
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. © 2022 Society for Industrial and Applied Mathematics
Vol. 82, No. 1, pp. 49--74

DEFECT RESONANCES OF TRUNCATED CRYSTAL STRUCTURES\ast 

JIANFENG LU\dagger , JEREMY L. MARZUOLA\ddagger , AND ALEXANDER B. WATSON\S 

Abstract. Defects in the atomic structure of crystalline materials may spawn electronic bound
states, known as defect states, which decay rapidly away from the defect. Simplified models of
defect states typically assume the defect is surrounded on all sides by an infinite perfectly crystalline
material. In reality the surrounding structure must be finite, and in certain contexts the structure
can be small enough that edge effects are significant. In this work we investigate these edge effects
and prove the following result. Suppose that a one-dimensional infinite crystalline material hosting a
positive energy defect state is truncated a distance M from the defect. Then, for sufficiently large M ,
there exists a resonance exponentially close (in M) to the bound state eigenvalue. It follows that the
truncated structure hosts a metastable state with an exponentially long lifetime. Our methods allow
both the resonance frequency and associated resonant state to be computed to all orders in e - M .
We expect this result to be of particular interest in the context of photonic crystals, where defect
states are used for wave-guiding and structures are relatively small. Finally, under a mild additional
assumption we prove that if the defect state has negative energy, then the truncated structure hosts
a bound state with exponentially close energy.
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1. Introduction. In this work we seek to understand solutions of the following
model PDE:

(1.1) i\partial t\psi = H\psi H := D2
x + V (x), Dx :=  - i\nabla x.

Here \psi (x, t) : Rd \times R \rightarrow C is a complex function known as the wave-function, H
is the Hamiltonian, and V (x) is a real function known as the potential. The PDE
(1.1) arises in two application areas which are relevant to the present work. First,
(1.1) models the wave-like dynamics of electrons in a d-dimensional material in the
independent-electron approximation (see, e.g., [3]). In this case, \psi (x, t) denotes the
wave-function of a single electron, and V (x) denotes the electric potential due to
the material environment. The other application area is in photonics, where the
propagation of electromagnetic waves through media with spatially varying refractive
index can be modeled in the paraxial approximation by (1.1) (see, e.g., [2]). In this
case, \psi (x, t) denotes the envelope of an electromagnetic wave-packet, and V (x) is
related to the refractive index of the medium.

In both of these application areas, there is considerable interest in building wave-
guides : structures which effectively confine waves to a given region or channel. The
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50 J. LU, J. L. MARZUOLA, AND A. B. WATSON

simplest way to confine waves is by building a structure which hosts a bound state,
as we now briefly review. Suppose H has a bound state, i.e., there exists E \in R
and \phi (x) \in L2(Rd) such that H\phi = E\phi . Then the solution of (1.1) with initial
condition \psi (x, 0) = \phi (x) is \psi (x, t) = e - iEt\phi (x). Since the magnitude of the solution
| \psi (x, t)| 2 = | \phi (x)| 2 is conserved with respect to time, and since \phi (x) spatially decays,
stationary solutions describe waves which remain confined for all t > 0.

A common strategy for creating a structure which hosts a bound state is to
build a structure which is perfectly periodic except for a defect region. Bound states
created by defects in an otherwise periodic structure are known as defect states. Many
previous works have proved existence of defect states across various models; see,
e.g.. [7, 9, 12, 22, 24, 32, 33, 35, 37, 41, 55]. For related numerical work, see [31, 56].
In recent years, ``topologically protected"" edge states, which decay away from the
physical edge of a material, or away from extended line defects within a material, have
also attracted attention for wave-guiding applications [18, 19, 20, 21, 28, 29, 30, 46].
For related numerical work, see [58].

In general these works make the unphysical assumption that the periodic struc-
ture surrounding the defect, edge, or line defect, extends infinitely away from the
defect. It follows that these models capture the dynamics of real wave-guides only
approximately. In this work we investigate the validity of this approximation by in-
vestigating how bound states of infinite periodic structures supporting a defect state
perturb when the structure is truncated, i.e., when the potential V (x) is set equal to
zero outside a bounded region. Before we can state our result, we need to recall the
basic theory of resonances (for more detail, see, e.g., [26]).

Resonances are poles of the resolvent (H  - z) - 1 viewed as a function of \lambda :=
\surd 
z

and meromorphically continued to the lower half of the complex plane (Im \lambda < 0).
For our purposes, resonances are important because they control the rate of energy
decay of solutions of (1.1) from bounded subsets of Rd. Specifically, suppose that H
has a resonance z\ast in the strip 0 < a \leq Re z \leq b whose imaginary part is closer to
the real axis than any other resonance in that strip. Let \chi R \in C\infty 

c denote a smooth
cutoff which equals one on B(0, R) for some R > 0, and let \psi \in C\infty 

c denote a cutoff
with supp \psi = [a, b]. Then one can prove a bound (roughly stated, see, e.g., [8, 26]
for more details)

\chi Re
 - itH\chi R\psi (H) = \chi RRes

\bigl( 
e - it\bullet (H  - \bullet ) - 1, z\ast 

\bigr) 
\chi R\psi (H)

+ terms decaying faster in time.
(1.2)

It follows that the imaginary part of z\ast controls the rate of decay of solutions of (1.1)
localized spatially in the ball B(0, R) and spectrally in the interval [a, b].

The main result proved in this work is as follows. We prove that when an infinite
structure hosting a defect state with positive energy E > 0 is truncated sufficiently far
from the defect and d = 1, the truncated structure hosts a resonance exponentially
close (in the distance from the defect to the truncation) in the complex plane to
E. Furthermore, our methods allow for precise estimates of the exponentially small
corrections to all orders.

As a corollary we prove precise estimates on the rate of decay of waves localized
at defects in truncations of infinite one-dimensional structures hosting defect states
with positive energy E > 0. This result clarifies the validity of the unphysical approx-
imation described above, where wave-trapping by finite structures is studied using
models which are periodic away from the defect. For the precise statement of our
main result in the simplest setting where reflection symmetry holds, see section 2.
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DEFECT RESONANCES OF TRUNCATED CRYSTAL STRUCTURES 51

For the statement of our result in the general case where reflection symmetry may be
broken, see section 7.

We hope that our result will inform the design of novel wave-guiding devices
based on defect states. Another motivation and potential application of our result is
to the design of efficient lasers. Lasers require the existence of a resonance very close
to the real axis. Our work implies that truncations of infinite structures which host
defect states with positive energy will lase efficiently if they are truncated sufficiently
far from the defect. In recent years ``topological"" lasers, whose associated resonances
arise because of edge modes, have been proposed and built [4, 36, 54, 57, 61].

By adapting our methods we can prove one further result. We prove that when
the defect state has negative energy E < 0, under an additional assumption which
we expect is generically satisfied (see (9.1) in the statement of Theorem 9.1), the
truncated structure also hosts a bound state whose eigenvalue is exponentially close
to E (see section 9.1). The case where E = 0 is not immediately amenable to our
methods; see Remark 9.2 for a discussion of this.

The main ingredients of our proofs are ODE theory with periodic coefficients
(Floquet theory) [27, 50] combined with a fixed point argument introduced by Dyatlov
and Zworski (see section 2.8.1 of [26], where the argument is used to show that bound
states of the harmonic oscillator become resonances when the potential is set to zero
outside an interval). Although our proof does not generalize easily to d > 1 because
it relies on ODE theory, we expect our result to also hold in that case and we make
a general conjecture to this effect (see section 10).

1.1. Outline of paper. The outline of the paper is as follows. We will start by
presenting and proving our main result in the simplest case, where the structure is
symmetric under reflection about the origin (parity symmetric). We will first present
our result precisely in section 2, then present the main ideas of the proof in sections
3 and 4. We provide proofs of key estimates in sections 5 and 6. We will then present
our main result precisely in the case where reflection symmetry is broken in section
7, presenting the aspects of the proof which differ significantly from the reflection-
symmetric case in section 8. We will finish by discussing the bound state result and
conjecturing generalizations of our results in section 9.

1.2. Related work. In this section we discuss existing literature related to scat-
tering resonances of periodic structures in one dimension. Note that we already dis-
cussed the existing literature on bound states of perturbed periodic structures in
section 1.

The scattering theory of discrete and continuum periodic structures on the whole
or half line perturbed by local perturbations is well studied; see, e.g., [13, 14, 15, 34, 38,
39, 44, 45]. Regarding truncated periodic structures, Klopp [42, 43] and Trinh [59, 60]
have studied the resonances of truncated periodic structures on the whole or half-line
without defects. Barra and Gaspard have studied the same problem numerically and
in the limit of high energy [5]. Duch\^ene, Vuki\'cevi\'c, and Weinstein [22, 23, 24, 25]
and Drouot [17] have studied the scattering, homogenization, and defect modes of
highly oscillatory compactly supported potentials, which are equivalent to truncated
periodic structures after a rescaling. Wave packet propagation in truncated periodic
structures has been studied by Molchanov and Vainberg [51, 52, 53]. Christiansen [10]
has studied the resonances of ``steplike"" potentials which are asymptotically equal to
constants with different values at large positive and negative x. Dobson et al. [16]
have studied the resonances of a potential well with a thick, constant barrier in one
dimension. Lin and Santosa [49] have considered the same problem in two dimensions,
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52 J. LU, J. L. MARZUOLA, AND A. B. WATSON

when the barrier is radially symmetric.
Lin and Santosa [48] and Lin [47] have studied the resonances of one-dimensional

truncated periodic Maxwell operators with defect regions. The work [48] covers the
case where the structure (including the defect) has reflection symmetry about the
origin, while the work [47] drops this assumption. Their results are similar to ours:
they prove existence of resonances exponentially (in the truncation length) close to
bound state frequencies of the untruncated periodic structures with defects. Their
methods are also similar, in part: they derive algebraic resonance equations satisfied
by the resonance frequency, and then prove existence of roots using a contraction
mapping argument. The methods for deriving resonance equations differ between the
works: in [48], this is achieved using the explicit initial conditions for the resonant
state which are available when the structure is even, and in [47] this is achieved using
the theory of elliptic boundary value problems. There are meaningful differences
between [47, 48] and the present work, however. The first difference is that they
consider a one-dimensional Maxwell system where the medium inhomogeneity enters
into the equation differently from our model. However, this difference is quite minor
because the two equations are equivalent under a transformation. A more significant
difference is that [47, 48] assume that the periodic structure away from the defect
region is piecewise constant, which makes the transfer/monodromy matrix for solving
the Floquet ODE explicit. We make no such assumption, so our proof requires more
direct ODE analysis (specifically, see sections 5 and 6). Our treatment of the case
without reflection symmetry is also quite different from [47]: we generalize ODE
methods to this case by solving for the initial conditions for the resonant state with
the resonance frequency in the resonance equation. Finally, our results seem to give
slightly sharper estimates on the distance of the resonance to the associated bound
state frequency (proportional to M - 2e - kM compared to e - kM ).

Finally, we mention that a mathematically similar situation where bound states of
a system of interacting waveguides perturb to resonances under truncation has been
studied by Borisov, Exner, and Golovina [6] by different methods. Kalozoumis et
al. [40] have considered a problem similar to ours and shown that the resonance of the
finite structure near the bound state energy also gives rise to perfect transmission of
incident plane waves at that energy, although they restrict attention to an effectively
discrete model which satisfies parity symmetry.

2. Statement of main result when parity symmetry holds. We now pres-
ent our main result in the simplest setting. We consider the one-dimensional contin-
uum Schr\"odinger operator

(2.1) H = D2
x + V (x), Dx :=  - i\partial x,

where V , the potential, is a real function. We start with the following regularity and
symmetry assumptions on V .

Assumption 2.1 (regularity and translation symmetry of V ). First, we assume
V is smooth: V (x) \in C\infty (R). Then, we assume that V can be written as

(2.2) V (x) = Vper(x) + Vdef(x),

where Vper is periodic, i.e., Vper(x + 1) = Vper(x) for all x \in R, and Vdef(x) is
compactly supported, i.e., there exists \rho \geq 0 such that

(2.3) | x| > \rho =\Rightarrow Vdef(x) = 0.
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DEFECT RESONANCES OF TRUNCATED CRYSTAL STRUCTURES 53

Remark 2.1. The assumption that Vper has periodicity 1 is made without loss of
generality up to a possible rescaling of x.

Remark 2.2. The eventual periodicity assumption (2.3) is essential to our proof
because it allows us to apply Floquet theory. Even so, we expect the result to still
hold if this assumption is replaced by a weaker spectral gap condition; see section 10.

Now suppose that H has a bound state with positive energy, i.e., there exist E > 0
and \Phi (x) \in L2(R) such that

(2.4) H\Phi (x) = E\Phi (x).

Our aim is to prove that when the structure modeled by H is truncated sufficiently
far from x = 0, the resulting structure supports a resonance. Specifically, we aim to
prove that the operator

(2.5) Htrunc := D2
x + Vtrunc(x),

where

(2.6) Vtrunc(x) =

\Biggl\{ 
V (x), | x| \leq M,

0, | x| > M,

acting on L2(R) has a resonance z\ast \in C with Re z > 0, Im z < 0 nearby to E in the
complex plane for M sufficiently large (in particular, such that M > \rho ).

We will present our main result first under the following simplifying symmetry
assumption. We emphasize that our techniques do not fundamentally rely on this
assumption, although it simplifies the statement of our result and its proof. We
discuss how our result generalizes to the case where Assumption 2.2 doesn't hold in
section 7.

Assumption 2.2 (parity symmetry of V ). We assume that V (x) is even, i.e.,

(2.7) V ( - x) = V (x)

for all x \in R.
To present our result we require some elementary calculations and some notation.

First, note that by Floquet theory (we recap the aspects of Floquet theory which are
important for us in section 5), the ODE (2.4) can have at most one decaying solution
for | x| > \rho , and hence the eigenvalue E is nondegenerate. It then follows from even-
ness of the potential V (x) that \Phi (x) is either even or odd, i.e., \Phi ( - x) = \Phi (x) or
\Phi ( - x) =  - \Phi (x) for all x \in R.

When \Phi is even, define uz(x) \in C\infty ([0,M ]) to be the solution of

(2.8) (D2
x + V (x) - z)uz = 0, uz(0) = 1, u\prime z(0) = 0

for arbitrary z \in C. When \Phi is odd, we make the same definitions except the initial
data for (2.8) should be changed to uz(0) = 0, u\prime z(0) = 1. Note that in either case \Phi 
satisfies (2.8) when z = E. We define

(2.9) (X1(z), X2(z)) := (uz(M), u\prime z(M))

and

(2.10) \Theta (z) := X2(z) - i
\surd 
zX1(z).
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For the square root in (2.10), we assume z \in C\setminus ( - \infty , 0] and choose the branch of the
square root such that \pm Im z > 0 =\Rightarrow \pm Im

\surd 
z > 0. With these definitions, z\ast \in C

with Re z\ast > 0 and Im z\ast < 0 is a resonance whenever \Theta (z\ast ) = 0.
The main theorem underlying our results is the following.

Theorem 2.1. Let V (x) satisfy Assumptions 2.1 and 2.2, and let \Phi be a bound
state with positive eigenvalue E > 0 as in (2.4). Let \rho > 0 be as in (2.3). Then there
exist k > 0 and an M0 > \rho \geq 0 such that for all M \geq M0,

1. \Theta (z) defined by (2.10) has a unique root z\ast in the ball

(2.11) \Omega M =

\biggl\{ 
z : | z  - E| \leq 1

M2
e - kM

\biggr\} 
.

2. The location of the root z\ast can be precisely characterized as

(2.12) z\ast = E  - \Theta (E)

\partial z\Theta (E)
+O(e - 4kM ).

We explain the main ideas of the proof of Theorem 2.1 in sections 3 and 4,
postponing proofs of key estimates to sections 5 and 6. The overall idea of the proof
is to adapt a fixed point argument introduced by Dyatlov and Zworski, who used it
to prove an analogous result to Theorem 2.1 for the truncated harmonic oscillator
in the semiclassical limit (see Chapter 2.8.1 of [26]). In our setting, largeness of
the truncation length M can be understood as playing the role of smallness of the
semiclassical parameter in Dyatlov and Zworski's proof. The most difficult step in the
proof is to prove a particular map \Psi : C \rightarrow C is a contraction in the ball \Omega M (2.11).
The existence part of Theorem 2.1 (part (1)) then follows from the Banach fixed point
theorem. The asymptotic formula for the resonance (part (2) of Theorem 2.1) uses
the formula for the fixed point of \Psi as the limit limn\rightarrow \infty \Psi n(z) for any z \in \Omega . The
proof that \Psi is a contraction requires precise estimates on solutions of (2.1) which we
obtain using ODE methods (specifically, Floquet theory). As a result, our proof does
not generalize in a straightforward way to higher dimensions.

Remark 2.3. For x \geq \rho , the ODE (2.8) has periodic coefficients. Since by as-
sumption the structure modeled by (2.8) has a bound state with energy E, Floquet
theory implies the ODE must have real characteristic multipliers whose product is 1.
The k > 0 which appears in Theorem 2.1 is simply the logarithm of the larger of these
characteristic multipliers. For more details, see section 5.

The asymptotic formula for the root (2.12) is not very explicit. We can derive a
more explicit formula as follows. When \Phi is even, we define vz(x) \in C\infty ([0,M ]) to
be the solution of

(2.13) (D2
x + V (x) - z)vz = 0, vz(0) = 0, v\prime z(0) = 1

for arbitrary z \in C. When \Phi is odd, we make the same definitions except the initial
data for (2.13) should be changed to vz(0) =  - 1, v\prime z(0) = 0. In either case uz(x)
(2.8) and vz(x) form a fundamental solution set of the ODE (with Wronskian uzv

\prime 
z  - 

u\prime zvz = 1) appearing in (2.13). We then have the following formula for the first-order
correction appearing in (2.12).

Corollary 2.2. The first correction term appearing in (2.12) satisfies

(2.14)
\Theta (E)

\partial z\Theta (E)
=
i
\surd 
E  - [u\prime E(M)v\prime E(M) + EuE(M)vE(M)]

[(v\prime E(M))2 + E(vE(M))2]
\int M

0
u2E(y) dy

+O(Me - 4kM ).
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Proof. The proof is a straightforward manipulation using the asymptotics for
\partial z\Theta (E) derived in (5.15). That

\surd 
E appears on its own comes from the fact that the

Wronskian of uE and vE is 1. We omit the details.

The consequences of Theorem 2.1 and Corollary 2.2 can now be summarized as
follows.

Corollary 2.3. Let V,\Phi , E > 0, \rho > 0, uz, and vz be as in Theorem 2.1 and
Corollary 2.2, and let Htrunc be as in (2.5). Then there exist k > 0 and anM0 > \rho \geq 0
such that for all M \geq M0, Htrunc has a resonance z\ast such that

Re z\ast = E +
u\prime E(M)v\prime E(M) + EuE(M)vE(M)

[(v\prime E(M))2 + E(vE(M))2]
\int M

0
u2E(y) dy

+O(Me - 4kM ),

Im z\ast =
 - 
\surd 
E

[(v\prime E(M))2 + E(vE(M))2]
\int M

0
u2E(y) dy

+O(Me - 4kM ).

(2.15)

The associated resonant state \Phi \ast (x) equals

(2.16) \Phi \ast (x) =

\Biggl\{ 
uz\ast (x), 0 \leq x \leq M,

uz\ast (M)ei
\surd 
z\ast (x - M), x > M

for x \geq 0. When \Phi (x) is even (resp., odd), \Phi \ast (x) is even (resp., odd).

Remark 2.4. As M \rightarrow \infty the resonance pole (2.15) will converge to the defect
state eigenvalue, which explains why one observes that \Omega M decreases as M \rightarrow \infty . In
general, we suspect also that the transmission and reflection coefficients for plane wave
scattering in the truncated problem converge to demonstrate the bands and the gaps
of the model continuous spectrum in the infinite system (meaning the transmission
coefficient should converge to 0 where there are gaps in the fully periodic model
spectrum). Near energy E, the M \rightarrow \infty model will have a gap, but, due to the
existence of this resonance, convergence in that region may be nonuniform as observed
in the related results [22, 24]. Kalozoumis et al. [40] have considered this question
for an effectively discrete model with parity symmetry and found perfect transmission
(T = 1) at the bound state energy. We leave further numerical study and rigorous
analysis of these scattering state solutions to future works.

3. Fixed-point argument. In this section we will show how existence of a
resonance nearby in the complex plane to the bound state eigenvalue E can be de-
duced from a fixed point argument. Recall the definitions (2.8)--(2.10) of uz(x) and
\Theta (z). Assuming that \partial z\Theta (E) \not = 0 (we will verify this below; see (3.7)), \Theta (z\ast ) = 0 is
equivalent to

(3.1) \Psi (z\ast ) = z\ast , where \Psi (z) := z  - \Theta (z)

\partial z\Theta (E)
.

In other words, z\ast is a resonance if and only if z\ast is a fixed point of the map \Psi : C \rightarrow C
defined by (3.1).

We will prove the existence of a fixed point nearby to E by showing that \Psi is a
contraction in an appropriate ball centered at E for M sufficiently large. We start by
defining a ball centered at E with radius f(M):

(3.2) \Omega M := \{ | z  - E| \leq f(M)\} .
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Here we assume f(M) is a function such that limM\rightarrow \infty f(M) = 0 but don't define
its precise form yet. By the mean value theorem, \Psi is a contraction as long as
\Psi : \Omega M \rightarrow \Omega M and

(3.3) | \partial z\Psi (z)| \leq 1

2
for all z \in \Omega M .

Using the definition of \Psi (3.1), the condition for \Psi to be a contraction (3.3) will be
satisfied if

(3.4) | \partial z\Theta (z) - \partial z\Theta (E)| \leq 1

2
| \partial z\Theta (E)| for all z \in \Omega M .

Invoking the mean value theorem again, we have that

(3.5) | \partial z\Theta (z) - \partial z\Theta (E)| \leq f(M) sup
z\in \Omega M

\bigm| \bigm| \partial 2z\Theta (z)
\bigm| \bigm| for all z \in \Omega M .

Combining (3.5) and (3.4) establishes the following criterion for \Psi (3.1) to be a con-
traction in the ball \Omega M (3.2).

Lemma 3.1. Let uz be as in (2.8), \Theta be as in (2.10), \Psi be as in (3.1), and \Omega M

be as in (3.2). Then \Psi : \Omega M \rightarrow \Omega M is a contraction if

(3.6) f(M) sup
z\in \Omega M

\bigm| \bigm| \partial 2z\Theta (z)
\bigm| \bigm| \leq 1

2
| \partial z\Theta (E)| .

We will prove the criterion (3.6) holds for sufficiently large M and f(M) =
1

M2 e
 - kM by proving the following lemmas.

Lemma 3.2. There exist positive real constants C and k and M0 > \rho > 0 such
that for all M \geq M0,

(3.7) | \Theta (E)| \leq Ce - kM , | \partial z\Theta (E)| \geq CekM .

Proof. The proof is given in section 5.

Lemma 3.3. Let k be as in Lemma 3.2 and f(M) in the definition of \Omega M be
1

M2 e
 - kM . Then there exist positive constants C and M0 > \rho \geq 0 such that for all

M \geq M0, we have supz\in \Omega M

\bigm| \bigm| \partial 2z\Theta (z)
\bigm| \bigm| \leq CekM .

Proof. The proof is given in section 6.

We can now prove the existence part of Theorem 2.1.

Proof of part (1) of Theorem 2.1. Assuming their hypotheses, Lemmas 3.2 and
3.3 clearly imply the condition (3.6). To see that \Psi : \Omega M \rightarrow \Omega M , note that using
(3.3) we have

(3.8) | \Psi (z) - E| = | \Psi (z) - \Psi (E) + \Psi (E) - E| \leq 1

2
| z  - E| +

\bigm| \bigm| \bigm| \bigm| \Theta (E)

\partial z\Theta (E)

\bigm| \bigm| \bigm| \bigm| .
If z \in \Omega M , then by definition and by Lemma 3.2 we have that | \Psi (E) - E| \leq 

1
2M2 e

 - kM + Ce - 2kM , and hence for sufficiently large M we have \Psi (z) \in \Omega M . Hence
by Lemma 3.1 we are done.

The proofs of Lemmas 3.2 and 3.3 involve careful estimation of solutions of (2.8)
and are the subjects of sections 5 and 6.
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4. Asymptotics of the resonance. We now show how to prove the asymptotic
formula part of Theorem 2.1 assuming Lemmas 3.2 and 3.3. The idea is to use the
formula for the resonance in terms of iterates of the contraction \Psi :

(4.1) z\ast = lim
n\rightarrow \infty 

\Psi n(E),

although just one iterate will be enough to capture the leading-order asymptotics.

Proof of part (2) of Theorem 2.1. Let z(n) := \Psi n(E). Since \Psi is a contraction
we have that | z(n+1)  - z(n)| \leq 1

2 | z
(n)  - z(n - 1)| . By a telescoping argument it now

follows that

(4.2) | z\ast  - z(1)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\infty \sum 

n=1

z(n+1)  - z(n)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 2| z(2)  - z(1)| .

By definition, z(1) = E  - \Theta (E)
\partial z\Theta (E) and z(2) = z(1)  - \Theta (z(1))

\partial z\Theta (E) . Substituting these expres-

sions into (4.2) implies

(4.3)

\bigm| \bigm| \bigm| \bigm| z\ast  - \biggl( E  - \Theta (E)

\partial z\Theta (E)

\biggr) \bigm| \bigm| \bigm| \bigm| \leq 2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Theta 
\Bigl( 
E  - \Theta (E)

\partial z\Theta (E)

\Bigr) 
\partial z\Theta (E)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
The asymptotic formula (2.12) will follow immediately if we can prove that the right-
hand side of (4.3) is O(e - 4kM ). To this end, note that second-order Taylor expansion
implies that\bigm| \bigm| \bigm| \bigm| \Theta \biggl( E  - \Theta (E)

\partial z\Theta (E)

\biggr) \bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \Theta \biggl( E  - \Theta (E)

\partial z\Theta (E)

\biggr) 
 - \Theta (E) +

\Theta (E)

\partial z\Theta (E)
\partial z\Theta (E)

\bigm| \bigm| \bigm| \bigm| 
\leq 1

2

\bigm| \bigm| \bigm| \bigm| \Theta (E)

\partial z\Theta (E)

\bigm| \bigm| \bigm| \bigm| 2 sup
z\in \Omega M

| \partial 2z\Theta (z)| .
(4.4)

Substituting (4.4) into (4.3) now gives

(4.5)

\bigm| \bigm| \bigm| \bigm| z\ast  - \biggl( E  - \Theta (E)

\partial z\Theta (E)

\biggr) \bigm| \bigm| \bigm| \bigm| \leq 1

| \partial z\Theta (E)| 

\bigm| \bigm| \bigm| \bigm| \Theta (E)

\partial z\Theta (E)

\bigm| \bigm| \bigm| \bigm| 2 sup
z\in \Omega M

| \partial 2z\Theta (z)| .

Under the hypotheses of Lemmas 3.2 and 3.3 we have that | \partial z\Theta (E)| \geq CekM ,
supz\in \Omega M

| \partial 2z\Theta (z)| \leq CekM , and | \Theta (E)| \leq Ce - kM for positive constants C > 0. The
asymptotic formula (2.12) now follows immediately from substituting these estimates
into (4.5).

5. Proof of Lemma 3.2: Bounding \Theta (\bfitE ) from above and \bfpartial \bfitz \Theta (\bfitE ) from
below. In this section we will prove Lemma 3.2. Without loss of generality, we assume
that the bound state \Phi (x) is even, since the case where the bound state is odd is
similar. Recall that we define \Theta (z) = u\prime z(M) - i

\surd 
zuz(M), where uz(x) \in C\infty ([0,M ])

is defined for any z \in C by

(5.1) (D2
x + V (x) - z)uz = 0, uz(0) = 1, u\prime z(0) = 0.

Basic Floquet theory (see, e.g., [50]) implies that the ODE appearing in (5.1) has
a fundamental solution set u1,z(x) and u2,z(x) which satisfy

(5.2) u1,z(x+ 1) = \lambda (z)u1,z(x), u2,z(x+ 1) = \lambda (z) - 1u2,z(x) for all x \geq \rho 
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for some \lambda (z) \in C depending on z. For H to have a bound state with energy E,
it must be that (5.1) has a decaying solution when z = E and hence | \lambda (E)| \not = 1.
Without loss of generality, we will assume 0 < \lambda (E) < 1 so that u1,E(x) decays, and
u2,E(x) grows, as x \rightarrow \infty . It is convenient to introduce a new constant k > 0 such
that \lambda (E) = e - k, so that when z = E, (5.2) becomes

(5.3) u1,E(x+ 1) = e - ku1,E(x), u2,E(x+ 1) = eku2,E(x) for all x \geq \rho .

Since the bound state must decay as x \rightarrow \infty , and (by the assumption that the
bound state is even) satisfy the initial conditions (5.1), we have that (perhaps after
multiplying u1,E(x) by a constant) uE(x) = u1,E(x) for all x \in [0,M ]. Furthermore,
by letting vz(x) denote the solution of the initial value problem

(5.4) (D2
x + V (x) - z)vz = 0, vz(0) = 0, v\prime z(0) = 1,

we must have that (perhaps after multiplying u2,E(x) by a constant) vE(x) = u2,E(x).
We can now state two equivalent identities which are important in the coming

proofs. For \rho \leq x \leq M , let [x] be defined by the conditions

(5.5) [x] \in [\rho , \rho + 1) and \exists m \in N such that [x] +m = x.

Then (5.3) implies immediately that

(5.6) uE(x) = e - k(x - [x])uE([x]) and vE(x) = ek(x - [x])vE([x]).

Equivalently, there exist 1-periodic functions p(x), q(x) \in C\infty ([\rho ,M ]) such that

(5.7) uE(x) = e - k(x - \rho )p(x), and vE(x) = ek(x - \rho )q(x) for all x \geq \rho .

The following lemma is now clear.

Lemma 5.1. There exist positive constants C1, C2, k such that for all M \geq \rho ,
| uE(M)| \leq C1e

 - kM and | u\prime E(M)| \leq C2e
 - kM .

We can now give the proof of assertion (3.7) of Lemma 3.2.

Proof of assertion (3.7) of Lemma 3.2. The assertion follows immediately from
directly bounding \Theta (z) using the triangle inequality and Lemma 5.1.

Towards a proof of assertion on \partial z\Theta in (3.7) of Lemma 3.2, we differentiate \Theta (z)
with respect to z:

(5.8) \partial z\Theta (z) := \partial zu
\prime 
z(M) - i

\surd 
z\partial zuz(M) - i

1

2
\surd 
z
uz(M).

Differentiating (5.1) with respect to z we see that \partial zuz(x) satisfies

(5.9) (D2
x + V (x) - z)\partial zuz = uz, \partial zuz(0) = 0, \partial zu

\prime 
z(0) = 0

for all z \in C. When z = E, we can construct the solution of (5.9) in terms of uE(x)
and vE(x) using variation of parameters. This will allow us to prove the following
lemma which is the key step in bounding \partial z\Theta (E) below.

Lemma 5.2. Let k > 0 be as in Lemma 5.1. Then there exist constants C > 0
and M0 \geq \rho such that for all M \geq M0,

(5.10)
\Bigl( 
(\partial zu

\prime 
z(M)| z=E)

2
+ E (\partial zuz(M)| z=E)

2
\Bigr) 1/2

\geq CekM .
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Proof. The proof is given in section 5.1.

We can now prove the second assertion of Lemma 3.2.

Proof of assertion on \partial z\Theta in (3.7) of Lemma 3.2. Since every term of (5.9) is
real when z = E, \partial zuz(M)| z=E and \partial zu

\prime 
z(M)| z=E are real. It then follows that

(5.11)\bigm| \bigm| \partial zu\prime z(M) - i
\surd 
z\partial zuz(M)

\bigm| \bigm| 
z=E

=
\Bigl( 
(\partial zu

\prime 
z(M)| z=E)

2
+ E (\partial zuz(M)| z=E)

2
\Bigr) 1/2

.

Now using Lemmas 5.1 and 5.2 and the reverse triangle inequality, we can compute

| \partial z\Theta (E)| =
\bigm| \bigm| \bigm| \bigm| \partial zu\prime z(M) - i

\surd 
z\partial zuz(M) - i

1

2
\surd 
z
uz(M)

\bigm| \bigm| \bigm| \bigm| 
z=E

\geq 
\bigm| \bigm| \partial zu\prime z(M) - i

\surd 
z\partial zuz(M)

\bigm| \bigm| 
z=E

+O(e - kM ) \geq CekM
(5.12)

for sufficiently large M .

We now give the proof of Lemma 5.2.

5.1. Proof of Lemma 5.2. Using variation of parameters and noting that the
Wronskian of uz and vz is 1, we have for any z \in C that

(5.13) \partial zuz(x) =

\biggl( \int x

0

vz(y)uz(y) dy

\biggr) 
uz(x) - 

\biggl( \int x

0

u2z(y) dy

\biggr) 
vz(x).

Evaluating (5.13) and its derivative with respect to x at x =M and z = E we have

\partial zuz(M)| z=E =

\Biggl( \int M

0

vE(y)uE(y) dy

\Biggr) 
uE(M) - 

\Biggl( \int M

0

u2E(y) dy

\Biggr) 
vE(M),

\partial zu
\prime 
z(M)| z=E =

\Biggl( \int M

0

vE(y)uE(y) dy

\Biggr) 
u\prime E(M) - 

\Biggl( \int M

0

u2E(y) dy

\Biggr) 
v\prime E(M).

(5.14)

Using (5.7) we have that vE(x)uE(x) is 1-periodic for x \geq \rho . Combining this with
Lemma 5.1 we have that

\partial zuz(M)| z=E =  - 

\Biggl( \int M

0

u2E(y) dy

\Biggr) 
vE(M) +O(Me - kM ),

\partial zu
\prime 
z(M)| z=E =  - 

\Biggl( \int M

0

u2E(y) dy

\Biggr) 
v\prime E(M) +O(Me - kM ).

(5.15)

We can now start to prove (5.10). Using (5.15) and the reverse triangle inequality,
we have that

(5.16)
\Bigl( 
(\partial zu

\prime 
z(M)| z=E)

2
+ E (\partial zuz(M)| z=E)

2
\Bigr) 1/2

\geq 
\bigm| \bigm| \bigm| \bigm| \biggl( \Bigl[ \Bigl( \int M

0

u2E(y) dy
\Bigr) 
vE(M)

\Bigr] 2
+
\Bigl[ \Bigl( \int M

0

u2E(y) dy
\Bigr) 
v\prime E(M)

\Bigr] 2\biggr) 1/2

 - O(Me - kM )

\bigm| \bigm| \bigm| \bigm| .
We are done if we can show the first term inside the absolute value signs can be
bounded below by CekM where C > 0 is a positive constant independent of M .

D
ow

nl
oa

de
d 

06
/0

2/
22

 to
 1

52
.2

.1
05

.1
85

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

60 J. LU, J. L. MARZUOLA, AND A. B. WATSON

We start by noting that
\int M

0
u2E(y) dy is clearly a nonzero and increasing function

of M , and can hence can be bounded below by a constant independent of M ; for

example,
\int M

0
u2E(y) dy \geq 

\int \rho 

0
u2E(y) dy > 0. It follows that

(5.17)

\biggl( \biggl[ \Bigl( \int M

0

u2E(y) dy
\Bigr) 
vE(M)

\biggr] 2
+

\biggl[ \Bigl( \int M

0

u2E(y) dy
\Bigr) 
v\prime E(M)

\biggr] 2\biggr) 1/2

\geq 
\biggl( \int \rho 

0

u2E(y) dy

\biggr) \Bigl( 
[vE(M)]

2
+ [v\prime E(M)]

2
\Bigr) 1/2

.

Using the identity (5.6) we have

vE(M) = ek(M - [M ])vE([M ]), and v\prime E(M) = ek(M - [M ])v\prime E([M ])

=\Rightarrow | vE(M)| \geq ekMe - k(\rho +1) inf
x\in [\rho ,\rho +1)

| vE(x)| ,

and | v\prime E(M)| \geq ekMe - k(\rho +1) inf
x\in [\rho ,\rho +1)

| v\prime E(x)| ,

(5.18)

and hence (5.17) can be bounded below by

\geq 
\biggl( \int \rho 

0

u2E(y) dy

\biggr) 
ekMe - k(\rho +1) inf

x\in [\rho ,\rho +1)

\Bigl( 
[vE(x)]

2
+ [v\prime E(x)]

2
\Bigr) 1/2

.(5.19)

We can bound
\bigl( 
[vE(x)]

2 + [v\prime E(x)]
2
\bigr) 1/2

below uniformly in x \in [\rho , \rho + 1) using the
Wronskian. For any x \in [\rho , \rho + 1), we have by the Cauchy--Schwarz inequality
(5.20)

1 = | u\prime E(x)vE(x) - uE(x)v
\prime 
E(x)| \leq 

\bigl( 
[uE(x)]

2 + [u\prime E(x)]
2
\bigr) 1/2 \bigl( 

[vE(x)]
2 + [v\prime E(x)]

2
\bigr) 1/2

,

and hence

(5.21)
\bigl( 
[vE(x)]

2 + [v\prime E(x)]
2
\bigr) 1/2 \geq 1

supx\in [\rho ,\rho +1) ([uE(x)]
2 + [u\prime E(x)]

2)
1/2

.

Combining (5.21) with (5.19) and substituting into (5.16), we are done.

6. Proof of Lemma 3.3: Bounding \bfpartial \bftwo 
\bfitz \Theta (\bfitz ) uniformly for \bfitz \in \Omega \bfitM . We

now seek to bound \partial 2z\Theta (z) uniformly in z in a ball centered at E. Differentiating \Theta (z)
gives

(6.1) \partial 2z\Theta (z) = \partial 2zu
\prime 
z(M) +

1

4
iz - 3/2uz(M) - iz - 1/2\partial zuz(M) - iz1/2\partial 2zuz(M),

and hence we are done if we can bound \partial 2zu
\prime 
z(M), uz(M), \partial zuz(M), and \partial 2zuz(M)

uniformly in z for z nearby to E.
By differentiating the initial value problem (2.8) we have that \partial 2zuz satisfies

(6.2) (D2
x + V (x) - z)\partial 2zuz = 2\partial zuz, \partial 2zu(0) = \partial 2zu

\prime (0) = 0,

while \partial zuz and uz satisfy

(D2
x + V (x) - z)\partial zuz = uz, \partial zuz(0) = 0, \partial zu

\prime 
z(0) = 0,(6.3)

(D2
x + V (x) - z)uz = 0, uz(0) = 1, u\prime z(0) = 0,(6.4)

respectively. The key step in the proof of Lemma 3.2 is the following.
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Lemma 6.1. Let x > 0 be arbitrary, and let z \in C be such that | z  - E| \leq 
1

2xC\ast (ekx+1)
. Then there exists a positive constant C\ast > 0 such that the following

estimates hold:

max \{ | uz(x)| , | u\prime z(x)| \} \leq 2C\ast (ekx + 1),(6.5)

max \{ | \partial zuz(x)| , | \partial zu\prime z(x)| \} \leq 4C\ast (ekx + 1),(6.6)

max
\bigl\{ 
| \partial 2zuz(x)| , | \partial 2zu\prime z(x)| 

\bigr\} 
\leq 8C\ast (ekx + 1).(6.7)

Proof. The proofs of (6.5) and (6.6) are given in sections 6.1 and 6.2. Since the
proof of (6.7) is so similar to that of (6.6), we omit it.

We can now give the proof of Lemma 3.3.

Proof of Lemma 3.3. If f(M) = 1
M2 e

 - kM , then there exists a M0 > 0 such that
for all M \geq M0, z \in \Omega M implies that | z  - E| \leq 1

2MC\ast (ekM+1)
. Applying Lemma 6.1

to (6.1) and using the triangle inequality yields

| \partial z\Theta (z)| \leq 8C\ast (ekM + 1) +
1

4
| z|  - 3/22C\ast (ekM + 1)

+ | z|  - 1/24C\ast (ekM + 1) + | z| 1/28C\ast (ekM + 1).

To bound the terms involving z we note that | z| 1/2 = | z - E+E| 1/2 \leq | E| 1/2+C| z - E| ,
where C = supz\in \Omega M

d
dz | z| 

1/2. Since we assume E > 0, we then have that (perhaps
after taking M0 larger) | \partial z\Theta (z)| \leq CekM for some constant C > 0.

6.1. Proof of assertion (6.5) of Lemma 6.1: Bounding solutions of (6.4)
uniformly for \bfitz \in \Omega \bfitM . The idea is to use Picard iteration to solve (6.4) perturba-
tively about z = E. We start by writing (6.4) as

(6.8) (D2
x + V (x) - E)uz = (z  - E)uz, uz(0) = 1, u\prime z(0) = 0,

and then as a first-order system for \bfitu z := (uz(x), u
\prime 
z(x))

\top :

(6.9) \bfitu \prime 
z = H(x)\bfitu z + \~H\bfitu z, \bfitu z(0) = (1, 0)\top ,

where

(6.10) H(x) :=

\biggl( 
0 1

V (x) - E 0

\biggr) 
, \~H :=

\biggl( 
0 0

E  - z 0

\biggr) 
.

Note that H(x+ 1) = H(x) for x \geq \rho .
When z = E so that \~H = 0, (6.9) has the solution \bfitu z(x) = UE(x)\bfitu z(0), where

UE(x) is the solution operator

(6.11) UE(x) :=

\biggl( 
uE(x) vE(x)
u\prime E(x) v\prime E(x)

\biggr) 
.

Recalling (5.7), we have that

(6.12) uE(x) = e - k(x - \rho )p(x), u\prime E(x) = e - k(x - \rho ) ( - kp(x) + p\prime (x)) ,

where p(x) \in C\infty (R) is 1-periodic, and k > 0, for all x \geq \rho . Similarly, we have that

(6.13) vE(x) = ek(x - \rho )q(x), v\prime E(x) = ek(x - \rho ) (kq(x) + q\prime (x)) ,
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where q(x) is 1-periodic, and k > 0, for all x \geq \rho . It is now trivial to prove pointwise
bounds on each of the entries of UE(x); for example,

(6.14) | vE(x)| \leq sup
0\leq x\leq \rho 

| vE(x)| + ek(x - \rho ) sup
\rho \leq x\leq \rho +1

| q(x)| .

From these pointwise bounds it is clear that there exists a constant C\ast > 0 such that

\| UE(x)\bfitf \| \infty = sup \{ | uE(x)f1 + vE(x)f2| , | u\prime E(x)f1 + v\prime E(x)f2| \} 
\leq 2 sup \{ | uE(x)| , | vE(x)| , | u\prime E(x)| , | v\prime E(x)| \} \| \bfitf \| \infty \leq C\ast \bigl( ekx + 1

\bigr) 
\| \bfitf \| \infty .

(6.15)

We now seek to solve (6.9) for | z - E| small by Picard iteration. Using Duhamel's
formula, we can rewrite (6.9) as the fixed point equation

(6.16) \bfitu z(x) = UE(x)\bfitu z(0) +

\int x

0

UE(x - y) \~H\bfitu z(y) dy.

For any X \geq 0, we define an operator

(6.17) TX : \bfitf (x) \mapsto \rightarrow U(x)\bfitf (0) +

\int x

0

U(x - y) \~H\bfitf (y) dy

acting on the Banach space BX :=
\bigl\{ 
\bfitf \in C([0, X];C2) : \bfitf (0) = \bfitu z(0)

\bigr\} 
, equipped with

the sup norm. To see when this operator is a contraction we consider

(6.18) \| TX\bfitf (x) - TX\bfitg (x)\| \infty =

\bigm\| \bigm\| \bigm\| \bigm\| \int x

0

U(x - y) \~H (\bfitf (y) - \bfitg (y)) dy

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
.

Since \| \~H\| \infty is clearly bounded by | z  - E| , we have

\| TX\bfitf (x) - TX\bfitg (x)\| \infty =

\bigm\| \bigm\| \bigm\| \bigm\| \int x

0

U(x - y) \~H (\bfitf (y) - \bfitg (y)) dy

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq X sup
0\leq x\leq X

\| U(x)\| \infty | z  - E| \| \bfitf (y) - \bfitg (y)\| \infty 

\leq C\ast X(ekX + 1)| z  - E| \| \bfitf (x) - \bfitg (x)\| \infty .

(6.19)

It follows that TX is a contraction as long as | z  - E| < 1
C\ast X(ekX+1)

. In this case we

have the following formula for \bfitu z(x):

(6.20) \bfitu z(x) = lim
n\rightarrow \infty 

Tn\bfitu z,0,

where \bfitu z,0 denotes the function equal to the constant \bfitu z(0) on the interval [0, X].
Equation (6.20) written out is

\bfitu z(x) = UE(x)\bfitu z(0) +

\int x

0

UE(x - y) \~HUE(y)\bfitu z(0) dy

+

\int x

0

UE(x - y) \~H

\int y

0

UE(y  - y1) \~HUE(y1)\bfitu z(0) dy1 dy + \cdot \cdot \cdot .
(6.21)

The second term on the right-hand side can be bounded as\bigm| \bigm| \bigm| \bigm| \int x

0

UE(x - y) \~HUE(y)\bfitu z(0) dy

\bigm| \bigm| \bigm| \bigm| \leq x sup
0\leq y\leq x

\bigm| \bigm| \bigm| UE(x - y) \~HUE(y)\bfitu z(0)
\bigm| \bigm| \bigm| 

\leq xC\ast (ekx + 1)| z  - E| C\ast (ekx + 1)

= x| z  - E| 
\bigl( 
C\ast (ekx + 1)

\bigr) 2
.

(6.22)D
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Bounding the other terms on the right-hand side similarly, we have

| \bfitu z(x)| \leq C\ast (ekx + 1) + x| z  - E| (C\ast (ekx + 1))2 + x2| z  - E| 2(C\ast (ekx + 1))3 + \cdot \cdot \cdot 
= C\ast (ekx + 1)

\bigl( 
1 + x| z  - E| (C\ast (ekx + 1)) + x2| z  - E| 2(C\ast (ekx + 1))2 + \cdot \cdot \cdot 

\bigr) 
.

(6.23)

Hence, whenever x| z  - E| C\ast (ekx + 1) < 1, we have that

(6.24) | \bfitu z(x)| \leq 
C\ast (ekx + 1)

1 - x| z  - E| C\ast (ekx + 1)
.

By taking | z  - E| \leq 1
2xC\ast (ekx+1)

we have the desired bound (6.5).

6.2. Proof of assertion (6.6) of Lemma 6.1: Bounding solutions of (6.3)
uniformly for \bfitz \in \Omega \bfitM . We start by rewriting (6.3) as

(6.25) (D2
x + V (x) - E)\partial zuz = (z  - E)\partial zuz + uz, \partial zuz(0) = 0, \partial zu

\prime 
z(0) = 0.

We can write (6.25) as a first-order system just as in (6.9). Using Duhamel's formula
and the fact that \partial z\bfitu z(0) = 0, we have that

(6.26) \partial z\bfitu z(x) =

\int x

0

U(x - y)
\Bigl[ 
\~H\partial z\bfitu z(y) + \bfitu z(y)

\Bigr] 
dy,

where \~H is as in (6.10). The map T \prime 
X : \bfitf (x) \mapsto \rightarrow 

\int x

0
UE(x  - y)

\bigl[ 
\~H\bfitf (y) + \bfitu z(y)

\bigr] 
dy

is clearly a contraction on the Banach space of functions on [0, X] with \bfitf (0) = 0
equipped with the sup norm under the same conditions as before, i.e., as long as
XC\ast (ekX + 1)| z  - E| < 1. Starting the iteration with the constant zero function, we
have the analogous representation as (6.21) for the solution of (6.25):
(6.27)

\partial z\bfitu z(x) =

\int x

0

UE(x - y)\bfitu z(y) dy+

\int x

0

UE(x - y) \~H
\int y

0

UE(y - y1)\bfitu z(y1) dy1 dy+ \cdot \cdot \cdot .

Replacing \bfitu z(y) everywhere by its expansion (6.21), we have for the first term on the
right-hand side in (6.27) that

\int x

0

UE(x - y)\bfitu z(y) dy

=

\int x

0

UE(x)\bfitu z(0) dy +

\int x

0

UE(x - y)

\int y

0

UE(y  - y1) \~HUE(y1)\bfitu z(0) dy1 dy + \cdot \cdot \cdot ,

(6.28)

and hence\int x

0

UE(x - y)\bfitu z(y) dy \leq xC\ast (ekx + 1) + x2
\bigl( 
C\ast (ekx + 1)

\bigr) 2 | z  - E| + \cdot \cdot \cdot 

\leq 2xC\ast (ekx + 1)

(6.29)

whenever xC\ast (ekx + 1)| z  - E| \leq 1
2 . As for the second term in (6.27), we have

\int x

0

UE(x - y) \~H

\int y

0

UE(y  - y1)\bfitu z(y1) dy1 dy=

\int x

0

UE(x - y) \~H

\int y

0

UE(y)\bfitu z(0) dy1 dy

+

\int x

0

UE(x - y) \~H

\int y

0

UE(y  - y1)

\int y1

0

UE(y1  - y2) \~HUE(y2)\bfitu z(0) dy2 dy1 dy + \cdot \cdot \cdot ,

(6.30)
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and hence \bigm| \bigm| \bigm| \bigm| \int x

0

UE(x - y) \~H

\int y

0

UE(y  - y1)\bfitu z(y1) dy1 dy

\bigm| \bigm| \bigm| \bigm| 
\leq x2

\bigl( 
C\ast (ekx + 1)

\bigr) 2 | z  - E| + x3
\bigl( 
C\ast (ekx + 1)

\bigr) 3 | z  - E| 2 + \cdot \cdot \cdot 

\leq 2x2
\bigl( 
C\ast (ekx + 1)

\bigr) 2 | z  - E| 

(6.31)

whenever xC\ast (ekx +1)| z - E| < 1
2 . Bounding successive terms of (6.27) similarly, we

have that

| \partial z\bfitu z(x)| 

\leq 2xC\ast (ekx + 1) + 2x2
\bigl( 
C\ast (ekx + 1)

\bigr) 2 | z  - E| + 2x3
\bigl( 
C\ast (ekx + 1)

\bigr) 3 | z  - E| 2 + \cdot \cdot \cdot 
\leq 4xC\ast (ekx + 1)

(6.32)

whenever xC\ast (ekx + 1)| z  - E| < 1
2 , as desired.

7. Generalization of our main result when parity symmetry does not
necessarily hold. In this section we present a generalization of the result presented
in section 2 which covers the case where the parity symmetry assumption (Assumption
2.2) does not hold. Although many of the ideas presented in the previous sections,
particularly the use of Floquet theory, carry over to this setting, there are significant
differences between the results and proofs. We review the parts of the proof which
are significantly different in this case in section 8.

We again consider the one-dimensional Schr\"odinger operator (2.1), assuming the
potential V is smooth and 1-periodic outside the interval [ - \rho , \rho ] for some \rho > 0
(Assumption 2.1). We again assume the existence of a bound state \Phi (x) with positive
eigenvalue E > 0 (2.4). When \Phi (0) \not = 0 (note that after multiplying by a constant
we can assume \Phi (0) = 1), define u\bfitzeta (x) \in C\infty ([ - M,M ]) and v\bfitzeta (x) \in C\infty ([ - M,M ])
as the solutions of

(D2
x + V (x) - z)u\bfitzeta = 0, u\bfitzeta (0) = 1, u\prime \bfitzeta (0) = w,

(D2
x + V (x) - z)v\bfitzeta = 0, v\bfitzeta (0) =

 - w
1 + w2

, v\prime \bfitzeta (0) =
1

1 + w2

(7.1)

for arbitrary \bfitzeta = (w, z) \in C2, and let \bfiteta = (\Phi \prime (0), E). Note that with these definitions
u\bfitzeta and v\bfitzeta form a fundamental solution set whose Wronskian is 1 and u\bfiteta (x) = \Phi (x) for
| x| \leq M . When \Phi (0) = 0 (note that after multiplying by a constant we can assume
\Phi \prime (0) = 1), define u\bfitzeta (x) and v\bfitzeta (x) by

(D2
x + V (x) - z)u\bfitzeta = 0, u\bfitzeta (0) =  - w, u\prime \bfitzeta (0) = 1,

(D2
x + V (x) - z)v\bfitzeta = 0, v\bfitzeta (0) =

 - 1

1 + w2
, v\prime \bfitzeta (0) =

 - w
1 + w2

,
(7.2)

and let \bfiteta = (0, E) (see Remark 8.1 for an explanation of the convention we choose
in (7.2)). Again, u\bfitzeta and v\bfitzeta form a fundamental solution set and u\bfiteta (x) = \Phi (x) for
| x| \leq M . Since \Phi (x) is a bound state, via Floquet theory we have that u\bfiteta must
exponentially decay and v\bfiteta must exponentially grow. We define

(7.3) (X\pm 
1 (\bfitzeta ), X\pm 

2 (\bfitzeta )) :=
\bigl( 
u\bfitzeta (\pm M), u\prime \bfitzeta (\pm M)

\bigr) 
,

D
ow

nl
oa

de
d 

06
/0

2/
22

 to
 1

52
.2

.1
05

.1
85

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DEFECT RESONANCES OF TRUNCATED CRYSTAL STRUCTURES 65

and let

(7.4) \Theta \pm (\bfitzeta ) := X\pm 
2 (\bfitzeta )\mp i

\surd 
zX\pm 

1 (\bfitzeta ).

With the same conventions on the square root as in the case where parity symmetry
holds (see below (2.10)), we have that when E > 0, z\ast is a resonance of Htrunc if and
only if

(7.5) \Theta (\bfitzeta \ast ) = 0, where \Theta (\bfitzeta ) :=

\biggl( 
\Theta +(\bfitzeta )
\Theta  - (\bfitzeta )

\biggr) 
,

where \bfitzeta \ast = (w\ast , z\ast ) for some w\ast \in C.
In this setting, the counterpart of Theorem 2.1 is as follows.

Theorem 7.1. Let V (x) satisfy Assumption 2.1, let \rho > 0 be as in (2.3), and let
\Phi be a bound state with eigenvalue E > 0 as in (2.4). Then there exist k > 0 and an
M0 > \rho \geq 0 such that for all M \geq M0,

1. \Theta (\bfitzeta ) in (7.5) has a unique root \bfitzeta \ast in the ball \Omega M =
\bigl\{ 
\bfitzeta : | \bfitzeta  - \bfiteta | \leq 1

M2 e
 - kM

\bigr\} 
.

2. The location of the root \bfitzeta \ast can be precisely characterized as

(7.6) \bfitzeta \ast = \bfiteta  - \Xi \Theta (\bfiteta ) +O(e - 4kM ),

where \Xi is the matrix

(7.7) \Xi :=
1

\scrN (\bfiteta )

\biggl( 
\partial z\Theta 

 - (\bfiteta )  - \partial z\Theta +(\bfiteta )
 - \partial w\Theta  - (\bfiteta ) \partial w\Theta 

+(\bfiteta )

\biggr) 
,

and \scrN (\bfiteta ) := \partial w\Theta 
+(\bfiteta )\partial z\Theta 

 - (\bfiteta ) - \partial z\Theta 
+(\bfiteta )\partial w\Theta 

 - (\bfiteta ).

The overall idea of the proof of Theorem 7.1 is the same as that of Theorem 2.1.
We give a sketch of the proof here, postponing a discussion of the details which differ
from the proof of Theorem 2.1 to section 8. Define \Psi : C2 \rightarrow C2 by

(7.8) \Psi (\bfitzeta ) := \bfitzeta  - \Xi \Theta (\bfitzeta ),

where \Xi is defined by (7.7). Assuming \scrN (\bfiteta ) \not = 0, then det \Xi = 1
[\scrN (\bfiteta )]3 so that \Xi 

is invertible, and hence \Psi (\bfitzeta ) = \bfitzeta \Leftarrow \Rightarrow \Theta (\bfitzeta ) = 0. It remains to show that \Psi is a
contraction in the ball

(7.9) \Omega M :=
\Bigl\{ 
\bfitzeta \in C2 : | \bfitzeta  - \bfiteta | < 1

M2
e - kM

\Bigr\} 
,

where k characterizes the exponential decay of the bound state just as in the proof
of Theorem 2.1 (recall section 5). Parts (1) and (2) of the theorem then follow from
the Banach fixed point theorem and the asymptotic formula for the fixed point as
limn\rightarrow \infty \Psi n(\bfiteta ), respectively. For the proofs that \scrN (\bfiteta ) \not = 0 and that \Psi defined by
(7.8) with \Xi as in (7.7) is a contraction in \Omega M , see section 8.

Remark 7.1. The matrix \Xi is the inverse of\biggl( 
\partial w\Theta 

+(\bfiteta ) \partial z\Theta 
+(\bfiteta )

\partial w\Theta 
 - (\bfiteta ) \partial z\Theta 

 - (\bfiteta )

\biggr) 
,

which is the Jacobian of the map \bfitzeta \mapsto \rightarrow (\Theta +(\bfitzeta ),\Theta  - (\bfitzeta )) evaluated at \bfitzeta = \bfiteta . This is
consistent with the parity symmetry case (compare (7.6) with (2.12)), where 1

\partial z\Theta (E)

is the inverse of \partial z\Theta (E), which is the Jacobian of the map z \mapsto \rightarrow \Theta (z) evaluated at
z = E.
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Remark 7.2. It is straightforward to derive analogues of Corollaries 2.2 and 2.3 in
this context, and check that, in the special case where parity symmetry holds, these
expressions reduce to the results of those corollaries as expected. Since the expressions
are more complex in this case, we omit these analogues.

Remark 7.3. We remark on further generalizations of our result which should
follow from an essentially identical analysis. First, recall that we assume the structure
is truncated at x = \pm M (2.6). Our result could be generalized to the case where the
structure is truncated at some M+ > 0 and M - < 0 where M+ \not =  - M - in the limit
where M\pm \rightarrow \pm \infty . Second, our result should even generalize to the case of differing
periodic structures either side of the defect region, even with differing periods. Since
extending our results to these settings would complicate the statement of our results
and would not require substantial modifications of the proof, we do not consider these
cases here.

8. Proof of Theorem 7.1: Derivation of \Xi and proof of \bfscrN (\bfiteta ) \not = 0. In
this section we present the parts of the proof of Theorem 7.1 which differ substantially
from the proof of Theorem 2.1. Specifically, we show that the form of \Xi (7.7) makes
the map \Psi (7.8) a contraction in the ball \Omega M (7.9), and prove that \scrN (\bfiteta ) \not = 0 so that
\Xi is well defined.

We will first show that the form of \Xi (7.7) makes \Psi a contraction in the ball \Omega M .
Writing \Psi (\bfitzeta ) = (\Psi 1(\bfitzeta ),\Psi 2(\bfitzeta ))

\top , by Taylor's theorem we have that \Psi is a contraction
if every element of the Jacobian matrix

(8.1) J :=

\biggl( 
\partial w\Psi 1 \partial z\Psi 1

\partial w\Psi 2 \partial z\Psi 2

\biggr) 
can be bounded uniformly by 1

2 in \Omega M . Recalling the form of \Psi (7.8), writing

\Xi =

\biggl( 
\Xi 11 \Xi 12

\Xi 21 \Xi 22

\biggr) 
,

and assuming \Xi is independent of \bfitzeta , we have that

(8.2) J =

\biggl( 
J11 J12
J21 J22

\biggr) 
=

\biggl( 
1 - \Xi 11\partial w\Theta 

+  - \Xi 12\partial w\Theta 
 -  - \Xi 11\partial z\Theta 

+  - \Xi 12\partial z\Theta 
 - 

 - \Xi 21\partial w\Theta 
+  - \Xi 22\partial w\Theta 

 - 1 - \Xi 21\partial z\Theta 
+  - \Xi 22\partial z\Theta 

 - 

\biggr) 
.

Substituting the form of \Xi given in (7.7) (we will prove in Lemma 8.1 that \scrN (\bfiteta ) \not = 0
so that \Xi is well defined), the diagonal entries of J are

J11 = 1 - \partial w\Theta 
+(\bfitzeta )\partial z\Theta 

 - (\bfiteta ) - \partial z\Theta 
+(\bfiteta )\partial w\Theta 

 - (\bfitzeta )

\scrN (\bfiteta )
,

J22 = 1 - \partial w\Theta 
+(\bfiteta )\partial z\Theta 

 - (\bfitzeta ) - \partial z\Theta 
+(\bfitzeta )\partial w\Theta 

 - (\bfiteta )

\scrN (\bfiteta )
,

(8.3)

while the off-diagonal terms are

J12 =  - \partial z\Theta 
+(\bfitzeta )\partial z\Theta 

 - (\bfiteta ) - \partial z\Theta 
+(\bfiteta )\partial z\Theta 

 - (\bfitzeta )

\scrN (\bfiteta )
,

J21 =  - \partial w\Theta 
+(\bfitzeta )\partial w\Theta 

 - (\bfiteta ) - \partial w\Theta 
+(\bfiteta )\partial w\Theta 

 - (\bfitzeta )

\scrN (\bfiteta )
.

(8.4)
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To see that this choice of \Xi makes the entries of J small for z \in \Omega M andM sufficiently
large, note that we can rewrite the entries of J as

J11 =
1

\scrN (\bfiteta )

\bigl[ \bigl( 
\partial w\Theta 

+(\bfiteta ) - \partial w\Theta 
+(\bfitzeta )

\bigr) 
\partial z\Theta 

 - (\bfiteta ) - \partial z\Theta 
+(\bfiteta )

\bigl( 
\partial w\Theta 

 - (\bfiteta ) - \partial w\Theta 
 - (\bfitzeta )

\bigr) \bigr] 
,

J22 =
1

\scrN (\bfiteta )

\bigl[ 
\partial w\Theta 

+(\bfiteta )
\bigl( 
\partial z\Theta 

 - (\bfiteta ) - \partial z\Theta 
 - (\bfitzeta )

\bigr) 
 - 
\bigl( 
\partial z\Theta 

+(\bfiteta ) - \partial z\Theta 
+(\bfitzeta )

\bigr) 
\partial w\Theta 

 - (\bfiteta )
\bigr] 
,

J12 =
1

\scrN (\bfiteta )

\bigl[ 
\partial z\Theta 

+(\bfiteta )
\bigl( 
\partial z\Theta 

 - (\bfitzeta ) - \partial z\Theta 
 - (\bfiteta )

\bigr) 
+
\bigl( 
\partial z\Theta 

+(\bfiteta ) - \partial z\Theta 
+(\bfitzeta )

\bigr) 
\partial z\Theta 

 - (\bfiteta )
\bigr] 
,

J21 =
1

\scrN (\bfiteta )

\bigl[ 
\partial w\Theta 

+(\bfiteta )
\bigl( 
\partial w\Theta 

 - (\bfitzeta ) - \partial w\Theta 
 - (\bfiteta )

\bigr) 
 - 
\bigl( 
\partial w\Theta 

+(\bfitzeta ) - \partial w\Theta 
+(\bfiteta )

\bigr) 
\partial w\Theta 

 - (\bfiteta )
\bigr] 
.

(8.5)

We see that every component of J is a sum of two terms. We will show that each
component can be bounded by 1

2 by showing that each of these terms can be bounded
by 1

4 . The proofs follow logic similar to that given in section 3. To give the idea,
we first consider a representative term before making the necessary estimates precise.
We aim to prove that, for example,

(8.6)

\bigm| \bigm| \bigm| \bigm| 1

\scrN (\bfiteta )

\bigl( 
\partial z\Theta 

+(\bfiteta ) - \partial z\Theta 
+(\bfitzeta )

\bigr) 
\partial w\Theta 

 - (\bfiteta )

\bigm| \bigm| \bigm| \bigm| < 1

4
,

or equivalently, | \partial z\Theta +(\bfiteta ) - \partial z\Theta 
+(\bfitzeta )| | \partial w\Theta  - (\bfiteta )| < 1

4 | \scrN (\bfiteta )| for all z \in \Omega M . By the
mean value theorem, we have that

(8.7)
\bigm| \bigm| \partial z\Theta +(\bfiteta ) - \partial z\Theta 

+(\bfitzeta )
\bigm| \bigm| \leq | \bfitzeta  - \bfiteta | sup

z\in \Omega M

| \partial 2z\Theta +(\bfitzeta )| 

for \bfitzeta \in \Omega M . Since for \bfitzeta \in \Omega M , | \bfitzeta  - \bfiteta | is exponentially small in M , estimate (8.6) is
proved if we can show that

(8.8) sup
z\in \Omega M

| \partial 2z\Theta +(\bfitzeta )| \leq CekM ,
\bigm| \bigm| \partial w\Theta  - (\bfiteta )

\bigm| \bigm| \leq CekM , and | \scrN (\bfiteta )| \geq Ce2kM

for constants k > 0 and C > 0. It is clear that with analogous bounds as in (8.8), the
other terms appearing in (8.5) can be bounded along the same lines.

Now that the basic idea has been established, we make precise the lemmas which
are necessary to prove that \Psi is a contraction. First, we require a lemma analogous
to Lemma 3.2.

Lemma 8.1. Let \Theta \pm (\bfitzeta ) be as in (7.4). There exist positive constants C and k
and M0 > \rho > 0 such that for all M \geq M0,

(8.9) \scrN (\bfiteta ) := \partial w\Theta 
+(\bfiteta )\partial z\Theta 

 - (\bfiteta ) - \partial z\Theta 
+(\bfiteta )\partial w\Theta 

 - (\bfiteta )

satisfies | \scrN (\bfiteta )| \geq Ce2kM .

Second, we require a lemma analogous to Lemma 3.3.

Lemma 8.2. Let k be as in Lemma 8.1 and \Omega M be as in (7.9). Then there exist
positive constants C andM0 > \rho > 0 such that for allM \geq M0 the following estimates
hold:

(8.10) | \partial z\Theta \pm (\bfiteta )| \leq CekM , | \partial w\Theta \pm (\bfiteta )| \leq CekM ,

(8.11) sup
\bfitzeta \in \Omega M

| \partial 2z\Theta \pm (\bfitzeta )| \leq CekM , sup
\bfitzeta \in \Omega M

| \partial 2w\Theta \pm (\bfitzeta )| \leq CekM .
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We explain the important points of these proofs, particularly those points which
differ from the proofs of Lemmas 3.2 and 3.3, in the following section.

8.1. Proofs of Lemmas 8.1 and 8.2. Using the definitions of \Theta \pm (\bfiteta ) (7.3)--
(7.4) we have that

\partial z\Theta 
\pm (\bfitzeta ) = \partial zu

\prime 
\bfitzeta (\pm M)

\bigm| \bigm| 
\bfitzeta =\bfiteta 

\mp i
\surd 
E \partial zu\bfitzeta (\pm M)| \bfitzeta =\bfiteta \mp i

1

2
\surd 
E
u\bfitzeta (\pm M)| \bfitzeta =\bfiteta ,

\partial w\Theta 
\pm (\bfitzeta ) = \partial wu

\prime 
\bfitzeta (\pm M)

\bigm| \bigm| 
\bfitzeta =\bfiteta 

\mp i
\surd 
E \partial wu\bfitzeta (\pm M)| \bfitzeta =\bfiteta .

(8.12)

Suppose that \Phi (0) \not = 0 so that u\bfitzeta and v\bfitzeta are defined by (7.1). Differentiating the
equation for u\bfitzeta we have that \partial wu\bfitzeta (x) satisfies

(8.13)
\bigl( 
D2

x + V (x) - z
\bigr) 
\partial wu\bfitzeta = 0, \partial wu\bfitzeta (0) = 0, \partial wu

\prime 
\bfitzeta (0) = 1,

which has the unique solution

(8.14) \partial wu\bfitzeta (x) =
w

1 + w2
u\bfitzeta (x) + v\bfitzeta (x).

If instead \Phi (0) = 0, so that u\bfitzeta and v\bfitzeta are defined by (7.2), then \partial wu\bfitzeta (x) satisfies

(8.15)
\bigl( 
D2

x + V (x) - z
\bigr) 
\partial wu\bfitzeta = 0, \partial wu\bfitzeta (0) = 1, \partial wu

\prime 
\bfitzeta (0) = 0,

which has the unique solution

(8.16) \partial wu\bfitzeta (x) =
w

1 + w2
u\bfitzeta (x) + v\bfitzeta (x).

Remark 8.1. Note that by virtue of the convention we chose for u\bfitzeta and v\bfitzeta in (7.2),
the formulas for \partial wu\bfitzeta in (8.14) and (8.16) match. This allows us to write formulas
which are valid in both cases without modification.

By variation of parameters as in section 5.1 we have that

(8.17) \partial zu\bfitzeta (x) =

\biggl( \int x

0

v\bfitzeta (y)u\bfitzeta (y) dy

\biggr) 
u\bfitzeta (x) - 

\biggl( \int x

0

u2\bfitzeta (y) dy

\biggr) 
v\bfitzeta (x).

We now argue as in section 5. Setting \bfitzeta = \bfiteta , by Floquet theory and the assumption
that u\bfiteta (x) = \Phi (x) for | x| \leq M , we have that u\bfiteta (x) exponentially decays in | x| , i.e.,
that there exist constants C > 0 and k > 0 such that
(8.18)

| u\bfiteta (x)| \leq Ce - k| x| , | u\prime \bfiteta (x)| \leq Ce - k| x| , | v\bfiteta (x)| \leq Cek| x| , | v\prime \bfiteta (x)| \leq Cek| x| .

We can now give the proof of Lemma 8.2.

Proof of Lemma 8.2. The estimates (8.10) follow immediately from substituting
formulas (8.14), (8.16), and (8.17) into (8.12) and applying the estimates (8.18). The
estimates (8.11) follow by the same argument as in section 6.

It remains to prove Lemma 8.1.

Proof of Lemma 8.1. Directly setting \bfitzeta = \bfiteta and substituting (8.14), (8.16), and
(8.17) into (8.9) yields a long expression for \scrN (\bfiteta ). To prove the claimed bound below,
we note that the terms in this expression which depend quadratically on v\bfiteta (x) will
dominate for sufficiently large M and hence we can ignore the other terms.
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Regardless of whether \Phi (0) \not = 0 or \Phi (0) = 0, the terms which depend quadrati-
cally on v\bfiteta are

 - 
\bigl( 
v\prime \bfiteta (M) - i

\surd 
Ev\bfiteta (M)

\bigr) \biggl( \biggl( \int  - M

0

u2\bfiteta (y) dy

\biggr) 
v\prime \bfiteta ( - M)(8.19)

+ i
\surd 
E

\biggl( \int  - M

0

u2\bfiteta (y) dy

\biggr) 
v\bfiteta ( - M)

\biggr) 
+
\bigl( 
v\prime \bfiteta ( - M) + i

\surd 
Ev\bfiteta ( - M)

\bigr) \biggl( \biggl( \int M

0

u2\bfiteta (y) dy

\biggr) 
v\prime \bfiteta (M)

 - i
\surd 
E

\biggl( \int M

0

u2\bfiteta (y) dy

\biggr) 
v\bfiteta (M)

\biggr) 
,

which simplifies to\int M

 - M

u2\bfiteta (y) dy
\Bigl( 
v\prime \bfiteta (M)v\prime \bfiteta ( - M) - i

\surd 
Ev\bfiteta (M)v\prime \bfiteta ( - M)

+i
\surd 
Ev\prime \bfiteta (M)v\bfiteta ( - M) + Ev\bfiteta (M)v\bfiteta ( - M)

\Bigr) 
=

\int M

 - M

u2\bfiteta (y) dy
\Bigl( 
v\prime \bfiteta (M) - i

\surd 
Ev\bfiteta (M)

\Bigr) \Bigl( 
v\prime \bfiteta ( - M) + i

\surd 
Ev\bfiteta ( - M)

\Bigr) 
.

(8.20)

Lemma 8.1 now follows since
\int M

 - M
u2\bfiteta (y) dy can be bounded below uniformly in M ,

and the two factors depending on v\bfiteta can be bounded below by CekM exactly as in
the proof of Lemma 5.2 (note that both factors \not = 0 since v\bfiteta (x) is real, and see, in
particular, (5.18)--(5.21)).

9. Further generalizations. In this section we describe further generalizations
of our main result. In section 9.1 we study the case where a periodic structure hosting
a defect state with E < 0 is truncated far from the defect, creating a new bound state
whose associated eigenvalue is exponentially close to E. In Remark 9.1 we discuss the
bound state created when a semi-infinite periodic structure hosting an edge state is
truncated far from its edge.

9.1. One-dimensional defect states with negative energy \bfitE < 0 perturb
to bound states of the truncated structure. We have so far assumed that the
defect state eigenvalue is positive E > 0 throughout. In this section we again consider
(2.1) in the simplest case, i.e., under Assumptions 2.1 and 2.2, but assume H has a
bound state as in (2.4) but with negative energy E < 0 (the generalization when parity
symmetry does not hold is straightforward along the same lines as when E > 0). Our
aim is now to prove that when the structure modeled by H is truncated sufficiently
far from x = 0, the resulting structure supports a bound state. More specifically,
we will prove that the operator Htrunc defined by (2.5)--(2.6) has a bound state with
energy E\ast < 0 nearby to E for M sufficiently large (in particular, such that M > \rho ,
where \rho is the support of the defect region).

Let uz(x), X1(z), X2(z) be as in (2.8)--(2.9), and define \Theta (z) := X2(z) - i
\surd 
zX1(z).

In contrast to (2.10), we now assume z \in C\setminus [0,\infty ) and choose the branch of the square
root such that Im

\surd 
z > 0. With these definitions, E\ast < 0 is a bound state whenever

\Theta (E\ast ) = 0.
The counterpart of Theorem 2.1 in this context is as follows. Note that the

theorem requires an additional assumption (9.1).
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Theorem 9.1. Let V (x) satisfy Assumptions 2.1 and 2.2, let \Phi be a bound state
with eigenvalue E < 0 as in (2.4), and let vz(x) be as in (2.13). Then there exist a
k > 0 and an M0 > \rho \geq 0 such that for all M \geq M0 such that

(9.1) v\prime E(M) - i
\surd 
EvE(M) \not = 0,

the following hold:
1. \Theta (z) in (2.10) has a unique root E\ast in ball \Omega M =

\bigl\{ 
z : | z  - E| \leq 1

M2 e
 - kM

\bigr\} 
.

2. The root E\ast is real and can be precisely characterized as

(9.2) E\ast = E  - \Theta (E)

\partial z\Theta (E)
+O(e - 4kM ).

Since the proof of Theorem 9.1 is so similar to that of Theorem 2.1, we omit it,
although we point out the following:

\bullet The condition (9.1) is also necessary for the proof of Theorem 2.1 when E > 0,
but holds automatically because vE(x) is real for all x and in that case i

\surd 
E

is purely imaginary. When E < 0, i
\surd 
E = i

\sqrt{} 
 - | E| =  - 

\sqrt{} 
| E| is purely real.

\bullet To see that the root E\ast < 0 must be real, note that \Theta (z)
\partial z\Theta (z) is real for real and

negative z and hence the map \Psi (3.1) actually maps R \rightarrow R in this case.
Corollaries 2.2 and 2.3 directly generalize to this context. Since the results and proofs
are identical after substituting  - 

\sqrt{} 
| E| for i

\surd 
E, we omit them.

Remark 9.1. In recent years, bound states which decay away from the physical
edge of a periodic structure known as edge states have attracted significant attention;
see, e.g., [18, 20, 21, 28, 29, 30, 46]. These works generally assume the existence of a
semi-infinite periodic structure adjoining the edge. Under an analogous assumption
to (9.1), Theorem 9.1 should generalize easily to prove that the structure obtained by
truncating the semi-infinite periodic structure far from the edge also hosts a bound
state, with energy exponentially close (in the truncation distance) to the edge state
energy. Note that the bound state of the truncated structure may not be exponentially
small at the truncation; see [58].

Remark 9.2. The case E = 0 requires a specialized analysis which we do not
undertake here. To see why our methods do not generalize, note for example that
with \Theta (z) defined by (2.10), the derivative \partial z\Theta (E) which appears in the definition of
\Psi (3.1), and then in the formula for z\ast (2.12), is not defined when E = 0.

10. Conclusions and perspectives. In this work we have studied the reso-
nances created when periodic structures in one dimension hosting defect states are
truncated far from the defect. Our results are restricted to one dimension because
our methods rely on ODE theory, but there is no reason to expect that our results
will not generalize to higher dimensions. Similarly, although our results are restricted
to structures which are periodic away from a defect region because our methods rely
on Floquet theory, we also expect our results will generalize to nonperiodic systems
under appropriate spectral gap assumptions.

We can formulate a general conjecture regarding the resonances produced when
a structure hosting a bound state is truncated away from the bound state maximum.
Note that the existence of defect states in dimensions higher than 1 has been estab-
lished across various models; see, e.g., [12, 32, 33, 37, 55].

Conjecture. In Rd, where d is an arbitrary positive integer, let H denote a
Schr\"odinger operator H :=  - \Delta + V , where V (\bfitx ) has unbounded support. Assume
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that H hosts a bound state \Phi whose eigenvalue E is isolated from the rest of the
spectrum, i.e., \sigma (H) \cap B\rho (E) = \{ E\} , where B\rho (E) denotes a ball centered at E with
positive radius \rho > 0. Let \bfitmu :=

\int 
Rd\bfitx | \Phi (\bfitx )| 2 d\bfitx denote the center of mass of the bound

state. Define Vtrunc(\bfitx ) by

(10.1) Vtrunc(\bfitx ) =

\Biggl\{ 
V (\bfitx ), \bfitx \in BM (\bfitmu ),

0, \bfitx /\in BM (\bfitmu ),

where M > 0, and define Htrunc :=  - \Delta + Vtrunc. Then, for sufficiently large M ,
and assuming that \Phi is nonzero for some \bfitx /\in BM (\bfitmu ) (if not, \Phi is a bound state of
Htrunc), Htrunc will have a resonance z in the lower half of the complex plane such
that | z  - E| is exponentially small in M .

Although the proofs in the present work rely on ODE theory, there is good reason
to expect that such a result is true. First, exponential decay of bound states in gaps
of essential spectrum in arbitrary dimensions follows under general hypotheses from
exponential decay of the Green's function (see, e.g., [1, 11]). Second, in geometric
scattering theory there are semiclassical methods for proving that classical orbits on
manifolds or exterior to obstacles lead to resonances in the absence of any periodic
background potential (see, e.g., Chap. 7 ``From quasimodes to resonances"" of Dyat-
lov and Zworski [26]). The methods developed there generalize the fixed point ODE
tools used to demonstrate how eigenstates become resonances in the truncated har-
monic oscillator that we have applied in the periodic setting. To study the defects to
resonances question in higher-dimensional truncated lattice problems, one needs to
develop similar tools, with the existence of a bound state of the infinite structure tak-
ing the place of the existence of trapped classical orbits in the semiclassical problem.
Dobson et al. [16] have proved the conjecture in d = 1 for even potentials taking the
form of large, constant barriers outside of a ball. Lin and Santosa [49] have proved
in d = 2, again for potentials taking the form of large, constant barriers outside of a
ball, that whenever a resonance occurs near to a bound state eigenvalue it must be
exponentially close to the bound state eigenvalue. It would be interesting to general-
ize their approach, which uses Dirichlet-to-Neumann maps, to the general setting of
our conjecture.
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