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Abstract—Time series classifiers are not only challenging to
design, but they are also notoriously difficult to deploy for crit-
ical applications because end users may not understand or trust
black-box models. Despite new efforts, explanations generated
by other interpretable time series models are complicated for
non-engineers to understand. The goal of PIP is to provide
time series explanations that are tailored toward specific end
users. To address the challenge, this paper introduces PIP, a
novel deep learning architecture that jointly learns classification
models and meaningful visual class prototypes. PIP allows users
to train the model on their choice of class illustrations. Thus,
PIP can create a user-friendly explanation by leaning on end-
users definitions. We hypothesize that a pictorial description is
an effective way to communicate a learned concept to non-
expert users. Based on an end-user experiment with partici-
pants from multiple backgrounds, PIP offers an improved
combination of accuracy and interpretability over baseline
methods for time series classification.

1. Introduction
ystems that use machine learning (ML) to process time
series data are increasingly being integrated into our
everyday lives, from voice recognition in many con-
sumer products [1] to assistive medical tools [2]. How-
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ever, the growing complexity of ML algorithms has made the
reasoning behind their predictions difficult for end-users, and
even algorithm developers [3] to understand. The enigmatic
quality of popular ML algorithms for critical applications,
such as deep neural networks (DNNs) for medical applica-
tions, may cause a sub-optimal user experience because the
mistakes made by these algorithms are incomprehensible. As
an example of a safety-threatening error, one DNN labeled a
‘stop’ sign with a few added black tape strips as a ‘speed limit
45’ sign [4].

Recently within the ML community, there has been a
growing body of research attempting to develop interpretabili-
ty techniques. There are two common approaches: 1) glass-box
ML models that are inherently interpretable (e.g., ProSeNet
[5], and GAM [6]) and 2) post-hoc explanation techniques that
are designed to interpret the prediction of black-box models
(e.g., SHAP [7],and LEFTIST [8]). Despite this proliferation of
techniques, there is a lack of methods for explaining ML-
learned classes to non-expert users, especially for time series
classification. Additionally, a non-expert user references a per-
son that has minimal expertise in ML and has a rudimentary
understanding of raw time series data that are collected in their
application domain. For example, nurses may want to under-
stand an ML model that processes smartwatch data for auto-
mated activity recognition. By understanding the data and
generated model, these care providers can better assess a
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patient’s health status and intervene in a timely manner. View-
ing the raw time series data (especially multi-variate data) may
not conjure up the concept they represent to a non-expert
user. Consequently, discerning time series classes is difficult for
non-experts.

While time series data such as raw sensor data may be diffi-
cult for domain experts to interpret, most people can under-
stand the concept represented by a descriptive image. In this
work, we introduce a network architecture with built-in inter-
pretabilitcy—PIP (Pictorial Interpretable Prototype learning), that
jointly learns a set of prototypes and a function to transform the
prototypes into meaningful pictures. In PIP, the prototype pic-
tures illustrate the learned classes, as shown in Figure 1. A user
may sketch a picture for each class before initiating PIP training.
We hypothesize that prototype pictures derived from such
sketches will enhance user understanding of the data, the
learned model, and resulting predictions. While hand-drawn
pictures have been utilized to visually convey information that
may be difficult to express in writing or speech, they have not
been utilized to explain a time series model’s predictions. Prior
work in cognitive and educational psychology illustrates that
sketching concepts enhanced learning

To evaluate the eftectiveness of PIP visual explanations, we
assessed an end-user experience by comparing the PIP expla-
nation with another prototype learning model and a decision
tree. Based on the result from 35 users, we found that end-
user experience was enhanced across the dimensions of classi-
fication accuracy, response time, and model comprehensibility
using PIP explanations compared to the decision tree and
other prototype models. As one of the clinicians suggested,
PIP’s prototypes can help them make timely decisions based
on sensor data, thus improving response time in critical situa-
tions and providing more-informed treatment plans. These
results suggest that PIPs approach to automatically generate
pictorial explanations based on end-user sketches offers a use-
ful explanatory mechanism for time series data. Contribu-
tions: (1) We introduce a novel method to jointly learn visual
prototypes and models for time series classification. (2) Our
algorithm incorporates user-provided sketches to enhance
model interpretation. (3) We demonstrate the improved effi-
cacy of our approach over prior methods for a variety of end-
users for interpreting activity classes from sensor-based time
series data.

and resulted in realistic judgments [9].
Rather than explicitly explaining
how a learned model generates a pre-

=
o)
S

diction, PIP instead learns a set of 1.5
prototypes for each class, building on
the users’ pictorial interpretation of
those classes. PIP’s classification of an
instance can then be interpreted based
on its similarity to the visual proto-
types. Figure 1 illustrates the difficulty

of interpreting raw time series data. In
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activity. To aid with the interpretation
of learned classes, PIP compares the
similarity of the input to the set of
learned prototypes and generates a pre-
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diction based on the similarity score.
Additionally, end-users design the pic-
torial prototypes, thereby tailoring the 11
model’s explanation to suit their needs.
Because PIP learns the final set of pro-
totypes, the resulting pictures may rep-
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the end-user. For example, when a
prototype blends two sketches, this
indicates that the corresponding data
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two similar classes. This process helps
users understand and mirror the algo-
rithm’s inferences.

FIGURE 1 (left) Time series plots of accelerometer and gyroscope readings (top: walking
upstairs, bottom: walking downstairs). (right) Learned prototypes and corresponding similarity
scores. PIP learns concepts from multivariate time series data, thus similarity scores are based on
a combination of the lines shown in the graph. Red squares highlight PIP predictions.
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11. Related Work

Our work contrasts with prior research that seeks to improve
the understanding of time series predictions using post-hoc
interpretations [8], [10]—[13]. These approaches provide fea-
ture importance, or relevance, at a given time step. Although
listing the most discriminating features is insightful, the result-
ing explanations are often regarded as misleading and unreli-
able [14
training process. While domain knowledge is needed to

|. In contrast, PIP weaves interpretability into its

understand post-hoc visualizations, PIP pictures are based on
the end-users” background. For example, post-hoc methods
can isolate portions of an accelerometer signal that cause the
learned model to predict human activity. However, the pro-
vided information may not be useful to a nurse nor informa-
tive. Alternatively, PIP provides a picture explanation of the
classification, offering patients and caregivers an intuitive
explanation of the finding.

Creating glass-box models for time series classifiers has also
previously been considered. IETNet [15] graphs a heatmap of
the class-influential channels during multivariant time series
classification. DPSN [16] tackles few-shot learning by employ-
ing a prototypical network [17] to learn a prototype for each
class from a symbolic Fourier approximation transformation of
the data. Gee et al. [18] and ProSeNet [5] utilize prototype net-
works. These models integrate a designed layer into the net-
work architecture to learn the prototypes.

The approach of Gee et al. [18] and the ProSeNet algo-
rithm [5] can be considered case-based approaches to inter-
pretability. These methods learn explainable prototypes and
classify new data based on similarity to the prototypes.This type
of network includes an encoder and a prototype layer. The
encoder can be any network structure that encodes input data,
such as a convolutional neural network (CNN) or a recursive
neural network (RNN). The prototype layer aims to learn a
prototype that is close to at least one of the encoded inputs. Gee
et al. [18] adapt an image prototype classifier introduced by Li
et al. [19] by coercing time series data to appear as graph images.

The image prototype classifier contains a decoder that transforms
the encoded data and prototypes into the original image. Like-
wise, Gee et al. [18] employ a decoder to transtorm learned pro-
totypes into time series graphs. Since time series are not readily
interpretable as images, Gee et al. [18] feed training inputs into
the model post-training to determine what class each proto-
type represents. ProSeNet [5] does not include a decoder in its
architecture and illustrates the prototypes as it learns.
ProSeNet’s learned prototypes are intangible because they are
based on encoded inputs. Like Gee et al. [18], ProSeNet [5]
adds a post-training step to determine each prototype’s class.
PIP represents a case-based prototype learner that offers dis-
tinct contributions from these previous works. Unlike prior
approaches, PIP learns visual interpretations based on externally-
provided sketches; thus, they do not need to be labeled after
training. Furthermore, PIPs prototypes do not require significant
expertise to understand. Because these methods optimize multi-
ple criteria (e.g., classification accuracy and interpretability), they
rely upon multi-term loss functions. While previous methods
employ a costly cross-validation step to tune the ratios between
these loss terms, PIP directly learns these ratios during training.

11l. Methods

Complex models such as ensemble and deep neural networks
have demonstrated the ability to achieve high accuracy on time
series data [20], [21], but they are difficult to interpret. To
address this dichotomy between performance and interpretabil-
ity [7], PIP learns a set of prototypes by leaning on user-
defined explanations (hand-drawn sketches). Before training,
users sketch a picture for each of the C classes. This customiza-
tion allows PIP to adapt its prototypes to suit the needs of each
audience. For instance, a clinician may design different signs
than an engineer for a set of wearable sensor data.

A. PIP Architecture
Figure 2 illustrates the PIP architecture. Our model consists of
four main components: an encoder, a prototype layer, a generator,

Inputs

Prototypes FC

Encoder

f(x)

- Output

E Generator
9(2)

‘\ : / Walking Upstairs

Ypic

FIGURE 2 The PIP architecture. The model consists of four components: an encoder f(x) that transforms the input to the latent space z, a proto-
type layer p with m prototypes, a fully connected layer FC with a softmax layer for multi-class classification, and a generator g(z) for converting
the latent space to a correct sketch representation of the data. PIP learns the prototypes p by minimizing the distance between embedded input
z and each prototype p;. Additionally, PIP minimizes the distance between each prototype p; and the embedded data z, thus encouraging each
prototype to cluster around one class. The input to the fully connected layer FC is the normalized distance a between the encoded data z, and
each prototype p. PIP simultaneously utilizes the generator to transform the encoded data g(z) into their respective picture ypic. Since the proto-
types are based on the encoded data, the generator converts the learned prototypes into their corresponding pictures after training.
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and a fully-connected layer. The encoder f(x) maps the input
time series to a fixed-length vector, z. The encoder can be any
block of neural networks that process time series input data. We
employ a 1 D-CNN as the encoder in our study because of its
demonstrated ability to handle time series data [20]. The proto-
type layer contains m prototypes, where the number of proto-
types is at least as large as the number of classes, m = C. The
goal of the prototype layer is to learn a set of vectors that are
positioned close to the encoded input data. Therefore, the
length of each prototype pi is equal to the length of the encod-
ed input z.The prototype layer computes the squared Euclidean
distance between the encoded input z and each prototype,
d? =] z—pi|3. To normalize these values, we then compute
the final score as ai = (di— min(d))/ (max(d) — min(d)). A
score of one means the prototype p; is identical to the encoded
input z, and zero means that they are completely different.
Finally, a fully-connected layer (FC) computes a weighted sum
of these scores v = Wa, where Wis a C X m weight matrix. A
Softmax layer is then applied to compute the probability distri-
bution over C classes. The prototypes are not interpretable on
their own because the distance measure between prototypes and
observation is measured in a flexible latent space. The generator
transforms the encoded input z to its corresponding picture ypic
by reshaping the encoded vector z to a n Xn matrix and
employing a 2 D-CNN.The advantage of including a generator
is that it can transform the learned prototypes into their pictori-
al representations after training.

B. Optimization

PIP’ objective is to simultaneously achieve both high accuracy
and high interpretability. To obtain this goal, we jointly mini-
mize the parameters of all model components using stochastic
gradient descent, similarly to work described by Gee et al. [18]
and Li et al. [19]. Let D = {(x£) =1, ), ypic} be a labeled time
series dataset having k dimensions. Throughout the remainder
of the paper we use x' to denote the set of k values observed at
time t. Here, T is the length of multivariate sequence
x,y € {1,...,C} is the true label, and yuc € {1,...,C} is a
corresponding picture for the true class. The optimization
problem minimizes the following:

L =1:E(©,D)+ Ay M(O, D)
+ 2R (0,D) + 1:R>(0, D), (1

where O represents the set of all trainable model parameters
and A = {Ag,Am, A1, and A2} represent the term ratios. E is the
cross-entropy loss defined as:

E®O,D)= >

"L,neD

ylog(y) + (1 = plog(1—7p) @)

and M is the mean squared error of the generator, as follows:

M@D =1 %

(51, €D

(}A’pic — Yric) . ©)

We introduce a regularizer, R, that encourages each proto-
type to be positioned close to at least one of the training sam-
ples. Additionally, regularizer R> ensures that similar inputs
cluster around one prototype:

_i m . _ ‘ >

R, (6,D)="-- Z:l min |pi= =i, )
I S R R

R:(6.D) = > min | == p. 5)

PIP learns the weights for the individual loss terms during
model training. For each of a specific number of epochs, we
adjust the ratio, A, for one selected term, ¢ € (E, M, R1, R2).
The selected term is penalized if the corresponding value is
greater than a threshold 7. The term is penalized by increasing
its ratio, A¢. Similarly, we reward the term if it performs better
than the threshold 7 by lowering the corresponding A¢. This
method is inspired by game theoretic methods introduced by
Arora et al., which supports data-driven learning of the param-
eters [22]. For our experiments, we set 7 = 0.1. We initialize all
As to one for a fixed learning rate € < 0.5. At the end of each
epoch e, we choose a term to adjust during the next epoch.
Ratios A are selected with probability proportional to their
values p= {A%) /DO 29 /D 29/ Y /@), where
DY =29429+29 + 29 We update the selected A based on
its loss function value m, as follows:

e {/1“’)(1 +o ", if1<t ©

2901 — 6)7’2@, otherwise.

We terminate this procedure after a specific number of
epochs in which £ consistently decreases since indefinite
updates of As could make the model training unstable. We
observe that updating As for 20 consecutive epochs of decreas-
ing L values is enough to learn the As. Algorithm 1 details
the PIP training process."

An important question is how to select the number of pro-
totypes to learn. Previous work [5], [18], [19], [23] specifies a
number of prototypes that is greater than the number of classes.
This allows the model to learn at least one prototype for each
class. When classes are complex, such detailed explanations can
be helpful. At the same time, users may be confused when a
single class is represented by multiple pictures. In earlier work,
anecdotal observations analyzed these tradeoffs. In our case, we
report results for alternative numbers of prototypes. To make a
final selection, we first consider the number of prototypes to be
equal to the number of classes. We then select the final number
of prototypes by increasing the number until performance (loss
minimization) converges.

While we demonstrate the learning process using greyscale
images, PIP can also learn colored prototypes. In cases con-
taining a large number of classes, colored input images will
further enhance interpretability of the blended prototypes
that PIP learns. Such colors can be selected by the user based

'Code: https://github.com/alirezaghods/PIPNet
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Algorithm 1 PIP training algorithm.

number of weight updates = 20
i=0
e=0
while e < number of epochs do
£ = Compute loss (Eq. 1)
if £ < previous- £ then
i=i+1
if i = = number of weight updates then
update weight = False
else
i=0
end
if update weight then

p:{w AP AP A?)}

OO O’ PO’ O
¢ = randomly select {E, M, R, Rz} proportionate to p
update 2 of selected loss (Eq. 6)

end

on domain knowledge. For example, in Figure 3 the user
defines warmer colors for dynamic-movement activities (e.g.,
walking up/down stairs, walk) and cooler colors for static
activities (e.g., sit, stand, lie down). Alternatively, a user may
assign colors on opposite ends of the spectrum for classes that
are similar to aid in distinguishing them. In future work, PIP
will optionally assign these colors automatically to further
boost interpretation.

In summary, PIP not only learns a set of prototypes but also
generates images for each prototype. These prototypes aid in
understanding the learned classes as well as the classification for

FIGURE 3 Example of learned color prototypes for HAR dataset.

FIGURE 4 Example of a learned blend of pictures.
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o
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FIGURE 5 Pictorial representations for each class used in the experiments.

a particular instance. By learning prototypes and corresponding
images, PIP can provide insights into the data and learned con-
cepts which were not available to the end-users otherwise. PIP
does not merely map each target class onto a corresponding
user-defined picture. Rather, PIP learns new prototypes which
may represent a single input picture or a unique blend of these
pictures. Considering Figure 4, pictures from similar activities
such as “walking” and “walking upstairs” blend into a unique
generated prototype which exhibits aspects of each original
picture. Such blending occurs for cases that appear on the
boundary between target classes.

IV. Experiments
The goal of this work is to create a time series classifier that is
both accurate and interpretable. To assess PIP’s performance for
both of these objectives, we evaluate the algorithm based on
end-user evaluations of raw time series and alternative ML
models. Model interpretability is estimated by quantifying:
1) The user’s ability to correctly classify samples using the
prototypes.
2) The user’s confidence about their answer.
3) The user’s trust in the learned models.
4) The time that the user spent manually classifying samples
based on the prototypes.

A. Datasets

We selected three time series datasets to evaluate PIP. The datas-

ets are UCI-HAR (human activity recognition) [24|, UCR-For-

dA (automotive diagnosis) [25], and UEA-SpokenArbaicDigits
(spoken Arabic digits) [25]. These are

TABLE I Dataset summary.

DATASET TIME STEPS CHANNELS CLASSES
UCI-HAR 128 9 6
UCR-FORDA 500 1 2
UEA-ARABICDIGITS 93 13 10
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selected from multiple domains with
varying complexity to evaluate PIP’s
broad applicability (see Table I). We

TRAINING TESTING ) )
designed a 28 X 28 gray scale picture for
7352 2947 :
each class (see Figure 5). Each user can
3601 1320 . . . .
design a picture and train PIP to receive
6600 2200

a personalized explanation. Since our
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study participants come from a diverse range of backgrounds, we
created images that provide general understandability. Future
experiments that target a specific user group will utilize images
designed by that group.

B. Experiment Design
For each dataset, we pose a series of questions:
1) Participants score the interpretability of raw time series
data by looking at graphs of the series values.
2) Participants emulate the model’s prediction based on the
provided interface (this task is timed).
3) Participants assess a specific model’s interpretability on
the given dataset.
Interpretability responses are provided on a Likert scale from
Extremely easy =1 to Extremely difficult = 5. To conclude
the survey, participants are asked to choose the most interpreta-
ble model, as well as their preference for either a highly-accu-
rate or a highly-interpretable model.

We recruited 35 end-user participants to evaluate the gen-
erated prototypes. Previous studies indicate that age, educa-
tion, and experience impact task performance [26], [27]. To
evaluate PIP interpretability for a broad audience, we includ-
ed a diverse sample of participants. Participant age is 35 & 11,
and education ranges from high school to advanced degree
(PhD, MD). The participants are grouped into three catego-
ries: STEM (n = 19), Clinician (n = 10), and Other (n = 0),
based on their discipline and experience with ML.

C. Interpretability Metrics

To measure the interpretability of PIP’ jointly learned model
and prototypes, we draw on the metrics of end-user accuracy,
end-user response time, model accuracy, end-user understand-
ability, and end-user trust. The first three metrics build on work
by Kim et al. [28]. The authors define model interpretability as “the
degree to which a human consistently predicts the model’s
result” We mirror this definition by measuring human accuracy,
human response time, and model accuracy. Because the goal of
the ML algorithm is to correctly predict the target attribute of a
data point, usability can be measured as the speed and accuracy
with which an end-user can replicate the learned model’s pre-
diction using the explanation. These metrics are consistent with
traditional evaluation in the human-computer interaction litera-
ture, in which user speed and accuracy are utilized to measure a
person’s attitude toward a system [29]. To ensure that the end-
user provides predictions that are consistent with ground truth,
we also need to evaluate the predictive performance of the
learned model itself.

Furthermore, according to the user-centered design sup-
ported by the work of Xu et al. [30], an interpretable model
must incorporate the preferences and skills of target users. The
explanation must ensure that end-users can understand the
learned model. We measure these components by asking end-
users to rate their understandability of the raw time series data
as well as the learned model. These two points provide an esti-
mate of the amount that PIP improved comprehensibility in

comparison with the raw time series data and the other evalu-
ated ML models.

Finally, Hoffinan et al. [31] argue that trust is a concern for
explainable systems. Lack of initial trust or loss of trust will sig-
nificantly reduce the use of a learned model. We, therefore, add
the interpretability metric of trust and reliance to our experi-

mental design and evaluation.

D. Models

The participants evaluate four interfaces: raw time series data
(Raw), a decision tree model of the learned concept (DT), non-
pictorial representation of prototypes (Ptype), and PIP pictorial
representation of prototypes (PIP). The first baseline measures
the interpretability of raw time series data. Traditionally, experts
have examined such time series graphs as part of their job, such
as physicians looking at EKG graphs. The method proposed by
Gee et al. [18] converts learned prototypes back to such a raw
representation; thus, this is an important baseline to include. The
second baseline, a decision tree (DT), has previously been adopt-
ed in clinical settings because of its explainability [32]. The third
baseline, a non-pictorial representation of prototypes (Ptype),
generates prototypes that have not been transformed into their
graphic representation. This interface reflects the representation
of the prototypes described by Ming et al. [5].

In the survey, we provide the network scores for Ptype and
PIP above their depicted prototype, representing the similarity
between the input data and each prototype (see Figure 6). Par-
ticipants did not receive any information about the accuracy of
any of the models prior to completing the survey. Participants
judge the interpretability of the models based solely on their
interface, as shown in Figure 6.

In addition, we compared PIP%s accuracy with DT, Residual
Networks (ResNet) [10], and RandOm Convolutional KErnel
Transtorm (ROCKET) [33].We select DT because it is one of the
most widely used interpretable models by many experts in differ-
ent domains. We also compute accuracy for ResNet, a method
that optimizes only accuracy and not interpretability. According to
a survey by Fawaz et al. [20], ResNet performs consistently best
over a variety of time series domains. Finally, we compare classifi-
cation performance with ROCKET, another recent approach to
time series classification that was selected both because of its con-
sistent performance and computational efficiency [33].

E. PIP Architecture and Hyperparameter Selection

The architecture of PIP is similar for all datasets except the
encoding length and number of prototypes. The encoder
consists of two layers of a 1D-CNN (kernel size = 16) followed
by a Maxpool layer and a fully connected layer (length =
encoding size). The generator consists of a fully-connected
layer (length = 1568) followed by three 2D-CNN layers (ker-
nel sizes = 64, 32, 1). The number of prototypes in the proto-
type layer is equal to the number of prototypes defined by the
user (length = encoding size). This layer is followed by a fully
connected layer (length = number of classes). Hyperparameters
7 and € are selected empirically. For our experiments, we
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FIGURE 6 Example model interfaces using (a) Decision tree (b) non-pictorial prototype representation (PType), and (c) PIP pictorial representa-

tion (PIP) for UCI-HAR datasets.

observe that 7 = 0.1 and € = 0.08 perform well across diverse
datasets. Similarly, we terminate weight updates after observing
10 to 20 consecutive epochs of decreasing L values. The
hyperparameters are summarized below.

(1 Learning rate {3¢ >, 2¢7,1¢7>, 177}

(1 Batch size {16, 32, 64}

1 Encoding size {32, 64,128}

d Weight learning rate (¢) {0.5,0.1,0.08,0.05}

1 Weight threshold () {0.1,0.05}

1 Updating weight period {10, 20,30}

We employed a grid search to find the set of hyperparameters
that are most effective across multiple datasets. The reason for
selecting the same hyperparameters for each reported experi-
ment is to study the effect of the number of prototypes on PIP’
accuracy. We optimized the cross-entropy loss using Adam [34]
with base learning rate = 3¢, batch size
=64, €¢=0.08,7 = 0.1, and updating weight period = 20.
The number of prototypes selected is equal to the number of

= 32, encoding size

classes to increase the interpretability. As we show later, a larger
number of prototypes will in some cases increase the accuracy of
the model.

V. Results and Analysis

To validate PIP’s performance, we ran a user experiment to
measure the interpretability of models generated by PIP. More-
over, we assessed the user’s trust to employ PIP for their
application. Lastly, we compared PIP’s accuracy to other time
series classifiers.

A. Interpretability of Raw Time Series Data
The results of this experiment are summarized in Table II.
These results reflect that raw time series data (Raw) do not
provide adequate interpretability in most cases, as shown in
Figure 7. Participants were asked to differentiate between mul-
tiple class pairs. These include walking vs. walking upstairs
(UCI-HAR), walking vs. laying (UCI-HAR), malfunction vs.
no malfunction (UCR-FordA) and

TABLE Il Average Likert responses for raw time series data.
STEM CLINICIAN
WALKING VS. WALKING UPSTAIRS 3.1 3.4
WALKING VS. LAYING 1.3 1.1
MALFUNCTION VS. NO MALFUNCTION 2.7 2.4
NUMBER-ONE VS. NUMBER-THREE 3.7 3.7
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number-one vs. number-three (UEA-
Arabic). The results reveal that only in

OTHER OVERALL cases such as walking vs. laying, where
2.0 30 the difference between two signals is
15 12 noticeable, the overall averaged partici-
pant response is close to Extremely Easy
3.1 2.7 . . .
(1). This contrasts with the other pairs,
3.8 3.7

where the overall averaged participant
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response is close to Neither Easy nor Difficult(3) or Some-
what Difficult (4).

B. End-user Accuracy

A fundamental measure of model interpretability is wheth-
er end-users can predict the outcome of a model based on
its interface. As shown in Table III, most participants did
select the correct outcome using the PIP pictorial repre-
sentation. We observe that the participants’ performance
increases as they progress in the survey for classification
using decision trees. On the other hand, for PIP represen-
tations, participants did not experience a significant learn-
ing curve because their performance was high from the
beginning. The survey results reveal that the Ptype repre-
sentation is not an interpretable interface. For example,
none of the participants could find the correct outcome of
the Ptype interface for the UEA-Arabic dataset. It is evi-
dent that as the number of prototypes increases, it is harder
for participants to distinguish between waveform graphs.
This aligns with our result from the interpretability of raw
sensor data. The results demonstrate that users are less
prone to making a mistake when using the PIP pictorial
representations. As Table III shows, the novice group
(Other) was able to predict the outcome of PIP without
having any prior knowledge. However, that was not the
case when using DT or Ptype.

C. End-user Response Time

The time a user spends finding the outcome of a model is
an essential indicator of interpretability. Although many of
the participants were familiar with decision trees, the par-
ticipants spend more time discerning its prediction. As
shown in Table IV, PIP decreases interpretation time by
>24 seconds in comparison with Ptype, which method
also suffered from model misinterpretation.

D. End-user Perceived Understandability

To investigate users’ perception towards the interpretabili-
ty of the model, we ask users: How easy was the task you
performed? The easier a task is to perform, the greater is
the likelihood of user understanding. To measure the par-
ticipants’ perception, they provided a Likert-scale
response on task simplicity. The Likert-scale values range
from 1 (Extremely Easy) to 5 (Extremely Difficult). As
shown in Figure 8, the pictorial representation of PIP
was the easiest model to use, and raw time series data was
the hardest. The result of the experiment (see Table V)
aligns with the end-user accuracy result in that all partici-
pant groups perform better using PIP than any of the
other model interfaces.

E. End-user Trust and Reliance

At the end of each task, participants assess if they trust
and would rely on the explanation provided by the
given model. To measure trust and reliance, we take the
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attitudinal viewpoint proposed by Lee et al. [35], which has
been widely used in empirical studies of trust in human- > >
machine interaction [36]. Lee et al. [35] define trust as “the g 3 2 3
. . . 1 . o= o=
attitude that an agent will help achieve an individual’s goals in = E £ “OE
. . . . . ~
a situation characterized by uncertainty and vulnerability”” We = o ; ; = S . |
employ a similar assessment as has been utilized to measure
human trust in automation [37]. The Trust scale asks partici- E - E -
pants: Does the explanation of the model increase your trust to use it H E z é ~
o
compared to a black-box model (a model with no explanation)? The § & = @ © UE) a o = ©
Reliance scale asks participants: Does the explanation provided ._-_-_ -J_l
by the model make the prediction of the model clear? We average > >
participant responses from Strongly Agree =1 to Strongly & é ﬁé
Disagree =5 to measure models’ trustworthiness. We observe E a E_;J a
that the additional details provided by a DT may increase TS 0~ 35 2
P 4 e Z2e m S e 22 M S o
trust for some users, as shown in Table VI. However, PIP reli- > o
ance score was better than the other two models as shown in = % = A T
Table VII. Figures 9 and 10 depict participants’ views of s> S - £ >
. . 0
user trust and user reliance, respectively, for each model. 2 f N 28 =
5 e e
. = ||
TABLE Il Accuracy of participant classification for three > >
alternative approaches, averaged over all of the datasets. g > “E’ >
o8& = g &
STEM CLINICIAN OTHER OVERALL = - ® = ©
] . ~ i -
PIP 0.92 0.90 0.83 0.90 - u—
s 2 o s 2 9
DT 0.87 0.83 0.40 0.79 w © Q L © o
h 2 3 h 2 3
PTYPE 0.29 0.33 0.55 035 £ ©O g ©
O O
> =
- Py . [) % [} %
TABLE IV Time spent by participants (in seconds) to g 3} GE) B g
perform prediction for three alternative approaches, £ "EZ £ 5’5 = g o
averaged over all of the datasets. i ~ i ._._-_
(@] o —
STEM CLINICIAN OTHER OVERALL
PIP 6.89 15.86 20.50 11.79 = = o =
2 2 N
DT 36.03 75.33 110.00 58.47 z & = &
(m] o
PTYPE 21.43 49.63 60.38 36.17 o o 0 . & l © o
—_— N .
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TABLE V Participant Perceived Understandability in four & ‘E 5 E <
alternative representations, averaged over all of the datasets. s 5 sy =
2z o - <, 2z . - 3
STEM CLINICIAN OTHER OVERALL e —— o g
PIP 1.22 1.53 1.94 1.43 - T - %
(] ~ ® ~
DT 2.19 2.96 3.83 2.69 s > s>
O © O ®©
PTYPE 2.29 2.66 3.38 2.59 EW o Ew
S M s 8 e o
RAW 3.77 3.83 4.16 3.85 - I e e
) =
[} - o}
H K
TABLE VI Participant trust in three alternative types of s = sul
explanation, averaged over all of the datasets. i i
o N o
STEM CLINICIAN OTHER OVERALL = A @ = w @
gHos 2 g s 2
PIP 2.45 2.13 2.55 2.38 h 2§ 5 2 3
DT 2.14 1.93 2.83 2.20 o o
PTYPE 3.03 2.56 3.38 2.96
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FIGURE 8 The number of end-user perceived understandability of performing a task for alternative methods. (a) PIP; (b) Ptype; (c) Raw; (d) DT.



F. PIP Accuracy accuracy. The participants select
In addition to interpretability, we consider PIP’ accuracy. a point on a linear scale, where 0 - S L /R
o R 0| =
Table VIII summarizes PIP%s performance, averaged over 10 ran- indicates a preference for inter- E’ B - o Fm
dom initializations. We note that an increase in the number of  pretability, and 100 prefers accu- £
prototypes beyond #classes + 5 does not improve the PIPs accu- racy. The average selection was o E T M mlm
= o o o
racy. In some cases, several of the prototypes look repetitive. Other 64 £ 21 (STEM:65 * 21, Clini- e g E H HH
times, PIP blends two or more of the base pictures, as illustrated in cian:82 t+ 21, Other:54 + 21). § g~ 0 o
Figure 11 (5th picture from the leff), likely because the learned This result indicates that users E
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accuracy and interpretability that cannot be achieved by ResNet survey, participants chose the =
or DT. The question of whether to prefer accuracy or interpret- most interpretable model. 24 ‘g’
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FIGURE 9 Participant responses to the trust of performing a task. (a) PIP; (b) DT; (c) Ptype.
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FIGURE 11 Example PIP-generated prototype pictures for UCI-HAR.

decision tree. Interestingly, 10 out of the 11 participants who
selected the decision tree as the most interpretable model in our
survey are from the STEM group. Most participants who select-
ed PIP are clinicians or work in other non-STEM disciplines.

To assess the impact of algorithmic parameters, we performed
an ablation study to investigate the effect of each regularizer (R1,
R2) and the prototype generator (M) on PIP%s performance. The
results are shown in Table VIII. Eliminating R1 or R2 can desta-
bilize the learning, especially for smaller datasets. We observe that
R2 has a greater effect on the results than R1. When both regu-
larizers are removed, the learned prototypes represent multiple
copies of the same image or heavily-blended versions of multiple
images. While the role of M is primarily to support generation of
understandable prototypes, omitting M does not have a large
Impact on recognition accuracy.

While Gee et al. [18] note that a large number of proto-
types can increase accuracy at the cost of making the
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FIGURE 10 Participant responses to the reliance of performing a task. (a) PIP; (b) DT; (c) Ptype.
prototypes noisy, we did not observe that increasing the num-
g é u .g ber of prototypes improved PIP’s accuracy nor created noisier
prototypes. We advocate that the number of prototypes be
systematically increased until performance converges.

V1. Conclusions

In this paper, we proposed a method for interpretable time
series classification (PIP) that helps the end-user to under-
stand model prediction. PIP-generated prototypes provide a
simple, intuitive explanation of model predictions. While the
decision tree provides a detailed explanation of the prediction
method, clinicians and people from other disciplines preferred
the PIP pictorial representation. In fact, clinicians provided
specific feedback that they “would not spend time viewing
either the raw data graph or the decision tree in a time-sensi-
tive clinical setting.” Based on the clinicians’ feedback, they
prefer the PIP pictorial representations in particular because
the prototypes help them to make a fast decision in emergen-
cy conditions. On the other hand, 52% of participants in the
STEM group prefer the decision tree’s interpretability because
they can understand the decision model and fix the model or
data. PIP provides a blend of interpretability and accuracy.
Furthermore, the PIP’ ability to incorporate user-provided
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picture prototypes makes this method appli-
cable to a larger group of end-user preferenc-
es. The result of our experiment illustrates
that most people, especially those with less
expertise, prefer a simple and understandable
ML model interface. However, we believe
that DT is still a powerful method, and as
some participants reminded us, they appreciate seeing how
the decision tree was constructed.

A limitation of the current PIP design is the difficulty of
interpreting prototype images when user-provided pictures are
blended or morphed. The process is most effective when simple
sketches are provided. We postulate that interpretability may be
challenging when the initial pictures are very detailed diagrams.
A future research direction is to systematically determine the
impact of picture detail on prototype interpretability. In this
study, we focus on designing an interpretable model for an end-
user who is not able to directly interpret raw time series data.
Our goal is to create an easy-to-understand explanation that
such a user can interpret without the requisite time series
expertise. Our experiments highlight the unique features and
benefits of PIP.

In future work, we will analyze the impact of learning
more complex image prototypes. Future experiments that target
specific user group will also utilize images designed specifically by
that group. Moreover, we would like to explore the possibility of
representing time series prototypes as videos or text captions.
These new directions will indicate the generalizability of the
approach to multiple types of interfaces. To further investigate PIP
usability, we will also conduct experiments with user-provided
prototypes for applications that span multiple disciplines.
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