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1. Introduction

Since the last decade, nonlocal integro-differential type models have been employed to describe physical systems, due
to their natural ability to model physical phenomena at small scales and their reduced regularity requirements which
lead to greater flexibility [ 1-18]. These nonlocal models are defined through a length scale parameter §, referred to as a
horizon, which measures the extent of nonlocal interaction. An important feature of nonlocal models is that they restore
the corresponding classical partial differential equation (PDE) models as the horizon § — 0 [6,7].

Nonlocal models that are compatible with the local PDEs are often much computationally expensive and require
additional attention to the boundary treatments since a layer of volumetric boundary conditions is needed within the
physical system. Meanwhile, nonlocal models need less regularity requirements which helps the descriptions near defects
and singularities. Consequently, tremendous efforts have been devoted to combining nonlocal and local methods to keep
accuracy around the irregularity while retain efficiency away from the singularity (see the review paper [19] for the
state-of-art).

In [20], a quasi-nonlocal (QNL) coupling method was proposed to combine the nonlocal and local diffusion operators
in a seamless way using the variational approach. The coupled operator is proved to preserve many mathematical and
physical properties on the continuous level, including the symmetry of operator, the balance of linear momentum, and the
maximum principle. However, it is not clear how to retain these desired properties with proper numerical discretization.
In this paper, we propose a new finite difference method which inherits all properties from the continuous case.

We recall that the linear local diffusion model in one-dimensional space is

ue(x, t) = uw(x, t) + f(x, t). (1.1)
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Fig. 1. Graphical illustration of 1-D Domain.

The corresponding counterpart in the nonlocal setting is the linear nonlocal diffusion model which reads

)
ue(x, t) 2/ ys(S)(u(X+s, t) — u(x, t)>ds, (1.2)
-8

where y;5(s) denotes the isotropic nonlocal diffusion kernel satisfying the following convenient assumption with y;(-) being
a rescaled kernel,

1 S
ys(|s]) = 8—37/ (%) , ¥ is nonnegative and nonincreasing on (0,1),
s (1.3)

with supp(y) C [0, 1] and / Is|2y(|s))ds = 2.
5

We will display more details about the coupling and numerical schemes in the following sections.

More precisely, we organize the paper as follows: In Section 2, we recall the energy-based QNL coupling from [20]
to build the coupling operator Eg"' bringing the nonlocal and local diffusion problems and introduce space-time
discretizations as well as the new finite difference method (FDM). In Section 3, we estimate the consistency errors of the
proposed scheme using Taylor expansions. In Section 4, we prove the discrete maximum principle and hence the stability
of proposed scheme. In Section 5, we combine the consistency and stability results to conclude the convergence estimates.
In Section 6, we mathematically study the Courant-Friedrichs-Lewy (CFL) condition for the space-time discretization. In
Section 7, we test several benchmark examples to confirm our theoretic findings.

2. QNL coupling and finite difference scheme

Now, we consider the domain to be 25 = [—1 — §, 1], with the coupling interface of nonlocal and local models at
x* = 0; (—1, 0) denotes the nonlocal region with nonlocal boundary layer at [-1 — &, —1] and (0, 1) denotes the local
region with local boundary point at {1}, as illustrated in Fig. 1.

In [20], the QNL operator Lgnlu(x, t) is introduced to smoothly bridge the local and nonlocal regions over the transitional
region [0, &]. The corresponding coupled diffusion problem is proved to be a well-posed initial value problem and is given
by

u(x, t) = ﬁg"’u(x, )+ f(x,t), for T>t>0 and xe(—1,1),
u(x, 0) = ug(x), for x e (—1,1), (2.1)
u(x,t) =0, for xe[-1-6,—-1], or x=1.

Lgnl employed in Eq. (2.1) is the quasi-nonlocal coupling operator which describes the diffusion within the nonlocal,
transitional, and local regions, respectively. The expression of Eg"l is given below

§
/ (u(x—i—s,t)—u(x, t))yg(s)ds, if xe(—1,0],

8

5 5
£y(x, £) = /X ys(5)<u(X—s, t) — u(x, t)>ds+ ( /x SVa(S)dS)ux(x, £) (2.2)
X §
+</ SZV5(5)+X/ S)/g(S)dS)UXX(X), if xe(0,$4],
0 X

Uye(X, t), if xe(s,1).

Next, we discuss the numerical settings for the spatial and temporal discretization. We use u} to denote the numerical
approximation of the exact solution u(x;, t") with spatial and temporal step sizes being with Ax = % and At = %
respectively. Hence, the spatial grid is x; and temporal grid is t, = nAt. For simplicity, we drop x and ¢ but only use i and
n accordingly. The relation between Ax and At will be determined later by the CFL condition. Meanwhile, we assume

that the horizon § is a multiple of Ax with§ =rAxand r € N.

2
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Recall that the entire computational domain is £25 := [—1—34, 1], so the interior domain is £2 = [—1, 1] with interface
at x* = 0; the volumetric boundary layer for the nonlocal region is £2, = [—1 — §, —1); and the local boundary point is
§2, = {1}. Next we denote the set of spatial grids by I and I = I Ulg, Ul , where I = {1, 2, ..., 2N — 1} denotes the
interior grids, I, = {—(r — 1), ..., 0} denotes the nonlocal volumetric boundary grids, and I,. = {2N} denotes the local
boundary point. Following the scope of asymptotically compatible scheme [21,22], we define the spatial discretization of
the QNL coupling operator 55 Ax as follows

r

—2ul +ull piax
> B [ s, i s
= (jAx)? (i—1)Ax

i Uiy =20+l /jAX sys(s)ds
2(j — NAx (i—1)Ax

J= 3k +1
r u:? o= un. jAX
+j—1 i—j+1 /
I - — sys(s)ds
= Z 20— DAX Ji-1)ax (2.3)

8 ut o —yn"
d i+1 i
+< /X sys(s) S) v

Xi 8 Ut + U
+( / Lys(s)ds + x / Sya(S)dS>'“”, it x e (0,41,
0 Xj (AX)

1+1 2u +u1 1
(Ax)y ’

For the temporal discretization, we employ the simplest explicit Euler scheme due to the limitation of first order accuracy
in the spatial discretization, which will be proved later. Hence the full FDM discretization of (2.1) is

if x; €(6,1).

1
utt —t
At
where f" = f(x;, t").
Fig. 2 displays a sampling set of spatial stencils using N = 5 on domain [—1 — 8, 1]. The step size is Ax = % and the
horizon § = rAx with r = 3.

=l +f ielq, (2.4)

Remark 2.1. In [20], the time-integral is still approximated by the explicit Euler method, and the ﬁa Ax is approximated
by the following finite difference scheme given interface at x* = 0O:

—2ul +ull o A
2 iy / 2ys(s)ds, if x <0.
Z a7 A0 if x <

j—1)Ax

r

—2ul +u jAx
Z lﬂ—zf s2ys(s)ds
. X (]AX) (G—-1)Ax
= Ax

jAX

+
Fant oo )T Z 4 ] i - / sys(s)ds
LS axli ™ [

. —1)Ax (2.5)
= Ax

g u o —ut
+2 ( / syg(s)ds) A B
X AX

Xi $ 2u 4+ u
+<2 / 2ys(s)ds + 2x f sm(s)ds)u, if x e (0, 8],
0 Xj (AX)

Ul —2u) +uily
(Ax)? ’
Compare (2.3) with (2.5), we notice that the difference is replacing j in the original scheme by (j — 1) in the new scheme

across the transitional region. This is the main difference in the approximation that allows Eq. (2.3) to satisfy the discrete
maximum principle whereas equation (2.5) does not. We will rigorously prove this in Section 4.

if Xi € (8, 1)
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Fig. 2. Illustration of the finite difference stencil.

Remark 2.2. For numerical schemes that preserve the maximum principles in high dimensional space, recently, there are
other types of coupling methods developed for two dimensional problems, such as [23,24]. These coupling schemes are
based on domain-decomposition methods via Neumann or Robin type boundary conditions, and are rigorously proved to
keep the maximum principles.

Regarding the conservation of flux, notice that the operator L’gﬂx of new scheme (2.3) is symmetric, hence, it possesses
this property. In general, one have to keep interaction symmetries across the transitional region of the coupling region.
However, the nonlocal neighborhood, Bs(x), becomes a disk (in two dimensions) or a ball (in three dimensions), making
the intersections with the interface highly more complex. As a result, it is not easy to preserve the flux in high dimensions.

3. Consistency

In this section, we estimate the consistency error of the scheme (2.4) with Lgfﬂm defined in (2.3).

Theorem 3.1. Let the horizon § = rAx with r € N and being fixed, and suppose u(x, t) is the strong solution to (2.1),
and uf is the discrete solution to the scheme (2.4) with i € I and t" = nAt. Also assume that the exact solution u is
sufficiently smooth, specifically u(x,t) € C*[—1 — 8, 1] x [0, T]). Suppose at any given time level t" = nAt we have
u(x;, t") =ui, Vielg ={1,...,2N — 1}, then for the next time level n 4 1 the consistency error of the scheme satisfies

U — u(x;, ("] < G AL ((Ax) + (A1), Vi=1,...,2N — 1, 3.1)

where Cs is a constant independent of Ax and At.

Proof. We evolve u(x;, t") and u{' by one time step At according to three differential regions.

Local: If x; > § or simplyi € {N+r+1,...,2N — 1}, then the continuous and discrete equations follow the expressions
in the local region. So at (x;, t"), we have the continuous equation:
ut(xiy tn) = uXX(Xiv tn) +f(xi, tn)» (32)

and the discrete equation:

1
u?+ B u? — u?+l - 2u:1 + u?—] +fn (33)
At (Ax)? !

with f" = f(x;, t").
Notice from consistency assumption that u' = u(x;, t"), so can rewrite the discrete equation as

! — U 1) ulxie, ) — 2u(i, ) + u(xig, ) n
= Xi, t). 3.4
o P + (. t") (34)

We apply the Taylor expansion at the spatial grid (x;) up to fourth order derivative and get an estimate of u?“, which
is
u(Xiy1, t") — 2u(x;, ") + u(xi—1, t")
(Ax)
(Ax)Pu(xi, t") + 0(Ax*)
(Ax)y

Ut =u(x;, t") + At < + f(xi, t”))

=u(x;, t") + At( + f(xi, tn)>

=u(x;, t") + At(uxx(x,-, ") + f(xi, t”)) + 0(At(Ax)). (3.5)

Now, let us estimate the continuous solution u(x;, t"*1). This time, we apply Taylor expansion at the time grid (t") and
get

u(x;, t" =u(x;, ") + Atue(x;, t") + O(At?)
=u(x;, t") + At[(uxx(xi, ") + f(xi, t"))i| +0(At?), (3.6)

4
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where we substitute u.(x;, t") by the continuous equation on the local region.
By subtracting (3.5) from (3.6) we can get

uftt —u(x;, ") = 0(At(Ax)?) + 0((At)?). (3.7)
Nonlocal: Next we consider the fully nonlocal region where x; < 0 or simply i € {1, ..., N}. We first have the continuous
equation:

5
u(x;, t") = / Va(S)(u(Xf + 5, t") — u(x;, f”))dS +f(xi, t")
-5

0 P
_ / w(s)(u(xi+s,r")—u<xi,r"))ds+ / ys(s)<u(x,-+s,t“)—u(xi,t")>ds+f(xi,r")
-5 0

s s
=/ Vé(_5)<u(xi — s, t") —u(x;, t")) ds + / Vé(s)(u(xi + 5, ") — u(xi, t”)>d5 + f(xi, £). (3.8)
0 0
Because of the isotropic property of the nonlocal kernel ys(s) summarized in (1.3), we have
s
ue(xi, ") = / Va(S)(U(Xf + 5, t") = 2u(x;, ") + u(x; — s, t“)) ds + f(xi, t"). (3.9)
0
Clearly, we can divide the integral into the sum of subintegrals on the union of subintervals, so we have,
jAX
Ue(Xi, £ Zf ( Xi+8, t") = 2u(x;, t") + u(xi — s, t”))ds + f(x, t"). (3.10)
Meanwhile, we have the discrete equation to advance uf to u"+1
uln+l n l+] 2u + ul i /JAx ,
- = _ s7ys(s)ds + f. (3.11)
Z (jAx)? (i—1)Ax '
Which gives,
4 ul +ult o isx
Uttt =yt 4 At( Uy — 2+ U / s2ys(s)ds +f”>. (3.12)
! : ; (jAx)? (i—1)x '

Now we want to estimate the continuous solution u(x;, t"*!). We know that
u(xi, ") = u(x;, ") 4 Atug(x;, t") + 0(AL?), (3.13)
Hence, plugging the continuous description of nonlocal diffusion (3.10), we get

u(xi, £ = uxi, t") + Atue(x;, t") + O(AL2)
u(x;, t") + At[z /MX (u(m +s,t") — 2u(x,-2, ") + u(x; — s, tn))ds
S

+ f(xi, t”)} +0(At?). (3.14)

For each integral term from [(j — 1)Ax, jAx] within the summation , we then focus on the fractional term and apply
Taylor expand to u(x; + s, t") and u(x; — s, t") for s at (jAx) up to fourth order derivative. This gives an estimate of

u(x, 1) = u(x;, t")

jAX 1
+ At [Z /(;_])Ax yg(s)szm ((u(x,-+j, t") = 2u(x;, t") + u(xij, t")) + O(s‘*)) ds

+ f(x;, t”)] + 0(At?)

r JjAX
= u?+Af[ZfU J/S(S)Szﬁ« fy = 2ul +ul ))ds+O(Ax2)

j—1)Ax

+f(x, t")] + 0(At?). (3.15)
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Then by subtracting (3.12) from (3.15), we can get

Ut — ux, t"T1) = O(At) - O(Ax)? + O(AL?). (3.16)

Transitional: Finally we consider when x; € (0, §] or equivalently i € {N + 1, ..., N 4 r}, and again we will look at the
continuous equation for the time derivative u(x;, t") first.

F) )
e £7) = [ f ya(s)(u(xi—s, ") — u(x, t“))ds+ ( / sya(s)ds)ux(xi, "
ixi S X
+ ( f s ys(s)ds + X; / SVB(S)d5>uxx(Xivtn)] +f(xi, t"), (3.17)
0 Xi

and splitting and symmetrizing the first integral gives

5
u(x;, t") = / m(u(xi — 5, t") — 2u(x;, t") + u(x; + s, t"))ds

2
P 3
+ / y‘sT(s)(u(x,-—s, t") — u(x; +s, t"))ds+</ Sya(s)d5>”x(xivf")
i y s .
+ (/ szya(s)ds+xi/ SVS(S)dS>uxx(Xiv t") + f(xi, "), 3.18)
0 X

and dividing these two integrals into the sum of subintegrals on the union of subintervals, and modify each integrand in
the scope of asymptotically compatible scheme [22], we get

ur(xi, t") = r /’”* ya(zs)s <u(x,~—s, t")—2u(x: t") + u(xi +5, f")>ds
j:%+1 (—1)Ax
r jAX - th) — ; " )
+ Z f ya(s)s<u(x S, 00) —ulxi F5, )>ds+< / sys(S)dS>ux(xf,t")
T Jimnax 2 s X
J=2x+1
Xi 8
+ ( / Lys(s)ds + x / sm(s)ds)uxx(xi,r")+f(x,-,t">. (3.19)
0 Xj

Now working with the discrete equation for u?“

, ,
W - > Uiy — 247 +“t e sys(s)ds
At 2-1A (—1)Ax

. Xi
J=2x

X
T u’

fjo1 — Wy I s uf —ul
- Y1 ~ i sys(s)ds + ( f sm(s)ds) Ui — W
Z : 2 — 1)Ax /(;—1)AX X Ax

i X

J=2x

Xj ) 2
n ( / 2ys(s)ds + x; f syﬂs)ds)w s (3.20)
0 Xj (AX)

+1

Which gives,

ooul o —2uf 4 uf Jax
uttt =l 4 At|: Z -1 =i / sys(s)ds
2(j — 1)Ax (i—1)Ax

L Xj
J=ax+1

r un

noo—ul. jAX ) ut o — oyt
DI ety / syls)ds + ( f 5)’5(5)(15) S A
. 2(] — l)AX (j—1)Ax X; AX

= X

Ax

Xi 8 n—2ul +ul N
+ (/0 szyg(s)ds—i-x,-/)q syg(s)ds)“(m)z‘ +f; ] (3.21)

Again we want to estimate difference between u(x;, t"*') and u/"*"

6
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For each integral term [(j— 1) Ax, jAx] within the summation of (3.19), we then Taylor expand u(x;+s, t") and u(x;—s, t™)
for s at (j — 1)Ax, which is similar to the processing we did for the nonlocal region.

u(xi, t") = u(x;, t")
r

jAX
+ At [ / ﬂ (u(xi+j_1, ") — 2u(x;, t") + u(xi—jpq, ") + O(sz)>ds
4

—1ax 20 — 1)Ax

Ax
r

jAX
+ Z / O <u(xf+]>1, t") — u(Xi_ji1, t") + O(S)>ds
(

nax 20— 1)A
( S)/(S ) (u(Xi+], tn) - (Xi, tn) + O(AX))
AX
§ X n
( Pys(s ds+x,/ syg(s)ds) (“(xl“’ )_Z(Ax;’z O+ K ) +O(Ax2)). (3.22)
+ fxi, t )] +0(At?). (3.23)

By subtracting (3.21) from (3.22) we can get
U™ — u(x;, ") = O(AL)0(Ax) + O(AL?). (3.24)

Therefore, ||u(x;, t"+!) — u;‘“ e = O(AL)0(AxX) + O(At?) with highest restrictions from the transitional region. Since the
order of accuracy is greater than zero, the finite difference scheme is consistent. O

4. Stability

Global stability of the scheme is attained by the discrete maximum principle. To prove the discrete maximum principle
for the quasi-nonlocal coupling equation with an underlying finite difference discretization the spatial operator (—Lg?lﬂx)
must be positive-definite, and the time discretization, that is a single explicit Euler, must be a convex scheme. Recall the
interior domain 2 = [—1, 1] with interface at x* = 0. The volumetric boundary layer for the nonlocal region is £2,, =
(—1—46, —1], and the local boundary point is £2. = {1}. The corresponding sets of spatial grids are [ = {1,2,...,2N—1}
for 2, 1o, = {—(r — 1), ...,0} for £2,, and I, = {2N} for .. Let I = I, Ulg, U I, denote the union of total stencils
within the entire domain (Interior and Boundary), and Iz = I, U I, denote the stencils within the boundary regions
2, U £, (Boundary).

Next we will firstly prove the positive-definiteness of (—E?"'Ax) in Theorem 4.1, which is the discrete maximum principle
for the static case; and then extend the result to the dynamic case in Theorem 4.2 where time derivative is involved.

Theorem 4.1 (Discrete Maximum Principle for the Static Case). The discrete operator LB Ay Satisfies the maximum principle.
For u(x;) € £1(I) with (—ﬂgf’le) (u(x)) <0andj € Ig, and for any i € I = I U Ig, we have
max u(x;) < maxu(x;). (4.1)
iel ielg

Furthermore, equality holds, and u(x;) is a constant function on stencils I.

Proof. Suppose the discrete function u achieves its strictly maximum values at an interior grid j* € I,.

Case I Nonlocal: Consider j* € {1, 2, ..., N}. Then since u(x;+) is a strict maximum
r kAx
U(Xj k) — 2u(xj) + u(Xjp i)
£ up(x*) = ! ! s2ys(s)ds < 0 42
) = > A L Snls)ds < (4.2)
k=1 ( )

. . 1 .
which contradicts —ng'Axu(x;‘) < 0 unless u is constant.

Case II Transitional: Consider j* € {N + 1,N + 2, ..., N + r}. We observe that

kAx kAx
/ s2ys(s)ds > (k — 1)Ax / sys(s)ds. (4.3)
(k=1)Ax (k=1)Ax
Using u(x;+)
r kAx
qnl o _ U(Xje-k—1) — 2u(Xj+ ) + U(Xjr k1) 2
L5 = 2 2k — D(Ax) EREC

M
k=75 +1

7
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r

B Z U(Xjek—1) — U(Xj k1) /"Ax Sy5(s)ds
2(k — 1)Ax (k—1)4x

Xy

k=J%+1
8 " — ulx
i (/ sy,;(s)ds) U(XJ +1) u(xj )
Xj Ax

¢

X 8 . _ I I
+ (/O s2ys(s)ds + X /;* sy,;(s)ds) uX+1) 2(1(?)2) + ul 7]). (4.4)

Also since u(x;+) is a strict maximum we know

U(Xjr1k—1) — 2u(Xj) + U(Xjr—g41)
2(k — 1)2(Ax)?
combined with (4.3), this gives us

r kAx
ik | Jo — 2 i j*—
Lg?leu(X*) - Z U(Xjr k1) — 2u(Xjx ) 4+ U(Xjx_g41) (k— l)Ax/ sys(s)ds
(

<0, (4.5)

J 2(k — 12(Ax)?

Xik k—1)Ax
k:ﬁﬁ—l
r kAx
XixyJe—1) — U(Xj*_
_ Z U(Xjr1k—1) — U(X; k+1)/ sys(s)ds
= 2(k — 1)Ax (k=1)Ax
k=" +1
s
U(Xjey1) — U(Xj)
ds | =272
+ (/x sys(s) S) e
J
x* s
u(x;+ — 2u(x;+ u(xix
N </1 52)/5(5)(15+Xj*/ 5V5(S)ds> (Xje41) (12)+ (% 1)' (4.6)
0 X (AX)

By simplifying we conclude

r

—2u(xix ) + 2u(Xpx k1) [F
() < Y k= Ty = ARCOL

Xjx k—1)Ax
k=441
8
u(Xje41) — u(x;+)
s ds | ————
+ (/X ¥s(s) S) v
)
x¥ 5
U(Xjpx 1) — 2u(Xj ) + u(xp—
+ (/ " 2ys(s)ds + x;- / syg(s)ds) (%j+1) = 2u( 12) ®r-1) _ . (4.7)
0 X (AX)
which contradicts —£J", u(x;) < 0.
Case Il Local: Consider j* € {N+r +1,...,2N — 1}. Then since u(x;+) is a strict maximum
anl _u(Xjr1) — 2u(xp) + ulXp—1)
Ly 2 U(x7) = (A} <0 (4.8)
which contradicts —£§", u(x) < 0. O
Next, we will consider the time-dependent case.
Theorem 4.2 (Discrete Maximum Principle for the Dynamic Case). Suppose fori e =l Ulgandn=0,1, ..., Ny — 1 with
T = Nr - At that {u}} solves the following discrete QNL diffusion equation.
":‘H—l_”? qnl _n n .
T =£5,Axui+fi, forielg, and Nr > n >0,

u) =g?  for il (Initial Condition), (4.9)
u! =q, forielg, n=> 0 (Boundary Condition),

then u} satisfies the discrete maximum principle
n 0 n
Uy < max{gi lier, q; |i€lg,n20} (4.10)

given that f" < 0 for all i € Ip, all n > 0, and % <13
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Proof. We denote M = max{g,-oligl, q}lictg,n=0}. Clearly, at n = 0 we have u? <M foralli el = Iy U Iz. We assume
that this holds for n = m with 0 < m < Ny — 2. Now we would like to advance it to the next time level n = m + 1.

Case I Nonlocal: Consideri € {1, 2, ...,
=+ Ar<£§’7£xu§” +f,f")

1
<o+l

1

2At 1 [ At -~ ulty Hult, [rax
= <1 Z w szya(S)dS>u =)k / s2ys(s)ds.
(

Ax? pa k2 Ji—1)ax

Notice that

kAx kAx

and At < Z,so

2AL /’“"‘ )
s*ys(s > 0.
( AXZ Z kz K

Hence,

N} which is the nonlocal region. Then

2
k=1 k k—1)Ax

§
s = [ s =1
0

Zkz/ 1)AXS pls ds<2/ sy

24t ax At Uty ke
't < (1 Z / Sys(s)d )u + 2 % f sys(s)ds
(

k—1)Ax

k= k—1)Ax

2AL kAx M + M kAx
< Z 2 / stys(s)d )M + — —_— s2ys(s)ds
=1

1)4x

=M.

Case Il Transitional: Consideri € {N + 1, ...,

m+1 m qnl . m
up Sy ALy U

r

2u +um

k? (k—1)Ax

N + r} which is the transitional region. Then

um
:Um+Af i+k—1
! |: Z ((—1)2AX2

o
k=A% +1

r

kAx
i—k+1 / Szyg(s)ds
(

k—1)Ax

um o —ul kax 8 um  —ym
— Z i+k—1 i—k+1 / sys(s)ds + (/ sy,g(s)ds) i+1 i
Z(k — ])AX (k—1)Ax Xi Ax

_Jiy

k

Xi 8 —2u" 4 uP
2 i+1 i—1
+ s“ys(s)ds + x; sys(s)ds | ——
(/0 5(s) 1~/Xi vs(s) ) 2 ]

r

=A-u'+ ) (Be-uflog + Gl + D ufy +E-uly)

x.
k=75 +1

where those notations are defined as

At ! -1 kax At s
A=14+— E —_— 2 d —| - d
* AX2< ~  (k—1) /(‘kfl)Axs 7 S) * Ax( -/xl s(s) S)
1

2At [ [N s
- —( / s2ys(s)ds + x; f sys(S)ds>,
sz 0 Xj

At kAx At kAx
By = 7/ s%ys(s)ds — 7/ sys(s)ds,
2Ax2(k — 172 Jp—1yax 24x(k — 1) Jik—1)ax
At kAx At kAx
G = 7/ s*ys(s)ds + 7[ sys(s)ds,
2Ax%(k — 1) 1)Ax ZAX(k — 1) (k—1)Ax

Xi )
D="— / sys(s)ds + —(f s2ys(s)ds + xi/ syg(s)ds), and
Xi 0 Xi

9

(4.11)

(4.12)

(4.13)

(4.14)
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At ( L s
= — / s y,;(s)ds+x,~/ S]/g(S)dS). (4.15)
sz 0 Xj

Clearly, A + Zk o (Bk+Cy)+D+E=1, and By, Cy, D,E > 0 when Ax is sufficiently small and because that
At kAx At kAx
T 2Ax(k—1) (k*l)AxSy‘s( )dS _Z(Ax)z(k—])z (k— l)AxS yS(S)dS

Now we want to prove that A > 0. It is equivalent to prove

r

At 1 kAx 5 Xj , )
1-A=— 7/ sy(s)ds+2</ sy(s)ds+xl-/ sy(s)ds)
Ax? [k Z : (k=17 Jik—1)ax ° 0 ’ X; ’

X

— Ax

5
+ Ax/ S)/g(S)dS] <1. (4.16)

Notice that

At |: i ( /kAx 5 kAx 1 5 J
1-A= S y(;(s)ds+2x-/ <7>s ys(s)ds
k—1)2 1)4x l (k=1)Ax \ S

k_ Ax

kAx Xi
f ( )s ys(s )ds) / szys(s)ds}
(k— 1)Ax 0

kAx 2Xi kAx
2 2
sTys(s)ds + ———— / s“ys(s)ds
Ax2 |: < (k—1y / 1)Ax (k= 1A% Jig—1)ax

Ax kAx , Xj ,
_ s7y, (s)ds) + 2/ s7y, (s)ds:|
(k—l)Ax/ka ’ o

kAx Xj
< s )/3(5 ds+4/ 52)/5(5)(13]
sz[ Z -/I 1)Ax
kAx Xj )
4At
sz[ Z / ntos+ [ szys(s>ds]=sz Ly(s)ds
0

+

+

At
4= <1
Ax2
Since % 5 ,50 1 —A < 1. Therefore,
At kAx kAx
A= 0 for By > 222 =17 Jo—1)ax S *ys(s)ds — 2Ax2(k 1)2 f S ys(s)ds = 0.

Summarizing the coefficients of Eq. (4.14) gives

e A, By, C,D,E>0
e A+Y 5 (Be+CG)+D+E=1.
T Ax

Hence u{"“ < (A + Z;:%_H(Bk +C)+D+ E)M = M.

Case III Local: Consideri € {N +r + 1,...,2N — 1} which is the local region. Then

At 2At At
i =t g (o -2 1)““’"5(“P)“”m(“““‘“)

with At <3 1 which gives all positive coefficients, so u"™ <M.

Combmlng case 1, II, Ill we can conclude that given u* < M for all i € I, and % < 1 we have u"*' < M for all
i € Ig. According to the induction we prove the theorem. O

Corollary 4.3. Suppose fori e | =IpoUIlg, n=0,1,...,Nr — 1, and T = Ny - At that {u} solves the following discrete QNL

diffusion equation (4.9) then we have the following upper bound for ul! given that Amz < }1'

ul < T - |[f lleceqry + max{l|g lleoqry 1G] lleoig)}- (4.17)

10
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Proof. We introduce a comparison function
wi' = u + (T —n- AO)|f ey > uf (4.18)

fori eI, and n > 0. Then we have

witt — !yt !
i o LI v == Wflleoay = L5 a0uf + <fin - ||f||4°°(’))

where (fi” — ”f”gtx:([)) < 0. Therefore by Theorem 4.2, w]' satisfies the discrete maximum principle w]' < max{w?l,—e,,

w]'|iery} for all i € I and n > 0, given that 5 < 1.
Notice that
w) =u) + T - If ey < max{lig? lleceqry, 1] ey} + T - If llesoqry (4.19)
and also that
Wi liery = Uj liery + (T -n- At) If leseqry < max{llg?lleceqrys 19 lesoqipyt + T - If llesoqn)- (4.20)

combined with the fact that uf|;; < w]'|;e; proves the corollary. O

Remark 4.1. Although in the proof of stability analysis, we require that ﬁ < % to proceed the analysis; meanwhile, we

notice in the simulation that with ﬁ close to % we still have stable numerical results.
5. Convergence
In this section, we prove the convergence results of the proposed FDM scheme.

Theorem 5.1 (Global Error Estimate of the Discrete Solution). Suppose u(x, t) is the strong solution to (2.1) and u} is the discrete

solution to the scheme (2.4) withi€I,n=0,1,...,N;r — 1, and Ny At = T, respectively. Then we have
lu(x;, t") —ul'| < T - Cs(Ax + At) (5.1)

given that % <3
Proof. We define e} = u(x;, t")—uf,i=1,2,...,2N—1,n=0, 1, ..., Ny to be the error between the exact and discrete
solutions. Then from the consistency analysis, and since f" = f(x;, t") we have that

el el qnl :

Lt — LMXe;1 =g, forielg, andn>0

e? =0,iel (Initial Error) (5.2)

el =0, ielp (Boundary Error)

where |e. ;| < Cs(Ax + At) according to the consistency analysis. Hence we consider the following auxiliary function

w!' = e — (nAt) - Cs(Ax + At). (5.3)
Observe that
win+] —w cant o
At 5, AxWi
_ L™ = Gs(Ax + At)(n + 1)AD)] — [] — G(Ax + At)(nAt)] Ll
= At 8,Ax"i
e —¢f anl n
= T — Cs(AX + At) — E(;,Axei
= 85,,‘ —_ C(g(AX —+ At) < 0 (54)
Then w} satisfies
Wit —yh al  n .
o — LW 20, i€lg,
w’=0, iel, (Initial), (5.5)
w!' = —(nAr) - Gs(Ax + At), ielg (Boundary),

because of the discrete maximum principle proved in Theorem 4.2, so
w' <max{wlliel, w'li,) =0, Vielg. (5.6)

11
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Therefore, e < (nAt)-Cs(Ax 4 At). Similarly when w]' = e +(nAt)-Cs(Ax 4+ At) we have e} > —(nAt)-Cs(Ax + At).
Hence, |e}'| < (nAt)- Cs(Ax + At) which gives |u(x;, t") — ul| < T - CGs(Ax + At). O

6. Study of the Courant-Friedrichs-Lewy (CFL) condition

In this section, we study the CFL condition of the new finite difference scheme by employing the Von Neumann stability
analysis. We denote by A1 and AAX by 2 and insert u] = (g(6))" eY=1% into the scheme (2.3) where 6 is a given
wave number. We get the following three different cases:

e Case I Nonlocal: for x; < 0, the growth factor is

T . _ iAX
g0) =1 +AZZZ(G)WAMD/J s”ys(s)ds. (6.1)
G

2
pa J i—1)Ax

e Case Il Transitional: for 0 < x; < §, the growth factor is

. (cos(6( — 1)Ax) — 1) ffA"
0)=1+4+Ar - d
g(0) 1]._;1 T O_])AXS)/,S(S) s
r : ; jAX
S V-1 slg(eul— 1)Ax) /1 Sya(s)ds
j=%+1 (] - ) (j—1)Ax (6.2)

s
+ Aq (/ S)/g(S)dS) (cos(@Ax) + lesin(QAx) - 1)

Xj )
+ Ay ( / s2ys(s)ds + x; / sya(s)ds) (2 cos(0.Ax) — 2).
0 X,

e Case III Local: for x; > §, the growth factor is

8(0) = 1+ Az(2cos(0.Ax) — 2). (6.3)

Proof. Performing Von Neumann analysis for stability we substitute u! = (g(8))" v/ —16x;

Case I:

u?+l u" l+] _ zu + ul L jAX 5
_ d 6.4
o Z a7 s (6.4)

Substituting u? = (g(0))" e¥~1%% gives

r 0 neﬁexi eﬁeAx -2+ e—ﬁmx jAX
g0 e T (g(0) — 1) = 2, 3 EOVE T ET ) [ s (65)
‘ J (—1)Ax
Therefore, we can conclude the growth factor for the nonlocal region is
" 2(cos(8jAx) — 1) [i4x
gO)=1+21) % / s2ys(s)ds. (6.6)
i J (—1)Ax
Case II:
umtt —yn Tooul 2ul +uf jAx
R TaE Z - ]2 T / Srs(s)s
=R (—Dax (i—1)Ax
Ax
ooyt . jAx
S T e / sys(s)ds
= 2(j — 1)Ax (—1)Ax
j=ax+1
8 ut . —u
+ </X1 ¥s(S) > T
Xi 8 2ut 4+ u
+ ( / s2ys(s)ds + x; / sy,;(s)ds)'“—ll. (6.7)
0 Xj (AX)

12
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Similarly to the nonlocal region substituting u}! = (g(6))" eV -10xi gives

g(0)e¥=1%i(g(6) — 1) =

. .
1 . . jAX
A Z S <g(9)neﬁexi (eﬁeg—lmx —24+ e—ﬁ@g—l)m)) / sys(s)ds
i -1
— Ax
r 1 ) ) JjAX
— M Z T (g(e)”e‘me"f (eﬁeg—lmx _ e—ﬁeu—nAx)) / sys(s)ds
e -1 (i—1)Ax
- Ax
5
+ A </ S)/(;(S)ds> <g(0)ne\/jl9xi (e«/jlkAx _ 1))
Xi
Xj )
+ Az (/ s2ys(s)ds + x,-/ sys(s)ds> (g(@)”eﬁ(”"’ (eﬁm" -2+ e*ﬁ“")) (6.8)
0 Xj
Therefore, we can conclude the growth factor for the transitional region is
— (cos(A(j — 1)Ax) — 1) [i4x
g@)=1+x - / sys(s)ds
Py (-1 G
J=7x+1
r . . i
V—=1sin(8( — 1)Ax) [/
— M Z sm'( (= 1Dax) / sys(s)ds
5 Gg-1 (—1)Ax
J=2%+1
5
+ A (/ S)/g(S)dS) (cos(@Ax) + +/—1sin(kAx) — 1)
Xi
Xi )
+ Ay ([ s2ys(s)ds +xi[ S]/g(S)dS) (2 cos(6 Ax) — 2). (6.9)
0 Xj
Case III:
uftt —uf Uy —2u) +ul (6.10)
At (Ax)? ‘
Finally, substituting u" = (g(0))" e¥~ 1% gives
g(0)'e’ " ™(g(0) — 1) =1, (gw)”eﬁ”‘ (V1 —24 e*”‘“))- (611)

Therefore, we can conclude the growth factor for the local region is
8(0) =1+ Az(2cos(0 Ax) — 2). (6.12)

Clearly, we have A, = AxAq, so once we get the CFL constraint on A, the CFL condition for A, will be satisfied when
Ax is sufficiently small. Because it is very difficult to analytically find this upper bound we implement the growth factor
2(0) numerically to identify restrictions on A; and A, to ensure |g(0)] < 1. O

For linear local diffusion models with the explicit Euler and middle point finite difference discretization, the CFL is

restricted by CFL = % < 0.5. This provides the largest step size in time to reduce computational cost while preserves
stability. By numerically analyzing the growth factor in Fig. 3, we found that the nonlocal and local regions match the
typical restrictions for stability, but the transitional region is slightly less than 0.5. This factor needs to be considered for
stability restrictions to the CFL on the whole coupling system. On the other hand, compared with the original FDM scheme
proposed in [20], the new FDM discretization can afford larger CFL condition, which suggests that the new scheme is more

stable.

7. Numerical examples

In this section, we test several numerical examples to confirm the stability and convergence results.
We fix the nonlocal diffusion kernel to be a constant kernel

3
ys(s) = 873XH’8](S)'

13
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3r New QNL: transitional region
----- nonlocal region
281 * local region
----- Original QNL: transitional region
26
=24r
=
[}
22
s
g e
ES]
=18
<
© 161
14
12
1 n n n n ot i h h h 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CFL=AYAX?

Fig. 3. Maximum Growth Rate of (6.1)-(6.3) for the new finite difference method versus that of (2.5) for the original finite difference method.

Table 1
L, 0,r) differences between the local continuous solution u‘ and discrete solution ug"’m.

We fix § = 3Ax, and the kernel is ys(s) = 5%)([,,;‘5](5). The termination time T = 1 and

At = 0.2Ax.

AX [Jub(x;, t") — ugf‘gx(xi, t")HL?zox[oﬂ Order
= 0.1422 -

5 7.168e—2 0.988
5 3.614e—2 0.988
= 1.820e—2 0.990
o 9.151e-3 0.992
o5 4.594e—3 0.994

1. For the first example, we consider the asymptotic compatibility (AC) of the discretized operator Eg,"gx to the local
diffusion problem as the horizon § and spatial discretization Ax go to zero at the same time.
We consider the external force f as

f(x, t)=30x%~" +e7{(x® — 1) + 2. (7.1)

Then, the exact solution to the local diffusion u®, = uf, + f with u’(—1,t) = u’(1,t) = 0 and u‘(x,0) =
(1-x)—x-1)is

U, t)=(1—x%)— e f(x® = 1). (7.2)

To test the AC convergence, we fix § = rA with r = 3 and set the CFL to be CFL = 0.45, that is At = 0.2Ax, and
the termination time is chosen to be T = 1.

First order convergence with respect to Ax is observed. The convergence order and L , 1, differences between

u‘(x, t) and discrete solution of ugﬂx are listed in Table 1. Also the visual comparison of the two solutions at t = 0

and t =T are displayed in Fig. 4 with a nice agreement.

2. In the following example, we compare the original scheme Eg"l (2.5) proposed in [20] with the new proposed
scheme £J",, in (2.3).
We are going to compare the AC convergence between (2.3) and (2.5). The exact local continuous solution is chosen
to be

ub(x, t) = e~ (1 — x)%(1 + x)*x? (7.3)
and the corresponding external force is

flx,t) =uf —u’,

=—e ' (x— 27 + (2 — 24x° + 30x")) . (7.4)

Again the kernel used is ys(s) = ;5 with § = 3Ax. We denote the solution obtained by c" . by ul™,, and the
~qnl

solution obtained by Z{",, by @{",.

14
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Actual Solution vs Appr

Solution at tii 0
' ' ' Actual Solution vs Approxil Solution at time=T

Approx. 1
= = =Actual

-1 -08 -06 -04 -02 0 0.2 04 06 0.8 1 -1 -08 -06 -04 -02 0 02 04 06 08 1

(a) solutions at t =0 (b) solutions at ¢ =1

Fig. 4. Plots of solutions to the approximate and actual solutions. The kernel function was chosen as y;s(s) = S%X[fﬁ,,i](s). The coupling inference is

at x* =0, and the mesh size is Ax = 41@ with a horizon as § = ﬁ, the temporal step size is At = 0.45Ax.

Table 2

LY, o differences between the local continuous solution u® and two discrete solutions ™, @l
using the FDM schemes (2.3) and (2.5), respectively. We fix § = 3Ax, and the kernel is ys(s) = 5% The
termination time is T = 1 and At = 0.2Ax.

Ax [Jub(x;, t") — ﬁgf"Ax(xi, IS Order [Jub(x;, ") — ugfﬂm(xi, )10 Order
+ 9.255e—3 - 7.200e—3 -

5 4.692e—3 0.980 1.698e—3 2.08
a5 2.356e—3 0.994 4.121e—4 1.09
o 1.179e—3 0.998 1.931e—4 1.09
o 5.900e—4 0.999 9.628e—5 1.00
4 2.951e—4 1.00 4.806e—5 1.00

First order AC convergence with respect to Ax are observed in Table 2 for both schemes (2.3) and (2.5), respectively.
The approximation using scheme (2.3) at larger step size has second order convergence rate, and at smaller step
size tends to be of first order.

Next, we compare the three solutions obtained from (1) new scheme; (2) exact local continuous solution and (3)
the original scheme visually in Fig. 5. Notice that the exact local continuous solution u‘(x, t) should remain non-

negative throughout the entire computational domain £2 x [0, T], however, both u",, and i{",, become slightly

negative around the interface x* = 0. This does not contract the discrete maximum principle of L??’Ax as the external
force f(x, t) defined in (7.4) does not retain negative on [—1, 1] as required in the assumption of Theorem 4.2. On

the other hand, because ngﬂAx satisfies the discrete maximum principle, consequently, ugﬁx provides less artificial

negativity than ﬂgfﬂm around the interface of coupling.

8. Conclusion

We propose a new scheme to discretize the quasi-nonlocal (QNL) coupling operator introduced in [20] for the nonlocal-
to-local diffusion problem. This new finite difference approximation preserves the properties of continuous equation on
a discrete level. Consistency, stability, the maximum principle and the global convergence analysis of the scheme are
proved rigorously. We analytically find the CFL conditions through the Von Neumann stability analysis and numerically
calculate the CFL values for a given spatial discretization. The numerical calculations of the CFL provide us addition alert
around the interface when considering the temporal step size for an explicit time integrator, as the CFL restrictions on the
transitional region was discovered to be slightly less than % with explicit Euler method employed in a diffusion problem.
Multiple numerical examples are then provided and summarized to verify the theoretical findings. A comparison with the
original scheme used in [20] is also provided which confirmed the improvements of the new scheme.

15
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Actual vs Solutions at time=0
T T T T

Actual vs imate Solutions at time=T

Original scheme

005 0 005 01

Bl 08 06 04 02 0 02 04 06 08 1

(a) solutions at t =0 (b) solutions at ¢t =1

Fig. 5. Numerical comparison between the new scheme (2.3) and original scheme (2.5) used to approximate (7.3) with external force given by (7.4).

The spatial step size is Ax = 5}; and At = 0.25Ax.
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