provide 319 

another means to generate local textural measures from raster datasets. The GLCM is a table of the 320 

frequency within a local window of the occurrence of all combinations of elevations for neighboring 321 

pixels. Neighboring pixels are defined as two locations at a specified offset (distance apart) and direction, 322 

though it is common to average multiple directions. Because the GLCM table has N-by-N entries, where 323 

N is the number of possible elevation values in the DLSM, it is useful to limit the table size by re-scaling 324 

the elevations to a limited range of possible values. Once the table has been generated for a pixel and its 325 

local window, a variety of derived metrics can be calculated (Table 1). The measures can be grouped into 326 

three categories as measures of contrast, orderliness, and descriptive statistics (Hall-Beyer, 2017; Warner, 327 

2011). Hall-Beyer (2017) suggests including one measure of contrast, one measure of orderliness, and 328 

two to three descriptive statistics to summarize the GLCM.  329 

The application of GLCM textures to DLSMs has been explored by numerous authors. For example, 330 

Kai et al. (2013) assessed the use of GLCM-based, DLSM-derived textural measures for landform 331 

classification and noted the value of the measures. Zhao (2017) incorporated these measures into a 332 

geographic object-based image analysis (GEOBIA) framework for extracting terraces within the Loess 333 

Plateau in China. 334 

Table 1. Example texture measures calculated from the gray level co-occurrence matrix (GLCM).  335 

Group Variable Description 

Contrast Contrast ∑ 𝑝𝑖,𝑗(𝑖 − 𝑗)2𝑁−1
𝑖,𝑗=0   

 Dissimilarity ∑ 𝑝𝑖,𝑗|𝑖 − 𝑗|𝑁−1
𝑖,𝑗=0   

 Homogeneity ∑
𝑝𝑖,𝑗

1+(𝑖−𝑗)2
𝑁−1
𝑖,𝑗=0   

Orderliness Angular Second 

Moment 

∑ 𝑝𝑖,𝑗 
2𝑁−1

𝑖,𝑗=0   

 Entropy ∑ 𝑝𝑖,𝑗(−ln (𝑝𝑖,𝑗)𝑁−1
𝑖,𝑗=0 ) 
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Descriptive 

Statistics 

Mean ∑ 𝑖(𝑝𝑖,𝑗)𝜇𝑗
𝑁−1
𝑖,𝑗=0  ;  ∑ 𝑖(𝑝𝑖,𝑗)𝑁−1

𝑖,𝑗=0   

 Variance ∑ 𝑝𝑖,𝑗(𝑖 − 𝜇𝑖)
2 𝑁−1

𝑖,𝑗=0 ; ∑ 𝑝𝑖,𝑗(𝑗 − 𝜇𝑗)
2

 𝜎𝑖
𝑁−1
𝑖,𝑗=0  

 
Correlation ∑ 𝑝𝑖,𝑗((𝑖 − 𝜇𝑖)(𝑖 − 𝜇𝑗

𝑁−1
𝑖,𝑗=0 )/√𝜎𝑖 

2𝜎𝑗
2)  

i = GLCM row number; j = GLCM column number; 𝑝𝑖,𝑗  = probability of (rescaled) elevation values i and j being 336 

neighbors at the specified offset and direction; N = number of rows (also the number of columns and the maximum 337 

number of potential values the rescaled elevation values can take on); µ =mean, σ2 = variance. 338 

2.2.5. Geomorphons 339 

The variables discussed above provide continuous measures or indices of landscape characteristics. In 340 

contrast, geomorphologic phenotypes, or geomorphons (Figure 3), represent a categorization of terrain 341 

features or landform types that are size-, orientation-, and local relief-invariant. A cell is compared to its 342 

neighbors in eight directions to characterize the patterns on the landscape and determine in which 343 

directions elevation is higher, lower, or at the same altitude as the reference cell location. So as not to 344 

limit the analysis to a 3-by-3 cell window and to allow for mapping similar landforms with variable sizes 345 

or scales, a line-of-sight method is used as opposed to the direct cell neighbors. A total of 498 patterns are 346 

categorized, which can then be subsequently grouped into common terrain features or landforms 347 

(Jasiewicz et al., 2013; Jasiewicz and Stepinski, 2013).  348 

Geomorphons have been shown to be useful for many mapping and modeling problems. For example, 349 

Libohova et al. (2016) demonstrated the value of the classification method for predicting soil properties 350 

on a glacial moraine while Sărășan et al. (2019) documented its use for drumlin extraction. Chea and 351 

Sharma (2019) noted association of geomorphons with socio-economic and built-environment 352 

characteristics.  353 
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 354 

Figure 3. Example metrics that characterize local relief, terrain shape, and landforms. DLSM = digital land surface  355 

model, Slp = topographic slope, SlpMn = mean topographic slope, ProCrv = profile curvature, PlnCrv = plan 356 

curvature, LongCrv = longitudinal curvature, CSCrv = cross-sectional curvature, MinCrv = minimum curvature, 357 

MaxCrv = maximum curvature, TPI = topographic position index, TDI = topographic dissection index, TRI = 358 

topographic roughness index, SRR = surface relief ratio, and SAR = surface area ratio. Surface curvatures, TPI, and 359 

geomorphons were calculated using SAGA (Olaya and Conrad, 2009). Slp was calculated using ArcGIS Pro 360 

(“ArcGIS Pro help—ArcGIS Pro | Documentation” ) while all other measures were calculated using R (R Core 361 

Team, 2020) and the spatialEco package (Evans, 2020).  362 
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2.2.6. Topographic Aspect, Insolation, and Moisture 363 

The orientation of topography with respect to incoming solar energy is an important control on 364 

geomorphology, hydrology, and landscape ecology (Gallardo-Cruz et al., 2009; Kumari et al., 2020; 365 

Langston et al., 2015; Pelletier et al., 2018). Table 2 lists and provides descriptions or equations for a 366 

selection of the most common variables associated with topographic aspect, solar insolation, or moisture. 367 

Topographic aspect (Asp) represents the compass bearing or direction that a slope is facing (Chang, 2008; 368 

Hengl et al., 2009; MacMillan and Shary, 2009; Wilson and Gallant, 2000). Asp and associated measures 369 

are particularly useful for hydrologic and ecological modeling tasks, since aspect is related to the amount 370 

of solar insolation, sun exposure, subsurface moisture content, and, in some cases, precipitation at a site 371 

(Bennie et al., 2008; Ironside et al., 2018; Evans and Cushman, 2009; Franklin, 2020; Stage, 1976). For 372 

example, Evans and Cushman (2009) used a variety of aspect-related variables to aid in the prediction of 373 

conifer tree species occurrence. One complexity with using Asp in a predictive model is its circular nature 374 

(e.g., a slope aspect of 359° is closer in orientation to 2° than an orientation of 10° is to 2°). As a result, it 375 

is common to transform Asp to a linear variable for inclusion in predictive modeling tasks. Examples 376 

include northwardness (AspN) (Stage, 1976), eastwardness (AspE) (Stage, 1976), and the topographic 377 

radiation aspect index (TRASP) (Roberts and Cooper, (1989); Evans, 2021, 2020; Evans and Cushman, 378 

2009; Roberts and Cooper, 1989) 379 

The heat load index (HLI) provides further refinement by incorporating latitude, Slp, and Asp to 380 

estimate potential annual direct incident radiation (McCune and Keon, 2002). The HLI calculation 381 

suggested by McCune and Keon (2002) transforms Asp so that the largest values are associated with 382 

southwest orientations, the warmer orientation in the northern hemisphere, and the lowest values are 383 

associated with northeast orientations, the cooler slopes. Similarly, the site exposure index (SEI) estimates 384 

solar insolation by rescaling Asp relative to a north-south axis and then multiplying by Slp (Ironside et al., 385 

2018; Franklin, 2020).  386 

The topographic wetness index (TWI) takes into account contributing area, which is discussed below, 387 

as a measure of surface or shallow subsurface flow accumulating at a cell location, and topographic slope, 388 
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as a measure of how easily or quickly moisture leaves a cell. TWI has been shown to be useful when the 389 

phenomenon of interest is likely affected by moisture conditions, such as mapping vegetation 390 

communities and wetlands (Corcoran et al., 2011; Ironside et al., 2018; Evans and Cushman, 2009; 391 

Franklin, 2020; Moore et al., 1993). 392 

Table 2. Land-surface parameters that characterize slope orientation, solar insolation, and moisture. 393 

Land-Surface Parameter Abbreviation Description/Equation 

Topographic Aspect Asp 270 − 
360

2𝜋
 × arctan2(

𝜕𝑧

𝜕𝑥 
,

𝜕𝑧

𝜕𝑦 
) 

Northwardness AspN sin(Asp) 

Easterwardness AspE cos(Asp) 

Topographic Radiation Aspect 

Index 

TRASP 
1 − cos ((

𝜋
180) × (𝐴𝑠𝑝 − 30))

2
 

Heat Load Index HLI 

Index for annual direct incoming 

solar radiation based on latitude, 

slope, and aspect 

Site Exposure Index SEI Slp × cos(𝜋
𝐴𝑠𝑝 −180

180
) 

   

   

Topographic Wetness Index TWI Ln(
𝐶𝑜𝑛𝑡𝑟𝑖𝑢𝑏𝑡𝑖𝑛𝑔 𝐴𝑟𝑒𝑎

tan (𝑆𝑙𝑝)
) 
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 394 

Figure 4. Example metrics that characterize solar insolation and moisture. Asp = slope aspect,  TWI = topographic 395 

wetness index, TRASP = topographic radiation aspect index, HLI = head load index, and SEI = site exposure index. 396 

Asp was calculated using ArcGIS Pro (“ArcGIS Pro help—ArcGIS Pro | Documentation” ) while TRASP, HLI, and 397 

SEI were calculated using the spatialEco (Evans, 2020) package in R (R Core Team, 2020). TWI was calculated 398 

using SAGA (Olaya and Conrad, 2009). 399 

 For ecological mapping and modeling tasks, it is often desirable to incorporate variables that have 400 

clear associations with abiotic conditions that impact ecological processes and community composition 401 

(Ironside et al., 2018; Dyer, 2019). Examples of these are the water balance at a site—as estimated from 402 

temperature and radiation, which drive moisture demand, and precipitation and soil water storage, which 403 

dictate water availability (Dyer 2019). Methods have been developed to estimate water balance-related 404 

measures; however, additional data beyond a DLSM are required. For example, Dyer (2019) developed 405 

an ArcGIS toolbox to generated raster-based estimates of monthly potential evapotranspiration, 406 

representing demand, based on the Thornthwaite approach (Mather 1978) and the Turc equation (Turc 407 

1961). Input data requirements include DLSMs, soil available water capacity derived from digital soil 408 
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datasets, temperature and precipitation estimates, such as those provided by PRISM 409 

(https://prism.oregonstate.edu/), global horizontal irradiance, and relative humidity. The DLSM data 410 

specifically are used to estimate monthly total radiation at each cell using the hemispherical viewshed 411 

algorithm (Rich et al. 1994 and Fu and Rich 2002). Once potential evapotranspiration is estimated, it is 412 

possible to generate estimates of actual evapotranspiration and water deficit or surplus monthly and 413 

annually (Dyers 2019). 414 

2.2.7. Surface Hydrology 415 

Calculating DLSM-based variables related to surface water hydrology is critical for analyzing and 416 

modeling the flow of water, sediment, and nutrients across landscapes (Böhner and Antonić, 2009; 417 

Chang, 2008; Gruber and Peckham, 2009). Figure 5 illustrates variables associated with surface 418 

hydrology. In order to model the flow of water on the landscape surface and allow flow propagation 419 

through the entire drainage network, small depressions or pits can be removed to create a hydrologically 420 

corrected, or filled, DLSM. The depression filling process also allows identification of pits or sinks which 421 

may correlate with real topographic features of interest. Depressions in DTMs are often real rather than 422 

spurious and have important implications for hydrology and geomorphic processes (for example, in karst 423 

landscapes (Lyew-Ayee et al., 2007)). An alternative to pit filling that leaves depressions intact is to route 424 

flow through them using so-called “fill-and-spill” algorithms while leaving the DLSM itself unmodified 425 

(e.g., Barnes et al., 2021, 2020; Callaghan and Wickert, 2019).  426 

Flow direction (FlowDir) represents the direction of flow from a cell into one or multiple adjacent 427 

cells based on elevation differences between each cell and its neighbors. Flow accumulation (FlowAcc), 428 

or contributing area, counts the number of cells or amount of land area that contributes flow to each cell. 429 

Different algorithms are available to make these calculations; for example, the D8 method (single-flow-430 

direction routing considering eight neighbors) only allows for flow to be directed to one adjacent cell 431 

while the D-Infinity method (a multiple-flow-direction method) allows for flow partitioning to multiple 432 

neighboring cells (Chang, 2008; Gruber and Peckham, 2009; Tarboton et al., 2016; Tarboton, 2005, 433 

1997). Qin et al. (2006) proposed an augmentation of multiple-flow direction algorithms, which was 434 

https://prism.oregonstate.edu/
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subsequently implemented in ArcGIS Pro, that allows for adaption of the flow-partitioning exponent 435 

based on local land surface characteristics. Some issues have been documented with the D8 and other 436 

single-flow-direction methods including generation of parallel lines along principal directions; the 437 

inability to model divergent flow over convex slopes and ridges; and poor performance in highly variable 438 

topography, floodplains, and wetlands (Chang, 2008). Many of these issues have been addressed by 439 

various other flow routing schemes (see Wilson et al. (2007)). In general, D-Infinity is the most 440 

commonly used algorithm for applications in small drainage areas and/or in low-gradient areas where 441 

sheet or divergent flow may occur (Wilson et al., 2007). 442 

Once FlowDir and FlowAcc raster grids are created, a variety of additional outputs can be derived 443 

from them. By setting a flow accumulation threshold or a slope-area threshold (Montgomery and 444 

Foufoula-Georgiou, 1993), a synthetic stream network can be generated. Next, each individual segment in 445 

the drainage network can be assigned a unique code, a product known as stream link (StrmL). Other 446 

products include stream order (StrmO), flow distance, or the upstream or downstream distance to a cell 447 

along the flow path, watershed or catchment boundaries (Chang, 2008; Gruber and Peckham, 2009; 448 

Tarboton et al., 2016; Tarboton, 2005, 1997), and indices of channel form—such as steepness—that 449 

might reveal geologic and geomorphic conditions (e.g., Kirby and Whipple, 2012; Perron and Royden, 450 

2013). 451 

It has been noted that traditional methods of generating surface hydrologic variables, such as FlowDir 452 

and FlowAcc, may be suboptimal for processing high spatial resolution and detailed digital terrain data, 453 

such as those derived from LiDAR. This results from the high level of local detail or noise as well as the 454 

difficulty in hydrologically correcting such surfaces. As a result, new methods are being developed and 455 

investigated to analyze such data (Clubb et al., 2014; Passalacqua et al., 2010; Pelletier, 2013). As one 456 

representative example, Sangireddy et al. (2016) introduced the open-source GeoNet software for 457 

generating surface hydrologic variables using a combination of nonlinear filtering, detecting channelized 458 

cells using a statistical analysis of surface curvature, and detecting channel heads and channel networks 459 

using a geodesic minimization principle.  460 
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 461 

Figure 5. Example surface hydrologic derivatives. All metrics were calculating using ArcGIS Pro (“ArcGIS Pro 462 

help—ArcGIS Pro | Documentation” ). Results are for a catchment in West Virginia, USA.  463 

3. Considerations for Calculating, Selecting, and Implementing Land-Surface Parameters for 464 

Empirical Modeling 465 

3.1. Selecting Variables 466 

3.1.1. Selecting Land-Surface Parameters Overview  467 

The large number of variables that can be derived from DLSMs to characterize the landscape surface 468 

complicates the process of selecting variables for inclusion in empirical predictive modeling or mapping 469 

tasks. Lecours et al. (2017) suggest that land-surface parameters are generally highly correlated and that a 470 

subset of six or seven carefully selected measures will capture most of the information content present in 471 

the DLSM data; however, this may not hold true for all mapping or modeling tasks, and the optimal 472 

feature subset may not be readily evident. Franklin (2020) and Xiong et al. (2021) suggests that land-473 

surface parameter selection should be guided by what topographic factors influence the phenomenon 474 

being studied, modeled, or mapped, and Franklin (2020) further suggests additional guidance from 475 

existing literature, visual and statistical exploration of the DLSM data, and field observations. This 476 
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section is structured with that framework in mind. Table 3 highlights some of the parameters discussed 477 

above with example uses and associations with landscape and geomorphic processes.  478 

Table 3. Land-surface parameters and example uses and associations with landscape characteristics and 479 

geomorphic processes. This table summarizes content presented in Section 2 and also draws from prior 480 

texts (e.g., Hengl and Reuter, 2009; Wilson and Gallant, 2000), reviews (e.g., Florinsky, 2017 Ironside et 481 

al., 2018; Franklin, 2020; Sofia, 2020; and Xiong et al., 2021), and Minár et al. (2020). 482 

Group 
Land-Surface 

Parameter 
Example Uses and Associations 

Steepness Slope Geohazards, sediment transport, erosion rates 

Surface 

Curvature 

Plan Curvatures 
Dispersion of materials and energy across the 

slope, cross-slope landforms 

Profile Curvature 

Movement of material and energy downslope, 

down-slope landforms, geohazards, geomorphic 

process dominance 

Twisting Curvatures 
Twisting of mass flow, geologic structures, 

underlying geology, process domain boundaries 

Local 

Topographic 

Positions 

Topographic Position 

Index 

Ridge vs. valley, hillslope-scale processes, 

environmental gradients 

Rugosity 

Topographic Roughness 

Index 

Underlying geology, geomorphic process 

dominance, impact of surface processes over time 

Surface Relief Ratio 
State of relief, location of tectonic and lithologic 

boundaries, state of topographic transience 

Surface Area Ratio Slope breaks, rock outcrops, scarps 

Incision 
Topographic Dissection 

Index 

Recent stream incision, fluvial processes and 

erosion, state of topographic transience 

Orientation 

Aspect 
Incoming solar radiation, sun exposure, subsurface 

moisture content, precipitation 

Northwardness Same as Asp, but a linear variable 

Eastwardness Same as Asp, but a linear variable 

Topographic Radiation 

Aspect Index 
Incoming solar insolation and moisture content 

Insolation 

Heat Load Index 
Potential annual direct incident radiation, energy 

availability, vegetation communities 

Site Exposure Index 
Incoming solar radiation based on aspect and 

slope, energy availability, vegetation communities 

Moisture 

Topographic Wetness 

Index 

Steady state moisture, mapping of vegetation 

communities and wetlands 

Flow Accumulation 

Amount of flow accumulating to a location, 

moisture content, stream initiation, river discharge, 

process transition from hillslope to fluvial 

dynamics 

 483 
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Existing literature can offer guidance; however, prior research often offers conflicting advice. For 484 

example, studies have consistently noted the value of Slp for mapping and predicting wetland occurrence 485 

(e.g., Maxwell et al., 2016; Wright and Gallant, 2007). In contrast, TWI, which would logically be 486 

considered for wetland prediction due to the likely association with areas of high flow accumulation, has 487 

been shown to be useful in some studies but not others. Rampi et al. (2014) and Knight et al. (2013) both 488 

note the value of TWI while Maxwell et al. (2016) and Wright and Gallant (2007) found the variable to be 489 

of little value. It is not always clear why certain variables are found to be useful or only useful in some 490 

studies; this could relate to differences in the presentation of features in different landscapes, the 491 

modeling methods or algorithms being used, and/or the characteristics of the DLSM data. For example, 492 

Maxwell et al. (2016) noted a high degree of local noise in TWI for their probabilistic wetland mapping in 493 

West Virginia, USA. This local noise may have reduced the value of the variable. Smoothing the TWI 494 

values or the original DLSM may have reduced local noise and increased the predictive value of the 495 

variable in the model (Maxwell et al., 2016).  496 

Similarly, there does not appear to be a consensus as to the most useful variables for predicting slope 497 

failure, or landslide, susceptibility or occurrence. Generally, the incorporation of land-surface parameters 498 

has been shown to improve models; for example, Goetz et al. (2011) noted that empirical models that 499 

incorporate land-surface parameters as predictor variables often outperform methods that rely on physical 500 

models of slope failure. Slp, Asp, and surface curvatures have consistently been shown to have value for 501 

slope failure predictive modeling (Gessler et al., 1995; Goetz et al., 2015, 2011; Maxwell et al., 2020c). 502 

However, a consistent, optimal set of variables that goes beyond this list has not been identified, and 503 

suitable predictors may depend on the landscape being predicted and/or the nature of the slope failures 504 

present. It may therefore prove useful to use feature selection methods to find the variables most effective 505 

for a particular study.   506 

3.1.2. Variable Selection Methods and Considerations 507 

Reducing the size of the feature space offers a number of potential benefits, including minimizing the 508 

computation and memory requirements for training models, generating simpler or more parsimonious 509 
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models for interpretability and reproducibility, and/or minimizing problems arising from the “curse of 510 

dimensionality” (James et al., 2013; Maxwell et al., 2018). The “curse of dimensionality”, or Hughes 511 

phenomenon, is the observation that increasing the number of predictor variables beyond a threshold 512 

sometimes decreases the accuracy of models because, even though more information is potentially 513 

provided, the problem must be solved in a larger, more complex feature space. This issue is of particular 514 

concern when a small number of training samples is available to characterize a complex feature space 515 

(i.e., a dataset with many variables) (Hughes, 1968). Some methods are particularly susceptible to this 516 

problem; for example, k-nearest neighbor (k-NN) classification accuracy generally declines as the feature 517 

space becomes very large, while random forest has generally been shown to be more robust (Maxwell et 518 

al., 2018). 519 

Given the complexity of this topic, a complete treatment of feature selection methods is outside the 520 

scope of this review. For reviews focusing on feature selection methods, please see Chandrashekar and 521 

Sahin (2014), Khalid et al. (2014), and Cai et al. (2018). We provide a brief review here. Supervised 522 

feature selection methods, which rely on labeled data, can be grouped into three broad categories: filter, 523 

wrapper, and embedded methods. Filter methods use a statistical measure to rank variables and assess the 524 

correlation between each predictor variable and the response variable. Examples include correlation 525 

coefficients and the mutual information metric. Advantages of filter methods are that they can be 526 

computationally light and avoid overfitting to the training data; however, not all measures take into 527 

account correlation between predictor variables, which can result in redundant computations or a 528 

suboptimal feature space. Also, the learning algorithm is not considered, so the selected feature space may 529 

not be optimal for a specific learning algorithm (Guyon and Elisseeff 2003; Chandrashekar and Sahin 530 

2014; Khalid et al. 2014; Cai et al. 2018). In contrast to filter methods, wrapper methods use the learning 531 

algorithm and resulting model performance, as measured with assessment metrics, to select features. This 532 

requires testing different predictor variable combinations, which can be computationally intensive, slow, 533 

or unfeasible. In order to alleviate the need to test all variable combinations, heuristic methods have been 534 

proposed, such as genetic algorithms (Goldberg, 2006) and particle swarm optimization (Kennedy and 535 
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Eberhart 1995), which may not yield the optimal variable subset but offer an approximation that can be 536 

feasibly calculated. In order to suggest a single subset, different methods are available to add or remove 537 

variables. For example, backward selection iteratively removes variables from the full set while forward 538 

selection iteratively adds variables. Issues with wrapper methods include computational intensity, which 539 

is only partially alleviated using heuristic methods, and the possibility of overfitting to the training data, 540 

or reduced generalization to new samples (Chandrashekar and Sahin 2014; Khalid et al. 2014; Cai et al. 541 

2018). Lastly, embedded methods incorporate the feature selection process as a component of model 542 

training (e.g., recursive feature elimination methods using SVM or RF). There are also unsupervised or 543 

semi-supervised methods, which can be used when a full set of labelled training data are not available 544 

(Law et al. 2004; Chandrashekar and Sahin 2014; Khalid et al. 2014; Cai et al. 2018).  545 

Other than the considerations outline above, there are some other key factors to consider when 546 

choosing a feature selection method including the impact of variable correlation and the stability of the 547 

result. Stability relates to the consistency in selected features when using different training datasets or 548 

subsets. Kalousis et al. (2005) and Chandrashekar and Sahin (2014) both offer discussions of stability 549 

while Dunne et al. (2002) suggest solutions to this issue for wrapper methods specifically. It is also 550 

sometimes of interest to take into account not just model performance but the complexity of the model. A 551 

model using less predictor variables may be desirable due to reduced computational time and model 552 

complexity at the expense of a slight reduction in accuracy. For example, Murphy et al. (2010) integrated 553 

a parameter into a random forest-based variable select process that allows the user to specify the level of 554 

reduced accuracy that is acceptable in order to increase parsimony. This method is available in the R (R 555 

Core Team, 2020) rfUtilities package (Evans and Murphy, 2015). Georganos et al. (2018) documented 556 

that the feature selection method used can impact both model accuracy and parsimony. They proposed a 557 

metric, classification optimization score (COS), that takes into account both model accuracy and 558 

parsimony with the goal of selecting a feature space with minimal processing time and storage while 559 

maintaining accuracy.  560 
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A key issue associated with selecting a subset of variables is determining the importance of variables 561 

for the task of interest. As noted by Debeer and Strobl (2020) the concept of variable importance in 562 

machine learning and predictive modeling is not generally clearly defined. Marginal importance is the 563 

impact of a specific predictor variable on the dependent variable without considering the other variables 564 

in the model. In contrast, partial or conditional importance is the added value gained by including a 565 

specific predictor variable for predicting the dependent variable considering all other variables in the 566 

model. When no correlation exists between the predictor variables, marginal and partial importance are 567 

equivalent (Debeer and Strobl, 2020).  568 

As an example, within the RF framework variable importance can be assessed by randomly 569 

permutating the values associated with a specific variable then predicting the withheld, or out-of-bag, 570 

data. With this random permutation of the variable, greater decreases in model performance for predicting 571 

the withheld data, or increases in the misclassification rate, serve as an estimate of variable importance 572 

(Breiman, 2001). When variables are correlated, this measure cannot be interpreted as a truly marginal or 573 

partial importance estimate (Strobl et al. 2008; Debeer and Strobl 2020). Although it cannot be interpreted 574 

as one of these endmembers, Strobl et (2008) suggest that it is a more marginal estimate of importance. 575 

Strobl et al. (2008, 2009), with additional augmentations presented in Debeer and Strobl (2020), introduce 576 

a variable importance estimation method based on a conditional inference trees implementation of RF and 577 

the permutation-based importance estimation process that provides estimates of both partial and marginal 578 

importance. However, these importance estimates remain an approximation, as obtaining true marginal or 579 

partial importance is difficult due to the complexity of the DT ensemble and the difficulty of completely 580 

accounting for predictor variable correlation (Strobl et al. 2008; Debeer and Strobl 2020). This method is 581 

implemented in the R (R Core Team, 2020) party (Strobl et al. 2009) and permimp (Debeer and Strobl 582 

2020) packages.  583 

3.1.3. Variable Reduction Methods 584 

As an alternative to selecting a subset of important variables from the feature space, it is also possible 585 

to generate new features from the original predictor variables. This process is generally termed feature 586 
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reduction. Example methods include independent component analysis (ICA) (Hyvarinen and Oja 2000), 587 

isomap embedding (Silva and Tenenbaum 2003), and spatial sign processing (Sarneels et al. 2006). The 588 

recipes package (Kuhn and Wickham 2021), which is part of tidymodels (Kuhn and Wickham 2020) in R 589 

(R Core Team, 2020), offers implementations of a variety of feature reduction methods for use in machine 590 

learning research and processing pipelines. One common feature reduction method is principal 591 

component analysis (PCA), in which the goal is to transform the original variables into new, uncorrelated 592 

features defined by linear combinations of the input features. The underlying assumption is that correlated 593 

variability is a measure of the importance of information, and that this can be used to identify a subset of 594 

the transformed, decorrelated variables that summarizes the majority of the original variance (F.R.S, 595 

1901).   596 

As an example of the use of PCA, Figure 6 shows a correlation matrix for a subset of 12 land-surface 597 

parameters calculated within our example study area near Seneca Rocks in West Virginia, USA. 598 

Correlations were calculated using Spearman’s rank correlation (Zar, 1972). The figure shows that the 599 

variables are generally not strongly correlated with each other (they are mostly represented by colors 600 

close to white), though Slp is strongly positively correlated with TRI and SAR, and ProCrv and TDI both 601 

tend to be correlated with TPI and SRR, as indicated by blue colors. In contrast, TRI, SAR, and Slp are all 602 

strongly negatively correlated with TRASP, as indicated by red colors. Despite the impression from 603 

Figure 6 that most variables are not strongly correlated, the scree plot (Figure 7) demonstrates that a large 604 

proportion of the variance in the dataset is explained by a subset of principal components. The first 605 

principal component explains 25.9% of the total variance in the data while the first seven collectively 606 

explain 91.6% of the variance. This suggests that the 12 variables have considerable redundancy.  607 
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 608 

Figure 6. Correlation matrix for a set of 12 land-surface parameters derived from a DLSM. Darker red indicates a 609 

stronger negative correlation while darker blue indicates stronger positive correlation. Correlation was calculated 610 

using Spearman’s rank correlation. 611 

 612 

 613 



 

31 

 

 614 

Figure 7. Scree plot describing the percent of variance in the original variables explained by the first ten principal 615 

components.  616 

3.1.4. Explaining Models and Feature Contribution 617 

A critique of machine learning methods − such as RF, SVM, and ANN − is their black box nature 618 

(James et al., 2013; Maxwell et al., 2018). Although ancillary output, such as variable importance 619 

estimates, can increase the interpretability of models, there has been a recent push for more interpretable 620 

machine learning. Nori et al. (2019) suggest a framework to make black box predictions more 621 

interpretable and suggest the use of (1) the LIME method, which attempts to explain individual 622 

predictions using a linear and local approximation of a model and allows for interpreting feature 623 

contributions additively, and (2) SHAP (Shapley Additive Explanations) values, which offer a measure of 624 

variable importance using cooperative game theory. They also suggest using sensitivity analysis and 625 

partial dependency plots to further explain models (Lundberg et al., 2019; Lundberg and Lee, 2017; Nori 626 

et al., 2019). Partial dependency plots visualize how the dependent variable is impacted by a single 627 

predictor variable. To accomplish this, the dependent variable is predicted using a model in which values 628 

for the predictor of interest are maintained while the other variables are replaced with their average value 629 

(Friedman, 2001).  630 
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Recently, the explainable boosting machine (EBM) algorithm has been proposed as a fully 631 

interpretable, or glass box, predictive model. EBM is a generalized additive model (GAM) where the 632 

function associated with each feature is estimated using bagging or gradient boosting and training on one 633 

predictor variable at a time using a low learning rate. The contribution of each predictor variable in the 634 

model can be explored by plotting the resulting function to show how values of the predictor variable 635 

correlate with the predicted outcome value (Nori et al., 2019).  636 

Figure 8 shows some example outputs generated alongside the EBM model for a prediction of slope 637 

failure occurrence based on LiDAR-derived land-surface parameters. These data are from a probabilistic 638 

prediction of slope failure occurrence for the Valley and Ridge region of West Virginia (Maxwell et al., 639 

2020c). Steeper slopes (Figure 6(a)) and greater topographic roughness values (Figure 6(b)) are 640 

associated with slope failures. A score of 1 suggests a high predicted probability of slope failure 641 

occurrence. HLI is not very predictive of slope failure occurrence (Figure 6(c)) since there is little 642 

variability in the slope failure prediction with changes in this variable. The EBM model can also 643 

incorporate interactions; for example, Figure 6(d) describes the interaction between Slp and TRI for 644 

predicting slope failures. Steeper slopes tend to be less associated with slope failure occurrence if rugosity 645 

is low.  646 
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 647 

Figure 8. Example plots associated with explainable boosting machines (EBM). A score of 1 indicates a predicted 648 

high likelihood of slope failure occurrence while -1 indicates a high likelihood of not slope failure occurrence. (a) 649 

Slope (Slp) impact on resulting prediction. (b) Topographic roughness index (TRI) impact on resulting prediction. 650 

(c) Heat load index (HLI) impact on resulting prediction. (d) Interaction between Slp and TRI.  651 

3.2. Spatial Resolution, Level of Detail, and Moving Windows 652 

3.2.1. DLSM Spatial Resolution and Level of Detail 653 

As more digital elevation datasets become available, more choices exist for input data for analyses. 654 

Factors to consider in choosing data include spatial resolution (i.e., the cell size of the input DLSM) and 655 

the associated level of detail (i.e., the smallest landscape units or features that can be discerned, which is 656 

impacted by the spatial resolution and amount of smoothing or generalization resulting from data 657 

collection and pre-processing operations), as well as geographic coverage and consistency. High spatial 658 

resolution, LiDAR-derived data are not yet globally available, whereas some moderate resolution 659 

datasets, such as ASTER GDEM, provide near-global coverage, which is important to ensure consistent 660 

mapping or modeling in projects that cover large extents. LiDAR data collected with different sensors, 661 

collection parameters, or flight specifications will have different levels of detail. If raster-based DLSMs 662 
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are generated from datasets such as LiDAR-derived point clouds, the analyst must choose an interpolation 663 

method (e.g., inverse distance weighting (IDW), spline, or kriging) and the output spatial resolution or 664 

cell size. It might also be desirable to resample, aggregate, or generalize high spatial resolution data. For 665 

example, data may be generalized using a mean or Gaussian moving window filter (Chang, 2008; 666 

Lillesand et al., 2015; Pike et al., 2009; Reuter et al., 2009; Wilson and Gallant, 2000). Some recent 667 

studies have argued for using TINs to calculate land-surface parameters given their multi-scale nature (Hu 668 

et al., 2021). Customarily, TINs have been converted to raster-based DLSMs prior to the calculation of 669 

parameters; however, Hu et al. (2021) argue that methods should make use of the vertices defining the 670 

TIN facets. Future work in this area may aid in improving the characterization of land surfaces at variable 671 

scales.  672 

The level of detail, spatial resolution, and cell size of a dataset may or may not impact resulting model 673 

performance. For example, Knight et al. (2013) found that the source and spatial resolution of DLSM data 674 

had little impact on wetland mapping results and that the inclusion of terrain derivatives —regardless of 675 

their spatial resolution and source — improved classification performance over just using optical data. 676 

Similarly, Maxwell and Warner (2019) compared DLSMs from different sources (LiDAR vs. 677 

photogrammetry) and spatial resolutions (1 m, 3 m, and 10 m) as input for probabilistic prediction of 678 

wetland occurrence and found that neither the source nor the spatial resolution had a large impact on the 679 

resulting model accuracy, though finer spatial resolution data were generally more useful for mapping 680 

smaller wetlands. In contrast to these studies, Brock et al. (2020) suggest that the source and spatial 681 

resolution of digital elevation data impact the accuracy of landslide susceptibility models and call for 682 

greater care in selecting input DLSM data for such tasks. We argue that the importance of source and 683 

spatial resolution will partially depend on the landscape features or patterns being monitored. For wetland 684 

mapping, general characteristics, such as Slp and topographic position, may be predictive of occurrence 685 

and be adequately characterized with coarser and/or more generalized data. In contrast, landslide 686 

susceptibility models may require more detailed datasets to characterize predictive patterns, such as 687 

scarps, slope breaks, and geologic unit contacts.  688 
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Regardless of whether or not the final output model, prediction, or map is affected by the source and 689 

spatial resolution of the digital elevation data, these properties do affect land-surface parameter values 690 

(Habib et al., 2018; Kienzle, 2004; Sărășan et al., 2019). Habib et al. (2018) documented impacts of 691 

DLSM spatial resolution, interpolation, and filtering on the accuracy of the estimated elevation surface. 692 

Moore et al. (1993) and Kienzle (2004) both document impacts of spatial resolution on a variety of 693 

calculated derivatives, including Slp, Asp, PlnCrv, ProCrv, and TWI. Kienzle (2004) conclude that the 694 

optimal raster cell size depends on the complexity of the land surface and the parameters calculated. 695 

Sărășan (2019) noted the impact of spatial resolution on calculating geomorphons to support the mapping 696 

of drumlins.  697 

3.2.2. Moving Windows and Land Surface Characterization at Multiple Scales 698 

Several decisions must be made when defining a moving window or kernel over which to calculate 699 

land-surface parameters (Figure 9), leading to an effectively infinite number of possible parameter 700 

combinations. Possible window shapes include circles, rectangles or squares, and annuli. The size of the 701 

window is specified differently depending on the shape used. Circular window size is defined using the 702 

radius while rectangular or square window size is defined using the height and width. An annulus window 703 

size is defined using an inner and outer radius. Units are generally length units, such as meters, or number 704 

of cells. Once a shape and size are selected, it is generally possible to apply different weighting 705 

techniques to control the relative impact of each cell within the window on the resulting calculations. 706 

Using no weighting implies that all cells will have the same weight no matter their distance from the 707 

center cell, while the weights in a linear model decline linearly with distance from the center cell. In 708 

inverse distance weighting (IDW) the weighting is inversely proportional to the distance to the center cell 709 

raised to a specified power. Higher powers put more weight on cells nearer to the center cell (Chang, 710 

2008). Other options include exponential and Gaussian weighting (Chang, 2008; Lillesand et al., 2015).  711 
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 712 

Figure 9. Example window shapes and distance weighting methods.  713 

Weighting methods are not available in all software tools. One notable exception is SAGA; for 714 

example, the TPI calculation available in this tool allows a selection from no weighting, IDW with 715 

variable powers, exponential, or Gaussian (Olaya and Conrad, 2009). Also, the Landserf software offers 716 

tools for selecting window sizes and assessing sensitivity (Wood, 2009). Recently, the ArcGIS Pro 717 

software has added the Surface Parameters Tool, which can be used as a replacement for the Slope, 718 

Aspect, and Curvature tools. In contrast to these tools, Surface Parameters allows for changing the square 719 

window size and is not limited to a 3-by-3 meter window. Further, it can make use of an adaptive 720 
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neighborhood in which the window size used at each cell location can vary based on the local variability 721 

in elevation. At locations with more local variability, a smaller window size will be used whereas a larger 722 

window size will be used when local variability is lower. A user can define the largest allowed window 723 

size, and the tool will adjust the window size for each moving window in an attempt to minimize surface 724 

variability while maintaining the largest window size possible (“ArcGIS Pro help—ArcGIS Pro | 725 

Documentation”; Wilson and Gallant 2000).  726 

Figure 10 compares TPI calculations using different window shapes (circle, square, and annulus) and 727 

sizes with no weighting or adaptive neighborhood applied. Similar landscape patterns are represented 728 

irrespective of the parameters used; for example, higher values indicate more prominent topographic 729 

positions, such as ridges, and lower values indicate lower positions, such as valleys. Visually, the shape of 730 

the window has less impact than the size of the window, as increasing the cell size yields a more general 731 

representation that is less affected by local features.  732 

 733 
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Figure 10. Comparison of TPI calculated using different window shapes and sizes. TPI was calculated with circular 734 

radii of 7, 21, and 35 cells, square widths/heights of 10, 20, and 30 cells, and annulus windows with a 2-cell inner 735 

radius and 10-, 20-, and 30-cell outer radii.  736 

Our review of published studies indicates that different window sizes and/or shapes are not commonly 737 

explored, and that many authors do not justify the window size and/or shape used, and in some cases do 738 

not even specify the size and shape used. On the other hand, some studies have used multiple window 739 

sizes in an attempt to characterize the land surface at multiple scales. For example, Maxwell et al. (2016), 740 

Maxwell and Warner (2019), Maxwell et al. (2020c), and Maxwell et al. (2021) used multiple window 741 

sizes, which were selected based on a consideration of typical ridge-to-valley distances within the 742 

landscape being studied. These studies justify this method based on the scale of interest, as they all were 743 

interested in summarizing patterns at the range of scales associated with typical hillslopes and were less 744 

concerned with local patterns or variability. Maxwell et al. (2016) and Maxwell and Warner (2019) also 745 

averaged the variables calculated across window sizes to generate a single summary metric. For the 746 

prediction of slope failure occurrence using digital elevation data and RF machine learning, Maxwell et 747 

al. (2020c) calculated a variety of metrics using circular windows, no weighting, and radii of 7, 11, and 21 748 

cells from DLSM data with a 2 m spatial resolution. For this specific predictive modeling task, their 749 

results suggest that incorporating multiple scales generally improved model performance based on area 750 

under the receiver operating characteristic (ROC) curve; overall accuracy; and precision, recall, and F1 751 

score for the slope failure class. Models trained using smaller window sizes (i.e., 7 or 11 cell radii) 752 

generally outperformed models using the larger 21 cell radius window size, highlighting the value of 753 

characterizing more local patterns for this specific task.  754 

Albani et al. (2004) notes that the size of the window impacts both the resulting measures and the 755 

propagation of errors in the original DLSM-based elevation measurements through the modeling process. 756 

Measurements calculated using smaller window sizes tend to be more affected by elevation measurement 757 

errors. Further, errors or patterns resulting from the interpolation method used or patterns in the point or 758 

contour data used to generate the raster surface are more evident when using smaller windows. They 759 
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suggest that the choice of window size is partially dictated by the tradeoff between minimizing the impact 760 

of error and obtaining the level of topographic detail desired. They also propose a method for assessing 761 

the loss of topographic detail based on an analysis of residuals and spatial autocorrelation in local 762 

windows.  763 

Several methods have been investigated to determine optimal window sizes or to characterize the land 764 

surface at different scales or levels of generalization including changing the size of the moving window, 765 

using low-pass filters to generalize DLSMs, and reducing the spatial resolution via resampling. For the 766 

mapping of soil properties using land-surface parameters, it has been demonstrated that using appropriate 767 

scales or window sizes can improve predictive performance (Behrens et al., 2018a; Behrens et al., 2018b; 768 

Dornik et al., 2022). Behrens et al. (2018a, 2018b) propose a method of multi-scale landscape 769 

characterization, termed mixed scaling, that makes use of down-sampling the DLSM using Gaussian 770 

pyramid scaling, which relies on convolving a matrix of elevation values using a Gaussian blur filter. 771 

Rows and columns are then removed to generate octaves that represent the land surface at different scales. 772 

In order to transform the results back to the original spatial resolution, up-sampling is then performed by 773 

inserting rows and columns with zero values, reapplying a Gaussian filter, and multiplying by 4 to correct 774 

for the insertion of zero values. Additional intermediate scales can be generated using resampled versions 775 

of the original DLSM (Behrens et al., 2018a; Behrens et al. 2018b). Behrens et al. (2018a; 2018b) and 776 

Dornik et al. (2022) argue that this method yields intuitive land-surface parameters without processing 777 

artifacts.  778 

Drăguţ et al. (2006; 2011) and Drăguţ and Eisank (2011) explored geomorphic and landform mapping 779 

using geographic object-based image analysis (GEOBIA) methods in which terrain data are segmented 780 

into objects or regions of similarity and then later classified. Such methods require the analyst to consider 781 

the scale or scales of interest. Towards this goal, Drăguţ et al. (2011) proposed a scale selection method 782 

based on local spatial autocorrelation and local variance. The process involves up-sampling the gridded 783 

data using resampling or changing the scale parameter in the segmentation algorithm, calculating local 784 

variance within 3-by-3 cell windows or derived image segments, calculating a rate of change in local 785 
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variance from one level to the next, and plotting the resulting values against the scale level. Peaks in this 786 

graph indicates scales that may have geomorphic meaning.  787 

Other moving-window-like filtering operations that operate at a defined scale, such as wavelet 788 

transforms of the elevation field, can be used to identify geomorphic process dynamics from digital 789 

elevation models by extracting the dominant landforms at a variety of scales. These procedures are 790 

typically used to distinguish local-scale (e.g., motion along a single fault) from regional-scale (e.g., rock 791 

uplift driven by mantle dynamics) controls on topography (Moodie et al., 2018; Struble and Roering, 792 

2021; Wegmann et al., 2007). Filtering the land surface with wavelet transforms removes the signature of 793 

all topographic features with a spatial dimension less than the chosen wavelength (e.g., Wegmann et al., 794 

2007).  Rather than choose a single wavelength a priori, most studies that filter topography to deduce 795 

geomorphic dynamics produce filtered DLSMs for a variety of filter wavelengths and compare the results 796 

to determine which landscape features persist as wavelength increases (e.g., Struble and Roering, 2021). 797 

These filtered DLSMs can then be interpreted by analysts or used as independent variables for predictive 798 

modeling. 799 

3.3. Multi-Temporal Terrain Data 800 

The advent of widely available airborne and drone-based LiDAR data, as well as drone-based 801 

structure-from-motion photogrammetry, has led to a proliferation of studies that leverage multitemporal 802 

DSMs and DLSMs to assess landscape change—either natural (e.g., Cavalli et al., 2017; Croke et al., 803 

2013; James et al., 2012; Perignon et al., 2013; Turowski and Cook, 2017; Yang et al., 2021) or human-804 

induced (e.g., Maxwell and Strager, 2013; Ross et al., 2016)—over time. Figure 11 provides an example 805 

of DLSMs of difference where two surfaces representing different terrain conditions from different dates 806 

are subtracted to quantify elevation gains and losses. This specific example relates to mountaintop 807 

removal surface coal mining in southern West Virginia, USA, which results in the excavation of 808 

mountaintops and the filling of adjacent valleys with displaced overburden rock material (Maxwell and 809 

Strager, 2013; Ross et al., 2016). The DLSM data pre- and post-mining were derived from LiDAR and 810 

are represented using HSs. The DLSMs were differenced to produce a DLSM of difference. A change 811 
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threshold was then applied to differentiate areas of no change, elevation gain (fill), and elevation loss (cut 812 

or excavation). From such surfaces, it is possible to estimate land area and volumetric landscape change 813 

(Williams, 2012).  814 

The magnitude of elevation change that can be detected by differencing DLSMs depends on the 815 

accuracy of the input DLSM data where the minimal level of detection is estimated from the root mean 816 

square errors (RMSEs) of the elevation measurements from the input DLSMs (Equation 7). Changes 817 

greater than the error threshold are deemed to have resulted from landscape change while differences 818 

below the threshold are assumed to be the result of error or noise. This method generally results in a 819 

conservative estimate of change. Another option is to use a confidence interval or probabilistic threshold 820 

calculated using the elevation differences and the combined error (Equation 8). Assuming a normal 821 

distribution allows for the calculation of t-values for a two-tailed Student’s t-distribution and the 822 

determination of an appropriate elevation threshold to represent a desired confidence interval (e.g., 95%). 823 

It may be possible to detect changes below the error threshold if alterations are more widespread and 824 

larger than a single cell (Williams, 2012).  825 

Minimal Level of Detection = √(𝑅𝑀𝑆𝐸𝑝𝑟𝑒)
2

+ (𝑅𝑀𝑆𝐸𝑝𝑜𝑠𝑡)
2
 (7) 826 

t = 
|𝑧𝑝𝑜𝑠𝑡−𝑧𝑝𝑟𝑒|

√(𝑅𝑀𝑆𝐸𝑝𝑟𝑒)
2

+(𝑅𝑀𝑆𝐸𝑝𝑜𝑠𝑡)
2
 (8) 827 

The amount of error may not be consistent across entire DLSM extents due to changes in the density 828 

of measurements, combination of multiple data sources into a single DLSM, or changes in land cover or 829 

terrain conditions. For example, ground measurements under a tree canopy will likely be sparser in 830 

comparison to those in open areas for data interpolated from LiDAR point clouds. Estimates of subcanopy 831 

ground elevations are of specific concern when using methods that are not canopy penetrating, such as 832 

InSAR. More error is anticipated when comparing older, photogrammetrically-derived datasets with each 833 

other or with newer LiDAR-derived DLSMs. Uncertainty can also be caused by misregistration errors or 834 



 

42 

 

co-registration errors between the datasets (Cavalli et al., 2017; Chang, 2008; Höfle and Rutzinger, 2011; 835 

James et al., 2012; Lillesand et al., 2015; Williams, 2012).  836 

 837 

Figure 11. Example multi-temporal DLSM analysis to assess topographic change resulting from surface coal mining 838 

in southern West Virginia, USA. The pre- and post-mining land surfaces were derived from LiDAR point clouds 839 

provided by the West Virginia GIS Technical Center (WVGISTC).   840 

4. Recommendations and Research Needs 841 

4.1. Recommendations 842 

4.1.1 Feature Selection and Reduction 843 
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Predictive mapping and modeling require selecting predictor variables from among a bewildering 844 

array of DLSMs and DLSM-derived land-surface parameters. Variable selection can be guided by prior 845 

understanding of what landscape characteristics may impact the phenomenon being studied, modeled, or 846 

mapped with additional guidance from existing literature. If it is unclear what variables should be 847 

included, the recommended best practice is to undertake a pilot study over a manageable spatial extent or 848 

multiple extents that are representative of the landscape being investigated. As highlighted above, a 849 

variety of feature selection or reduction methods are available; however, it is important to consider 850 

strengths and weaknesses (e.g., computational time, impact of multicollinearity, overfitting, and 851 

consideration of parsimony) for specific tasks. When assessing variable importance, researchers and 852 

analysts must determine whether marginal importance, partial importance, or some mix of these end 853 

members should be assessed. For greater control over the assessment of variable importance, especially 854 

when predictor variables are correlated, we recommend the RF-based method proposed by Debeer and 855 

Strobl (2020) be considered. Recent advancements in explainable machine learning, such as EBMs (Nori 856 

et al. 2019), can also be used to better understand the response of the dependent variable to each predictor 857 

variable and each predictor’s contribution to the resulting prediction.  858 

One issue with undertaking a pilot study, performing feature selection, and/or performing feature 859 

reduction (e.g., generating uncorrelated variables with PCA) is that a large number of variables will need 860 

to be calculated to perform the analysis. The pilot investigation may speed up the later processes of 861 

optimizing models, training models, and inferring to new data over large spatial extents. However, the 862 

pilot study can still be complex and computationally intensive since a large number of land-surface 863 

parameters, including potentially repeated calculation of the same parameters at different scales, must be 864 

generated. In this case, a user may decide that an optimal feature space is not necessary if the set of 865 

variables included provides adequate performance based on assessment metrics and output. Or, analysts 866 

may be willing to accept a feature space that has not been optimized or evaluated if adequate results can 867 

be obtained without a pilot study or exploratory analysis.  868 

4.1.2. Selecting and Documenting Input DLSM Data 869 
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Selection of input DLSM data should be guided by the availability of consistent data covering the full 870 

extent of interest, the size or scale of the features or phenomenon being investigated, the level of detail or 871 

degree of generalization desired, and the accuracy and quality of the available data. Detailed, high spatial 872 

resolution surfaces, such as those derived from LiDAR, can be resampled or aggregated to a coarser 873 

spatial resolution and/or generalized using filters if desired. Resampling and aggregation decreases the 874 

number of cells that need to be processed, resulting in reduced computational time and costs, especially 875 

when predicting over large spatial extents. Higher spatial resolution may not be beneficial due to more 876 

local noise and detail that may hinder the modeling of more general patterns (Albani et al., 2004; 877 

Grohmann et al., 2011; Habib et al., 2018; McDermid and Franklin, 1994; Newman et al., 2018). In 878 

contrast, mapping or predicting smaller features on the landscape, such as sink holes (e.g., Ironside et al., 879 

2018) or slope failures (e.g., Brock et al., 2020; Maxwell et al., 2020c, 2021), may require detailed, high 880 

spatial resolution data. The impact of spatial resolution and level of detail are likely problem specific; 881 

thus, if researchers have reason to believe that high spatial resolution is not necessary, does not merit the 882 

extra computational cost, and/or that reduced resolution may actually improve results, pilot studies should 883 

be implemented to systematically assess this sensitivity.  884 

DLSM data used in studies and applied mapping or modeling projects should be fully described 885 

including collection methods and dates, original spatial resolution, and horizontal and vertical accuracies. 886 

If pre-processing is performed, such as resampling or aggregating, interpolation of contours or point 887 

clouds to generate raster surfaces, or local smoothing with filters, the entire processing chain should be 888 

clearly described and ideally scripted in an open-source, reproducible manner. To foster transparency and 889 

reproducibility, researchers should make source code, scripts, and/or input and output data available and 890 

include explanations and metadata.  891 

4.1.3. Parameterizing Moving Windows and Characterizing the Landscape at Varying Scales 892 

Configuring local moving windows —or window-like scales for various DLSM filtering approaches—893 

can be complex due to the number of options available including window shape, window size, and cell 894 

weighting techniques. Prior studies may offer only limited guidance as noted by Ironside et al. (2018). 895 
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Analysts should consider using larger window sizes to potentially reduce the impact of errors in the input 896 

DLSM and artifacts from the interpolation process. It is also important to consider the scale of the 897 

features of interest, as characterization of finer scale features or phenomena may require a small window 898 

size. Some prior authors have explored averaging calculations across multiple window sizes and/or 899 

including multiple versions of the input, calculated using different window sizes, in the feature space 900 

(e.g., Maxwell et al., 2016, 2020c, 2021; Maxwell and Warner, 2019). In the context of GEOBIA and 901 

segmentation of DTM data, Drăguţ et al. (2011) suggest a method to select appropriate scales using 902 

measures of local variance and spatial autocorrelation. We specifically recommend further exploration 903 

and adoption of the multi-scale landscape characterization methods proposed by Behrens et al. (2018a, 904 

2018b) and implemented for predicting soil parameters. These methods are conceptually sound and allow 905 

for generation of intuitive land-surface parameters with reduced processing artifacts. We argue that there 906 

is a need for a standard method to be adopted to characterize multi-scale land-surface characteristics and 907 

that a movement away from traditional, window-based methods may be merited.  908 

4.1.4. Generating DLSMs of Difference 909 

DLSMs of difference can be useful for mapping and quantifying landscape change resulting from 910 

natural processes (e.g., James et al., 2012; Perignon et al., 2013) or anthropogenic impacts (e.g., Maxwell 911 

and Strager, 2013; Ross et al., 2016). However, it is important to consider the impact of registration, co-912 

registration, and elevation measurement errors in the resulting difference surfaces. Derived estimates of 913 

erosion and deposition (in the case of natural processes) or cut-and-fill (in the case of human disturbance) 914 

extents should make use of thresholds defined by the errors associated with the input DLSM data 915 

(Equations 8 and 9). Errors will be especially pronounced when differencing historic, 916 

photogrammetrically-derived surfaces or comparing them to more recent LiDAR or InSAR data. Error 917 

rates may not be consistent across the DLSMs due to the merging of multiple datasets or differences in 918 

land cover and/or terrain conditions. It is important to clearly document the accuracies of the input 919 

surfaces and the assumptions made when generating DLSMs of difference. 920 

4.2. Research Needs 921 
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4.2.1. Multi-Scale Land-Surface Characterization 922 

As noted by Ironside et al. (2018), there is a need to further explore the impact of window shape, size, 923 

and cell weightings on calculated land-surface parameters and predictive models and offer guidance on 924 

appropriate parameterization. We argue that this is a major hinderance in effectively incorporating land-925 

surface parameters into research and applied mapping and modeling tasks; further, this issue is especially 926 

daunting to those new to geomorphometry and DLSM analysis and processing. Given the large number of 927 

configuration options, we argue that it is currently not possible to generate a truly optimal set of multi-928 

scale land-surface parameters. Thus, broader exploration and refinement of methods not reliant on 929 

traditional moving windows, such as those proposed by Behrens et al. (2018a, 2018b), should be a major 930 

research objective in geomorphometry, as this could greatly ease the creation and use of land-surface 931 

parameters across disciplines.  932 

4.2.2. Model Generalization 933 

There is a need to explore how well feature spaces and models trained in a given landscape extrapolate 934 

or generalize to new regions with different geologic and climatic conditions and resulting physiographies. 935 

For example, Maxwell et al. (2021) quantified reductions in slope failure occurrence predictive model 936 

performance when models trained in different physiographic regions of West Virginia, USA were 937 

extrapolated to other regions within the state even though the most important features were fairly 938 

consistent. Lack of generalization is consistently an issue in developing models to apply to new datasets 939 

or landscapes, perhaps resulting from overfitting and differing landscape conditions, feature signatures, 940 

and spatial heterogeneity (James et al., 2013; Maxwell et al., 2018). This currently limits the utility of 941 

empirical modeling based on machine learning. Improving generalization is key to further 942 

operationalizing machine learning-based predictive modeling.  943 

4.2.3. Deep Learning 944 

Given the large number of variables that can be calculated and the need for parameterization, 945 

modeling and mapping methods that require less feature space engineering (i.e., generating, preparing, 946 

selecting, and augmenting input variables) should be investigated. For example, deep learning methods 947 
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that make use of convolutional neural networks (CNNs) may require a smaller subset of input land-948 

surface parameters to obtain adequate results than traditional machine learning methods (Maxwell et al., 949 

2020b; Zhang et al., 2016; Zhu et al., 2017). CNNs model patterns in data by learning weights associated 950 

with moving windows or kernels. This allows for the modeling of relationships or patterns in multiple 951 

dimensions including two-dimensional space, three-dimensional space, time, the spectral domain, 952 

elevation, and depth at a variety of scales. Such methods have recently led to rapid advances in computer 953 

vision and autonomous vehicle technologies (Hoeser et al., 2020; Hoeser and Kuenzer, 2020; Ma et al., 954 

2019; Zhang et al., 2016; Zhu et al., 2017). Since the majority of local terrain measures rely on moving 955 

windows, it may be possible for CNNs to learn useful local patterns from a small set of terrain 956 

representations, such as HSs and SlpSs, as opposed to being provided a large feature space of pre-defined 957 

land-surface parameters. Based on our own visual interpretation of high spatial resolution DLSMs and 958 

derivatives for geologic, geohazard, and surficial geologic mapping, certain derivatives can offer key 959 

visual, textural, or contextual clues for mapping and delineation. Exploring how CNN-based deep 960 

learning may or may not mimic human interpretation would be enlightening.   961 

Researchers are beginning to explore the use of deep learning methods for geomorphic and landform 962 

mapping or the extraction of specific features. For example, Maxwell et al. (2020a) investigated the use of 963 

the Mask R-CNN (He et al., 2017) instance segmentation deep learning algorithm for extracting valley fill 964 

faces, geomorphic features resulting from mountaintop removal surface coal mining reclamation, using 965 

only a SlpS as input. They documented strong performance for extracting the extent of these features with 966 

some reduction in performance when applying the model to new geographic extents to assess 967 

generalization. Li et al. (2020) proposed a general framework for landform mapping using deep learning 968 

and noted improved performance in comparison to RF, a traditional machine learning method that does 969 

not incorporate convolutional operations to learn spatial patterns. Deep learning has also been explored 970 

for identifying features of archeological interest from digital terrain data (e.g., Guyot et al., 2021). These 971 

recent deep learning studies are building upon earlier landform mapping work relying on GEOBIA and 972 

segmentation techniques (e.g., Dragut, 2011; Drăguţ et al., 2011; Drăguţ and Blaschke, 2006; Drăguţ and 973 
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Eisank, 2011; Gerçek et al., 2011; Pedersen, 2016; Verhagen and Drăguţ, 2012) and merit continued 974 

exploration. A key need is to explore the impact of feature space and terrain representations provided as 975 

predictor variables, the use of transfer learning techniques, in which models are initialized using weights 976 

learned from other datasets to potentially reduce overfitting and the need for large training datasets (Tan 977 

et al., 2018), the applications of unsupervised and semi-supervised techniques, and the development of 978 

data augmentation methods appropriate for digital terrain data. Research associated with specific CNN 979 

architectures, convolutional operations, and combining manual feature space engineering with CNN-980 

based pattern recognition is also needed.  981 

4.2.4. Land-Surface Change Detection 982 

Landscape and land cover change detection is a common application of multitemporal, remotely 983 

sensed imagery, such as multispectral imagery collected from satellite platforms with consistent return 984 

intervals (Lillesand et al., 2015). As discussed above, change detection of digital terrain surfaces has 985 

primarily relied on differencing DLSMs while taking into account the impact of error (Williams, 2012) to 986 

differentiate true change from error or noise. However, there is a need to explore other means of 987 

assessing, quantifying, or documenting landscape change, such as deep learning methods. Some prior 988 

studies have explored change using categorical representations of the landscape; for example, Maxwell 989 

and Strager (2013) assessed landscape change resulting from mountaintop removal surface coal mining 990 

by comparing landforms generated from pre- and post-mining DLSMs. There is a need to further explore 991 

change detection techniques relying on categorical representations such as geomorphons. GEOBIA and 992 

deep learning techniques for mapping or extracting landforms or specific landscape features need further 993 

research in the context of assessing and quantifying natural landscape change and anthropogenic 994 

landscape alterations.  995 

5. Conclusions 996 

Empirical predictive mapping and modeling rely on training data and predictor variables, which can 997 

include land-surface parameters derived from DLSMs. Our goal was to explore the use of digital 998 

elevation data and associated derivatives for use in empirical predictive models. If adequate DLSM data 999 
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are available, a variety of spatially continuous parameters can be derived, many of which have been 1000 

shown to be predictive of landscape processes and features of interest in ecology, geomorphology, 1001 

vegetation mapping, geohazard prediction, and spatial probabilistic modeling in general. However, 1002 

selecting features is complex due to the large number of potential parameters to choose from and the 1003 

potential impacts of DLSM data source, spatial resolution, and level of detail and parameterization of 1004 

moving windows or application of other methods to characterize the landscape at multiple scales. The 1005 

existing literature may offer contradictory or incomplete guidance. The recommendations made here can 1006 

be used to guide researchers and analysts in developing a feature space for specific mapping or modeling 1007 

tasks. It is our hope that better characterization of the land surface using metrics that are predictive of the 1008 

phenomena and/or features of interest will improve feature space design and ultimately boost model 1009 

efficiency and performance. 1010 
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