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ABSTRACT

Although progress has been made in image captioning, machine-
generated captions and human-generated captions are still quite
distinct. Machine-generated captions perform well based on auto-
mated metrics. However, they lack naturalness, an essential charac-
teristic of human language, because they maximize the likelihood
of training samples. We propose a novel model to generate more
human-like captions than has been accomplished with prior meth-
ods. Our model includes an attention mechanism, a bidirectional
language generation model, and a conditional generative adversar-
ial network. Specifically, the attention mechanism captures image
details by segmenting important information into smaller pieces.
The bidirectional language generation model produces human-like
sentences by considering multiple perspectives. Simultaneously,
the conditional generative adversarial network increases sentence
quality by comparing a set of captions. To evaluate the performance
of our model, we compare human preferences for BraIN-generated
captions with baseline methods. We also compare results with ac-
tual human-generated captions using automated metrics. Results
show our model is capable of producing more human-like captions
than baseline methods.
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1 INTRODUCTION

Image caption generation has received much attention in recent
years. Annotating images with captions provides textual expla-
nations of the picture highlights. The growing popularity of this
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research topic is due in part to the many varied applications that
benefit from this capability, such as image commenting in social
chatbots and providing assistance to visually-impaired people. Im-
age caption generation is difficult because it involves both computer
vision and natural language processing technologies. To generate
a meaningful description, the model is required to recognize ob-
jects in images, detect relationships among those objects, and then
describe this information using natural language. Over the past
few years, many methods have been explored for image captioning
[1-3]. These methods combine image representation and sentence
generation. Benefitting from recent advancements in deep learning,
much of the existing work applies convolutional neural networks
(CNN) to the image representation portion of the problem and re-
current neural networks (RNNs) to the sentence generation piece.
The performance of these methods has steadily improved based
on automated evaluation metrics, such as BLEU [5], CIDEr [6],
METEOR [6], and BERTScore [4].

Image captioning contains two important components: one
is caption generation, and another is image representation.
Automatically-generated captions can often be easily differenti-
ated from human-written captions, which are more diverse. Image
caption models learn from human-provided captions, and close
matches to the ground truth receive high scores for automatic eval-
uation metrics. In order to better capture human-like natural and
diverse expressiveness, Generative Adversarial Networks (GANs)
[7] have been explored. The idea behind image-captioning GANs
is to train a discriminator to detect the misalignment between an
image and a generated sentence and improve the generator’s ability
to align the caption with the corresponding image. Recent work
applying GANSs generally utilizes either reinforcement learning [8]
or the Gumbel softmax relaxation [9]. For image representation,
many approaches encode the whole image to a global feature vector.
Because these methods may suffer from the problems of missing ob-
jects and mispredictions, this traditional approach can be improved
using an attention mechanism [10]. This method has found some
success by automatically searching the parts of a source image that
are most relevant to a target word, avoiding the pitfalls of missing
objects and mispredictions.

Despite these advances, image captioning is far from being a
solved task. Language signals are composed of basic units that are
distinct and individuated [28]. These basic units are assembled in
varying orders to represent different meanings. While language
can thus be considered discrete, generating diverse, natural, and
human-like captions is still a big challenge. One shortcoming of
existing approaches is that they employ a limited view of language
by generating sentences unidirectionally. By selecting words in one
direction, from the beginning to the end of each sentence, these
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methods may lose valuable meaning and naturalistic expression
in the sentence as a whole. Language translation scholars have
long been aware of the need to consider the sentence in multiple
directions [27]. However, this approach has not yet been researched
for automated captioning.

In all natural languages, each word is related to words both
before and after it, regardless of the adjacency of the words. We
hypothesize that to generate human-like captions, a model needs
to consider the portions of a sentence that appear before and after
each generated word. Inspired by natural language understanding
[22], we propose a bidirectional image-captioning model to improve
the naturalness of the generated captions. This model builds on
the foundation of GAN-based language generation and attention
mechanism-enhanced image representation. We demonstrate that
enhancing these methods with bidirectional captioning improves
the quality of the generated text. We postulate that these improve-
ments will be detected both by traditional automated measures as
well as by human evaluators.

2 RELATED WORK

Generating text explanations of images relies on understandable
text generation as well as accurate image representation. Most cur-
rent methods that perform the first step of text generation via image
captioning models [11, 12] use an encoder-decoder framework that
operates similarly to sequence learning. An encoder-decoder frame-
work will use an encoder to convert the information from one
format to another and use a decoder to extract the information we
need. Typically, the networks are trained using maximum likelihood
estimation (MLE) [13] or reinforcement learning [14]. Although
these methods achieve outstanding performance on automated eval-
uation metrics (BLEU, CIDer, METEOR, etc.), the generated captions
usually contain a sequence of commonly-appearing n-gram pat-
terns, spliced together. As a result, these generated sentences lose
the natural expression that is found in human-generated text. To
minimize this weakness, diverse beam search and ensemble meth-
ods [15] have been proposed. The diverse beam search is a graph
search algorithm that decodes the list of sentences then enforces
diversity between each sentence. To further address the need for
natural text expressions, some studies [16] employ variational au-
toencoders. A variational autoencoder will sample a vector from
a Gaussian distribution and feed this vector with the features of
the input image into the decoder to generate a meaningful, natural
caption. Yet another approach to improve the expressive quality
of the captions is Generative Adversarial Networks (GANs) [17].
The GAN generates random samples that enforce the network to
produce an output that exhibits greater diversity and makes the
sentence more natural. Despite the naturalness of the language,
captions generated from these existing methods still exhibit limited
diversity. This is an ongoing challenge that we attempt to address
through bidirectional sentence generation.

Compounding the challenge of text generation, accurately rep-
resenting images within the image captioning process presents
additional difficulties. Some of the primary image representation
hurdles include accounting for missing objects within the image and
the potential for producing poor predictions. The above-mentioned
approaches encode the whole image, which will lead the generated
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Figure 1: The BraIN framework.

sentences to describe only some of the features within the image,
omitting important details. To address this limitation, we introduce
an attention mechanism.

Attention mechanisms have been effective in the field of com-
puter vision [18, 19] and natural language processing [20, 21]. This
process segments the important details of input information into
smaller pieces. As a result, a model which employs an attention
mechanism focuses on features from these smaller, specific details,
instead of using a feature vector that represents only global infor-
mation. In natural language understanding, Bahdanau et al. [22]
construct a bi-directional neural network to align a source sentence
(the original text) with the corresponding target sentence (a rephras-
ing or summary of the text). This method automatically searches
the parts of a source sentence that are most relevant to a target
word. Xu et al. [19] explore two attention-based image captioning
methods, soft-attention and hard-attention, and analyze how an at-
tention mechanism works for description generation. The difference
between the soft-attention and hard-attention methods is the way
they train the attention. Soft-attention is trained by standard back-
propagation, while reinforcement learning trains hard-attention.
Yao et al. [20] exploit a temporal attention mechanism to capture
global temporal structure among video frames based on the Bah-
danau’s soft-alignment method. The temporal attention mechanism
[18] makes the decoder selectively focus on selected key frames
which are most relevant to the predicted word. The attended at-
tributes model [20] first utilizes multiple approaches (e.g., k-NN,
multi-label ranking and fully convolutional network) to obtain a set
of proposed semantic concepts, and then integrates them into one
vector, allowing the attention mechanism to guide the language
model for description generation. Disregarding such details can fur-
ther lead to image classification error. To address these problems,
our BraIN model will combine global features with object-level
features which are generated by the soft-attention method.

3 BRAIN FRAMEWORK

We propose a new framework, BralN, for image caption genera-
tion. BraIN combines the benefits of a bidirectional model with
an attention mechanism and a conditional GAN. The proposed
framework consists of two networks, a caption generator G, and a
caption discriminator D. The framework is illustrated in Figure 1.
Given an image I, the goal of the generator is to produce natural
and semantically-relevant captions, while the discriminator’s goal
is to evaluate how well the captions describe the image. The two
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networks play a min-max game as follows:

i L(Gg,D 1
memm,?x (Go. D) 1)

In Equation 1, L represents the overall loss function, and 6 and n
are trainable parameters guiding the generator and discriminator,
respectively. For a reference image I, the generator Gy outputs a
sentence S as the corresponding caption. The discriminator Dy,
aims to correctly estimate the relevance score of S with respect to
a corresponding human-written caption h.

In our framework, the generator G contains three components.
These are a convolutional neural network (CNN) that extracts in-
formation from the image, a bidirectional LSTM that generates
captions, and an attention model that leads the LSTM model to
focus on important features of each generated word. The CNN
extracts a fixed-dimensional feature f(I) from the input image that
captures salient information about the image. The attention model
will generate a matrix A for each word in the caption. The attention
model calculates A X f(I) and delivers the results as input to the
bidirectional LSTM. The bidirectional LSTM decodes a sentence by
taking the output from the attention model and two random vectors
z1 and z and generating a corresponding sequence of words. The
role of the two random vectors is to increase the randomness of
the sentence, thus improving word diversity and overall sentence
expressivity.

The discriminator D contains three components as well. These
are a CNN that extracts information from the image (as found
in the generator), a bidirectional LSTM that extracts information
from the candidate sentences, and a scoring system that calculates
the similarity between two vectors output by the LSTM and CNN,
respectively. Given an image I and a candidate descriptive sentence
S = (w1, wa, - - - wr), the discriminator will use the CNN to decode
the image I into a m X n dimension vector, V(I). Similarly, the
discriminator will employ an LSTM to decode a descriptive sentence
S into a same-dimension vector, V(S). Finally, the scoring system
will measure the quality of the sentences by calculating the distance
between the two vectors, V(I) and V(S), as shown in Equation 2:

m n
2
Ry (L8) = (| 323 (VD) - Vis)y) @
i=1 j=1
In this equation, variable n represents the discriminator param-
eters and o is a logistic function that turns the distance between
two matrices into a probability value in [0,1].

4 GENERATOR

BralN‘s generator Gy is designed as a standard encoder-decoder
architecture. The generator framework is depicted in Figure 2. Each
LSTM block shows in the graph is a single LSTM cell. From image
I, the caption model will extract a fixed-dimensional feature vec-
tor, f(I), using a CNN as an encoder. The decoder implemented by
the bidirectional LSTM network maps image features to a word
sequence. We apply an attention mechanism in the bidirectional
LSTM network to focus on the most relevant area in the image for a
generated word. We use A:1 and Ac1 to represent activation values
emanating from the word occurring immediately before position t
in the sentence and the word occurring immediately after position t,
respectively. The arrows indicate the direction of influence, in this
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Figure 3: The word generation process.

case from t-1 to the right in the sentence and from t+1 to the left
in the sentence. The bidirectional LSTM networks calculate (4 4r)
based on the likely values for words appearing directly before and
after the current position, or (A1, Ac1). The LSTM selects word W;
based on the value of (Ac.4c), taking advantage of not only the infor-
mation from potential words that appear earlier in the sentence but
also the information from potential words that will appear further
along in the sentence. Figure 3 shows how each word in a sentence
has been generated from this information. Variable X; in Figure 3
represents the vector of image features that are calculated by the
attention mechanism. Additionally, (404 in Figure 3 represents
the activation value from two directions at state t. In state ¢, word
Wr is produced by Equation 3:

Wi ~ g (Wel[, We—1, Wey1), te(1, T) 3)

In this equation, 7y is a word distribution over all words in
the vocabulary. Variable T represents the maximal length (in
number of words) allotted for the caption. A complete caption
S¢ = {Wi,Wa, - -} can be produced by generator Gy, by sequen-
tially sampling words according to 7y.

5 TRAINING GENERATOR

Using the BraIN algorithm, we cannot directly apply gradient de-
scent for Gy through backpropagation; thus, we employ a Policy
Gradient method. The policy gradient method originates from rein-
forcement learning [23]. Reinforcement learning (RL) is a learning
method which deals with sequential decision-making. The RL prob-
lem can be regarded as an agent that has to make decisions in an
environment in order to achieve the highest reward. The basic re-
inforcement parameters are (S, A, R, 7). The S stands for a set of
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environment and agent states. The A stands for a set of actions of
an agent. R is rewarded that agent transit from S to s by taking
action A", 7 is a policy that contains a sequence of action which
try to achieve the maximum reward. The basic idea of this method
is to treat a sentence as sequence of actions, wherein each action
consists of generating a candidate word W;. The choice of action
is governed by a policy, 7wy which is word distribution. Although
the classic policy gradient method can solve the non-differentiable
problem, our model still faces some challenges. The bidirectional
LSTM network is different from the unidirectional LSTM network
as it can capture both past and future information, based on the ac-
tivation values (Ae—t Ac+1), Currently, the traditional reinforcement
learning-based policy gradient method only handles a one-direction
update for an LSTM model. As a result, we cannot directly apply
the standard policy gradient. To extend the traditional method, we
update the weight from two directions separately. For each single
direction, we update the weight only in this direction. Once this
step is complete, the policy gradients can be employed to update
the weights, when generating the word W;, for calculating either
Ac=t or Acer.

In BralN, the generative procedure works as follows. First, we
begin with an empty sentence as the initial state, denoted Sp. We
regard each word w; as an action selected from the set of possi-
bilities, w; € W. At each step t, the policy g considers features
A(I) from the attention model, the activation value A1 from later
in the sentence, and the activation value 4c—1 from earlier in the
sentence as input. Based on the input, BraIN computes a conditional
distribution g (w; |A(J), T_{,H) W includes all vocabulary, an
indicator of sentence start BOS, and an indicator of sentence end
EOS . Through this conditional distribution, an action w; will be
sampled. The sentence will be terminated once W; = BOS or EOS
. For all other cases, the sampled word W; will be inserted at the
current point t in the sentence.

The reward of the sequence of actions S is Ry, (1, S), which is
generated by the discriminator Dy and controlled in part by a hy-
perparameter w. However, the discriminator can only generate a
score based on a complete sentence. Thus, individual rewards will
not be assigned for each W;. In order to solve this problem and ob-
serve a reward for each word position, we employ a K-times Monte
Carlo rollout process [23] to explore the rest of the unknown words
St+1:7 based on the current caption generator, Gg. The process will
rollout K times, which generates K different sentences based on the
current caption generator Gg. The unique sentences result from
choosing different actions during each iteration. Sy.1.7 represents
the sequence of words simulated by the Monte Carlo rollout process,
which makes the sentence sufficiently complete to obtain a reward
value. More specifically, the future reward re,q(Wt |I, S1:4—1) can
be approximated by the expected score over K rollout, simulated
captions. This is shown in Equation 4:

K
1
o,y (Well, Stp-1) = I Z Ro (I, S1:t ® St+1:7) 4
k=1

In Equation 4, ®represents the concatenation operation. Sy.;—;
denotes the words that were generated before action W; is taken,
and T represents the maximal length of the sentence.
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To train the generator Gy network, we view maximizing this
expected reward ry , as the learning object, which leads the gener-
ator to create the greatest-reward sentence. We derive the gradient
of this objective § as shown in Equation 5:

T
E[ ) Vomg (Well, 2z, S1:t-1) - 79,y (Well, S1:4-1)] ()
=1

where T is the maximal length of the sentence.

6 DISCRIMINATOR

The discriminator evaluates how well a caption S describes an
image I by creating a corresponding score. Naturalness and rele-
vance to the image are two criteria a good textual description, or
caption, needs to satisfy. In order to meet the two criteria, we need
to consider three types of descriptions for each image I. They are
S, the set of descriptions provided by a human for image I; Sy,
the set of descriptions provided by a generator for image I; and S,
the set of descriptions provided by a human that is not associated
with the specific image I. We create score Sy, using a joint objective
formulated in Equation 6:

N
1
max Lp (1) = ]ZI Lp(Ijin) ©)

In this equation, variable N represents the number of training
images. For each image I;,

Lp(I;n) = Eses, logRy (IS) +a - Eses, log [1 - Ry (1,9)]
+B -Eges,, log [1 =Ry (1,5)] )

The first term in this summation helps the discriminator to value
the human caption. The second term is used to distinguish human
captions from machine-generated captions, and the third term en-
sures that the generated description is sufficiently related to the
image. The weights @ and f are used to balance the contribution of
the corresponding terms.

7 EXPERIMENTAL EVALUATION OF BRAIN

We expect that our proposed BraIN bidirectional LSTM model will
outperform unidirectional LSTM models in generating natural lan-
guage captions, since the bidirectional LSTM can capture depen-
dencies both from previous words and words that appear later in
the sentence. Therefore, we use both human evaluation and auto-
mated evaluation metrics to evaluate our BraIN model. The human
evaluation is included to specifically evaluate the naturalness of the
caption. At the same time, the automated evaluation metrics reflect
the relevance between the caption and image. Though the human
evaluation can also reflect the relevance between the caption and
image, it is impractical to utilize human experts to evaluate all of
the test results. Employing human evaluators is both expensive and
time-consuming.

We conduct our experiments in the context of the MS COCO
dataset [24], with 123,287 randomly-selected images. Each image
is accompanied by 5 ground-truth sentences. Our experiments are
based on a public split method [26]: 5000 images are randomly
selected for validation and testing, and the rest (118,287 images) are
used for training. In order to assess the performance improvement
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Table 1: Performance of proposed BraIN method in compar-
ison with baseline methods G-Gan and CAL. Performance
is measured using traditional automated scores of BLEU-4,
METEOR, and CIDer.

Model BLEU-4 METEOR CIDer
G-Gan 0.205 0.221 0.697
CAL 0.208 0.222 0.712
BraIN 0.212 0.224 0.719

offered by the proposed Bidirectional Adversarial Network (BraIN),
we comparatively evaluate two baseline models as well, G-Gan [25]
and CAL [1]. G-Gan implements adversarial learning for image
captioning combined with a traditional, unidirectional LSTM. CAL
is similar to G-GAN, in which a comparative score is employed
for the discriminator instead of the binary score. To ensure a fair
comparison, all image features are extracted by ResNet-152 [14].
All generator and discriminator text-decoders are implemented by
LSTMs.

Before adversarial training, we pretrain generator G using stan-
dard MLE (maximum likelihood estimation) for 20 epochs, and we
pretrain discriminator D for 5 epochs. In the adversarial training
stage, two sub-networks are trained jointly, where each iteration
consists of one step of G-update followed by one step of D-update.
We set the mini batch size to 64, the learning rate to 0.0001, and
K=16 for K-times Monte Carlo rollouts. During the testing, the
captions are generated based on the learned policy and the final
caption is selected based on the sentence that yields the top score.

To evaluate the alternative captioning methods, we employ both
automated metrics and human preference. The automated metrics
include BLEU-4 [26], METEOR, and CIDer. The results are summa-
rized in Table 1. As we see from these results, BraIN outperforms the
other two models based on automated evaluation measures. Com-
bining the three measures, BraIN outperforms CAL by 0.98% and
outperforms G-Gan by 3.16%. Even using these traditional metrics,
the BralIN architecture offers improvements to the image captioning
process. Although the evaluation metrics can represent the accu-
racy of the description related to the image, however, they overly
focus on n-grams matching and pattern matching with ground
truth captions and ignore the naturalness of the language.

To evaluate the caption naturalness, we further conduct human
evaluation using a survey. The survey includes 50 images selected
randomly from the test set. For each image, we present 3 captions
that are generated by the 3 alternative methods. Figure 4 shows
some captions generated by three different methods. Participants
are asked to choose the caption that best describes the correspond-
ing image in their opinion. A total of 32 participants were recruited.
We collected a total of 1600 responses, which is the result of all 32
participants completing all of the survey questions.

Additionally, participants optionally provided their own image
captions. We collected 250 captions provided by 5 of the partici-
pants. To gain insight on the limitations associated with automated
evaluation metrics, we applied the BLEU-4, METEOR, and CIDer
metrics to these 250 captions. As the results in Table 2 indicate,
the human captions do not perform substantially better than the
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G-Gan a man hold a bowl in awoman hold an umbrellain a a child hold an
front of the wall street umbrella in the grass
field

CAL  asuited man eat fruitin  alady hold an umbrella in front
front of the wall of some trees

a baby girl with an
open umbrella in the
grass field
BralN  asmilingmaninapink a beautiful lady stand in frontof  a child with an open
suit eat fruit in front of a forest in a rain day umbrella kneeling on
the wall with two the grass field

pictures

Figure 4: Image captions generated from three different
models: two baseline methods and our BraIN method.

Table 2: Performance of human captions, measured using
BLEU-4, METEOR, and CIDer.

Model BLEU-4 METEOR CIDer
Human 0.193 0.238 0.857
Automated GAN 0.208 0.222 0.709
(average)

MLE 0.298 0.252 0.919

automated GAN methods for the METEOR and CIDer metrics, and
actually perform worse than the automated methods according to
the BLEU-4 metric. The MLE method shows the best performance
in all metrics. It is not surprising. Since metrics primarily focus on
n-gram matching with respect to the references, while ignoring
other important properties such as naturalness and diversity. These
results indicate the need to assess image captions using human
judges. They also hint that image captioning methods will benefit
from increased naturalness in expression and variation.

The results of this experiment are shown in Figure 5. Overall,
39.62% of the chosen responses are captions generated by BralN,
32.44% by CAL, and 27.94% by G-Gan. Thus, BraIN exhibits a 2.21%
performance improvement over CAL and a 4.18% improvement
over G-Gan. These results indicate that BraIN yields more natural
and human-liked captions compared with the other two baseline
models.

8 CONCLUSION

This paper presents a bidirectional generative adversarial network
(BraIN) for image captions. A different generating model has been
applied in adversarial learning, which better assesses the quality of
captions by taking all the words from captions into consideration.
Therefore, the captions model can improve the naturalness and
correctness. Experimental results clearly demonstrate that our pro-
posed method generates better captions in terms of both accuracy
and naturalness across images. Also, the experimental results show
the limitation of the evaluation metrics, caption generates from
MLE outperform than human’s caption in all metrics. It indicates
that auto metrics can not evaluate how naturalness is the sentence
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Figure 5: The result of human evaluation.

which is an important characteristic of the language. We would like

to investigate some new metrics that can evaluate the naturalness
of the sentence in the future. Also, we would like to think about
using the knowledge-based method to improve the text generation

method and expand our method from image captioning to other
kinds of data captioning.
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