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Abstract—Time series classifiers are not only challenging to 
design, but they are also notoriously difficult to deploy for crit-
ical applications because end users may not understand or trust 
black-box models. Despite new efforts, explanations generated 
by other interpretable time series models are complicated for 
non-engineers to understand. The goal of PIP is to provide 
time series explanations that are tailored toward specific end 
users. To address the challenge, this paper introduces PIP, a 
novel deep learning architecture that jointly learns classification 
models and meaningful visual class prototypes. PIP allows users 
to train the model on their choice of class illustrations. Thus, 
PIP can create a user-friendly explanation by leaning on end-
users definitions. We hypothesize that a pictorial description is 
an effective way to communicate a learned concept to non-
expert users. Based on an end-user experiment with partici-
pants from multiple backgrounds, PIP offers an improved 
combination of accuracy and interpretability over baseline 
methods for time series classification.

I. Introduction

Systems that use machine learning (ML) to process time 
series data are increasingly being integrated into our 
everyday lives, from voice recognition in many con-
sumer products [1] to assistive medical tools [2]. How-

ever, the growing complexity of ML algorithms has made the 
reasoning behind their predictions difficult for end-users, and 
even algorithm developers [3] to understand. The enigmatic 
quality of popular ML algorithms for critical applications, 
such as deep neural networks (DNNs) for medical applica-
tions, may cause a sub-optimal user experience because the 
mistakes made by these algorithms are incomprehensible. As 
an example of a safety-threatening error, one DNN labeled a 
‘stop’ sign with a few added black tape strips as a ‘speed limit 
45’ sign [4].

Recently within the ML community, there has been a 
growing body of research attempting to develop interpretabili-
ty techniques. There are two common approaches: 1) glass-box 
ML models that are inherently interpretable (e.g., ProSeNet 
[5], and GAM [6]) and 2) post-hoc explanation techniques that 
are designed to interpret the prediction of black-box models 
(e.g., SHAP [7], and LEFTIST [8]). Despite this proliferation of 
techniques, there is a lack of methods for explaining ML-
learned classes to non-expert users, especially for time series 
classification. Additionally, a non-expert user references a per-
son that has minimal expertise in ML and has a rudimentary 
understanding of raw time series data that are collected in their 
application domain. For example, nurses may want to under-
stand an ML model that processes smartwatch data for auto-
mated activity recognition. By understanding the data and 
generated model, these care providers can better assess a 
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patient’s health status and intervene in a timely manner. View-
ing the raw time series data (especially multi-variate data) may 
not conjure up the concept they represent to a non-expert 
user. Consequently, discerning time series classes is difficult for 
non-experts.

While time series data such as raw sensor data may be diffi-
cult for domain experts to interpret, most people can under-
stand the concept represented by a descriptive image. In this 
work, we introduce a network architecture with built-in inter-
pretability—PIP (Pictorial Interpretable Prototype learning), that 
jointly learns a set of prototypes and a function to transform the 
prototypes into meaningful pictures. In PIP, the prototype pic-
tures illustrate the learned classes, as shown in Figure 1. A user 
may sketch a picture for each class before initiating PIP training. 
We hypothesize that prototype pictures derived from such 
sketches will enhance user understanding of the data, the 
learned model, and resulting predictions. While hand-drawn 
pictures have been utilized to visually convey information that 
may be difficult to express in writing or speech, they have not 
been utilized to explain a time series model’s predictions. Prior 
work in cognitive and educational psychology illustrates that 
sketching concepts enhanced learning 
and resulted in realistic judgments [9].

Rather than explicitly explaining 
how a learned model generates a pre-
diction, PIP instead learns a set of 
prototypes for each class, building on 
the users’ pictorial interpretation of 
those classes. PIP’s classification of an 
instance can then be interpreted based 
on its similarity to the visual proto-
types. Figure 1 illustrates the difficulty 
of interpreting raw time series data. In 
this example, wearable sensor data are 
used to identify a person’s current 
activity. To aid with the interpretation 
of learned classes, PIP compares the 
similarity of the input to the set of 
learned prototypes and generates a pre-
diction based on the similarity score. 
Additionally, end-users design the pic-
torial prototypes, thereby tailoring the 
model’s explanation to suit their needs. 
Because PIP learns the final set of pro-
totypes, the resulting pictures may rep-
resent a combination of the original 
user sketches. These learned pictorial 
representations offer novel insights to 
the end-user. For example, when a 
prototype blends two sketches, this 
indicates that the corresponding data 
points lay on the boundary between 
two similar classes. This process helps 
users understand and mirror the algo-
rithm’s inferences.

To evaluate the effectiveness of PIP visual explanations, we 
assessed an end-user experience by comparing the PIP expla-
nation with another prototype learning model and a decision 
tree. Based on the result from 35 users, we found that end-
user experience was enhanced across the dimensions of classi-
fication accuracy, response time, and model comprehensibility 
using PIP explanations compared to the decision tree and 
other prototype models. As one of the clinicians suggested, 
PIP’s prototypes can help them make timely decisions based 
on sensor data, thus improving response time in critical situa-
tions and providing more-informed treatment plans. These 
results suggest that PIP’s approach to automatically generate 
pictorial explanations based on end-user sketches offers a use-
ful explanatory mechanism for time series data. Contribu-
tions: (1) We introduce a novel method to jointly learn visual 
prototypes and models for time series classification. (2) Our 
algorithm incorporates user-provided sketches to enhance 
model interpretation. (3) We demonstrate the improved effi-
cacy of our approach over prior methods for a variety of end-
users for interpreting activity classes from sensor-based time 
series data.
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FIGURE 1 (left) Time series plots of accelerometer and gyroscope readings (top: walking 
upstairs, bottom: walking downstairs). (right) Learned prototypes and corresponding similarity 
scores. PIP learns concepts from multivariate time series data, thus similarity scores are based on 
a combination of the lines shown in the graph. Red squares highlight PIP predictions.
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II. Related Work
Our work contrasts with prior research that seeks to improve 
the understanding of time series predictions using post-hoc 
interpretations [8], [10]–[13]. These approaches provide fea-
ture importance, or relevance, at a given time step. Although 
listing the most discriminating features is insightful, the result-
ing explanations are often regarded as misleading and unreli-
able [14]. In contrast, PIP weaves interpretability into its 
training process. While domain knowledge is needed to 
understand post-hoc visualizations, PIP pictures are based on 
the end-users’ background. For example, post-hoc methods 
can isolate portions of an accelerometer signal that cause the 
learned model to predict human activity. However, the pro-
vided information may not be useful to a nurse nor informa-
tive. Alternatively, PIP provides a picture explanation of the 
classification, offering patients and caregivers an intuitive 
explanation of the finding.

Creating glass-box models for time series classifiers has also 
previously been considered. IETNet [15] graphs a heatmap of 
the class-influential channels during multivariant time series 
classification. DPSN [16] tackles few-shot learning by employ-
ing a prototypical network [17] to learn a prototype for each 
class from a symbolic Fourier approximation transformation of 
the data. Gee et al. [18] and ProSeNet [5] utilize prototype net-
works. These models integrate a designed layer into the net-
work architecture to learn the prototypes.

The approach of Gee et al. [18] and the ProSeNet algo-
rithm [5] can be considered case-based approaches to inter-
pretability. These methods learn explainable prototypes and 
classify new data based on similarity to the prototypes. This type 
of network includes an encoder and a prototype layer. The 
encoder can be any network structure that encodes input data, 
such as a convolutional neural network (CNN) or a recursive 
neural network (RNN). The prototype layer aims to learn a 
prototype that is close to at least one of the encoded inputs. Gee 
et al. [18] adapt an image prototype classifier introduced by Li 
et al. [19] by coercing time series data to appear as graph images. 

The image prototype classifier contains a decoder that transforms 
the encoded data and prototypes into the original image. Like-
wise, Gee et al. [18] employ a decoder to transform learned pro-
totypes into time series graphs. Since time series are not readily 
interpretable as images, Gee et al. [18] feed training inputs into 
the model post-training to determine what class each proto-
type represents. ProSeNet [5] does not include a decoder in its 
architecture and illustrates the prototypes as it learns. 
ProSeNet’s learned prototypes are intangible because they are 
based on encoded inputs. Like Gee et al. [18], ProSeNet [5] 
adds a post-training step to determine each prototype’s class.

PIP represents a case-based prototype learner that offers dis-
tinct contributions from these previous works. Unlike prior 
approaches, PIP learns visual interpretations based on externally-
provided sketches; thus, they do not need to be labeled after 
training. Furthermore, PIP’s prototypes do not require significant 
expertise to understand. Because these methods optimize multi-
ple criteria (e.g., classification accuracy and interpretability), they 
rely upon multi-term loss functions. While previous methods 
employ a costly cross-validation step to tune the ratios between 
these loss terms, PIP directly learns these ratios during training.

III. Methods
Complex models such as ensemble and deep neural networks 
have demonstrated the ability to achieve high accuracy on time 
series data [20], [21], but they are difficult to interpret. To 
address this dichotomy between performance and interpretabil-
ity [7], PIP learns a set of prototypes by leaning on user-
defined explanations (hand-drawn sketches). Before training, 
users sketch a picture for each of the C classes. This customiza-
tion allows PIP to adapt its prototypes to suit the needs of each 
audience. For instance, a clinician may design different signs 
than an engineer for a set of wearable sensor data.

A. PIP Architecture
Figure 2 illustrates the PIP architecture. Our model consists of 
four main components: an encoder, a prototype layer, a generator, 
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FIGURE 2 The PIP architecture. The model consists of four components: an encoder f(x) that transforms the input to the latent space z, a proto-
type layer p with m prototypes, a fully connected layer FC with a softmax layer for multi-class classification, and a generator g(z) for converting 
the latent space to a correct sketch representation of the data. PIP learns the prototypes p by minimizing the distance between embedded input 
z and each prototype .pi  Additionally, PIP minimizes the distance between each prototype pi  and the embedded data z, thus encouraging each 
prototype to cluster around one class. The input to the fully connected layer FC is the normalized distance a between the encoded data z, and 
each prototype p. PIP simultaneously utilizes the generator to transform the encoded data g(z) into their respective picture .ypic  Since the proto-
types are based on the encoded data, the generator converts the learned prototypes into their corresponding pictures after training.
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and a fully-connected layer. The encoder f(x) maps the input 
time series to a fixed-length vector, z. The encoder can be any 
block of neural networks that process time series input data. We 
employ a 1 D-CNN as the encoder in our study because of its 
demonstrated ability to handle time series data [20]. The proto-
type layer contains m prototypes, where the number of proto-
types is at least as large as the number of classes, .m C$  The 
goal of the prototype layer is to learn a set of vectors that are 
positioned close to the encoded input data. Therefore, the 
length of each prototype pi  is equal to the length of the encod-
ed input z. The prototype layer computes the squared Euclidean 
distance between the encoded input z and each prototype, 

.d z pi i
2

2
2< <= -  To normalize these values, we then compute 

the final score as d /( ( ))mina di i= - .d d( ( ) ( ))max min-  A 
score of one means the prototype pi  is identical to the encoded 
input z, and zero means that they are completely different. 
Finally, a fully-connected layer (FC) computes a weighted sum 
of these scores ,Way =  where W is a C m#  weight matrix. A 
Softmax layer is then applied to compute the probability distri-
bution over C classes. The prototypes are not interpretable on 
their own because the distance measure between prototypes and 
observation is measured in a flexible latent space. The generator 
transforms the encoded input z to its corresponding picture ypic  
by reshaping the encoded vector z to a n n#  matrix and 
employing a 2 D-CNN. The advantage of including a generator 
is that it can transform the learned prototypes into their pictori-
al representations after training.

B. Optimization
PIP’s objective is to simultaneously achieve both high accuracy 
and high interpretability. To obtain this goal, we jointly mini-
mize the parameters of all model components using stochastic 
gradient descent, similarly to work described by Gee et al. [18] 
and Li et al. [19]. Let {( ) , , }D x y yk

t
t
T

1 pic= =  be a labeled time 
series dataset having k dimensions. Throughout the remainder 
of the paper we use xt  to denote the set of k values observed at 
time t. Here, T is the length of multivariate sequence 

, { , , }x y C1 f!  is the true label, and { , , }y C1pic f!  is a 
corresponding picture for the true class. The optimization 
problem minimizes the following:
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where H represents the set of all trainable model parameters 
and { , , ,E M 1m m m m=  and }2m  represent the term ratios. E is the 
cross-entropy loss defined as:
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and M is the mean squared error of the generator, as follows:
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We introduce a regularizer, ,R1  that encourages each proto-
type to be positioned close to at least one of the training sam-
ples. Additionally, regularizer R2  ensures that similar inputs 
cluster around one prototype:
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PIP learns the weights for the individual loss terms during 
model training. For each of a specific number of epochs, we 
adjust the ratio, ,m  for one selected term, .( , , , )E M R R1 2, !  
The selected term is penalized if the corresponding value is 
greater than a threshold .x  The term is penalized by increasing 
its ratio, .m,  Similarly, we reward the term if it performs better 
than the threshold x  by lowering the corresponding .m,  This 
method is inspired by game theoretic methods introduced by 
Arora et al., which supports data-driven learning of the param-
eters [22]. For our experiments, we set . .0 1x =  We initialize all 

sm  to one for a fixed learning rate . .0 5#e  At the end of each 
epoch e, we choose a term to adjust during the next epoch. 
Ratios m  are selected with probability proportional to their 
va lues { / , / , / , / },p( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )e
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1 2m m m mU = + + +  We update the selected m  based on 
its loss function value m, as follows:
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We terminate this procedure after a specific number of 
epochs in which L  consistently decreases since indefinite 
updates of sm  could make the model training unstable. We 
observe that updating sm  for 20 consecutive epochs of decreas-
ing L values is enough to learn the .sm  Algorithm 1 details 
the PIP training process.1

An important question is how to select the number of pro-
totypes to learn. Previous work [5], [18], [19], [23] specifies a 
number of prototypes that is greater than the number of classes. 
This allows the model to learn at least one prototype for each 
class. When classes are complex, such detailed explanations can 
be helpful. At the same time, users may be confused when a 
single class is represented by multiple pictures. In earlier work, 
anecdotal observations analyzed these tradeoffs. In our case, we 
report results for alternative numbers of prototypes. To make a 
final selection, we first consider the number of prototypes to be 
equal to the number of classes. We then select the final number 
of prototypes by increasing the number until performance (loss 
minimization) converges.

While we demonstrate the learning process using greyscale 
images, PIP can also learn colored prototypes. In cases con-
taining a large number of classes, colored input images will 
further enhance interpretability of the blended prototypes 
that PIP learns. Such colors can be selected by the user based 

1Code: https://github.com/alirezaghods/PIPNet
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on domain knowledge. For example, in Figure 3 the user 
defines warmer colors for dynamic-movement activities (e.g., 
walking up/down stairs, walk) and cooler colors for static 
activities (e.g., sit, stand, lie down). Alternatively, a user may 
assign colors on opposite ends of the spectrum for classes that 
are similar to aid in distinguishing them. In future work, PIP 
will optionally assign these colors automatically to further 
boost interpretation.

In summary, PIP not only learns a set of prototypes but also 
generates images for each prototype. These prototypes aid in 
understanding the learned classes as well as the classification for 

a particular instance. By learning prototypes and corresponding 
images, PIP can provide insights into the data and learned con-
cepts which were not available to the end-users otherwise. PIP 
does not merely map each target class onto a corresponding 
user-defined picture. Rather, PIP learns new prototypes which 
may represent a single input picture or a unique blend of these 
pictures. Considering Figure 4, pictures from similar activities 
such as “walking” and “walking upstairs” blend into a unique 
generated prototype which exhibits aspects of each original 
picture. Such blending occurs for cases that appear on the 
boundary between target classes.

IV. Experiments
The goal of this work is to create a time series classifier that is 
both accurate and interpretable. To assess PIP’s performance for 
both of these objectives, we evaluate the algorithm based on 
end-user evaluations of raw time series and alternative ML 
models. Model interpretability is estimated by quantifying:
1)	The user’s ability to correctly classify samples using the 

prototypes.
2)	The user’s confidence about their answer.
3)	The user’s trust in the learned models.
4)	The time that the user spent manually classifying samples 

based on the prototypes.

A. Datasets
We selected three time series datasets to evaluate PIP. The datas-
ets are UCI-HAR (human activity recognition) [24], UCR-For-
dA (automotive diagnosis) [25], and UEA-SpokenArbaicDigits 

(spoken Arabic digits) [25]. These are 
selected from multiple domains with 
varying complexity to evaluate PIP’s 
broad applicability (see Table I). We 
designed a 28 × 28 gray scale picture for 
each class (see Figure 5). Each user can 
design a picture and train PIP to receive 
a personalized explanation. Since our 

Algorithm 1 PIP training algorithm. 

number of weight updates = 20
i = 0
e = 0
while e #  number of epochs do
    L  = Compute loss (Eq. 1)
    if L #  previous-L  then
        i = i + 1
        if i = = number of weight updates then
            update weight = False
    else
        i = 0
    end
    if update weight then
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        ,  = randomly select { , , , }E M R R1 2  proportionate to p 

        update m  of selected loss (Eq. 6)
end

HAR FordA

ArabicDigits

FIGURE 5 Pictorial representations for each class used in the experiments.

FIGURE 3 Example of learned color prototypes for HAR dataset.

FIGURE 4 Example of a learned blend of pictures.

TABLE I Dataset summary.

DATASET TIME STEPS CHANNELS CLASSES TRAINING TESTING

UCI-HAR 128 9 6 7352 2947 

UCR-FORDA 500 1 2 3601 1320 

UEA-ARABICDIGITS 93 13 10 6600 2200 
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study participants come from a diverse range of backgrounds, we 
created images that provide general understandability. Future 
experiments that target a specific user group will utilize images 
designed by that group.

B. Experiment Design
For each dataset, we pose a series of questions:
1)	Participants score the interpretability of raw time series 

data by looking at graphs of the series values.
2)	Participants emulate the model’s prediction based on the 

provided interface (this task is timed).
3)	Participants assess a specific model’s interpretability on 

the given dataset.
Interpretability responses are provided on a Likert scale from 
Extremely easy 1=  to Extremely difficult .5=  To conclude 
the survey, participants are asked to choose the most interpreta-
ble model, as well as their preference for either a highly-accu-
rate or a highly-interpretable model.

We recruited 35 end-user participants to evaluate the gen-
erated prototypes. Previous studies indicate that age, educa-
tion, and experience impact task performance [26], [27]. To 
evaluate PIP interpretability for a broad audience, we includ-
ed a diverse sample of participants. Participant age is ,35 11!  
and education ranges from high school to advanced degree 
(PhD, MD). The participants are grouped into three catego-
ries: STEM ( ),n 19=  Clinician ( ),n 10=  and Other ( ),n 6=  
based on their discipline and experience with ML.

C. Interpretability Metrics
To measure the interpretability of PIP’s jointly learned model 
and prototypes, we draw on the metrics of end-user accuracy, 
end-user response time, model accuracy, end-user understand-
ability, and end-user trust. The first three metrics build on work 
by Kim et al. [28]. The authors define model interpretability as “the 
degree to which a human consistently predicts the model’s 
result.” We mirror this definition by measuring human accuracy, 
human response time, and model accuracy. Because the goal of 
the ML algorithm is to correctly predict the target attribute of a 
data point, usability can be measured as the speed and accuracy 
with which an end-user can replicate the learned model’s pre-
diction using the explanation. These metrics are consistent with 
traditional evaluation in the human-computer interaction litera-
ture, in which user speed and accuracy are utilized to measure a 
person’s attitude toward a system [29]. To ensure that the end-
user provides predictions that are consistent with ground truth, 
we also need to evaluate the predictive performance of the 
learned model itself.

Furthermore, according to the user-centered design sup-
ported by the work of Xu et al. [30], an interpretable model 
must incorporate the preferences and skills of target users. The 
explanation must ensure that end-users can understand the 
learned model. We measure these components by asking end-
users to rate their understandability of the raw time series data 
as well as the learned model. These two points provide an esti-
mate of the amount that PIP improved comprehensibility in 

comparison with the raw time series data and the other evalu-
ated ML models.

Finally, Hoffman et al. [31] argue that trust is a concern for 
explainable systems. Lack of initial trust or loss of trust will sig-
nificantly reduce the use of a learned model. We, therefore, add 
the interpretability metric of trust and reliance to our experi-
mental design and evaluation.

D. Models
The participants evaluate four interfaces: raw time series data 
(Raw), a decision tree model of the learned concept (DT), non-
pictorial representation of prototypes (Ptype), and PIP pictorial 
representation of prototypes (PIP). The first baseline measures 
the interpretability of raw time series data. Traditionally, experts 
have examined such time series graphs as part of their job, such 
as physicians looking at EKG graphs. The method proposed by 
Gee et al. [18] converts learned prototypes back to such a raw 
representation; thus, this is an important baseline to include. The 
second baseline, a decision tree (DT), has previously been adopt-
ed in clinical settings because of its explainability [32]. The third 
baseline, a non-pictorial representation of prototypes (Ptype), 
generates prototypes that have not been transformed into their 
graphic representation. This interface reflects the representation 
of the prototypes described by Ming et al. [5].

In the survey, we provide the network scores for Ptype and 
PIP above their depicted prototype, representing the similarity 
between the input data and each prototype (see Figure 6). Par-
ticipants did not receive any information about the accuracy of 
any of the models prior to completing the survey. Participants 
judge the interpretability of the models based solely on their 
interface, as shown in Figure 6.

In addition, we compared PIP’s accuracy with DT, Residual 
Networks (ResNet) [10], and RandOm Convolutional KErnel 
Transform (ROCKET) [33]. We select DT because it is one of the 
most widely used interpretable models by many experts in differ-
ent domains. We also compute accuracy for ResNet, a method 
that optimizes only accuracy and not interpretability. According to 
a survey by Fawaz et al. [20], ResNet performs consistently best 
over a variety of time series domains. Finally, we compare classifi-
cation performance with ROCKET, another recent approach to 
time series classification that was selected both because of its con-
sistent performance and computational efficiency [33].

E. PIP Architecture and Hyperparameter Selection
The architecture of PIP is similar for all datasets except the 
encoding length and number of prototypes. The encoder 
consists of two layers of a 1D-CNN (kernel size = 16) followed 
by a Maxpool layer and a fully connected layer (length = 
encoding size). The generator consists of a fully-connected 
layer (length = 1568) followed by three 2D-CNN layers (ker-
nel sizes = 64, 32, 1). The number of prototypes in the proto-
type layer is equal to the number of prototypes defined by the 
user (length = encoding size). This layer is followed by a fully 
connected layer (length = number of classes). Hyperparameters 
x  and e  are selected empirically. For our experiments, we 
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observe that .0 1x =  and .0 08e =  perform well across diverse 
datasets. Similarly, we terminate weight updates after observing 
10 to 20 consecutive epochs of decreasing L  values. The 
hyperparameters are summarized below.

❏❏ Learning rate { , , , }e e e e3 2 1 13 3 3 2- - - -

❏❏ Batch size {16, 32, 64}
❏❏ Encoding size {32, 64, 128}
❏❏ Weight learning rate ( )e  { . , . , . , . }0 5 0 1 0 08 0 05
❏❏ Weight threshold ( )x  { . , . }0 1 0 05
❏❏ Updating weight period {10, 20, 30}

We employed a grid search to find the set of hyperparameters 
that are most effective across multiple datasets. The reason for 
selecting the same hyperparameters for each reported experi-
ment is to study the effect of the number of prototypes on PIP’s 
accuracy. We optimized the cross-entropy loss using Adam [34] 
with base learning rate ,e3 3= -  batch size ,32=  encoding size 

,64=  . ,0 08e = . ,0 1x =  and updating weight period .20=  
The number of prototypes selected is equal to the number of 

classes to increase the interpretability. As we show later, a larger 
number of prototypes will in some cases increase the accuracy of 
the model.

V. Results and Analysis
To validate PIP’s performance, we ran a user experiment to 
measure the interpretability of models generated by PIP. More-
over, we assessed the user’s trust to employ PIP for their 
application. Lastly, we compared PIP’s accuracy to other time 
series classifiers.

A. Interpretability of Raw Time Series Data
The results of this experiment are summarized in Table II. 
These results reflect that raw time series data (Raw) do not 
provide adequate interpretability in most cases, as shown in 
Figure 7. Participants were asked to differentiate between mul-
tiple class pairs. These include walking vs. walking upstairs 
(UCI-HAR), walking vs. laying (UCI-HAR), malfunction vs. 

no malfunction (UCR-FordA) and 
number-one vs. number-three (UEA-
Arabic). The results reveal that only in 
cases such as walking vs. laying, where 
the difference between two signals is 
noticeable, the overall averaged partici-
pant response is close to Extremely Easy 
(1). This contrasts with the other pairs, 
where the overall averaged participant 
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BodyACCMag-energy ≤ –0.525
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FIGURE 6 Example model interfaces using (a) Decision tree (b) non-pictorial prototype representation (PType), and (c) PIP pictorial representa-
tion (PIP) for UCI-HAR datasets.

TABLE II Average Likert responses for raw time series data.

STEM CLINICIAN OTHER OVERALL

WALKING VS. WALKING UPSTAIRS 3.1 3.4 2.0 3.0

WALKING VS. LAYING 1.3 1.1 1.5 1.2 

MALFUNCTION VS. NO MALFUNCTION 2.7 2.4 3.1 2.7 

NUMBER-ONE VS. NUMBER-THREE 3.7 3.7 3.8 3.7 
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response is close to Neither Easy nor Difficult(3) or Some-
what Difficult (4).

B. End-user Accuracy
A fundamental measure of model interpretability is wheth-
er end-users can predict the outcome of a model based on 
its interface. As shown in Table III, most participants did 
select the correct outcome using the PIP pictorial repre-
sentation. We observe that the participants’ performance 
increases as they progress in the survey for classification 
using decision trees. On the other hand, for PIP represen-
tations, participants did not experience a significant learn-
ing curve because their performance was high from the 
beginning. The survey results reveal that the Ptype repre-
sentation is not an interpretable interface. For example, 
none of the participants could find the correct outcome of 
the Ptype interface for the UEA-Arabic dataset. It is evi-
dent that as the number of prototypes increases, it is harder 
for participants to distinguish between waveform graphs. 
This aligns with our result from the interpretability of raw 
sensor data. The results demonstrate that users are less 
prone to making a mistake when using the PIP pictorial 
representations. As Table III shows, the novice group 
(Other) was able to predict the outcome of PIP without 
having any prior knowledge. However, that was not the 
case when using DT or Ptype.

C. End-user Response Time
The time a user spends finding the outcome of a model is 
an essential indicator of interpretability. Although many of 
the participants were familiar with decision trees, the par-
ticipants spend more time discerning its prediction. As 
shown in Table IV, PIP decreases interpretation time by 
>24 seconds in comparison with Ptype, which method 
also suffered from model misinterpretation.

D. End-user Perceived Understandability
To investigate users’ perception towards the interpretabili-
ty of the model, we ask users: How easy was the task you 
performed? The easier a task is to perform, the greater is 
the likelihood of user understanding. To measure the par-
ticipants’ perception, they provided a Likert-scale 
response on task simplicity. The Likert-scale values range 
from 1 (Extremely Easy) to 5 (Extremely Difficult). As 
shown in Figure 8, the pictorial representation of PIP 
was the easiest model to use, and raw time series data was 
the hardest. The result of the experiment (see Table V) 
aligns with the end-user accuracy result in that all partici-
pant groups perform better using PIP than any of the 
other model interfaces.

E. End-user Trust and Reliance
At the end of each task, participants assess if they trust 
and would rely on the explanation provided by the 
given model. To measure trust and reliance, we take the 
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attitudinal viewpoint proposed by Lee et al. [35], which has 
been widely used in empirical studies of trust in human-
machine interaction [36]. Lee et al. [35] define trust as “the 
attitude that an agent will help achieve an individual’s goals in 
a situation characterized by uncertainty and vulnerability.” We 
employ a similar assessment as has been utilized to measure 
human trust in automation [37]. The Trust scale asks partici-
pants: Does the explanation of the model increase your trust to use it 
compared to a black-box model (a model with no explanation)? The 
Reliance scale asks participants: Does the explanation provided 
by the model make the prediction of the model clear? We average 
participant responses from Strongly Agree 1=  to Strongly 
Disagree 5=  to measure models’ trustworthiness. We observe 
that the additional details provided by a DT may increase 
trust for some users, as shown in Table VI. However, PIP reli-
ance score was better than the other two models as shown in 
Table VII. Figures 9 and 10 depict participants’ views of 
user trust and user reliance, respectively, for each model.

TABLE III Accuracy of participant classification for three 
alternative approaches, averaged over all of the datasets.

STEM CLINICIAN OTHER OVERALL

PIP 0.92 0.90 0.83 0.90

DT 0.87 0.83 0.40 0.79 

PTYPE 0.29 0.33 0.55 0.35 

TABLE IV Time spent by participants (in seconds) to 
perform prediction for three alternative approaches, 
averaged over all of the datasets.

STEM CLINICIAN OTHER OVERALL

PIP 6.89 15.86 20.50 11.79

DT 36.03 75.33 110.00 58.47 

PTYPE 21.43 49.63 60.38 36.17 

TABLE V Participant Perceived Understandability in four 
alternative representations, averaged over all of the datasets.

STEM CLINICIAN OTHER OVERALL

PIP 1.22 1.53 1.94 1.43

DT 2.19 2.96 3.83 2.69 

PTYPE 2.29 2.66 3.38 2.59 

RAW 3.77 3.83 4.16 3.85 
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TABLE VI Participant trust in three alternative types of 
explanation, averaged over all of the datasets.

STEM CLINICIAN OTHER OVERALL

PIP 2.45 2.13 2.55 2.38

DT 2.14 1.93 2.83 2.20 

PTYPE 3.03 2.56 3.38 2.96 
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F. PIP Accuracy
In addition to interpretability, we consider PIP’s accuracy. 
Table VIII summarizes PIP’s performance, averaged over 10 ran-
dom initializations. We note that an increase in the number of 
prototypes beyond #classes + 5 does not improve the PIP’s accu-
racy. In some cases, several of the prototypes look repetitive. Other 
times, PIP blends two or more of the base pictures, as illustrated in 
Figure 11 (5th picture from the left), likely because the learned 
prototype lies on class boundaries. While PIP’s accuracy is lower 
than that of ResNet and ROCKET, PIP provides a blend of 
accuracy and interpretability that cannot be achieved by ResNet 
or DT. The question of whether to prefer accuracy or interpret-
ability is often dependent on the needs of each user. Accordingly, 
we ask our participants how they value interpretability versus 

accuracy. The participants select 
a point on a linear scale, where 0 
indicates a preference for inter-
pretability, and 100 prefers accu-
racy. The average selection was 
64 ± 21 (STEM:65 ± 21, Clini-
cian:82 ± 21, Other:54 ± 21). 
This result indicates that users 
prefer a blend of interpretability 
and accuracy. At the end of the 
survey, participants chose the 
most interpretable model. 24 
participants selected PIP, while 
11 participants selected the 

TABLE VII Participant reliance in three alternative types of explanation, averaged over all of 
the datasets.

STEM CLINICIAN OTHER OVERALL

PIP 1.66 1.46 2.38 1.73

DT 1.71 2.20 3.38 2.14 

PTYPE 2.84 2.93 3.44 2.97 
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decision tree. Interestingly, 10 out of the 11 participants who 
selected the decision tree as the most interpretable model in our 
survey are from the STEM group. Most participants who select-
ed PIP are clinicians or work in other non-STEM disciplines.

To assess the impact of algorithmic parameters, we performed 
an ablation study to investigate the effect of each regularizer (R1, 
R2) and the prototype generator (M) on PIP’s performance. The 
results are shown in Table VIII. Eliminating R1 or R2 can desta-
bilize the learning, especially for smaller datasets. We observe that 
R2 has a greater effect on the results than R1. When both regu-
larizers are removed, the learned prototypes represent multiple 
copies of the same image or heavily-blended versions of multiple 
images. While the role of M is primarily to support generation of 
understandable prototypes, omitting M does not have a large 
impact on recognition accuracy.

While Gee et al. [18] note that a large number of proto-
types can increase accuracy at the cost of making the 

prototypes noisy, we did not observe that increasing the num-
ber of prototypes improved PIP’s accuracy nor created noisier 
prototypes. We advocate that the number of prototypes be 
systematically increased until performance converges.

VI. Conclusions
In this paper, we proposed a method for interpretable time 
series classification (PIP) that helps the end-user to under-
stand model prediction. PIP-generated prototypes provide a 
simple, intuitive explanation of model predictions. While the 
decision tree provides a detailed explanation of the prediction 
method, clinicians and people from other disciplines preferred 
the PIP pictorial representation. In fact, clinicians provided 
specific feedback that they “would not spend time viewing 
either the raw data graph or the decision tree in a time-sensi-
tive clinical setting.” Based on the clinicians’ feedback, they 
prefer the PIP pictorial representations in particular because 
the prototypes help them to make a fast decision in emergen-
cy conditions. On the other hand, 52% of participants in the 
STEM group prefer the decision tree’s interpretability because 
they can understand the decision model and fix the model or 
data. PIP provides a blend of interpretability and accuracy. 
Furthermore, the PIP’s ability to incorporate user-provided 
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picture prototypes makes this method appli-
cable to a larger group of end-user preferenc-
es. The result of our experiment illustrates 
that most people, especially those with less 
expertise, prefer a simple and understandable 
ML model interface. However, we believe 
that DT is still a powerful method, and as 
some participants reminded us, they appreciate seeing how 
the decision tree was constructed.

A limitation of the current PIP design is the difficulty of 
interpreting prototype images when user-provided pictures are 
blended or morphed. The process is most effective when simple 
sketches are provided. We postulate that interpretability may be 
challenging when the initial pictures are very detailed diagrams. 
A future research direction is to systematically determine the 
impact of picture detail on prototype interpretability. In this 
study, we focus on designing an interpretable model for an end-
user who is not able to directly interpret raw time series data. 
Our goal is to create an easy-to-understand explanation that 
such a user can interpret without the requisite time series 
expertise. Our experiments highlight the unique features and 
benefits of PIP.

In future work, we will analyze the impact of learning 
more complex image prototypes. Future experiments that target 
specific user group will also utilize images designed specifically by 
that group. Moreover, we would like to explore the possibility of 
representing time series prototypes as videos or text captions. 
These new directions will indicate the generalizability of the 
approach to multiple types of interfaces. To further investigate PIP 
usability, we will also conduct experiments with user-provided 
prototypes for applications that span multiple disciplines.
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�

PIP provides a blend of interpretability and accuracy. 
Furthermore, the PIP’s ability to incorporate user-
provided picture prototypes makes this method 
applicable to a larger group of end-user preferences.
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