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Abstract

In this article we prove short time local well-posedness in low-regularity Sobolev
spaces for large data general quasilinear Schrodinger equations with a nontrapping
assumption. These results represent improvements over the small data regime con-
sidered by the authors in MARZUOLA et al. (Adv Math 231(2):1151-1172, 2012;
Kyoto J Math 54(3):529-546, 2014), as well as the pioneering works by KENIG
et al. (Invent Math 158:343-388, 2004; Adv Math 196(2), 402-433, 2005; Adv
Math 206(2):373-486, 2006), where viscosity methods were used to prove the ex-
istence of solutions for localized data in high regularity spaces. Our arguments
here are purely dispersive. The function spaces in which we show existence are
constructed in ways motivated by the results of MizoHATA, ICHINOSE, Do1, and
others, including the authors.

1. Recap of History and Discussion of Main Results

In this article we consider the large data local well-posedness for quasilinear
Schrodinger equations, extending the earlier small data results of the authors in
[26,27]. Specifically, we will study equations of the form

iug + g/ (u, i, Vu, Vi)d;ou = F(u, it, Vu, Vi), u:R xR — C™
(1.1)
u(0, x) = ug(x).

Here, g and F are assumed to be smooth functions of their variables, with g real
and positive definite. In particular this allows for them to depend on both u# and u.

In the small initial data case these equations have already been considered by the
authors [26,27] in spaces of relatively low Sobolev regularity. The latter paper con-
siders problems which have only cubic and higher nonlinearities, where the initial
data is in Sobolev spaces H*. The former paper allows for general nonlinearities,
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i.e. including quadratic terms, but with smaller Sobolev spaces /' H*, which are
still translation invariant but have some stronger summability assumptions. These
will be made precise in the discussion below.

The aim of this paper is to prove instead a local well-posedness result for the
large data problem. Compared with the small data case, here we need to contend with
an additional obstacle, namely trapping. To prevent this, we impose a nontrapping
condition on the initial data. Then, as a part of our results, we prove that nontrapping
persists for some small time. In this context, the lifespan of the solutions no longer
depends only on the data size. Instead, our lower bound on the lifespan will also
depend on a quantitative form of the nontrapping assumption.

Here we will work primarily with quadratic nonlinear interactions, as in [26].
We will also state the counterpart of the result in the cubic case, as considered for
small data in [27]; however, as the proofs only differ slightly we will focus on the
quadratic setting and only remark where the proofs need adjustment for the cubic
interactions. Specifically, we will study the equations (1.1) assuming that

g:C" x C" x (C™)? x (C™)? — RI¥4,
F:C" x C" x (C™)? x (C™¢ - C"

are smooth functions which, for y, z € C" x (C™)4, satisfy
g0) =14, |F(y,2)|~ O(y*+ |zI*) near (y, 2) = (0, 0) (1.2)
in the quadratic interaction problem and

g, 2) =1+ Oyl + 1215, F(y,2) = O(yl> +1zI*) near (v, z) = (0, 0),
(1.3)

in the cubic interaction problem. We will also assume uniform ellipticity of g in
both cases. Namely, we will assume that

cole* < g/*e it < 5 1E

for a fixed co > 0.
Asin [26,27], we also consider a second class of quasilinear Schrodinger equa-
tions

iug + ;8% (u, W)dgu = F(u, i, Vu, Vi), u:R x R — C™
(1.4)
u(0, x) = up(x),

with g and F as in (1.2), but where the metric g depends on u but not on Vu.
Such an equation is obtained for instance by differentiating the first equation (1.1).
Precisely, if u solves (1.1) then the vector (1, Vi) solves an equation of the form
(1.4), with a nonlinearity F which depends at most quadratically on Vu.

We note that the second order operator in (1.4) is written in divergence form.
This is easily achieved by commuting the first derivative with g and moving the
output to the right hand side. However, the second order operator in (1.1) cannot
be written in divergence form without possibly changing the type of the equation.
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The proof of the large data result presented here follows the same strategy as
in the works [26,27]. The main novelty in this paper is in the proof of the local
energy decay estimates for the linearized equation. The difficulty is not only that
we need to work with a large nontrapping metric, but also that, in order to prevent a
nonlinear energy cascade to high frequencies, we have to produce a very accurate
bound for the (exponentially large) constant in the local energy bounds in terms
of our quantitative nontrapping parameters. Our proof requires a new multiplier
construction for the estimates since here we assume no quantitative decay of the
solution in the physical space. Also, a careful set-up and ordering of large constants
is essential in order to avoid a circular argument.

Even at the linear level, an obstruction to well-posedness comes from the infinite
speed of propagation phenomena. We recall some of the issues here as it is even
more relevant for the large data problem. From [13,24,29-31,36] it is known that
even in the case of linear problems of the form

(0 + Ag)v = A;(x)d;, (1.5)

a necessary condition for L? well-posedness is an integrability condition for the
(imaginary part of) the magnetic potential A along the Hamilton flow of the leading
order differential operator. In the case of (1.1), we would have to look instead at the
corresponding linearized problem, which would exhibit a magnetic potential of the
form A = A(u, Vu). If one considers equations with quadratic terms and with H*
initial data, then such a potential does not generically satisfy Mizohata’s integrabil-
ity condition. Thus, some further decay condition on the initial data is necessary. A
further motivation for decay conditions comes from the large data problem, where
one seeks to confine the trapping analysis to a compact set. Together, these two
observations show that in our context nontrapping is a compact phenomena, and
also that it is stable with respect to small perturbations of u.

Indeed, such a decay condition was manifest in the seminal papers [17-19],
where the first local well-posedness results for this problem were obtained. There,
local well-posedness results for this problem were proved for data (and solutions)
in H* N L2((x)V), where (x) = (1 + |x|%)?2, for some large s and N.

By contrast, our previous results in [26,27] apply for initial data in spaces which
are not only low regularity, but also translation invariant. Precisely, for the quadratic
problem (1.2) we use the HS spaces (see a precise definition below), while for the
cubic problem (1.3) we revert to the classical H® spaces. Maintaining this natural
setting is one of our objectives for the large data problem.

We now turn our attention to the nontrapping condition for the initial data.
This is defined in a qualitative manner in terms of the Hamilton flow associated
with g(ug) (or equivalently, the geodesic flow associated to the Riemannian metric

8(uo)):

Definition 1.1. We say that the metric g(u) is nontrapping if all nontrivial bichar-
acteristics for Ag(,,) escape to spatial infinity at both ends.

To motivate the fact that this definition is meaningful for u( in our initial data
spaces we make several observations. Firstly, our choice for the initial data space
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guarantees that g(ug) € C2, therefore its Hamilton flow is well defined locally.
Secondly, while 1o may be large, the fact that we are using L based spaces implies
that ug is small in our function spaces outside a large compact set. Thus trapping
is necessarily confined to bicharacteristics which intersect this compact set.

The above qualitative definition of trapping suffices in order to state our main
results. However, in order to prove the results, as well as to provide a lifespan bound,
we will have to use a more precise quantitative characterization of nontrapping.

Before stating our main results, we briefly recall the definition of the /' H*
spaces, following [26]. These are defined using a standard spatial Littlewood—Paley
decomposition

1=Zsk,

keN

where Sy selects all frequencies of size < 1. Corresponding to each dyadic fre-
quency scale 2/ > 1 we consider an associated partition Q; of R< into cubes of
side length 2/ and an associated smooth partition of unity

1= ZXQ.

0eQ;

Then we can define the ljl.L2 norm by

e = D lxoul e,
0€Q;

and the space /! H® with norm given by

2 2sj 2
lllfs g =Y 2% [1Sjull o
j=0 !

With our spaces in hand, we can now state our main result concerning the quasilinear
problem (1.1) with data ug(x) €/ 'H* and quadratic interactions as in (1.2).

Theorem 1.2. (a) Lets > %1 +3. Letug € [' H® be a nontrapping initial datum for
the Eq. (1.1) with quadratic interactions (1.2). Then, there exists T = T (up) >
0 sufficiently small such that the Eq. (1.1) is locally well-posed in I H* (R?) on
the time interval 1 = [0, T].

(b) The same result holds for the Eq. (1.4) with s > % + 2.

The counterpart of this result for the cubic problem (1.3) is as follows using
standard Sobolev spaces, which extends [28] to the low regularity regime:

Theorem 1.3. (a) Let s > # Let ug € H® be a nontrapping initial datum for

the Eq. (1.1) with cubic interactions (1.3). Then, there exists T = T (up) > 0
sufficiently small such that the Eq. (1.1) is locally well-posed in 1> H* (R?) on
the time interval I = [0, T].

(b) The same result holds for the Eq. (1.4) with cubic nonlinear interactions with
d+3
S > -
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Remark 1.3.1. The well-posedness result in the statement of the theorems above
has to be interpreted in the classical quasilinear fashion. Precisely, in the setting of
Theorem 1.2, it asserts that

(i) (Regular solutions) For large o and regular nontrapping data ug € ' H°
there exists a unique local nontrapping solution # € C(I' H®) on a nonempty
maximal time interval I = [0, T},,4x (10)).

(ii) (Rough solutions) For s as in the theorem and nontrapping data ug € ' H*
there exists a unique local nontrapping solution u € C(I'H*) N I'X* on a
nonempty maximal time interval I = [0, T;,4x (10)). The spaces [ 1X$, which
capture the space-time local energy decay structure, will be described in the
next section.

(ii1) (Continuous dependence) The maximal time 7},,y (40) is a lower semicon-
tinuous function of ug in the /' H* topology, and the data to solution map
vo — v is continuous at uq from /! H® into C([0, T1; I*H®) NI X5([0, T])
forall T < Ty (ug).

The latter property allows one to alternately uniquely identify rough solutions
as limits of regular solutions.

Remark 1.3.2. The existence time 7" in the theorem is allowed to depend on the
full profile of the initial data up, and not only on its size. This dependence will
be made more clear later on. The difficulty is that the well-posedness depends not
only on the size of the data, but also on the nontrapping property of the metric.
Later we will introduce a more explicit parameter L = L(ug), which quantitatively
measures nontrapping, and is stable with respect to small perturbations of u¢. Then
we will show that it suffices to choose 7 < 1 so that

1og T'| > jlugll,1 s Lo (1.6)
where the implicit dependence on the data size is polynomial.

Remark 1.3.3. In order to define nontrapping, we require a well-defined Hamilton
flow. A sufficient condition which guarantees this is to have a C L1 metric, and that
is satisfied in the context of Theorem 1.2. However, this is not guaranteed in the
case when s < % + 2, in Theorem 1.3. Nevertheless, we can instead guarantee

Vzg € Lz(Rx1 , LOO(R;IT 1)), as well as in any other rotated frame; this still suffices
in order to define the flow as a bi-Lipschitz map. In turn, implementing this would
require appropriate changes in Section 6; we omit these, and instead refer the
interested reader to [4] where a similar analysis was conducted.

We further remark that the short time large data result cannot be obtained by
scaling from the small data result. This is due to the fact that the spaces used are
inhomogeneous Sobolev spaces, and spatial localization is not allowed due to the
infinite speed of propagation. A reflection of this is the fact that the small data case
is nontrapping, while in the large data regime, one must also take into account the
existence of trapping.

The paper is organized as follows. In Section 2 we describe the space-time
function spaces in which we will solve (1.1) and (1.4); these are identical to those
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in the small data setting in [26,27]. In Section 3 we introduce some key notations,
including the main size parameters which govern our lifespan bound, and give an
overview of the proof. Section 4 contains the necessary multilinear and nonlinear
estimates in order to close the eventual bootstrap estimates; some of these are from
[26,27], but the main bound for the paradifferential error term is new. The stability
of the nontrapping assumption will be discussed in Section 5; this is critical in
order to propagate nontrapping to positive times. In Section 6 we establish local
energy decay for a linear, nontrapping, inhomogeneous paradifferential version of
the Schrodinger equation. Finally, in Section 7, we combine the above estimates
with the proper paradifferential decomposition of the equation in order to conclude
the proof of Theorem 1.2.

2. Recap of Function Spaces and Notations

In this section we recall the definition of the main function spaces as well as
some of their key properties. For this we follow our previous works [26,27].

We will use an inhomogeneous Littlewood—Paley decomposition ) ", .y Sk = 1.
We setu; = Sju and

N 00 N>
S<nf = ZSif, S>nf = ZSif, Sivi N1 f = Z Si f.
i=0 i=N i=N

When it is clear from the context, we may abuse notation and use ug = Sou.
Given a translation invariant Sobolev-type space U, we define / ;’ U via

el = > lxouly),
! 0€Q;

which generalizes the notion of /! L? defined in the introduction. We make the
natural modification when p = oo. Upon replacing the sum over the cubes with an
integral, the existence of translation invariant norms that are equivalent can easily be
checked. As noted previously in [26], the smooth partition of compactly supported
cutoffs in the / ]1 U spaces can be replaced by cutoffs which are frequency localized
when it is convenient.

We recall briefly the local energy type space X of functions on [0, T'] x R?,
with norm

I
lullx = sup sup 272 {lull;2 o 71x @)
I 0cO 7. ([0.T]1x0Q)

Note, these spaces are dependent upon 7', and hence the dependence upon the time
interval in the estimates below will be treated with some care.

We define Y C L%x([O, T] x R?) to satisfy X = Y*. This will be the space in
which we measure the forcing terms for the Schrodinger equation. See, e.g., [5],
[26] for more details on the construction of this atomic space.
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We set
X;=2"3XNL>®L?

which will incorporate the half-degree of smoothing into our local energy spaces.
We then add the /7 spatial summation on the 2/ scale to obtain the space / f X with

norm
el = 2 lxoullk,-
J
0eQ;
We finally define the spaces [” X* by
2 2jsi Q.2
et =y 2 17l @.1)

J
For quadratic interactions, we shall use /' X* to bound the high frequencies exterior
to a large ball in our solutions to (1.1), (1.4) with nontrapping /' H* data. For cubic
interactions, we shall use p = 2 and data in I?HS ~ H".
For the inhomogeneous terms at frequency 2/, we shall use

Y; =28y + L'12
which has norm

Iflly;, = ij_nf I fully + 120z g2
f=22fi+f2
We then similarly consider

2 2js ) Q. £112
I Woys = Zz 17 £ ey, 2.2)
J
where p = 1 will be utilized for the case of quadratic interactions and p = 2 for
the cubic case.
We also record the spaces X* without the summability. These are given by the
norm

lulles = D 2211l 2.3)

J
Similarly, we define Y* via
£ = D218, f1I5,- 24)
J
In the regimes where we can apply paradifferential analysis, it is convenient

to present our bilinear and nonlinear estimates using the method of frequency
envelopes, which we recall below. For a Sobolev-type space U so that

o0
2 2
laell ~ D 1Seull,
k=0

a positive sequence c; is called an admissible frequency envelope for u in U pro-
vided that it
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(1) controls the dyadic U size,
ISkullu < cx,
(2) is controlled by the U norm,
Yok S lullg
keN

(3) is slowly varying to the left,
cj > 25(j7k)ck, j <k,

and
(4) is uniformly varying to the right,

cj > 206Dy, >k
for a fixed (large) o.

These properties are easily adapted to the case when the /> dyadic summability is
replaced by [P with 1 < p < oo.
An admissible frequency envelope always exists, say by

¢j = max 2V K Sy + max 277 K Seu . (2.5)
k>j k<j

In the sequel we will use frequency envelopes for the spaces [” H*, [P X® and [?Y*
forp=1,2.

3. Outline of the Proof

Let us briefly outline the ideas we will pursue below for the case of quadratic
interactions and the Eq. (1.4). The cubic case will follow similarly. We seek to solve
the equation

iug + ;87 (u, W)ogu = F(u, it, Vu, Vi), u:R x R? — C™,
(3.1)
u(0, x) = uo(x),

inl"H* fors > 5o > % + 2. Here we have explicitly included the dependence upon
u and u separately since the large data dynamics will depend upon them both more
delicately than in the small data case.

1. The linearized and paradifferential equation. An important role in the analysis
will be played by the linearized equation, which has the form

iv; + 385 0kv + bI3;v + 5790 + cv + v =0,
3.2)
v(0, x) = vo(x),
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where the coefficients g, respectively b, bl , ¢, C, are smooth nonlinear expressions
in u, respectively u, Vu, which can be explicitly calculated in terms of g and F. In
particular, we have

bl = .87 u — dvuy, F. b = dag/*pu — deviy, F.

" . " 3.3)
c= 8j(8ug] Yoru — o, F, ¢c= E)j(a,;g] )opu — 0z F

for a fixed u € I' X*.
From the linearized equation we extract its associated linear paradifferential
flow

10w + 0 TyjnOpw + Ty djw + Tj; 0w = f.

(34
w(0, x) = wo(x),
where we take the paraproduct operator to be
T,b = Z S<n_4aSyb. (3.5)

N>4

For some of the analysis it will be more convenient to use the Weyl quantization
for the paraproduct, which is denoted as follows:

Vb = OP“’(Z SSN_4a(x)sN($)).

N=>4
If v solves (3.2) then it also solves (3.4) with

f= @ T (u, 0w — 3;87* w) + (T}, 0w — b7 ;w)

+(Tj;9;w — b 3;w) — cw — &w.

Here heuristically f contains only high-high frequency interactions; e.g. in the
multilinear case, the two highest frequencies must always' be balanced. Because
of this, its contribution will always be treated perturbatively.

2. Rewriting the equation. Based on the expressions above for the linearized
equation and its paradifferential truncation, we write the full nonlinear equation
(3.1) in a paradifferential form, namely

i0:u + ajT;j-kaku + Tbl_l;aju + T};lj.)ajl/_t =G,
3.6)
u(0, x) = ug(x).

1 Thisis not entirely accurate in what we do. Instead, f is also allowed to contain low-high
interactions as long as the high frequency factors are undifferentiated; this makes such terms
perturbative.
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Here the nonlinearity G = G(u, u, Vu, Vi) is no longer purely algebraic, as
it involves frequency localizations. The key idea in our proof of the local well-
posedness result is that G plays a perturbative role. In order that we have it, we
record that

Gu, it, Vu, Vit) = F(u, i, Vi, ViD)=9;(g/ =T %) du + T, ju + T2 ;0

where b and b contain both contributions arising from g and from F’; see (3.3).
The solutions will be constructed via an iterative scheme, where we set u O - 0,
and successively define 1) as the solution to the linear equation

(004 0,72 0+ Ty -9 ) D £ T2 V0D = G, Vi),
3.7)

u(n-H)(()) = u
where
g(n) — g(u(")), pm — bw(")y Vu(”)), b — B(u(n)’ Vu(")).

Each of G, g™, b™, b™ also depends on the conjugates of the solution, but this
is suppressed here. In order to guarantee the convergence of this scheme we will
carefully choose time 7 small enough, depending on the initial data profile.

3. Quantifying nontrapping: the parameters M, R, L. For the purpose of char-
acterizing the nontrapping properties of the metric g(u#¢) we do not need the full
H’ regularity. Instead we will use a smaller exponent sq so that

d
5+2<s0<s; 3.8)

its choice within these bounds is not important, but we fix it once and for all. The
gap between sg and s will be critical in order to propagate the nontrapping property.

The first parameter M we use to describe nontrapping measures the size of the
data,

M = |luollj1 gso - 3.9)

Outside a compact spatial region B = B(xg, R) where both x¢ and R depend on
ug, the metric g;; (1) will have a small 11 H% norm, and thus be nontrapping. The
nontrapping assumption guarantees that all geodesics intersecting B will eventually
leave 2 B at both ends, and never return to B once leaving 2B. We denote by L 2 R
the maximum Euclidean length of any such geodesic within 2B. The nontrapping
condition is then shown to be stable with respect to perturbations, g — g + g, of
the metric which satisfy an exponential smallness condition

18811 xs0 S e COME, (3.10)

This is proved in Section 5.
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4. Nontrapping and norm inflation. In order to carry out the above iteration, we
need to consider energy estimates and local energy decay for the linear paradiffer-
ential flow (3.4). Precisely, we would like to have bounds of the form

lwlljixe < Cllwollige + 1 fllys), 0<o (3.11)

in a time interval [0, 7] where T" depends only on the initial data wy.

However, even if wg = 0, 0 = 0 and T is arbitrarily small, the energy bounds
for this system will exhibit L growth, due both to the large metric in the compact
set B(xp, R) and to the large coefficient b for the first order term. Hence, the best
we could hope for is a bound of the type

lwlixo S eCMElwoll 2 + 11 fllyo), (3.12)

with the only redeeming feature that only a lower regularity /' X*0 bound for u,
which occurs in the coefficients, is needed. Naturally, the constant C in (3.11)
would have to be at least as large as the exponential in (3.12). Indeed, in Section 6
we establish that the bound (3.12) holds.

The key to handle this exponential growth is to restrict to a very short time
interval [0, T'], with T satisfying

T < e CUDL (3.13)

To balance the choice of 7" and the exponential growth we divide and conquer.
We first prove a high frequency energy estimate via positive commutator methods
that control the high frequencies while allowing low frequency errors; this part is
independent of the length of the time interval. Then, we are able to use the short
time in a more direct fashion to control the contribution from the low frequencies.

5. Nontrapping and high frequency energy estimates. The first step in the proof
of (3.12) is to use a positive commutator method in order to establish local energy
bounds with low frequency errors,

lwllxo < e“E(lwoll 2 + I fllyo + lwllz22) (3.14)

with no restriction on the time 7. This is done in three stages:

(i) Bounds for incoming rays. Here we estimate the energy along geodesics which
approach the compact region 2B without any norm inflation by introducing a
suitable incoming multiplier Q;y,.

(i) Bounds in a compact set 2B. This is where we bound the local energy norm of
the solution in 2 B in terms of the incoming part, using the nontrapping condition
to construct a suitable multiplier Q comp. This is where the norm inflation occurs.

(iii) Global bounds. Here we use the local energy estimate in 2B in order to produce
a global exterior bound, which follows very similarly to the small data metric
perturbation theoretic arguments of [26,27].
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6. Low frequency estimates for short time. The last step in the proof of (3.12)
is to complement the above high frequency bound with an estimate for the low
frequencies. This is quite trivial and is obtained by Holder’s inequality in time,
which gives

1 1
lwiigzre S T2 lwllpeor2 S T2 llwllxo. (3.15)

7. Uniform bounds for the iteration scheme. The difficulty we face here is that,
in view of the bound (3.12), the best we can expect of the sequence u™ in I! X* is
a bound with exponential growth of the form

N s < eS| fugln s (3.16)

Such a bound cannot be directly obtained in a self-contained inductive argument
and is predicated on the additional assumption that
1™ 1 x50 < M.
To avoid a circular argument, we will obtain this last bound not directly from

(3.16), but rather by interpolating with a lower regularity bound but which has a T
factor,

™ — uglljipoer2 STM.

After interpolation, we will be able to leverage the remaining (small) power of T
against the exponential provided that
T <m, e CME M = uoll s (3.17)

8. Lipschitz bounds and weak convergence for the iteration scheme. Here we
consider the difference equations for ™+ — ™ and use the bound (3.12) directly
to prove the convergence of the iteration scheme in /' X°. Given the uniform /' X*
bound, we also obtain convergence in all intermediate topologies. The same type
of argument also yields Lipschitz dependence of the solutions on the initial data in
the weaker topology, and in particular uniqueness.

9. Frequency envelopes and continuous dependence. Frequency envelope bounds
are only needed at high frequency. They are derived from similar frequency enve-
lope bounds for the paradifferential equation and allow us to (i) propagate higher
regularity and (ii) prove continuous dependence on the initial data in the strong
topology.

4. Multilinear and Nonlinear Estimates in /' X Type Spaces

In this section we recall the main bilinear and nonlinear estimates from [26],
and add several related bounds that can be derived from them.



Quasilinear Schrodinger Equations II1 1131

4.1. Bilinear and Moser Estimates
Our aim here is to recall some of the estimates in [26], as well as to provide
some improvements adapted to the context of this paper. We begin with bounds in
xs spaces, where we first recall the dyadic bilinear bounds from [26] (these are
contained within the proof of Proposition 3.2 there).
Lemma 4.1. The following bilinear estimates hold in [ }X j spaces:
(a) High-low interactions j < k — 4:
Jd
1SjuSkvllyx, <27 IIMIII;X‘,.IIUIIIAIVX,(, 4.1
(b) Balanced interactions, |j — k| < 4:
< ndkr—4
1Si (SjuSkv)llry, 277272 IIMIIIJI_X/.IIUIIZA{X,(- (4.2)
We note that in case (a) it suffices in effect to bound the low frequency factor

in L, as the [ ,i X norms depend only on the pointwise size of functions. For the
L norm, on the other hand, we have the Bernstein-type inequality

ISjullzer S 2% ully,. (43)
We continue with a refinement of [26, Prop. 3.1(a)].
Proposition 4.2. (a) Lets > %. Then the I' X* spaces satisfy the bilinear estimates
luvlipxo S lullpxo lvllpgs + lullpxslvlpge, d—s <o, (44)
respectively
luvlpxe S lulljixollvlljiys, d—s <o <s. 4.5)

(b) For all smooth F with F(0) = F'(0) = F”(0) = 0 we have the Moser-type
estimate

2
IE@lpxe S lullpxe lullysellulle), d—s <o, (4.6)
as well as the difference estimates

IF @) — F)lljxe S llu—vllpxe (lullgs + Ivllpxs)2elull e, [lvllze),
d—s <o <s. 4.7)

Here in (b) we are assuming that F(u) is cubic in u near u = 0 just for
convenience, as the linear part is uninteresting and the quadratic part is dealt with
in (4.4) and (4.5).
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Proof. The bilinear estimates (4.4) and (4.5) follow almost directly from [26, (3.1)].
For the high-high frequency interactions, using (4.2) we get

| X sisusiv), § 3 e Dllallp o 0l (48)

For these interactions, the bound (4.5) follows provided o > d — s. And hence
(4.4) follows trivially. For the low-high frequency interactions, by (4.1) we have

i_ .
| > sususiw| 5 D 20 Y ISl vl

\]<k|_4 ]<k—4 |i—k|<4
1 <

In order to obtain (4.5), and hence (4.4), for these interactions, we only require
s > % In the remaining case, from (4.1) we instead obtain

4 _5Y)ink(o—
- < Z 7(§—0)igk(c s)||u||llX” Z 1S vl xs-

i<k—4 i<k—4 |j—k|<4

Here, when o < %, we again only require s > %. When, however, o > ‘7’, in order
to obtain (4.5), we additionally require that ¢ < s. This in turn justifies the need
for the symmetric term in (4.4) when such an upper bound on the range of o is not
assumed. In [26], the corresponding estimates were phrased in a more precise way
using the concept of frequency envelopes, which one could also do here.

The Moser-type estimate (4.7) is a refinement of [26, (3.2)], which showed that
if s > %’ and F' is smooth with F'(0) = 0, then

IE @)l S Nuellyrxes (4 Nullyxsde(lullze). (4.9)

A trivial improvement of this is obtained in an identical manner if we eliminate the
linear part of F, and assume instead that F(0) = F’(0) = O:

IF @y S Nl geClull o). (4.10)

To prove (4.7), we write

1
Fu)—Fw)=( —u)/ F'((1 —t)u + tv)dr,
0

so that (4.5) gives

I F(u) — F)lljixe < llu—vlljpxe sup | F' (1 —t)u + tv)][1xs.
t
Using (4.10), this is in turn bounded by

2
e = vl o (s + [0l s ) eClullzos, o),

as desired.
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For (4.6), this follows directly from (4.7) with v = O whend — s < o < s.
However, we require this estimate for all d — s < o; this will be critical later on
in order to achieve higher regularity bounds for our nonlinear evolution. In order
to prove (4.6) for o > s, we must revisit the proof of (4.9) from Proposition 3.1 in
[26]. We use the expansion

SLF () = Sk F (o) + /0 Seu F' =)

Here we have temporarily replaced the discrete Littlewood-Paley decomposition
by a continuous one with Id = So + [;° S; dj.

For the first term we can simply use (4.6) in the already studied case s = o
since the norms are equivalent on u¢. Indeed, we have

1Sk F o)l xo S 2K NSk F uo)lly s S 287927V 188N (F (o)) 1 xs-

Upon choosing N > o — s and computing the derivative, the bound for Sy F'(¢)
follows immediately from (4.5) (with o = s) except for the terms

1Sk (BN u0) F' (o)) Nt s + ISk (@=N"1ud) " (o)) 11 xs-

The bounds for these terms instead follow from (4.5) followed by an application of
(4.10) and (4.9) respectively.

For the integrand, as an intermediate step we need to estimate the expression
fj = F'(u<j). A direct application of (4.10) yields the bound

15l S Nl el o). @.11)

Differentiating any number of times and then applying (4.10) yields the better high
frequency bound

I fillxsen S NN fillngs S 2Mullfi goellulli), N >0,  (4.12)

where we have argued as in the F (u() case above to obtain the last inequality.
Then the desired estimate (4.7) is obtained using the Littlewood—Paley tri-
chotomy as follows:

(a) For high-low interactions we must have |j — k| < 4, and we bound

1Sk CujS<jafi)lliixe S llujllyxe | fillzoo

A subsequent application of Bernstein’s inequality and (4.11) yields the desired
estimate.
(b) For high-high interactions we must have j > k — 4, and we use (4.2) to bound

< (s —d)(k—j)n(§ =)k

1Sk (e j Stj—a, j+a1 fi)ll xo e jllpxo Sl xs -

The rapid decay with respect to both k and j provides the summability, and an
application of (4.11) completes the estimate.
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(c) For low-high interactions we must have j < k — 4, and we use (4.1) to bound

o . d—sj NT
S fillpxo S 20075 nl5) 21110 27N Sk £ 11 s -

For N > o — s, we obtain sufficient decay with respect to both j and & to obtain
summability so that (4.12) completes the estimate.

This concludes the proof of the proposition. O

We next turn our attention to bilinear estimates from X x X into Y -type spaces;
we first recall the two main dyadic estimates from there.

Lemma 4.3. The following bilinear estimates hold in l]l. Y; spaces:
(a) High-low interactions j <k —4:
ik
ISjuSiollyy, S 2727 ISullyy 1Sl x, (4.13)
(b) Balanced interactions, |j — k| < 4 :
kd
1S (SjuSkv)lyry, <22 1Sl 1Skvlly - (4.14)

These estimates are the main building blocks for the proof of [26, Proposition
3.1 (b)]. The results there are no longer sufficient in the present paper, where, in
order to deal with the large data problem, we also need bilinear bounds where a
gain is obtained when 7" < 1. Our result is as follows:

Proposition 4.4. Let s > % 4+2and T < 1. Then for any § > 0 sufficiently small,
the following bilinear bounds hold on the time interval [0, T]:

luvlljiyo—s < Tolulljiyomt|v]jixs—1, 0<o <s, (4.15)
luvljiyo—s < Toulliyo vy, O0<o <s-—1. (4.16)

We remark that setting § = 0 one recovers [26, Proposition 3.1 (b)].

Proof of Proposition 4.4. The main step of the proof is to establish the extensions
of the bounds (4.13) and (4.14) where we gain a power of T'. In the case of (4.13)
we will trade the balance of derivatives for the 7% gain and will prove:
418 (ji— .
1SjuSivllyy, S T°27 20700 S5ulyy ISkvllp g, J <k =4, 8€[0,1]
4.17)

On the other hand, as it turns out, the bound (4.14) already has the 7" gain built in,
so we will prove that

kd
115 (S juSkv)ll;1y, S T2z ||Sj”||ljl,xj ISkvlly x, - (4.18)

Once these dyadic bounds are proved, the conclusion of the proposition easily
follows after applying the Littlewood-Paley trichotomy and appropriate dyadic
summation.
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We first prove (4.17). Due to (4.13), we already know it for § = 0, so by
interpolation it suffices to prove it when § = 1. Using Holder’s inequality in time,
we have

”SJ'”Skv”l,lYk < ”Sjuskvnl,lLlﬂ

~

jd
S ISjullzoerseTISkvll o2 S T2 1Sj2elly 1, ISkl

as needed.
The bound (4.18) follows by a similar repeated application of Holder’s inequal-
ity and an application of Bernstein’s inequality:

1
I1Si (SjuSiv)lry, S WSi(SjuSv)lyipie S T2ISi(SjuSiv)lp2g
1 d f d .
S T2228 D)8 (SjuSkw)ly 22 S T22 V1S (SjuSev)ll) o2

dk dk
< T2 ||SjuSkU||1]1LooLl ST22 ||Sju||1}xj||SkU||1L!Xk~

4.2. The Paradifferential Source Term

Our goal here is to obtain estimates for the paradifferential remainder term
G (u). We recall here that

Gu, it, Vu, Vit) = F(u, it, Vu, Vit) = 8;(g7* — T)dgu + T3 0,u + T20;.

Proposition 4.5. Assume that so > % +2. Then the nonlinearity G satisfies uniform
bounds,

IG@ ljye S TPClullyxs)llullyixe, 0 <o. (4.19)
as well as Lipschitz bounds,

G 1) — Gua)lljye < TPClurallpxso)llur —uzlliye 0 <o < sp.
(4.20)

Remark 4.5.1. We note that in addition to the T¢ gain, here one could also obtain
a slight gain in regularity for G, which is common in quasilinear problems for the
paradifferential remainders. We do not pursue this here. By the same token, the
Lipschitz bound extends to a slightly larger range for o.

Remark 4.5.2. Another refinement of the bounds (4.19) and (4.20) is in the de-
scription of the constant C. Above, C is allowed to fully depend on the /! X*° norm.
One could refine this and restrict the dependence on the full /! X*0 norm to at most
quadratic, but with a full dependence on the L° norm, akin to Proposition 4.2.
Such an improvement is implicit in the proof below, but not needed for our results.
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Proof. Rewriting the Eq. (1.4) in nondivergence form,
iug + g/ (u, 0)d;0u = F(u, t, Vu, Vii),
where
F(u,it, Vu, Vit) = F(u, it, Vu, Vit) — 3,8 (u, 0)dju du — 287" (u, 0)d;it du,
one can verify by a direct computation that we can split G = G| 4+ G, where

Gy = (g/* - Tgwk)ajaku,

J

Gy =F — Tbujjf)ju — Tl;’ifajﬁ,
where by a slight abuse of notation we have redefined
bj = 33juf~7, l;j = 831.[,F.

We will work with G directly in the form above, but G, needs some further
processing. Precisely, using a continuous Littlewood—Paley truncation indexed by
the dyadic parameter k, we write G in the form

o0
Gy = F(u,uo) +/ (b, Vi) = Ty i) Vit
0

+(E(u7 Vui) — YVauy dk.

w
TIS(u,Vu)
4.21)

The two integrated terms are similar and can be estimated separately so we consider
the first one. There we re-expand to rewrite the integrand as

o0
S>k_4b(u,Vu<k)Vuk+/ Sot—a(b(u, Vu_j)Vu)Vurdj.  (4.22)
k

At this point we divide the argument into two cases, depending on how o compares
with sg.

Case 1, o > so. Here we only need to prove (4.19). For G| we apply the Moser
estimate (4.6) to get

llg(u) — Iy xo Sum el xo

and then apply Proposition 4.4 (specifically (4.18)).

For the first term of G, in (4.21) we simply apply the Moser estimates (4.6) to
placeitin /' X c TI'Y°.

Next we consider the two terms in (4.22). For the expression by := b(u, Vu i)
we use the Moser estimate (4.6) to bound

1Bxlly o100 S 2" C o) lullp xo (14 Nlulliyso), 7€ (0,11, so <o
(4.23)

Here the case i = 0 follows by applying (4.6) directly to b(u, Vu i) , whereas the
case h = 1 is obtained by applying (4.6) to its gradient. In the first term of (4.22)
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we can conclude now via (4.15) (or, more precisely, the dyadic bounds (4.17) and
(4.18)).

In the integrand in the second term of (4.22) we can freely insert a projector
and rewrite it as

Sck—4(SjbjVuj)Vuy,
after which we estimate applying (4.17) and (4.5) sequentially

1S<k—a(Sjb;VupVuglye S T 2S;b; Vil xso- gl xo

~

8~8(k—j
S T2 Dbl o1 1V 1 o= Nt e

Now we can conclude by (4.23) with 0 = sgp and 2 = 0.
Case 2, 0 < o < sg. Here we only need to prove (4.20), as (4.19) is then a
straightforward consequence. We denote v = u» — 11 and use u for either u; or u».
For G| we represent

gur) — g(uz) = vh(u)

for a smooth function 4. Then

G1(1) — Gi(u2) = ) Sop—a(Wh(u)dug + S-r—a(g())d vy
k

The terms A (u) — 1 (0) and g (1) — g (0) are estimated in /! X0 by the Moser estimate
(4.6). The second term as well as the contribution of constants in / are estimated
by (4.17), (4.18). One might want to also use bilinear estimates to fully include
w = h(u) — h(0) in v, but this is not allowed by the limited range of o in (4.5).
Nevertheless, we can estimate the high-low interactions in vw in this manner. For
the remaining terms we need to treat this as a trilinear bound,

I1SjvS;wSkullye < TP2727 700 vl go lwllgso | Skutllyso,  J =k — 5.
(4.24)

For this we separate into two cases. If j > k + 4 we use the algebra property to
absorb Syu into w, and then apply (4.15). Else, |j — k|' < 4 so we can place the
product S;wSiu into 1 x*0~! with a 27 gain, and then use (4.15).

We now turn our attention to G». The contributions arising from the first term
in (4.21) are easily estimated using the Moser estimates in (4.6) and (4.15). We next
consider the differences corresponding to the first term in (4.22). Using again the
notation by for expressions of the form b(u, Vu i), the differences will be linear
combinations of expressions of the form

Sok—a(Wb)Vug, Ssr—a(Vvab)Vug, Ssip—abiVur.

Given the bound (4.23) for by, the first term is like in the case of G but better.
The second term is worst in the case o = sp, which was already covered in Case
1. Finally the last term is as in Case 1, and can be handled using (4.23) and (4.15).
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Next we consider the integrand in (4.22). For any expression b; = b(u, Vu<;)
we use (4.23), which allows us to reduce the problem to estimating quadrilinear
terms as follows:

Sck—a(WbjVuj)Vur S<x—4(bjVv.jVu;)Vuy,
Sck—a(bjVvj)Vur, S<k—4bjVu;)Vuyy.

If the frequency of v is < k 4 4 then this is no different from Case 1. In particular,
we can fully discard the last term. Else, the worst case is ¢ = 0, which we assume
from here on. For the first two terms we can use the algebra property to bound
b;jVu; in 2791 x%0~1 where the gain is only needed to insure the j summation.
Then in all three cases we are left with a trilinear bound

1S <k—ajwuglipyo S TP vllpx—1 lwllypgso-t lulljigso-1, j > k+5.
(4.25)

We discard the multiplier, use the algebra property for wju; and then apply (4.15).
]

As a corollary of this, we also obtain frequency envelope bounds for G.

Corollary 4.6. Assume that sy > % + 2. Let ¢k be a frequency envelope for u in
1Y X%0. Then, provided 8 > 0 is sufficiently small,

1S G @)l xo0 Sm Tocx. (4.26)

Proof. Expand

SKGw) = $iGu-0) + Y [ Gluzjr) = Gluz].
Jj=0

When j > k, we estimate the differences in [ 1y0 using (4.20). When j < k, we
instead estimate the terms separately in /! Y™ where N > s + o, with o as in part
(4) of the definition of a frequency envelope. O

4.3. Estimates for the Cubic Problem

In the same way the proof of Theorem 1.2 relies primarily on quadratic esti-
mates covered in the previous subsection, for the proof of Theorem 1.3 we need
instead trilinear estimates. The statements for these trilinear bounds are provided
in this section; the proofs are similar and largely omitted. See [27] for some related
background. We note that here we only require s > %, which accounts for the
improvement in regularity as compared to the quadratic case. We start with the

replacement of Proposition 4.2 for [2X type spaces.
Proposition 4.7. (a) Let s > % Then the 1> X* spaces satisfy the bilinear estimate

luvlzxe S lullpxellvllzys, 0<o <s. (4.27)
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(b) Forall smooth F with F(0) = F'(0) = F”(0) = 0we have the Moser estimate
I1F@)ll2xe S llullzys ||M||122XSC(||M||L°°), 0<o (4.28)
as well as the difference estimates

IF ) = FO)llpxe S llu = vllzys (ulags + [lzx)>c(lullzee, vl
0<o <s. (4.29)

Compared to Proposition 4.2, we note that here we have a larger range for o.
This is due to a corresponding improvement in the balanced bilinear interactions.
Precisely, the bound (4.2) is replaced by

dk
15 (SjuSkv)ll 2, S22 Ilullljz,xj vllzx,- (4.30)

The bilinear /' X x /' X — 'Y bounds in Proposition 4.4 are now replaced by
trilinear [2X x I2X x I2X — [?Y type bounds. Again we will also need the slight
improvement where we trade regularity for a slight gain in time.

Proposition 4.8. Let s > % and T < 1. Then for any § > 0 sufficiently small,

the following trilinear bounds hold on the time interval [0, T]:
luvw|lzyo-—s < T‘Sllulllzxoq vl zxs—tlwlpexs-1, 0<o <s, (431)
and
luvw|lzyo-—s < T‘Sllulllzxa||v||lsz72||w||,sz71, 0<o<s—1. (432

Just as in the quadratic case, the next proposition is the main tool in the proof
of the cubic bound for the paradifferential error term.

Proposition 4.9. Assume that so > % Then the nonlinearity G satisfies uniform

bounds,

IG@Wlpyr S TPCUu g lullixe, o =0, (4.33)

~

as well as Lipschitz bounds,

1G@w) — GW)ll2ye S T°Clulfaysg- 1017 gso) I — vli2xe 0 <0 < s0.
(4.34)

The proofs of Propositions 4.8 and 4.9 follow directly by modifying the proofs
of Propositions 4.4 and 4.5 in the quadratic case and are left to the reader.
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5. Nontrapping Metrics

Here we begin with ug € 1Y H>%, S0 > % + 2, and fix M so that
luollj grso < M. (5.1)
Then the associated metric g(uq) satisfies the Moser type bound [cf. (4.6)]
lguo) = Ilipgso S MP, (5.2)

with an implicit constant depending on the L° norm of ug. Here I denotes the flat
background metric. In particular, by Sobolev embeddings we have

lgo)lle2 S 1+ M>.

This guarantees that the Hamilton flow (x, §) — (x', &) given by

G &N = (@ (', "), —ax (x", &), (1%, 6%) = (x, £), (5.3)

with a(x, §) = g" (uo(x))&;&; is well-defined.

In order to guarantee that the qualitative assumption that the metric g(uo) is
nontrapping is meaningful we will show that this is in effect a condition about the
bicharacteristic flow within a compact set. Furthermore, in order to prove the local
well-posedness result with a bound from below for the lifespan of the solution we
need to turn this assumption into a quantitative statement.

We begin by selecting a ball B := Bp of radius R > 1 so that outside B we
have the smallness condition

x> r/2(8 o) — DIl gsoway < €, (5.4)

with a universal small constant . Here x- g2 is a smooth cutoff which equals 1
outside Bg/> and zero inside Bg/4. We observe that for large frequencies such a
bound holds globally, so only small frequencies contribute to this.

However, R could still be arbitrarily large, independently of M, so we retain it
as one of the main parameters in our problem. Without any restriction in generality
we will make the assumption

log R > logM 5.5

with a universal implicit constant. The smallness outside B ensures that no trapping
can happen there. More precisely, we have the following:

Lemma 5.1. Let B be as in (5.4) where 5o > ‘51 + 2 and ¢ > 0 is sufficiently small.
Then any geodesic for the metric g = g(ug) that exits the ball B will escape to
spatial infinity without reentering B /2.
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Proof. The result will follow by proving uniform bounds similar to those in [24].
We begin with the Hamilton flow for g = g(uo),

i =g (xEL E = —(g/MixEL, (5.6)
which we will compare with that driven by the flat flow,
F=F i =0 (5.7)

We will show that all outward pointing rays are forced to live in a small angular
sector. Precisely, consider a geodesic which exits Bg, i.e. a solution (x/, &) to (5.6)
starting say at ¢ = O at the point (x, &) so that x € d Bg and x(0) - x > 0. This will
be compared to the corresponding trajectory (x + &¢, &) for the flat flow (5.7). We
will show that the two trajectories stay close to each other,

IE" = EllLoe < clél, X" —x — 1€l < ctlE] (5.8)

for ¢ € ¢ <« 1 sufficiently small.
At the starting point we must have

0~ &1 S elg.
By the continuity of x*, for a sufficiently small 7, we have
|x° —&| < clgl, s €[0,1].

It, thus, follows that (5.8) holds for sufficiently small # > 0. We then use a bootstrap
argument to show that (5.8) holds globally. We assume the bounds (5.8) for ¢ €
[0, T'] and shall show that the same hold with, say, c replaced by c/2. We note two
immediate consequences of our bootstrap assumptions. On the time scale [0, T],
for which (5.8) is assumed,

(i) The bicharacteristic (x’, £&') cannot re-enter B/2;
(ii) The bicharacteristic (x’, ') is nearly straight, |x" — &| < c|&].

It remains to complete the bootstrap. By property (i), we will freely assume
that

lg — Illjipgso <&

in a unit neighbourhood of the bicharacteristic (x’, &’ ), tel0, T]. By property (i),
the bicharacteristic remains in a cube of sidelength 2/ for an O(2//|£|) amount of
time. Thus, Bernstein’s inequality yields the uniform bound

t
/O (g — D)+ [Veg(®)Ids < 117 1S (6 — Dl < elél ™
(5.9)

provided that ¢ € [0, T'].
We first close the bootstrap for & — &. We have

d
TE—Hi=a (g"elel.
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By our bootstrap assumption we have |£7| &~ |£|. Hence integrating in the last
relation and using (5.9), we obtain

t
& — &l < / 10 (8"hE{ & 1ds < Celg], 1[0, T,
0
which suffices provided & < 5.
Next we consider the difference x’ — x — t&, for which we have

d i
o & 9 =gvE -8

Hence, using that || x> g/2(g — Iz~ < &, we have

t
i —x =615 [ g =TT+ 16 — €71 v S erl,
which gives the desired result with ¢ sufficiently small as above. O

Lemma 5.1 ensures that any trapping must be confined to a compact set, namely
the ball B. The nontrapping assumption guarantees that all geodesics exit B at both
ends. We now seek to quantify that.

In order to measure the length of a geodesic within the ball B we remark that
for the geodesic flow (5.3) we have the scaling symmetry

E—> M, t— At

where ¢ is used to denote the parameter in (5.3) along geodesics. This one dimen-
sional degree of freedom needs to be removed in order to uniquely define the length
of geodesics. Our strategy will be to project the geodesic flow on the cosphere bun-
dle {|§| = 1}, i.e. replace (5.3) with

(& EN = (ae (", €, —a, (¥, &) + (a, (", §") - EDED), 1§ = 1. (5.10)

Then we define the length of a geodesic y between two points as

1
Uy) = / |£]dr.
Il

0

We remark that for a single metric g it would be more natural to measure its length
using the g metric. However, here we also need to allow for changes in the metric,
so it is better to have a common reference frame.

Now we are ready to define our last parameter L which measures the maximum
length of a geodesic within B. Indeed, a straightforward compactness argument
applied to the projection of the flow to the cosphere bundle shows that the quantity

L = sup{f(y N2Bg); y geodesic for g(up)} (5.11)

is finite, where £(y ) stands for the Euclidean length as in (5.10). We have an obvious
lower bound L 2 R, but no upper bound for L in terms of R. We will use L as the
second parameter in the quantitative description of nontrapping.

Our next task is to see that our nontrapping assumption is stable with respect
to a class of small perturbations.
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Proposition 5.2. Assume that ug € ['H* is so that g(ug) is nontrapping. Let
M, R, L be as above. Then, there exists Co(M) > 0 such that for w € 11 x50

satisfying
lwll iy < e~ ML (5.12)

the metrics g(ug + w) are uniformly nontrapping, with comparable parameters
R, L.

Proof. We denote the two metrics by

8o = g(uo), g1 = guo+ w).
By hypothesis, we have

lluo — (uo + w)llji x50 S e ML,

Hence, for R chosen as in (5.4), outside Bg /2 both metrics are close to the Euclidean
metric,

ext

Ixg55(g0 = Dllnxso + X571 = Dy S & +e” O <e

for some ¢ > 0 and the analysis in Lemma 5.1 equally applies. It remains to
compare their Hamilton flows in Bg, where the two metrics are close,

— M)L
g — gillc2py S €™ COMDE

We begin with the Hamilton flows of both problems and show that the trajec-
tories of the two are close on Bgr. Namely, we take

i = g (0E;,
& = —0ig) & + & - 9g) g EVE (5.13)
and

=g (1. D)E.

& =08l (1, DEE + E - 0gl (1t HEEE, (5.14)

with the same initial data (xg, &) at = 0, where |£9| = 1, and x9 € Bg. Our goal
will be to prove

lx(r) — X(0)| + 16(1) — E()] S e CMDL « 1. (5.15)

Rather than estimating the difference directly, it is perhaps easiest to consider
a one parameter family of metrics

g h) = (1 —h)go+hg1, hel0,1],
define the flow (y(¢; 1), n(¢; h)) using
yi =g, yi ;.
ni = —0ig/* (1, yi Wynjme + (n - 9g7* (1, y: Bynjmeni (5.16)
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and then differentiate in s. Note that~ using this notation we have (y, n)(t; 0) =
(x(), &) and (y, n)(t; 1) = (x(¢t), £(¢)). For this family we seek to prove

ly(t) —x ()| + In(t) — @) S e CME « (5.17)

uniformly in 2 € [0, 1], which will yield (5.15) upon choosing 7 = 1. We shall
prove (5.17) using a bootstrapping argument. We assume (5.17), and we shall prove
the same with an improved constant.

The h derivatives (y;,, nn) solve the differentiated system

yr = (g1 —80) &, y)n+ yn - 9(g(t, y; h)n + g(t, y; h)ny,
nn = —n0(g1 — go)(t, ¥y)n — nyn - 00g(t, y; h))n — 2nag(t, y; h)np
+(np - 9g(, ys )mn + (qn - 3(g1 — go) (&, y)mn
+(m(yn - ) - g, y; Wmn +2(m - g, y; Wnp)n + (- ag(t, y; W)ymna.
(5.18)

By the Mean Value Theorem, in order to establish (5.17), it suffices to establish the
bound

Iy ()] + ()] S e2CMDE « (5.19)

uniformly for 4 € [0, 1].

Due to the bootstrapping hypothesis (5.17), it suffices to consider (5.18) on 7,
which denotes the maximal time interval that a bicharacteristic for go spends in
Br. We note that | 1| < L.

Since the flow (5.16) is projected onto the cosphere bundle, we observe that

d .
3 O+ ) S MO £ MGy 4 ).

Using Gronwall’s inequality and that |/| < L, we obtain

val + ] S M7Y2L12e=CoDL,CML < p=CoNL ,CUDL

which for a choice of 1| € C(M) < %CO(M ) proves (5.19) with the improved
constant as desired.

We now have the uniformity of the nontrapping assumption as all trajectories
exiting the ball are now sufficiently close. Now it is clear why the C? difference
between the metrics needs to be small compared to e~ C0M)L o

6. The Linear Flow

In this section we consider the L? well-posedness question for the linear
Schrodinger flow

(0 + gy +b-VYw+b-Vio = f, w,x)=uw, (6.1)

for large but nontrapping metrics g. We also consider the corresponding linear
paradifferential flow

@0 + xTgudy +Tp - VIw +Tj; - Voo = f, w(0, x) = wo. (6.2)
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To frame the question in the context of the previous section where nontrapping is
discussed, we consider metrics g and lower order perturbations b satisfying the
following properties with respect to parameters M, R and L, which themselves are
subject to the constraints

logM < logR <logL:
e Large size:

llg — Id”[lxso + ||gt||11x50—2 —+ |I(b, l;)“lIxSo—] + |1(bs, Et)||11x50—3 <M.
(6.3)

e Smallness outside a ball Bg:
lg = Lallytxsomg) + 15, D)l xso-1(p) < € < 1 (6.4)

for a fixed universal constant €.
e Uniform nontrapping: For each geodesic [projected onto the cosphere bundle
asin (5.10)] y at fixed time, we have

¢(y N2Bg) < L. (6.5)

Our goal is to understand the energy and local energy bounds for such a flow.
Since we will want to apply these bounds in order to solve a nonlinear equation,
it is crucial to have good control in a way that does not grow rapidly in time.
This is a delicate matter, since the nontrapping property allows energy growth
by a eCML factor within Bg. Further, the coefficients at high frequencies may
repeatedly redirect inwards some of the outgoing energy, for additional potential
exponential growth (as we cannot assume ¢ is exponentially small with respect to
L).

We can prevent such iterated growth by restricting the time to a short enough
interval.

Theorem 6.1. Suppose that g, b, b are as above, with sy > % + 2 and associated
parameters M, R, L. Then the Egs. (6.1) and (6.2) are well-posed in L2. Further,
for all small enough times T,

T < e CUDE (6.6)
we have a uniform bound

lwllxoo.71 < €€ E(lwoll 2 + 11 f llyoro.7p)- (6.7)

For simplicity the above result is stated in the L setting, but a similar result
also holds in higher norms.
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Corollary 6.2. Suppose that g, b, b are as above, with sy > % + 2 and associated
parameters M, R, L. Then the Eq. (6.1) is well-posed in H® and ['H® for 0 <
o < sg. Further, for all small enough times T,

T < e CODL (6.8)
we have a uniform bound
lwljixoo.ry S e€™ENwollyige + 11 liye) (6.9)
lwllzxoo.ry S €€ lwollae + 11 le2ye)- (6.10)

The same result holds for (6.2) for all ¢ > 0.

This is not so much a corollary of the previous theorem, but rather of its proof.
Precisely, we will be able to reuse the key part of the proof of the theorem, and then
replicate the (short) remaining parts of the proof.

Since the last result holds for all o in the case of the paradifferential equation, it
easily implies the corresponding frequency envelope version, as a direct application
of the techniques in [26, Propositions 5.1 and 5.3].

Corollary 6.3. Let so > % + 2, and suppose wo € ['H*, f € ['Y* with ad-
missible frequency envelopes {ay}, {br} respectively. Then the solution w to the
paradifferential flow (6.2) satisfies

ISkw g0 S eSO (ay + by). 6.11)

The essential part of Theorem 6.1 is the energy estimate (6.7). The L> well-
posedness follows in a standard fashion from a similar energy estimate for the
(backward) adjoint equation. Since the adjoint equation has a similar form, with
similar bounds on the coefficients, such an estimate follows directly from (6.7).
Thus, in what follows we focus on the proof of the bound (6.7).

An important part of the theorem is to keep good track of the dependence of the
constants on our parameters M, L and T'. In order to avoid circular arguments, it is
useful to apply a divide and conquer strategy. One step in this direction is to take T
out of the equation, at the expense of allowing a lower order term in the estimate.
We state this intermediate result as follows:

Proposition 6.4. Suppose that g, b, and b are as above, with sy > % + 2 and
associated parameters M, R, L. Then for any solution w to (6.1) or (6.2) and all
T < 1 we have a uniform bound

lwllxoro.71 S €™ lwoll 2 + I fllyo.ry + lwll 2200y (6.12)

This trivially implies Theorem 6.1 by applying Holder’s inequality in time to
bound the last L? norm, and then taking 7' small enough.

The main bound above, (6.12), admits an exact counterpart in the context of
Corollary 6.2, which is as follows:

lwlljixo0, 71 S CME(lwoll 1 o + I fllpyoro.ry + NwlinL2gepo.79)s
(6.13)
M)L
lwllzxeo.r S €€ ENwollue + 11 f lpyoo.ry + lwll 2o (6.14)
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Similarly, this trivially implies Corollary 6.2 by applying Holder’s inequality in
time.

The bulk of this section is devoted to the proof of this last proposition for the
paradifferential equation (6.2). The advantage to working with the paradifferential
formulation is that it transfers easily to all higher regularities, whereas the parad-
ifferential errors will only play a perturbative role. After that, it is much easier to
obtain the rest of the result going in reverse order.

Before presenting the proof of Proposition 6.4 in full detail, we first outline our
strategy. We seek to decompose the estimate into three pieces, roughly correspond-
ing to a decomposition of w into three components,

W = Wiy + WR + Wour

which represent the portions of w which are microlocalized near the incoming rays
outside B, near Bg, respectively near the outgoing rays. Heuristically the energy
travels along bicharacteristics, and may go through all three stages or only the
incoming and outgoing part, depending on the bicharacteristic. The main steps of
the argument can be described as follows:

(1) Prove an exterior incoming high frequency estimate of the form

Ix<100rWinllxo < C (lwollz2 + 1 fllyo) + C(M) w1272

with a universal constant C. This amounts to constructing a multiplier which
selects the incoming region and positive commutator estimates. Crucially, the
metric is only used in the exterior region (outside 4Bpg), where it is a small
perturbation of a flat metric. Here the time is taken in any interval [0, 7] with
T < 1; the smallness of T is not used.

(2) Using the fact that the metric g satisfies the nontrapping condition, we estimate
the local energy inside the compact set By g in terms of the incoming part,

C(M)L (

lwrllxo Se lwollz2 + 1 £ lyo + llx<100rWinllxo + lwllz212),

in a way that quantifies the potential exponential growth.

(3) Rather than controlling the remaining component w,,; on the outgoing rays,
we estimate the full exterior part wey; = Wiy + Wour

[wexellxo S lwrllxo + lwollz2 + 11 fllyo,
simply by truncating to the exterior region and applying the small data estimate

directly.
(4) Combining the three estimates above we obtain

C(M)L
lwllxo < eCML (Jlwoll 2 + 11 Fllyo + llwll2,2)

independently of the time interval size0 < 7 < 1.
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6.1. A Review of the Small Data Results

The small data problem, studied in [26], provides us with a baseline for the
study of the current problem. The main assumption for the linear result there is

lg = Lalljxs + 1B D)y < & < 1, (6.15)

where g, b, b are the coefficients in (6.1). Here the smallness of ¢ suffices to guaran-
tee that the metric g is nontrapping. Under this assumption, we have the following
counterpart of Theorem 6.1:

Theorem 6.5. [26, Proposition 5.2] Suppose that g, b, and b are as in (6.15). Then
the Eq. (6.1) is well-posed in L%. Further more, we have the uniform bounds

lwllxor0.17 S Nlwoll2 + Il.f yogo.135 (6.16)
lwlipxopo, 1 S lwollpge + 1 lpyepo,, 0 <o <. (6.17)

The same result holds for the corresponding paradifferential problem (6.2).

Remark 6.5.1. The original result in [26] also allows for zero order terms in (6.1),
as in (3.2), with coefficients c, ¢ with regularity c, ¢ € [ 1x5=2. in that case one has
to limit the upper limit for o in (6.17) to s — 1. The X 0 bound (6.16) follows from
the proof of Proposition 4.1. Note also that in this result the contributions of the b
and b terms are also perturbative.

6.2. The w Correction

One difficulty in the large data problem, which is absent in the small data
problem, is due to the 5V term. This is perturbative in the small data case but not
in the large data case. Our goal in this section is to show that we can eliminate this
term from the paradifferential equation (6.2) at the expense of more perturbative
terms.

Our correction will be of the form

W= Sw:=w+ Rw, (6.18)

where R is a paradifferential operator of order —1. A similar conjugation was used
in [6] to remove the complex conjugate leading order terms. Assuming that w solves
(6.2), we obtain the following as the equation for w:

(8 + ;T + T, - V)b = f — Rf+ 0; T,k xR
—I—RajTg“jkBkzI) - Tl;w - Vw 4+ e[w].
(6.19)

Here the lower order terms e[w] are given by

elwl=T," - VRw + RTEw -Vw + ’RTzw Vw +iRw. (6.20)
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To cancel the w terms on the right in (6.19), we use the ellipticity of g. Namely,
our assumptions on g ensure that we have

¢/ &8 > colEI?, o > 0.
We then select the symbol r (x, &) of R to be
iblg;

27k &
where the time dependence is implicit in the b and g terms. Here x is a smooth
compactly supported bump function so that x (§) = 1 for £ in a large neighborhood
of 0, depending on M. _

In view of the regularity properties (6.3) for » and g and using the multiplicative

bounds and Moser estimates in Proposition 4.2, it follows that the symbol  has
regularity

r(x, &0 =1 - x(I&N) (6.21)

rellxo lsg=t e lxso3g-1 (6.22)

Here, for symbol classes we follow the notations in [42]. For instance, by r €
1'x*0~15~1 we mean that for each & € R", we have ||r(x, &; Oljixso-1 S (1 +
|€])~!, and that each £ derivative gains one order of decay in £ with x regularity
that remains in /! X*0~!

The paradifferential implementation of the symbol

PP, &) =) Scp-a(D)r(x, & ) S(E)
L

is chosen such that the action of the operator only involves low-high interactions
of the symbol with the function on which it is acting. This will allow us to prove
mapping properties of R = r” (¢, x, D) at any regularity. Since without the x cutoff
r is a homogeneous symbol of order —1, restricting to large frequencies helps to
insure invertibility of the map Sw = w + Rw. With this choice for r, we have

Lemma 6.6. Suppose that w solves (6.2) with g € ' X* that is uniformly elliptic,
b,b e 1'X% ! a5 in (6.3) and so > d/2 + 2. Let r be given by (6.21). Then the
transformation S in (6.18) is invertible® in L2, I H® and 1 X* for0Q <s < oo, and
w defined by (6.18) solves an equation of the form

(io; + akTg“,;,al + 1,0 - V)b = f w(0, x) = wo, (6.23)
where

I Fllyo Sm I llyo + llwllz2iz, I liys Sm I liys + lwllpp2ps-
(6.24)

_ This lemma allows us to reduce the proof of Proposition 6.4 to the case when
b=0.

2 With implicit bounds depending on M.
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Proof. We recall the regularity of the symbol r in (6.22).

We begin with the mapping properties of ‘R and the invertibility of the renor-
malization operator S in (6.18). It suffices to show that R is bounded with small
normin L2, [1HS and [} X5. The proof is the same for all these spaces, so to fix the
notations we consider ' X*.

Since by construction we have r € [!1X%~1S~! by separating variables it
follows that we can represent the operator R as a rapidly convergent series of
operators of the form

o
R=> 27" 3" r" 4(t.x)S/"(Dy).
I>1p m=1

Here the subscript indicates the frequency localizations and m is the summation
index for separation of variables. Choosing S;" to be uniformly bounded, we include
the rapid decay in 7 € I' X*0~!, which can then be assumed to satisfy bounds of
the form

—-N
||’"m||llx50*1 S,M m .

The dyadic multipliers S lk are bounded in all of our function spaces, so in order
to obtain bounds for R it suffices to consider bilinear multiplicative bounds, as
given in Proposition 4.2. More precisely, the bound (4.5) shows that

72— s, ) S (Dullpgs S ™ yso—1 18] el xs
which after summation in m and also in the dyadic index [ yields
-1
IRulljixs Sar 270 llulljrys- (6.25)

Here smallness is gained by making /o large enough, which in turn is accomplished
through the choice of the cutoff x in the definition of the symbol r. If we instead
use the 2~/ factor to gain Sobolev regularity rather than smallness, then we obtain

IRwlijixs Sm lwlijixs-1, (6.26)
as well as the related fixed time L? type bounds
IRwllze Sm lwllgo-1, o €R. (6.27)
We similarly have the closely related fixed time bound for R;,
IRiwllz2 Sa llwll 2 (6.28)

asr; € [' X035~ c c-1+g-! (provided that sg > d/2 + 2).

In view of the bound (6.25), the operator S is invertible on 11 X5 for0 < s < oo.
A similar analysis holds for L? and /' H®.

Now we consider the source term bound (6.24). From (6.19), (6.20) we have
(6.23) with

f=f—Rf+Ed+ew]



Quasilinear Schrodinger Equations II1 1151

where
E = 3jTguJ}-k3kR+RajTgk3k — Tgw -V,
elw] = wa -VRw + RTEw -Vw + 'RT};w -Vw +iR;w.

We need to establish the appropriate bounds for each of the terms on the right.
For R f it suffices to see that R is bounded on Y 0 and respectively on 1ys,

IRfllyo Sm I fllyos IR pys Sn I1f lprys-

This follows in the same way as (6.25), but using the high-low frequency interactions
we have the straightforward estimate

[S<e—auSevliyo < lullellSevllyo S lullpixso 1 Sevllyo (6.29)

instead of Proposition 4.2. A similar computation applies with ¥ O replaced by /1Y*.
For the remaining terms in £, it suffices to prove L? type bounds, namely,

IEWl 272 + llelwlllz2z2 Sm llwliz2gz, (6.30)
and
”Eu_}”lleHl + ”e[w]”lleHS §M ||w||11Lsz. (631)

Since all operators involved are paradifferential, the analysis happens at fixed fre-
quency so the two bounds are virtually identical. Thus we will focus on (6.30).

After a dyadic Littlewood-Paley localization, the bound for E in (6.30) reduces
to a paraproduct type product formula for scalar multiplications

4
Mr<i—ag<i—4 — (r@<i—alwillpz S27 7 llcrligler lwill g2
Sl gso-1 gy xeso lwell 2.

Here, the two terms (rg) <;—4 cancel the high frequency contributions of Tgw -Vuw
and the remaining low frequency bound on x T];w - Vw is easily bounded.

Finally, we consider the bound for e[w] in (6.30). For the R terms in e[w] it
suffices to use the bound in (6.27), while for the R; term in e[w] we need the bound
in (6.28). O

6.3. The Incoming Estimate

To motivate the definitions that follow we briefly consider the constant coeffi-
cient case, where g = I;. Then the Hamilton flow associated to the linear constant
coefficient Schrodinger equation has the form

¥ = 2f.

Hence rays are straight lines, which approach the origin when x - £ < 0, or, in other
words, as long as the angle 6§ = Z(x, &) satisfies cos0 < 0.
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In the problem we are considering, the coefficients are not constant but are small
in the exterior region, and, as seen in Section 5, the direction for the bicharacteristics
does not deviate much from being constant. Thus we can define the incoming part
of a solution w using a pseudodifferential truncation,

win = Py (x, D)w,
where the symbol of P;, is chosen as

Pin(x, &) = Xin(c0s0) x=s5r(|x]).

Here y;, is a nonincreasing cutoff which selects the interval [—o0, — %), and x-sg
is nondecreasing and selects the exterior of 5Bg. Then the aim of this section is to
establish the bound

I x<100rWinllxo S llwollz2 + 1 fllyo + C(M)wllp2,2. (6.32)

We remark here that one could remove the x-1gog truncation, as well as the M
dependence in the constant in the last term. But this would require extra work, and
the result is not needed in our sequence of steps.

As a first minor simplification, we can use the small data results of [26] (see
Theorem 6.5 above) to reduce the problem to the case when the portion of f outside
of B3g need only be measured in L>L?:

x-3rf € L*L*. (6.33)
By truncating the coefficients g — I; and b outside Bg,
8ext — la = X>R(8§ — 1d), bext = X>RD

we obtain coefficients gox; — 14, box; Which are small overall in the norms of (6.3)
and coincide with g — I, b in the exterior region. Then we solve the auxiliary
problem

(id; + 8kTg“,ﬁ4 oy + Tb'fxt -Vyw = f, w(0)=0. (6.34)
By Theorem 6.5, w satisfies a global favorable estimate,

@l xo < 1S llyo. (6.35)
On the other hand, for the difference
Wi =W — X>2RW,
we have the equation
@0 + % Tyuor + T,° - VIwr = (1 = y20) f + f1 + fa+ /3
where f] arises from the change of metric,

Ji=—=Tyu_gu 01 + To—bey, - V) X>2RW
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and f>, f3 from the localization of w to the exterior region,

Jo =1 = x=3R) X528, Ok Tt 0 + Tp,,, - V)N = x>3R)W.
J3 = x=3rlx=2r, Ok Tyt 9 + Tp,,, - VII(I = X>3R)W
+x=2r, O Tgrt 0 + Ty, - V)1x=3rW.

It is easily seen that f] is a Schwartz function in x since the functions x-og

and gk — gkl b — b,,, have separated localizations. In particular we have

I fill2 S llp2z2. (6.36)

A similar bound holds for f3 due to the separated localizations of x~3r and V x=2g.
In particular we have

I f3ll2 S Nllp2p2- (6.37)

The function f>, on the other hand, is localized and satisfies

I £2llyo S Ix<ar@llip2p2 (6.38)

to which we may subsequently apply (6.35). This completes our reduction to the
case when (6.33) holds.

Now we return to the estimate for w;,, under the additional assumption (6.33)
on f. The main step in the proof of this bound is based on the positive commutator
method, using a well chosen order zero formally self-adjoint pseudodifferential
multiplier Q;, € OPS® with symbol supported in the incoming region.

Writing the second order part of the Schrodinger operator in divergence form,
we will use the notations

akTg”i,al + Tb“jaj =P+ B

where the principal part P is self-adjoint. To understand the choice of Q;,, which
we take to be a self-adjoint operator of order zero that is independent of 7, we first
compute formally using the L? inner product in R¢:

d
aRe(Qmw, w)

= i(Qin(P + B)w, w) — i{Qinw, (P + B)w) + 2Re(Q;pw, —if)
(i([Qin» P1+ QinB — B* Qin)w, w) + 2Re(Qipw, —if)
= —(Cw, w) +2Re(Qinw, —if).

Here the operator C is an order one self-adjoint pseudodifferential operator. Inte-
grating between 0 and 7" with T < 1 we obtain

T
Re<Q,-nw,w><T>+/ (Cw, w)dr = Re(Qinw, w)(0)
0

T
+2/ Re(Qiuw, —if)dt. (6.39)
0
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The first term on the right is easily estimated in terms of the L? norm of the data,
Re(Qinw, w)(0) < w(0)]7.

For the second term on the right we can take advantage of (6.33) and use the fact
that we shall take Q;, to be supported3 where |x| > 4R to obtain

Re(Qinw, if) S lwlp2lx=3rflz2 + llx<ar fllyo).

where the interior Y bound arises to account for smoothing tails.

Our goal therefore is to choose the operator Q;, favorably so that we can prove
a good bound from below for the left hand side of (6.39). This is easily done for
the first term, where it suffices to impose the conditions

q(x,&) >0, ¢g(x,&) 21 in{cosh < —%, |x| > 4R}. (6.40)

Then Garding’s inequality shows that

Re(Qinw, w)(T) 2 win(T)II7, — CIIw(T)HZf%, (6.41)
where the last term can be further estimated in a naive fashion by the energy type
relation

2 2 2 2
()P ) S wOF )+ 1120+ CODIwIG. (642)

Indeed, (6.42) results from considering 2 Im ((i d; 4 0k Tg“,j, o +T,"-Vyw, (D) 'w).
Note, in this estimate there will be implicit dependence upon ||b ||z and hence on
our large constant M.

We next consider the time integral involving the operator C. For this we will
seek to carefully apply Garding’s inequality in order to prove the bound

T
/ (Cw, w)dt 2 llx<to0rwinlZo — W22 2. 6.43)
0

Together with (6.41), this would complete the proof of the desired estimate (6.32).
The rest of this section is concerned with the choice of Q;, so that the above
estimate holds.

Within the ball Bjgog, the X norm is equivalent to the L’H 3 norm, therefore
at least heuristically the principal symbol co(x, &) of C should satisty

1
co(x.§) = 0, co(x.£) Z IE|in {cosd < 7. 100R > [x| > 4R). (6.44)

However, the matters are a bit more delicate because of the coefficients g and b
which have limited regularity.

3 Here we harmlessly gloss over the difference between the support of the symbol and
that of the kernel; this can be readily rectified with an OPS™%° adjustment to Q;,.
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We write C in the form
C =i[A, Qinl + ([(P = A), Qin] +iQinB — iB* Qi) := C"*" + C*”
and begin with computing the principal symbol of C, which is
co(x, §:1) = = 26 - 0xqin(x, §) — (8" — )8, qin(x. §))
—2Imb(t, x, £)qin(x, £) 1= @i 4 g

Note that, as g, b depend upon both x and ¢, co also has some time dependence.
However, as we will only rely upon the spatial regularity of those terms for the
analysis of this operator, we will drop the explicit reference to the ¢+ dependence
below for convenience. We will choose ¢;, so that the first term yields a bounded
nonnegative contribution that also controls the remaining terms.

Precisely, our assumption (6.4) for the coefficients g— I and b of our Schrodinger
operator guarantees that we have a uniform pointwise bound

lg —Isl + Vgl + bl Seui, R<k<|x| <k+1,

where the sequence {u} is square summable,

ZM%SI’ MR%]"

Without any restriction in generality we also assume that the sequence piy is slowly
varying. Then, we can find a increasing function

PR:[R,00) — [1,2]
so that
PR Z i o () Sk =2 relkk+11.
Using this weight pg, we define the symbol g;, as
gin(x, &) = pr(r) X>5R (1) Xin(cOs 6 — cpr(r)),

where x;,(p) is nonincreasing, supported in {p < —1/4}, and identically 1 on
{p < —1/2}. The constant c is small and satisfies ¢ < ¢ < 1. With this choice, it
suffices to prove the following:

Lemma 6.7. With q;, chosen as above, the estimate (6.43) holds.

main

Proof. The leading part cy®'" of ¢y is given by

1 .
=" (x, &) = —|&| cos 0 xin(cos O — cor(r))(prX>58) (r)

2
— Xip(cos — cpp (r))E—| sin® 0 (pg x=58)(r)

+ cxip(cos O — cpr(r)|€] cos O (pr x=58) (1) PR (r).
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Provided c is sufficiently small, all three terms are nonnegative, and we get the size
" (x, &) ~ |E] Xin(cos 0 — cpr(r))(pRX>5R) ()
— Xin(cos — cpg (V))@(,ORX»R)(V)
— CXip(cos® — cpr(r)IEI(PRX>5R) (1) PR ().
On the other hand, for the remaining terms in ¢g we have a favorable bound

g1 < & (15 Xin (cos 6 — cor) (PR X>5R) ()d — PR (r) x{, (cOS O — cpR)IE[(PR X>5R)(F)) -
(6.45)

It is easier to argue in the case of C™Main which belongs to OPS'. Since its
principal symbol is nonnegative and of size & within the region

1
{4R < |x] < 100R, cosf < _E}

by the classical Garding inequality for S' symbols we have the fixed time bound
<Cmain w, w)
= {(cf' ™" (x, D)w, w) + O(lwl|72) 2 ||x<100me||2% — Clw|3..

(6.46)

The similar bound for C*'" is slightly more delicate. We will show that it satisfies
the fixed time bound

(€ w, w) S e({(cfU™™ (x, Dyw, w) + [[w]2,). (6.47)
If we have this, then combining the bounds (6.46) and (6.47) we obtain

j 2 2 2
(Cw, w) Z (g™ (x, Dyw,w) = Cllwll;> 2 ||X<100Rwin||H% = Cllwllyz,

which after time integration yields (6.43) and in turn gives (6.32). It remains to
prove (6.47).

The difficulty here is that the symbol ¢¢’” € C!S! since it involves spatial
coefficients depending upon b and the Poisson bracket with coefficients in g (and
hence involves derivatives of g), which means we only have bounds in X so—1 and
cannot guarantee enough regularity to allow us to directly use Garding’s inequality,
see [38]. Instead we will make a more careful symbol analysis. We first reconsider
c(’)"“i ", for which we write a sum of squares decomposition,

" = ¢t + 63 + 63,
where @1, ¢z, 93 € S > are smooth nonnegative symbols given by
o1
#3

¢3 = cl&| cos O], (cosO — cpr(r) (PRX=5R) () PR(F).

— €1 cos O xin(cos 0 — cpr(r)) (PR X=5R) (1),

—x},(cos 6 — ch(r»@ sin? @ (prx>5R) (),
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We also consider a fourth nonnegative symbol ¢4 € S 2 given by
i = 1§10k (M qin(x. §).
By pseudodifferential calculus we have the fixed time bound

<Cmainw7 w)

= [[@1(x, D)w3, + [ ®2(x, D)w|?, + [@3(x, D)wll7, + O(lwl7,).
On the other hand,
¢3S B1 + ¢35 + 3.
Therefore, by Garding’s inequality, we have

|®4(x, D)w]?,
S @1, Dywll7; + [@2(x, D)wl7, + [@3(x, Dywl|7, + O(w]l7,).

Now we consider the symbol c¢¢" € C'S!. Modulo an L? bounded C°S° compo-
nent we can replace it with its principal part ¢j"". Given its expression, it is easily
seen that we can use the above ¢;’s to represent the principal part ¢§" in the form

Zd (x. £)¢7(x. ), dj €C'S’,

j=1

which is a more careful substitute for (6.45). Then at the operator level we can
write

c§"(x, D) = Zcbj(x, D)*D;j(x, D)®;(x, D) + eOPCS°,
j=1
which yields the bound

4
(Cw, w) Y 1P (x, Dywl3, + [wl,.
j=1

Thus (6.47) follows, and the proof is complete. O
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6.4. Nontrapping Estimates on B(0, R)

Here we use the nontrapping condition to produce a high frequency bound for
w within the compact set B(0, R), in terms of the incoming part w;, estimated in
the previous subsection. Precisely, we will show that
0 < eCML (gl 2 + lx<100r fllyo + Ix<100RWinllx0 + llwll 12,2) -
(6.48)

Ix<rwlx

To clarify the meaning of the norms in (6.48), we recall that within a compact
set (e,g. 100BR) the X 0 norm is equivalent to the LtzH 7 norm, while the Y° norm

is equivalent to the L>H =3 norm.

This proof also uses a positive commutator argument, based on propagation
of singularities in B(0, 100R). The key idea is that any bicharacteristic ray which
enters 2Bg is coming from the phase space support of x100rw;,. From a purely
qualitative perspective, the nontrapping condition implies that such an estimate
must hold, with a suitable implicit constant. The challenge is to carefully track the
constant.

For the positive commutator argument we use again a nonnegative pseudo-
differential multiplier Qcomp € OPS°, whose symbol is this time supported in
100B(0, R), and repeat the computation leading to (6.39). We split the analysis
into an ode part, where we construct the symbol for Qcomp, and a microlocal part,
where we use the properties of symbol in order to prove the desired estimate (6.48).
We begin with some heuristic considerations.

e The size of the frequency & may vary considerably along the Hamilton flow
of the operator g/ £;& ;- To avoid difficulties arising from this, we will take the
symbol g¢omp to be homogeneous in & for [£] >> 1.

e The time ¢ also varies along the Hamilton flow, which would seem to require
a time dependent construction of gcomp. However, the propagation speed is
proportional to the frequency size ||, therefore in the high frequency limit the
time is constant along the flow. Because of this, we will only use the fixed time
flow in the ¢ construction.

To construct gcomp we will only use the principal symbol for the Schrodinger
operator,

a(x,§) = g&&;

and
d
Hy =) 0¢ady; — o,;ad,
=1

its Hamiltonian vector field. We summarize our result as follows:
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Proposition 6.8. Assume that the coefficients g'/ satisfy the conditions in (6.3),
(6.4). Moreover, we assume that the flow (5.10) permits no trapped geodesics, with
the longest within Bog with |&| = 1 being of length L. Let C > 1 be a large
universal constant.

Then there exists a smooth, homogeneous, real-valued, nonnegative symbol
g € SV in the region |x| < 100R with the following properties:

(1) Support property:

1
suppg N {|x| > 50R} C {cosO < —5}.

(2) Size:
/0200 g (x, )] < Mg 7P, (6.49)
(3) Positive commutator:
— Hug = CM|§lq (6.50)
and
— H,q > |&] inside {|x| < 2R} (6.51)
(4) Bounded gradient,
x| + 1€1lg] < e“M" Hag. (6.52)

Proof. From the conditions (6.3) we have the following regularity properties for g
in a compact set:

lgllc2s + llgelles <M in B(O, R)
respectively
llgllczs + llgtlles S e outside B(O, R).

We will only use these properties in the proof of the proposition.

This would be a standard construction for smooth g; similar constructions have
already been done in [35] as well as in Proposition 3.6 in [25]. The difficulty
we encounter in the nonsmooth case is that a direct construction based on the
Hamilton flow of a will yield a nonsmooth g. There are two possible strategies
here, to regularize g and then construct g or vice versa; both work, but we choose
the former.

Since we seek ¢ homogeneous, we will work on the cosphere bundle S*RY =
{(x,&); |&] = 1} using the notion of flow in (5.10).

We begin by regularizing g. Given a frequency scale A, to be chosen later, we
regularize g to g; at scale A in x and at scale A2 in 7. Then our uniform bounds
above imply that

lg— gl SA72 [Vg—Vgl <Al

Next we compare their Hamilton flows ®(s; xq, &), respectively &, (s; xo, &)
starting at any point (xq, &) with xo € 100Bg.
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Lemma 6.9. Assume that
A= PML Co» 1
Then the flows of I:Ia and I:Iak, defined as in (5.10), stay close
| (s x0, §0) — Pa(s3 %0, E0)| S e M-
until exiting 100Bg.

Proof. Recall from (5.10), that the flow H, can be written
d
Hy =) 0 ady; — (0,0 — (Va-£)&)d,. (6.53)
j=1
This then follows directly from a small modification of the arguments in Section 5,

Proposition 5.2. O

In particular this shows that for such A the I-NlaA flow is also uniformly nontrap-
ping, with comparable parameters and hence we may choose L such that it is a
bound on the longest geodesic for both flows within Bg.

The first element of our construction is a smooth 0 homogeneous nonnegative
symbol y in {|x| < 100R} that is incoming relative to the flat metric, i.e. ap = |&|>.
This is chosen akin to the incoming localization in the previous subsection, namely
qin, but shifted so that its support includes B(0, 2R), i.e. for instance

x(x,8) = x>2r(Ix — 8RE|) x<—1/2(cos L(x — 8RE, §)), 6] =1.
The three important properties of this symbol are as follows:
e Incoming relative to ay,
— Hyyx 2 |Vx|in 100Bg. (6.54)
e Covers 2Bg,
x 21 in2Bg.

e Narrower than the previous incoming multiplier g;,,
supp x N {|x| > S0R} C {cos@ < —%} .
We use x to construct our smooth nonnegative symbol g, by solving the ODE
—I:Iakq =CMqg + x
with initial data set by the condition

suppg C supp x.
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In other words, we solve the ode backwards along the I:Im flow, beginning when
x is first encountered. Note that here ¢ will depend upon ¢ since a does. Since a
is of class C2, the Hamilton flow of ﬁaA is well-posed. Since the C 2 norm of a; 18
bounded by M and the longest trajectory has length L (within 100 Bg), by Gronwall
it follows that

g + [Vg| < e“ME

for x € 100Bg. We can also estimate higher regularity for ¢, losing only powers
of A when differentiating in x, £, respectively A> for time derivatives. Thus, if A is
chosen so that A &~ ¢“ML  then ¢ already has all the properties in the Proposition
6.8, but relative to a;. In order to switch from a; to a we need one more piece of
information, namely that

— Hyq 2 e MHvg). (6.55)
To prove (6.55), we compute the ODEs for the two quantities,
—H,, (Vq) = CMVq + 0(|V?a|)Vq + Vx,
whereas
—Hy, Hyyq = CMHy g — He, 1,

and (6.55) is easily seen to follow by the comparison principle for ODE’s in view
of (6.54).

Now we proceed to the final step of our construction, which is to replace a; by
a. We have

|Hiq — Haql S |Va — Vay||[Vg| S MAT eMEvg| < —e ML A, q

which suffices. O

We define the symbol g¢omp by fine tuning the symbol ¢ constructed above
in the exterior region. First we consider a symbol x which is akin to x but with
slightly larger support, so that

X =1 insuppgq.

As in the previous subsection, we have —Hy, X 2 x., and also the sums of squares
representation

—Hypi =91 +¢3, x=¢3

for smooth nonnegative symbols ¢; € S 3
Now we define

67 =q+ X qcomp = X<75R(|x|)g~

Here the symbol g inherits from ¢ all the properties in Proposition 6.8, and we
note that ¢ and g.onp depend upon ¢ through ¢ and hence through a as above.
This is because outside 2 B the symbol x has similar properties, while inside 2 Bg
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the contribution of the symbol x is small compared to that of g. The reason we
introduce ¢ is related to the low regularity of the coefficients, which causes us to
once again replace Garding’s inequality with more robust sums of squares methods.
Precisely, we will have a representation of g and V¢ in terms of the above squares,

G =d3¢3, (qn,Elge) = i} + dop3

with d; € eCML S0 The bound on d ;’s is exponentially large, but that will suffice
later on. One consequence of it is that

— Hyq —CMq Z e My g0, = (6.56)

On the other hand the cutoff x.75g(]x|) achieves the goal of having gcomp
compactly supported, at the price of violating the positive commutator condition
(3) in Proposition 6.8 in the region {SOR < |x| < 100R}.

We now show that the above choice for the symbol gcomp yields the bound
(6.48). We start with the counterpart of (6.39), namely

T
Re(Qcompw, w)(T) + / (Cw, w)dt = Re(Qcompw, w)(0)
0

+ 2Re/0T(Qmmpw, —if) + (Qcomp,rw, w) dt (6.57)
where C is now given by
C =i[P, Qcompl +1QcompB —iB* Qcomp-
The terms on the right are easily bounded as
Re(Qeompw, w)(0) S e“MEw(0)]|7,.

and

T
CML 2
Ref (Qcomprw, w)dt S e ”w“Lsz»
0

and

T 1
—i < 2
/0 (QcompU), ifyde Sl Qcompw”LzH% ||X<lOORf||L2H,% +T ||w||LocL2 ||f||y07

where the second term on the right accounts for the smoothing, rapidly decreasing
tails arising from the contribution of x- 1gog f . The first term on the left is estimated
by Garding’s inequality,

(Qeompw, wY(T) 2 lx<2rw(T) |12, — eMENw(T)I2, 1,
P L H

where the right hand side is further estimated by (6.42).

It remains to consider the contribution of C, where we again have the difficulty
of having to deal with low regularity coefficients. In order to deal with this, we first
truncate the coefficients at the scale u = 2“0 > X, where A = eCML g the scale
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used earlier in the proof of the Proposition. Then we consider the contribution of
P, and B, . This is given by

Cp = ilPu, Qcompl + i Qcomp By — B, Qcomp-
Then C,, € OPC'S' N uOPC?S!, with principal symbol
.0 = —{au. Geomp} + 2qcomp Im by,
By the above proposition, this satisfies the bound from below

1€ epo(x, &) = ex<i00r(IXDx (x, &) — e“ME Y 100R pin(x, £).

Then Garding’s inequality yields the fixed time bound (see [38])

eCML

2 CML 2 2
(Cpw, w) Z cllxarwll | — M Ixcro0rwinll® | — neCME ]2, 5.
H?2 H?2

Here the y factor in the last term arises due to the fact that the C2S! symbol regular-
ity is needed for Garding’s inequality. For later use, we record another consequence
of Garding’s inequality. Precisely, by (6.56) we get

Cu,09 Z 67CML Z ¢]2
which gives
(Cpw, w) Z e M0 july, — pe M w7, (6.58)

It remains to consider the contribution of C — C,, for which it suffices to prove
the bound

(C = Cpw,w) S pu P ™M(Cpw, w) + ||x<100Rwi,1||2%) + pue“ME w7,

(6.59)

This suffices provided that s is large enough, u = €L with C; > C.
We first directly compute the regularity

C—C,eploprc's',

which shows that only the principal symbol of C — C,, matters.
We then use the squares representation for ¢ and Vg to write

(c—cpo = 26j¢]2- + e0l&|(x<100rPin)?, €j € p M!S,

which implies the bound
(C = Cow, w) < puPeML <Z ||cbjw||iz + “X<100me”i1% + ||w||%2) .

Combining this with (6.58) yields (6.59) and completes the proof of (6.48).
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6.5. The High Frequency Local Energy Decay Bound

Our objective here is to use the results from Sections 6.1, 6.3 and 6.4 in order
to complete the proof of the high frequency local energy decay bound for the
paradifferential equation in Proposition 6.4.

Combining the bounds in (6.32) and (6.48) we obtain a local energy decay
bound

C(M)L
lx<arwll 10 S e M0 Qwollz + 1 fllyo + wliz2g). (6.60)
It remains to estimate the exterior part of w. For that we simply truncate w, setting

Wext = X>2RW.

Then we write the paradifferential equation for w,,,, but using the truncated coef-
ficients g..; and b.y;. This takes the form

(10, + Ok Tguk)l o + Tbt)xt V)Wexr = fext
ext
(6.61)

Wexr (0) = x=2rWo,

where

Jext = X>2rf + [(8kTg“;,r81 + Ty - Vs x=2rTw + @k T 0

ex ext

— Ok Tg“kf[ 0 Wexs + (Tblﬁx, -V - wa V) Wexs-

Using (2.4) and the disjointness of the supports of weyr and gexr — &, bext — b, it
follows that

||(3kTg1§)1“ o — akTglfl M Wext + (Ty, -V =T - Vwexellyo S llwll 22
Moreover,
||[(3kTg?it I+ Ty, - V), xs2rlwllyo S llx<arwlpzgiz + lwllg2p2.
Thus we can apply the small data result (6.16) to bound we,;,

lwextllxo Sur llwollz2 + I1Fllyo + lwllz2p2 + Ix<arwlip2gie. (6.62)

Combined with (6.60), this yields the conclusion of Proposition 6.4 for the case of
the paradifferential equation.
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6.6. Higher Regularity Bounds for the Paradifferential Equation

Here we extend the L? high frequency bounds (6.12) for the paradifferential

equation (6.2) to H* and [' H*. We begin by proving the /' L? bound,
lwlixo £ e“H0E Awolly 2 + 1 liyo + llwllpg22). (6.63)

Here the /! norms control the £2 norms, so by (6.12) we can bound ||w|| xo by
the right side of (6.63). This suffices to establish (6.63) in Bsg, and it remains to
consider the exterior part of w. Here we apply (6.17) to wey;, which solves (6.61).
Arguing in a fashion analogous to that in the preceding subsection yields (6.63).

Next we consider (6.13). By interpolation, it suffices to consider the case when
o is a positive integer. But this case can be obtained simply by differentiating the
paradifferential equation and applying (6.63) to 0° w. Here we note that 9° w can
be viewed as a vector valued function, which solves a system which is diagonal at
leading order but coupled through the first order terms. This makes no difference,
as the proof of (6.63) equally applies to this case without any changes.

Finally we prove (6.14). Here we apply the same reasoning as in the previous
paragraph but starting with (6.12) instead of (6.63).

6.7. Bounds for the Original Equation

Here we transfer the high frequency bounds from the paradifferential equation
(6.2) to the original equation (6.1), and prove Proposition 6.4 (which immediately
implies Theorem 6.1), as well as the bounds (6.13) and (6.14) (which immediately
imply Corollary 6.2).

We begin with (6.13) and (6.14). This requires bounds for the operator

E = (¢" = Ti)od + (b — T},
namely

—CML CML

||EU)||12Y0 5 M€ ||w||12XU +e ”w”lszH"’ (664)
—CML CML

”Ew”llya § M€ ||w||llxo' +e ||w”llL2Ho'. (665)

Using a Littlewood—Paley decomposition we identify two distinct cases:

(1) High x high — low interactions. If the high frequency is k > M L then we use
(4.15), gaining a factor of 279 Else we bound the /! X° norm by the /' L> H®
norm, losing an eCML factor. Here § = s — 0.

(i) High x low — high interactions, where we can still apply the same strategy as
above. If the low frequency is k > M L then we use (4.15), gaining a factor of
27% Else we bound the /! X norm by the /! H° norm, losing an e~ factor.
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7. Proof of Theorem 1.2

We recall that the Eq. (1.1) turns into an equation of the form (1.4) by differ-
entiation. Hence it suffices to prove part (b) of the theorem. Thus, we are working
with the equation

iug +3;87%(u, W)u = Fu, i, Vu, Vi), u: R x R4 — C™

(7.1)
(0, x) = uo(x)
which we rewrite in the paradifferential form
i0;u + BjTg"jfkaku + Tb’;’a,-u + Tgyaja =G
(7.2)

u(0, x) = ugp(x).

Here the nonlinearity G = G(u, u, Vu, Vi) is no longer purely algebraic, as it
involves frequency localizations. However, G plays a perturbative role, due to the
estimates in Section 4.2.

7.1. The Iteration Scheme

To construct a local solution u for our nonlinear equation (7.1) we introduce an
iterative scheme as follows:

e Our starting point is the function 1@ = 0.
e The iteration step is as follows. Given u™_ we construct u™*1) as the solution
to the linear paradifferential equation

(i0pu"+D ;T a4

(1) w gt — (n)
&1 ) A AT ) 28T = G

TV
bl (u) J(um) (7 3)
u®tD 0y = uy.

A priori we do not even know whether the sequence 1 is well defined for all
n. Even if it is defined locally in time, we do not know whether their lifespans are
uniformly bounded from below away from zero. Thus, our objectives will be, in
order, as follows:

e Establish uniform bounds for the sequence u on a fixed time interval [0, T
not depending on n.
e Prove convergence for the sequence u™.

To achieve this we first need to establish the main parameters which will be
used to control the sequence u"™, which should depend only on the initial data uq.
A priori we know that ug € [ L s We introduce a second Sobolev index sq so that

d
—+2 .
2+ <S50 <S
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Then we consider the coefficients g (uq), b(up) and l;(uo) in the linearized equation,
and measure them at both regularities, denoting

My = lluolljgs, M = lluolljt - (7.4)

The next step is to choose a large enough ball B of radius R so that uq is small
outside Bp,

||u0||11HA'0(B;'?) <ekl (7.5)

Here ¢ is a small universal constant.

Finally, the metric g(ug) is nontrapping. Then we denote by L the length of
the longest bicharacteristic for g(u), measured on the cosphere bundle, from the
entry to the exit from 2Bg.

Given the initial data parameters, M, R, L and M; we seek to use them in order
to uniformly describe the sequence u™:

Proposition 7.1. Assume that the time T is small enough,
T <y, e €D, (7.6)

Then the sequence u™ is well defined in [0, T for all n and satisfies the following
uniform properties:

(1) Uniform H® bounds:

1 0,7y < €0 M. (7.7)

(2) Uniform H*® bounds:
1™ 111 xs0 10,71 < 2M. (7.8)

(3) Uniform exterior size:
1™ 1 x50 0,71 B < 26- (7.9)

(4) Uniform nontrapping:
Lu™) <2L. (7.10)

Once we have the uniform bounds on the iterations, the next goal is to prove
convergence in a weaker topology:

Proposition 7.2. Assume that the time T is small enough,
T <y, e CDL, (7.11)
Then the sequence u™ converges in1'X° for0 < o < so — 1.

After these two propositions are proved, it follows that the sequence u™ is
uniformly bounded in /' X* and convergent in /' X*~!. Then it is convergent in all
intermediate topologies. This suffices in order to pass to the limit in the equation and
conclude that in the limit we obtain a solution u € ' X* for the original equation:
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Proposition 7.3. Let ug € ' H be a nontrapping initial datum with parameters
R, M, L, M. Assume that the time T is small enough,

T <y, e WD, (7.12)

Then there exists a solution u € 1' X with the following properties:

(1) H® bound:

lullyixsgo,ry < €MEM;. (7.13)
(2) H* bounds:
||M||11xfo[0,T] <2M. (7.14)
(3) Small exterior size:
lellinxs o, T1x By < 2€- (7.15)
(4) Nontrapping:
L(u) <2L. (7.16)

The aim of the next two subsections is to prove the first two propositions.

7.2. The Iteration Scheme: Uniform Bounds

Our aim here is to prove Proposition 7.1. We use induction on n.
Proof of (7.7). Here we use the bounds for the paradifferential equation in Corol-
lary 6.2 together with the bounds for G in Proposition 4.5 to get

la DN xs0.71 S €M luollp s + 116G @ ™) jiys)
S eCDEM, + TP M) 1™ N1 xs10,77)-

Hence for small enough 7 as in (7.12) the bound (7.7) follows.
Proof of (7.8). A direct time integration in our iteration yields

”u(n+1)||llxo ,S ﬁec(M)LMS.
Interpolating with the /' X* bound above yields
01y S TO2CME p (7.17)

which suffices for T as in (7.12).

Proof of (7.9). This follows directly from the bound (7.17) in view of the choice
of R in (7.5).

Proof of (7.10). This is a consequence of Proposition 5.2 due to (7.17).
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7.3. The Iteration Scheme: Weak Convergence

Here we prove Proposition 7.2, which asserts that our iteration scheme con-
verges in the weaker /! X7 topology. We recall the range for o, namely,

0<o<sg—1. (7.18)
For this we write an equation for the difference v = »+D — 3 ™:

(0 +9; Tg“;.k(n)ak + Tbu(}n)V)v(") + Tl;u(]n)Vﬁ(”) = G(u(")) — G(u(ﬂ—l)) + gm

(7.19)
v (0, x) =0,
where
H® = 9; Tgl?kxn)_gjk,(n—l)ak“(”) + Tbu()n)_bm—l)vu(n) + T;;u()n)_;;(nfl)v’z(n)'
For the G difference we apply Proposition 4.5, which yields
1G@™) = G@™ Nllpye Sar T2V lljixo (7.20)
Similarly, for H ™) we claim the bound
IH " lye Sa T2V lpixo. (7.21)

Assume this holds, then for the paradifferential equation we use Corollary 6.2. We
obtain

1 s C(M)L
™D S 2L @ 1 40,

which for T as in (7.12) yields
1
™ D ige S §||U(")||1'X"~

The desired convergence follows. Thus we have established the existence part of
our main theorem.

It remains to prove the bound (7.21). We write the coefficients above in the
form

gik ) _ gk (=) =Dy
and
b™ — b = hy(u, Vu)Vo "V + hy(u, Vuyo™ D,

where u stands for (u™, u"~D). For the functions /; we can apply the Moser
estimates in (4.6). Then we are left with proving the following two trilinear bounds,

s
IS<k—awvugllpye S TOlIwllpgso-1 Ivllxe lullgso-2, (7.22)
respectively
s
I S<k—awvlurlpye S TNwllp xso-tllvllpgo—tllull;nyso-1- (7.23)

‘We consider two cases:
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(a) The v frequency is < 2k=2 Then the frequency of w is similar, and the first
bound (7.22) is worse. We harmlessly drop the multiplier, use (4.16) for the vu
product and bound w in L*°.

(b) The v frequency is > 2¥=2. Then the frequency of w is also similar, and the
worst case is (7.23) with o = 0. But then this is exactly the bound (4.25),
proved earlier.

7.4. Uniqueness Via Weak Lipschitz Dependence

Our aim here is to prove the following estimate for the difference of two solu-
tions:

Proposition 7.4. Let u(()l) € IYH® be a nontrapping initial datum with parameters

M, R, L and M(s). Let ug) € IYH* be another initial datum with comparable
size,

2
NP1 gy < M

and close to ué)l) in a weak topology,

1 2 _
Nl = w12 <, e CODE

Then the following hold:

(a) u(()z) has comparable parameters, and the same associated ball B.
(b) The associated solutions exist on the time interval [0, T with T as in (7.12).
(¢) The following difference estimate holds in [0, T for o as in (7.18):

[ e e A (ORI O P (7.24)
Uniqueness follows as a corollary of this result.

Proof. (a) Interpolating between the /' L? and /' H* bounds we get

Q)

2 _
lud” = w11 oo < e DL

Thus M and Bg remain the same. Finally, L remains the same by Proposi-
tion 5.2.

(b) This is a consequence of Proposition 7.3.

(c) This repeats the arguments in the proof of Proposition 7.2. O

7.5. Frequency Envelopes and Higher Regularity

Here we consider solutions with initial data u( as in Proposition 7.3 and pro-
vide bounds for the frequency envelope of the solutions in terms of the frequency
envelope of the initial data. As a corollary, we show that higher regularity for the
data implies higher regularity for the solution.

Our starting point is the initial data uy € [' H*, for which we consider an
admissible frequency envelope cx. Then our frequency envelope bound for the
solutions is
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Proposition 7.5. Let u be a solution to (3.1) as in Proposition 7.3, with initial data
uo € [YH®. Let c be an admissible frequency envelope for uq in [' H®. Then the
solution u satisfies the dyadic bounds
ISkullyxs < e ey (7.25)
As a consequence, we obtain the following higher regularity statement:

Corollary 7.6. Let u be a solution to (3.1) as in Proposition 7.3, with initial data
uo. Assume in addition that ugy € 1" H for some o > s. Then the solution u satisfies
the bound

lllyixo S €€ lluollyigo, o = . (7.26)
Proof of Proposition 7.5. We denote by dj a minimal admissible frequency en-
velope for u in I! X*. By Corollary 4.6 we have a corresponding bound for G (u),
namely,

I1SkG @)l xs Sar TPdg.

Now we apply to « the bound for the linear paradifferential equation in Corollary 6.3.
This gives

ISkullxs S e e+ TPdy).
The envelope on the right is admissible, so by the minimality of dy we obtain
d S e« e+ T0dy).
Now the choice of T as in (7.12) guarantees that
di < eCMhey,
asneeded. 0O

Proof of Corollary 7.6. Let c; be a minimal admissible frequency envelope for
the initial data uq in [! H*. Then

2 ~ 2(0—s)k 2
luollFy o Y 22 Kep

On the other hand, the previous proposition implies that

2 C(M)L 2(0—s)k 2 C(M)L 2
)i o S eCPDEN " 22OTRR < CODL g 17

~
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7.6. Continuous Dependence on the Initial Data

Here we want to show that ug — u is continuous from /! H* into /! X*. The
argument is exactly as in [26].

Let a;")
inl'HS. If u(()") — ug in /' H*, then (aﬁn)) — (aj)in 12. So for any ¢ > 0, there is
N, so

and a; be minimal frequency envelopes given by (2.5) for u(()") and uo

a2 < & foralln.

We remark that our initial data convergence in /! H* guarantees that, for large
enough n, the control parameters R, L can be uniformly chosen independently of
n. Then the associated solutions u™ exist on a uniform time interval [0, T]. By
;") carry over to the solutions ™ measured in
1'X*[0, T1. In particular, we conclude that

Proposition 7.5, the envelopes a

1Y, lj1xs < & forall n. (7.27)
Using (7.24) for low frequencies and (7.27) for the high frequencies, we obtain

™ — ulljngs S NS<n, @™ — W)l xs + I1S=n, 2™ |l xs + 1= w21 xs
S 2N 1Sy, (™ — w1 ys—1 + 26

S 2V Sy, @l — o)l o1 + 2.
As n — oo we see that

lim sup [lu™ —uf;iy Se.
n—oQ

There, upon letting ¢ — 0,

lim [Ju™ —ujiys =0,
n—oo ” ”l XY

which gives the desired result.
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