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a b s t r a c t

In a recent paper (Du et al., 2018), a quasi-nonlocal coupling method was introduced
to seamlessly bridge a nonlocal diffusion model with the classical local diffusion
counterpart in a one-dimensional space. The proposed coupling framework removes
interfacial inconsistency, preserves the balance of fluxes, and satisfies the maximum
principle of diffusion problem. However, the numerical scheme proposed in that paper
does not maintain all of these properties on a discrete level. In this paper we resolve
this issue by proposing a new finite difference scheme that ensures the balance of fluxes
and the discrete maximum principle. We rigorously prove these results and provide the
stability and convergence analyses accordingly. In addition, we provide the Courant–
Friedrichs–Lewy (CFL) condition for the new scheme and test a series of benchmark
examples which confirm the theoretical findings.

© 2021 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Since the last decade, nonlocal integro-differential type models have been employed to describe physical systems, due
o their natural ability to model physical phenomena at small scales and their reduced regularity requirements which
ead to greater flexibility [1–18]. These nonlocal models are defined through a length scale parameter δ, referred to as a
orizon, which measures the extent of nonlocal interaction. An important feature of nonlocal models is that they restore
he corresponding classical partial differential equation (PDE) models as the horizon δ → 0 [6,7].

Nonlocal models that are compatible with the local PDEs are often much computationally expensive and require
dditional attention to the boundary treatments since a layer of volumetric boundary conditions is needed within the
hysical system. Meanwhile, nonlocal models need less regularity requirements which helps the descriptions near defects
nd singularities. Consequently, tremendous efforts have been devoted to combining nonlocal and local methods to keep
ccuracy around the irregularity while retain efficiency away from the singularity (see the review paper [19] for the
tate-of-art).
In [20], a quasi-nonlocal (QNL) coupling method was proposed to combine the nonlocal and local diffusion operators

n a seamless way using the variational approach. The coupled operator is proved to preserve many mathematical and
hysical properties on the continuous level, including the symmetry of operator, the balance of linear momentum, and the
aximum principle. However, it is not clear how to retain these desired properties with proper numerical discretization.

n this paper, we propose a new finite difference method which inherits all properties from the continuous case.
We recall that the linear local diffusion model in one-dimensional space is

ut (x, t) = uxx(x, t) + f (x, t). (1.1)
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Fig. 1. Graphical illustration of 1-D Domain.

The corresponding counterpart in the nonlocal setting is the linear nonlocal diffusion model which reads

ut (x, t) =

∫ δ

−δ

γδ(s)
(
u(x + s, t) − u(x, t)

)
ds, (1.2)

here γδ(s) denotes the isotropic nonlocal diffusion kernel satisfying the following convenient assumption with γδ(·) being
rescaled kernel,⎧⎪⎪⎨⎪⎪⎩

γδ(|s|) =
1
δ3

γ

(
|s|
δ

)
, γ is nonnegative and nonincreasing on (0,1),

with supp(γ ) ⊂ [0, 1] and
∫ δ

−δ

|s|2γ (|s|)ds = 2 .

(1.3)

e will display more details about the coupling and numerical schemes in the following sections.
More precisely, we organize the paper as follows: In Section 2, we recall the energy-based QNL coupling from [20]

o build the coupling operator Lqnl
δ bringing the nonlocal and local diffusion problems and introduce space–time

discretizations as well as the new finite difference method (FDM). In Section 3, we estimate the consistency errors of the
proposed scheme using Taylor expansions. In Section 4, we prove the discrete maximum principle and hence the stability
of proposed scheme. In Section 5, we combine the consistency and stability results to conclude the convergence estimates.
In Section 6, we mathematically study the Courant–Friedrichs–Lewy (CFL) condition for the space–time discretization. In
Section 7, we test several benchmark examples to confirm our theoretic findings.

2. QNL coupling and finite difference scheme

Now, we consider the domain to be Ωδ = [−1 − δ, 1], with the coupling interface of nonlocal and local models at
x∗

= 0; (−1, 0) denotes the nonlocal region with nonlocal boundary layer at [−1 − δ, −1] and (0, 1) denotes the local
region with local boundary point at {1}, as illustrated in Fig. 1.

In [20], the QNL operator Lqnl
δ u(x, t) is introduced to smoothly bridge the local and nonlocal regions over the transitional

region [0, δ]. The corresponding coupled diffusion problem is proved to be a well-posed initial value problem and is given
by ⎧⎨⎩

ut (x, t) = Lqnl
δ u(x, t) + f (x, t), for T > t > 0 and x ∈ (−1, 1),

u(x, 0) = u0(x), for x ∈ (−1, 1),
u(x, t) = 0, for x ∈ [−1 − δ, −1], or x = 1.

(2.1)

Lqnl
δ employed in Eq. (2.1) is the quasi-nonlocal coupling operator which describes the diffusion within the nonlocal,

transitional, and local regions, respectively. The expression of Lqnl
δ is given below

Lqnl
δ u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ δ

−δ

(
u(x + s, t) − u(x, t)

)
γδ(s)ds, if x ∈ (−1, 0],

∫ δ

x
γδ(s)

(
u(x − s, t) − u(x, t)

)
ds +

(∫ δ

x
sγδ(s)ds

)
ux(x, t)

+

(∫ x

0
s2γδ(s) + x

∫ δ

x
sγδ(s)ds

)
uxx(x), if x ∈ (0, δ],

uxx(x, t), if x ∈ (δ, 1).

(2.2)

Next, we discuss the numerical settings for the spatial and temporal discretization. We use un
i to denote the numerical

approximation of the exact solution u(xi, tn) with spatial and temporal step sizes being with ∆x :=
1
N and ∆t :=

T
NT

,
espectively. Hence, the spatial grid is xi and temporal grid is tn = n∆t . For simplicity, we drop x and t but only use i and
accordingly. The relation between ∆x and ∆t will be determined later by the CFL condition. Meanwhile, we assume

hat the horizon δ is a multiple of ∆x with δ = r∆x and r ∈ N.
2
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Recall that the entire computational domain is Ωδ := [−1−δ, 1], so the interior domain is Ω = [−1, 1] with interface
t x∗

= 0; the volumetric boundary layer for the nonlocal region is Ωn = [−1 − δ, −1); and the local boundary point is
Ωc = {1}. Next we denote the set of spatial grids by I and I = IΩ ∪ IΩn ∪ IΩc , where IΩ = {1, 2, . . . , 2N − 1} denotes the
interior grids, IΩn = {−(r − 1), . . . , 0} denotes the nonlocal volumetric boundary grids, and IΩc = {2N} denotes the local
boundary point. Following the scope of asymptotically compatible scheme [21,22], we define the spatial discretization of
the QNL coupling operator Lqnl

δ,∆x as follows

Lqnl
δ,∆xu

n
i :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r∑
j=1

un
i+j − 2un

i + un
i−j

(j∆x)2

∫ j∆x

(j−1)∆x
s2γδ(s)ds, if xi ≤ 0,

r∑
j= xi

∆x +1

un
i+j−1 − 2un

i + un
i−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x
sγδ(s)ds

−

r∑
j= xi

∆x +1

un
i+j−1 − un

i−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x
sγδ(s)ds

+

(∫ δ

xi

sγδ(s)ds
)
un
i+1 − un

i

∆x

+

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)
un
i+1 − 2un

i + un
i−1

(∆x)2
, if xi ∈ (0, δ],

un
i+1 − 2un

i + un
i−1

(∆x)2
, if xi ∈ (δ, 1).

(2.3)

or the temporal discretization, we employ the simplest explicit Euler scheme due to the limitation of first order accuracy
n the spatial discretization, which will be proved later. Hence the full FDM discretization of (2.1) is

un+1
i − un

i

∆t
= Lqnl

δ,∆xu
n
i + f ni , i ∈ IΩ , (2.4)

here f ni = f (xi, tn).
Fig. 2 displays a sampling set of spatial stencils using N = 5 on domain [−1 − δ, 1]. The step size is ∆x =

1
5 and the

horizon δ = r∆x with r = 3.

Remark 2.1. In [20], the time-integral is still approximated by the explicit Euler method, and the L̃qnl
δ,∆x is approximated

y the following finite difference scheme given interface at x∗
= 0:

L̃qnl
δ,∆xu

n
i ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
r∑

j=1

un
i+j − 2un

i + un
i−j

(j∆x)2

∫ j∆x

(j−1)∆x
s2γδ(s)ds, if xi ≤ 0.

r∑
j= xi

∆x

un
i+j − 2un

i + un
i−j

(j∆x)2

∫ j∆x

(j−1)∆x
s2γδ(s)ds

−

r∑
j= xi

∆x

un
i+j − un

i−j

j∆x

∫ j∆x

(j−1)∆x
sγδ(s)ds

+2
(∫ δ

xi

sγδ(s)ds
)
un
i+1 − un

i

∆x

+

(
2
∫ xi

0
s2γδ(s)ds + 2xi

∫ δ

xi

sγδ(s)ds
)
un
i+1 − 2un

i + un
i−1

(∆x)2
, if xi ∈ (0, δ],

un
i+1 − 2un

i + un
i−1

(∆x)2
, if xi ∈ (δ, 1).

(2.5)

ompare (2.3) with (2.5), we notice that the difference is replacing j in the original scheme by (j− 1) in the new scheme
cross the transitional region. This is the main difference in the approximation that allows Eq. (2.3) to satisfy the discrete
aximum principle whereas equation (2.5) does not. We will rigorously prove this in Section 4.
3
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Fig. 2. Illustration of the finite difference stencil.

Remark 2.2. For numerical schemes that preserve the maximum principles in high dimensional space, recently, there are
other types of coupling methods developed for two dimensional problems, such as [23,24]. These coupling schemes are
based on domain-decomposition methods via Neumann or Robin type boundary conditions, and are rigorously proved to
keep the maximum principles.

Regarding the conservation of flux, notice that the operator Lqnl
δ,∆x of new scheme (2.3) is symmetric, hence, it possesses

this property. In general, one have to keep interaction symmetries across the transitional region of the coupling region.
However, the nonlocal neighborhood, Bδ(x), becomes a disk (in two dimensions) or a ball (in three dimensions), making
the intersections with the interface highly more complex. As a result, it is not easy to preserve the flux in high dimensions.

3. Consistency

In this section, we estimate the consistency error of the scheme (2.4) with Lqnl
δ,∆x defined in (2.3).

Theorem 3.1. Let the horizon δ = r∆x with r ∈ N and being fixed, and suppose u(x, t) is the strong solution to (2.1),
and un

i is the discrete solution to the scheme (2.4) with i ∈ IΩ and tn = n∆t. Also assume that the exact solution u is
sufficiently smooth, specifically u(x, t) ∈ C4([−1 − δ, 1] × [0, T ]). Suppose at any given time level tn = n∆t we have
u(xi, tn) = un

i , ∀i ∈ IΩ = {1, . . . , 2N − 1}, then for the next time level n + 1 the consistency error of the scheme satisfies

|un+1
i − u(xi, tn+1)| ≤ Cδ∆t ((∆x) + (∆t)) , ∀i = 1, . . . , 2N − 1, (3.1)

where Cδ is a constant independent of ∆x and ∆t.

Proof. We evolve u(xi, tn) and un
i by one time step ∆t according to three differential regions.

Local: If xi > δ or simply i ∈ {N + r + 1, . . . , 2N − 1}, then the continuous and discrete equations follow the expressions
in the local region. So at (xi, tn), we have the continuous equation:

ut (xi, tn) = uxx(xi, tn) + f (xi, tn), (3.2)

and the discrete equation:

un+1
i − un

i

∆t
=

un
i+1 − 2un

i + un
i−1

(∆x)2
+ f ni (3.3)

ith f ni = f (xi, tn).
Notice from consistency assumption that un

i = u(xi, tn), so can rewrite the discrete equation as

un+1
i − u(xi, tn)

∆t
=

u(xi+1, tn) − 2u(xi, tn) + u(xi−1, tn)
(∆x)2

+ f (xi, tn). (3.4)

We apply the Taylor expansion at the spatial grid (xi) up to fourth order derivative and get an estimate of un+1
i , which

is

un+1
i =u(xi, tn) + ∆t

(
u(xi+1, tn) − 2u(xi, tn) + u(xi−1, tn)

(∆x)2
+ f (xi, tn)

)
=u(xi, tn) + ∆t

(
(∆x)2uxx(xi, tn) + O(∆x4)

(∆x)2
+ f (xi, tn)

)
=u(xi, tn) + ∆t

(
uxx(xi, tn) + f (xi, tn)

)
+ O

(
∆t(∆x)2

)
. (3.5)

Now, let us estimate the continuous solution u(xi, tn+1). This time, we apply Taylor expansion at the time grid (tn) and
get

u(xi, tn+1) =u(xi, tn) + ∆tut (xi, tn) + O(∆t2)

=u(xi, tn) + ∆t
[(

uxx(xi, tn) + f (xi, tn)
)]

+ O(∆t2), (3.6)
4
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here we substitute ut (xi, tn) by the continuous equation on the local region.
By subtracting (3.5) from (3.6) we can get

un+1
i − u(xi, tn+1) = O

(
∆t(∆x)2

)
+ O

(
(∆t)2

)
. (3.7)

Nonlocal: Next we consider the fully nonlocal region where xi ≤ 0 or simply i ∈ {1, . . . ,N}. We first have the continuous
equation:

ut (xi, tn) =

∫ δ

−δ

γδ(s)
(
u(xi + s, tn) − u(xi, tn)

)
ds + f (xi, tn)

=

∫ 0

−δ

γδ(s)
(
u(xi + s, tn) − u(xi, tn)

)
ds +

∫ δ

0
γδ(s)

(
u(xi + s, tn) − u(xi, tn)

)
ds + f (xi, tn)

=

∫ δ

0
γδ(−s)

(
u(xi − s, tn) − u(xi, tn)

)
ds +

∫ δ

0
γδ(s)

(
u(xi + s, tn) − u(xi, tn)

)
ds + f (xi, tn). (3.8)

Because of the isotropic property of the nonlocal kernel γδ(s) summarized in (1.3), we have

ut (xi, tn) =

∫ δ

0
γδ(s)

(
u(xi + s, tn) − 2u(xi, tn) + u(xi − s, tn)

)
ds + f (xi, tn). (3.9)

Clearly, we can divide the integral into the sum of subintegrals on the union of subintervals, so we have,

ut (xi, tn) =

r∑
j=1

∫ j∆x

(j−1)∆x
γδ(s)

(
u(xi + s, tn) − 2u(xi, tn) + u(xi − s, tn)

)
ds + f (xi, tn). (3.10)

Meanwhile, we have the discrete equation to advance un
i to un+1

i :

un+1
i − un

i

∆t
=

r∑
j=1

un
i+j − 2un

i + un
i−j

(j∆x)2

∫ j∆x

(j−1)∆x
s2γδ(s)ds + f ni . (3.11)

Which gives,

un+1
i = un

i + ∆t
( r∑

j=1

un
i+j − 2un

i + un
i−j

(j∆x)2

∫ j∆x

(j−1)∆x
s2γδ(s)ds + f ni

)
. (3.12)

ow we want to estimate the continuous solution u(xi, tn+1). We know that

u(xi, tn+1) = u(xi, tn) + ∆tut (xi, tn) + O(∆t2), (3.13)

Hence, plugging the continuous description of nonlocal diffusion (3.10), we get

u(xi, tn+1) = u(xi, tn) + ∆tut (xi, tn) + O(∆t2)

= u(xi, tn) + ∆t
[ r∑

j=1

∫ j∆x

(j−1)∆x
γδ(s)s2

(
u(xi + s, tn) − 2u(xi, tn) + u(xi − s, tn)

s2

)
ds

+ f (xi, tn)
]

+ O(∆t2). (3.14)

For each integral term from [(j − 1)∆x, j∆x] within the summation , we then focus on the fractional term and apply
aylor expand to u(xi + s, tn) and u(xi − s, tn) for s at (j∆x) up to fourth order derivative. This gives an estimate of

u(xi, tn+1) = u(xi, tn)

+ ∆t
[ r∑

j=1

∫ j∆x

(j−1)∆x
γδ(s)s2

1
(j∆x)2

((
u(xi+j, tn) − 2u(xi, tn) + u(xi−j, tn)

)
+ O(s4)

)
ds

+ f (xi, tn)
]

+ O(∆t2)

= un
i + ∆t

[ r∑
j=1

∫ j∆x

(j−1)∆x
γδ(s)s2

1
(j∆x)2

((
un
i+j − 2un

i + un
i−j

))
ds + O(∆x2)

+ f (xi, tn)
]

+ O(∆t2). (3.15)
5
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Then by subtracting (3.12) from (3.15), we can get

un+1
i − u(xi, tn+1) = O(∆t) · O(∆x)2 + O(∆t2). (3.16)

ransitional: Finally we consider when xi ∈ (0, δ] or equivalently i ∈ {N + 1, . . . ,N + r}, and again we will look at the
continuous equation for the time derivative ut (xi, tn) first.

ut (xi, tn) =

[∫ δ

xi

γδ(s)
(
u(xi − s, tn) − u(xi, tn)

)
ds +

(∫ δ

xi

sγδ(s)ds
)
ux(xi, tn)

+

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)
uxx(xi, tn)

]
+ f (xi, tn), (3.17)

and splitting and symmetrizing the first integral gives

ut (xi, tn) =

∫ δ

xi

γδ(s)
2

(
u(xi − s, tn) − 2u(xi, tn) + u(xi + s, tn)

)
ds

+

∫ δ

xi

γδ(s)
2

(
u(xi − s, tn) − u(xi + s, tn)

)
ds +

(∫ δ

xi

sγδ(s)ds
)
ux(xi, tn)

+

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)
uxx(xi, tn) + f (xi, tn), (3.18)

nd dividing these two integrals into the sum of subintegrals on the union of subintervals, and modify each integrand in
he scope of asymptotically compatible scheme [22], we get

ut (xi, tn) =

r∑
j= xi

∆x +1

∫ j∆x

(j−1)∆x

γδ(s)s
2

(
u(xi − s, tn) − 2u(xi, tn) + u(xi + s, tn)

s

)
ds

+

r∑
j= xi

∆x +1

∫ j∆x

(j−1)∆x

γδ(s)s
2

(
u(xi − s, tn) − u(xi + s, tn)

s

)
ds +

(∫ δ

xi

sγδ(s)ds
)
ux(xi, tn)

+

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)
uxx(xi, tn) + f (xi, tn). (3.19)

Now working with the discrete equation for un+1
i

un+1
i − un

i

∆t
=

r∑
j= xi

∆x +1

un
i+j−1 − 2un

i + un
i−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x
sγδ(s)ds

−

r∑
j= xi

∆x +1

un
i+j−1 − un

i−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x
sγδ(s)ds +

(∫ δ

xi

sγδ(s)ds
)
un
i+1 − un

i

∆x

+

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)
un
i+1 − 2un

i + un
i−1

(∆x)2
+ f ni . (3.20)

Which gives,

un+1
i = un

i + ∆t
[ r∑
j= xi

∆x +1

un
i+j−1 − 2un

i + un
i−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x
sγδ(s)ds

−

r∑
j= xi

∆x +1

un
i+j−1 − un

i−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x
sγδ(s)ds +

(∫ δ

xi

sγδ(s)ds
)
un
i+1 − un

i

∆x

+

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)
un
i+1 − 2un

i + un
i−1

(∆x)2
+ f ni

]
. (3.21)

Again we want to estimate difference between u(x , tn+1) and un+1.
i i

6
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For each integral term [(j−1)∆x, j∆x] within the summation of (3.19), we then Taylor expand u(xi+s, tn) and u(xi−s, tn)
or s at (j − 1)∆x, which is similar to the processing we did for the nonlocal region.

u(xi,tn+1) = u(xi, tn)

+ ∆t
[ r∑

j= xi
∆x +1

∫ j∆x

(j−1)∆x

γδ(s)s
2(j − 1)∆x

(
u(xi+j−1, tn) − 2u(xi, tn) + u(xi−j+1, tn) + O(s2)

)
ds

+

r∑
j= xi

∆x +1

∫ j∆x

(j−1)∆x

γδ(s)s
2(j − 1)∆x

(
u(xi+j−1, tn) − u(xi−j+1, tn) + O(s)

)
ds

+

(∫ δ

xi

sγδ(s)ds
)(

u(xi+1, tn) − (xi, tn)
∆x

+ O(∆x)
)

+

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)(

u(xi+1, tn) − 2(xi, tn) + (xi−1, tn)
∆x2

+ O(∆x2)
)

. (3.22)

+ f (xi, tn)
]

+O(∆t2). (3.23)

By subtracting (3.21) from (3.22) we can get

un+1
i − u(xi, tn+1) = O(∆t)O(∆x) + O(∆t2). (3.24)

herefore, ∥u(xi, tn+1)− un+1
i ∥L∞ = O(∆t)O(∆x)+O(∆t2) with highest restrictions from the transitional region. Since the

rder of accuracy is greater than zero, the finite difference scheme is consistent. □

. Stability

Global stability of the scheme is attained by the discrete maximum principle. To prove the discrete maximum principle
or the quasi-nonlocal coupling equation with an underlying finite difference discretization the spatial operator (−Lqnl

δ,∆x)
ust be positive-definite, and the time discretization, that is a single explicit Euler, must be a convex scheme. Recall the

nterior domain Ω = [−1, 1] with interface at x∗
= 0. The volumetric boundary layer for the nonlocal region is Ωn =

−1−δ, −1], and the local boundary point is Ωc = {1}. The corresponding sets of spatial grids are IΩ = {1, 2, . . . , 2N−1}
for Ω , IΩn = {−(r − 1), . . . , 0} for Ωn, and IΩc = {2N} for Ωc . Let I = IΩ ∪ IΩn ∪ IΩc denote the union of total stencils
within the entire domain (Interior and Boundary), and IB = IΩn ∪ IΩc denote the stencils within the boundary regions
Ωn ∪ Ωc (Boundary).

Next we will firstly prove the positive-definiteness of (−Lqnl
δ,∆x) in Theorem 4.1, which is the discrete maximum principle

for the static case; and then extend the result to the dynamic case in Theorem 4.2 where time derivative is involved.

Theorem 4.1 (Discrete Maximum Principle for the Static Case). The discrete operator Lqnl
δ,∆x satisfies the maximum principle.

For u(xi) ∈ ℓ1(I) with
(
−Lqnl

δ,∆x

) (
u(xj)

)
≤ 0 and j ∈ IΩ , and for any i ∈ I = IΩ ∪ IB, we have

max
i∈I

u(xi) ≤ max
i∈IB

u(xi). (4.1)

urthermore, equality holds, and u(xi) is a constant function on stencils I.

Proof. Suppose the discrete function u achieves its strictly maximum values at an interior grid j∗ ∈ IΩ .

Case I Nonlocal: Consider j∗ ∈ {1, 2, . . . ,N}. Then since u(xj∗ ) is a strict maximum

Lqnl
δ,∆xuh(x∗

j ) =

r∑
k=1

u(xj∗+k) − 2u(xj∗ ) + u(xj∗−k)
(k∆x)2

∫ k∆x

(k−1)∆x
s2γδ(s)ds < 0 (4.2)

which contradicts −Lqnl
δ,∆xu(x

∗

j ) ≤ 0 unless u is constant.

Case II Transitional: Consider j∗ ∈ {N + 1,N + 2, . . . ,N + r}. We observe that∫ k∆x

(k−1)∆x
s2γδ(s)ds > (k − 1)∆x

∫ k∆x

(k−1)∆x
sγδ(s)ds. (4.3)

sing u(xj∗ )

Lqnl
δ,∆xuh(x∗

j ) =

r∑
xj∗

u(xj∗+k−1) − 2u(xj∗ ) + u(xj∗−k+1)
2(k − 1)2(∆x)2

∫ k∆x

(k−1)∆x
s2γδ(s)ds
k=
∆x +1

7
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−

r∑
k=

xj∗
∆x +1

u(xj∗+k−1) − u(xj∗−k+1)
2(k − 1)∆x

∫ k∆x

(k−1)∆x
sγδ(s)ds

+

(∫ δ

xj∗
sγδ(s)ds

)
u(xj∗+1) − u(xj∗ )

∆x

+

(∫ x∗j

0
s2γδ(s)ds + xj∗

∫ δ

xj∗
sγδ(s)ds

)
u(xj∗+1) − 2u(xj∗ ) + u(xj∗−1)

(∆x)2
. (4.4)

lso since u(xj∗ ) is a strict maximum we know

u(xj∗+k−1) − 2u(xj∗ ) + u(xj∗−k+1)
2(k − 1)2(∆x)2

< 0, (4.5)

ombined with (4.3), this gives us

Lqnl
δ,∆xu(x

∗

j ) ≤

r∑
k=

xj∗
∆x +1

u(xj∗+k−1) − 2u(xj∗ ) + u(xj∗−k+1)
2(k − 1)2(∆x)2

· (k − 1)∆x
∫ k∆x

(k−1)∆x
sγδ(s)ds

−

r∑
k=

xj∗
∆x +1

u(xj∗+k−1) − u(xj∗−k+1)
2(k − 1)∆x

∫ k∆x

(k−1)∆x
sγδ(s)ds

+

(∫ δ

xj∗
sγδ(s)ds

)
u(xj∗+1) − u(xj∗ )

∆x

+

(∫ x∗j

0
s2γδ(s)ds + xj∗

∫ δ

xj∗
sγδ(s)ds

)
u(xj∗+1) − 2u(xj∗ ) + u(xj∗−1)

(∆x)2
. (4.6)

By simplifying we conclude

Lqnl
δ,∆xuh(x∗

j ) ≤

r∑
k=

xj∗
∆x +1

−2u(xj∗ ) + 2u(xj∗−k+1)
2(k − 1)∆x

∫ k∆x

(k−1)∆x
sγδ(s)ds

+

(∫ δ

xj∗
sγδ(s)ds

)
u(xj∗+1) − u(xj∗ )

∆x

+

(∫ x∗j

0
s2γδ(s)ds + xj∗

∫ δ

xj∗
sγδ(s)ds

)
u(xj∗+1) − 2u(xj∗ ) + u(xj∗−1)

(∆x)2
< 0. (4.7)

hich contradicts −Lqnl
δ,∆xu(xj) ≤ 0.

ase III Local: Consider j∗ ∈ {N + r + 1, . . . , 2N − 1}. Then since u(xj∗ ) is a strict maximum

Lqnl
δ,∆xu(x

∗

j ) =
u(xj∗+1) − 2u(xj∗ ) + u(xj∗−1)

(∆x)2
< 0 (4.8)

which contradicts −Lqnl
δ,∆xu(xj) ≤ 0. □

Next, we will consider the time-dependent case.

Theorem 4.2 (Discrete Maximum Principle for the Dynamic Case). Suppose for i ∈ I = IΩ ∪ IB and n = 0, 1, . . . ,NT − 1 with
T = NT · ∆t that {un

i } solves the following discrete QNL diffusion equation.⎧⎪⎨⎪⎩
un+1
i −uni

∆t = Lqnl
δ,∆xu

n
i + f ni , for i ∈ IΩ , and NT > n ≥ 0,

u0
i = g0

i , for i ∈ I (Initial Condition),
un
i = qni , for i ∈ IB, n ≥ 0 (Boundary Condition),

(4.9)

hen un
i satisfies the discrete maximum principle

un
i ≤ max{g0

i |i∈I , qni |i∈IB,n≥0} (4.10)

iven that f ni ≤ 0 for all i ∈ IΩ , all n ≥ 0, and ∆t
∆x2

≤
1
4 .
8
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roof. We denote M = max{g0
i |i∈I , qni |i∈IB,n≥0}. Clearly, at n = 0 we have u0

i ≤ M for all i ∈ I = IΩ ∪ IB. We assume
hat this holds for n = m with 0 ≤ m ≤ NT − 2. Now we would like to advance it to the next time level n = m + 1.

ase I Nonlocal: Consider i ∈ {1, 2, . . . ,N} which is the nonlocal region. Then

um+1
i = um

i + ∆t
(
Lqnl

δ,∆xu
m
i + f mi

)
≤ um

i + ∆tLqnl
δ,∆xu

m
i

=

(
1 −

2∆t
∆x2

r∑
k=1

1
k2

∫ k∆x

(k−1)∆x
s2γδ(s)ds

)
um
i +

∆t
∆x2

r∑
k=1

um
i+k + um

i−k

k2

∫ k∆x

(k−1)∆x
s2γδ(s)ds.

Notice that
r∑

k=1

1
k2

∫ k∆x

(k−1)∆x
s2γδ(s)ds ≤

r∑
k=1

∫ k∆x

(k−1)∆x
s2γδ(s)ds =

∫ δ

0
s2γδ(s)ds = 1 (4.11)

nd ∆t
∆x2

≤
1
4 , so(

1 −
2∆t
∆x2

r∑
k=1

1
k2

∫ k∆x

(k−1)∆x
s2γδ(s)ds

)
≥ 0. (4.12)

ence,

um+1
i ≤

(
1 −

2∆t
∆x2

r∑
k=1

1
k2

∫ k∆x

(k−1)∆x
s2γδ(s)ds

)
um
i +

∆t
∆x2

r∑
k=1

um
i+k + um

i−k

k2

∫ k∆x

(k−1)∆x
s2γδ(s)ds

≤

(
1 −

2∆t
∆x2

r∑
k=1

1
k2

∫ k∆x

(k−1)∆x
s2γδ(s)ds

)
M +

∆t
∆x2

r∑
k=1

M + M
k2

∫ k∆x

(k−1)∆x
s2γδ(s)ds

= M. (4.13)

ase II Transitional: Consider i ∈ {N + 1, . . . ,N + r} which is the transitional region. Then

um+1
i ≤ um

i + ∆tLqnl
δ,∆xu

m
i

= um
i + ∆t

[ r∑
k= xi

∆x +1

um
i+k−1 − 2um

i + um
i−k+1

2(k − 1)2∆x2

∫ k∆x

(k−1)∆x
s2γδ(s)ds

−

r∑
k= xi

∆x +1

um
i+k−1 − um

i−k+1

2(k − 1)∆x

∫ k∆x

(k−1)∆x
sγδ(s)ds +

(∫ δ

xi

sγδ(s)ds
)
um
i+1 − um

i

∆x

+

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)
um
i+1 − 2um

i + um
i−1

∆x2

]
= A · um

i +

r∑
k= xi

∆x +1

(
Bk · um

i+k−1 + Ck · um
i−k+1 + D · um

i+1 + E · um
i−1

)
(4.14)

here those notations are defined as

A = 1 +
∆t
∆x2

( r∑
k= xi

∆x +1

−1
(k − 1)2

∫ k∆x

(k−1)∆x
s2γδ(s)ds

)
+

∆t
∆x

(
−

∫ δ

xi

sγδ(s)ds
)

−
2∆t
∆x2

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)

,

Bk =
∆t

2∆x2(k − 1)2

∫ k∆x

(k−1)∆x
s2γδ(s)ds −

∆t
2∆x(k − 1)

∫ k∆x

(k−1)∆x
sγδ(s)ds,

Ck =
∆t

2∆x2(k − 1)2

∫ k∆x

(k−1)∆x
s2γδ(s)ds +

∆t
2∆x(k − 1)

∫ k∆x

(k−1)∆x
sγδ(s)ds,

D =
∆t

∫ δ

sγδ(s)ds +
∆t

2

(∫ xi
s2γδ(s)ds + xi

∫ δ

sγδ(s)ds
)

, and

∆x xi ∆x 0 xi

9
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E =
∆t
∆x2

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)

. (4.15)

Clearly, A +
∑r

k= xi
∆x +1(Bk + Ck) + D + E = 1, and Bk, Ck,D, E ≥ 0 when ∆x is sufficiently small and because that

−
∆t

2∆x(k−1)

∫ k∆x
(k−1)∆x sγδ(s)ds > −

∆t
2(∆x)2(k−1)2

∫ k∆x
(k−1)∆x s

2γδ(s)ds.
Now we want to prove that A ≥ 0. It is equivalent to prove

1 − A =
∆t
∆x2

[ r∑
k= xi

∆x +1

1
(k − 1)2

∫ k∆x

(k−1)∆x
s2γδ(s)ds + 2

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)

+ ∆x
∫ δ

xi

sγδ(s)ds
]

≤ 1. (4.16)

Notice that

1 − A =
∆t
∆x2

[ r∑
k= xi

∆x +1

(
1

(k − 1)2

∫ k∆x

(k−1)∆x
s2γδ(s)ds + 2xi

∫ k∆x

(k−1)∆x

(
1
s

)
s2γδ(s)ds

+ ∆x
∫ k∆x

(k−1)∆x

(
1
s

)
s2γδ(s)ds

)
+ 2

∫ xi

0
s2γδ(s)ds

]
≤

∆t
∆x2

[ r∑
k= xi

∆x +1

(
1

(k − 1)2

∫ k∆x

(k−1)∆x
s2γδ(s)ds +

2xi
(k − 1)∆x

∫ k∆x

(k−1)∆x
s2γδ(s)ds

+
∆x

(k − 1)∆x

∫ k∆x

(k−1)∆x
s2γδ(s)ds

)
+ 2

∫ xi

0
s2γδ(s)ds

]
≤

∆t
∆x2

[ r∑
k= xi

∆x +1

4
∫ k∆x

(k−1)∆x
s2γδ(s)ds + 4

∫ xi

0
s2γδ(s)ds

]

= 4
∆t
∆x2

[ r∑
k= xi

∆x +1

∫ k∆x

(k−1)∆x
s2γδ(s)ds +

∫ xi

0
s2γδ(s)ds

]
=

4∆t
∆x2

∫ δ

0
s2γδ(s)ds

= 4
∆t
∆x2

≤ 1.

Since ∆t
∆x2

≤
1
4 , so 1 − A ≤ 1. Therefore,

A ≥ 0 for Bk ≥
∆t

2∆x2(k−1)2
∫ k∆x
(k−1)∆x s

2γδ(s)ds −
∆t

2∆x2(k−1)2
∫ k∆x
(k−1)∆x s

2γδ(s)ds = 0.

ummarizing the coefficients of Eq. (4.14) gives

• A, Bk, Ck,D, E ≥ 0
• A +

∑r
k= xi

∆x +1(Bk + Ck) + D + E = 1.

Hence um+1
i ≤

(
A +

∑r
k= xi

∆x +1(Bk + Ck) + D + E
)
M = M .

Case III Local: Consider i ∈ {N + r + 1, . . . , 2N − 1} which is the local region. Then

um+1
i = um

i +
∆t
∆x2

(
um
i+1 − 2um

i + um
i−1

)
+ ∆tf mi ≤

(
1 −

2∆t
∆x2

)
um
i +

∆t
∆x2

(
um
i+1 + um

i−1

)
ith ∆t

∆x2
≤

1
4 which gives all positive coefficients, so um+1

i ≤ M .
Combining case I, II, III we can conclude that given um

i ≤ M for all i ∈ IΩ , and ∆t
∆x2

≤
1
4 we have um+1

i ≤ M for all
i ∈ IΩ . According to the induction we prove the theorem. □

Corollary 4.3. Suppose for i ∈ I = IΩ ∪ IB, n = 0, 1, . . . ,NT − 1, and T = NT · ∆t that {un
i } solves the following discrete QNL

iffusion equation (4.9) then we have the following upper bound for un
i given that ∆t

∆x2
≤

1
4 ,

un
i ≤ T · ∥f ∥ℓ∞(I) + max{∥g0

i ∥ℓ∞(I), ∥qni ∥ℓ∞(IB)}. (4.17)
10
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roof. We introduce a comparison function

wn
i = un

i + (T − n · ∆t)∥f ∥ℓ∞(I) ≥ un
i (4.18)

or i ∈ I , and n ≥ 0. Then we have

wn+1
i − wn

i

∆t
=

un+1
i − un

i

∆t
− ∥f ∥ℓ∞(I) = Lqnl

δ,∆xu
n
i +

(
f ni − ∥f ∥ℓ∞(I)

)
here

(
f ni − ∥f ∥ℓ∞(I)

)
≤ 0. Therefore by Theorem 4.2, wn

i satisfies the discrete maximum principle wn
i ≤ max{w0

i |i∈I ,

n
i |i∈IB} for all i ∈ IΩ and n ≥ 0, given that ∆t

∆x2
≤

1
4 .

Notice that

w0
i = u0

i + T · ∥f ∥ℓ∞(I) ≤ max{∥g0
i ∥ℓ∞(I), ∥qni ∥ℓ∞(IB)} + T · ∥f ∥ℓ∞(I) (4.19)

nd also that

wn
i |i∈IB = un

i |i∈IB +

(
T − n · ∆t

)
∥f ∥ℓ∞(I) ≤ max{∥g0

i ∥ℓ∞(I), ∥qni ∥ℓ∞(IB)} + T · ∥f ∥ℓ∞(I). (4.20)

ombined with the fact that un
i |i∈I ≤ wn

i |i∈I proves the corollary. □

emark 4.1. Although in the proof of stability analysis, we require that ∆t
∆x2

≤
1
4 to proceed the analysis; meanwhile, we

otice in the simulation that with ∆t
∆x2

close to 1
2 , we still have stable numerical results.

5. Convergence

In this section, we prove the convergence results of the proposed FDM scheme.

Theorem 5.1 (Global Error Estimate of the Discrete Solution). Suppose u(x, t) is the strong solution to (2.1) and un
i is the discrete

olution to the scheme (2.4) with i ∈ I, n = 0, 1, . . . ,NT − 1, and NT∆t = T , respectively. Then we have

|u(xi, tn) − un
i | ≤ T · Cδ(∆x + ∆t) (5.1)

given that ∆t
∆x2

≤
1
4 .

Proof. We define eni = u(xi, tn)−un
i , i = 1, 2, . . . , 2N −1, n = 0, 1, . . . ,NT to be the error between the exact and discrete

solutions. Then from the consistency analysis, and since f ni = f (xi, tn) we have that⎧⎪⎨⎪⎩
en+1
i −eni

∆t − Lqnl
δ,∆xe

n
i = εc,i, for i ∈ IΩ , and n ≥ 0

e0i = 0, i ∈ I (Initial Error)
eni = 0, i ∈ IB (Boundary Error)

(5.2)

here |εc,i| < Cδ(∆x + ∆t) according to the consistency analysis. Hence we consider the following auxiliary function

wn
i = eni − (n∆t) · Cδ(∆x + ∆t). (5.3)

bserve that
wn+1

i − wn
i

∆t
− Lqnl

δ,∆xw
n
i

=
[en+1

i − Cδ(∆x + ∆t)((n + 1)∆t)] − [eni − Cδ(∆x + ∆t)(n∆t)]
∆t

− Lqnl
δ,∆xe

n
i

=
en+1
i − eni

∆t
− Cδ(∆x + ∆t) − Lqnl

δ,∆xe
n
i

= εc,i − Cδ(∆x + ∆t) ≤ 0. (5.4)

Then wn
i satisfies⎧⎪⎨⎪⎩

wn+1
i −wn

i
∆t − Lqnl

δ,∆xw
n
i ≤ 0, i ∈ IΩ ,

w0
i = 0, i ∈ I, (Initial),

wn
i = −(n∆t) · Cδ(∆x + ∆t), i ∈ IB (Boundary),

(5.5)

ecause of the discrete maximum principle proved in Theorem 4.2, so

wn
≤ max{w0

|i ∈ I, wn
| } = 0, ∀i ∈ I . (5.6)
i i i i∈IB Ω

11
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Therefore, eni ≤ (n∆t) ·Cδ(∆x + ∆t). Similarly when wn
i = eni +(n∆t) ·Cδ(∆x + ∆t) we have eni ≥ −(n∆t) ·Cδ(∆x + ∆t).

ence, |eni | ≤ (n∆t) · Cδ(∆x + ∆t) which gives |u(xi, tn) − un
i | ≤ T · Cδ(∆x + ∆t). □

. Study of the Courant–Friedrichs–Lewy (CFL) condition

In this section, we study the CFL condition of the new finite difference scheme by employing the Von Neumann stability
nalysis. We denote ∆t

∆x by λ1 and ∆t
(∆x)2

by λ2 and insert un
i = (g(θ ))n e

√
−1θxi into the scheme (2.3) where θ is a given

wave number. We get the following three different cases:

• Case I Nonlocal: for xi ≤ 0, the growth factor is

g(θ ) = 1 + λ2

r∑
j=1

2
(
cos(θ j∆x) − 1

)
j2

∫ j∆x

(j−1)∆x
s2γδ(s)ds. (6.1)

• Case II Transitional: for 0 < xi ≤ δ, the growth factor is

g(θ ) =1 + λ1

r∑
j= xi

∆x +1

(
cos(θ (j − 1)∆x) − 1

)
(j − 1)

∫ j∆x

(j−1)∆x
sγδ(s)ds

− λ1

r∑
j= xi

∆x +1

√
−1 sin(θ (j − 1)∆x)

(j − 1)

∫ j∆x

(j−1)∆x
sγδ(s)ds

+ λ1

(∫ δ

xi

sγδ(s)ds
)(

cos(θ∆x) +
√

−1 sin(θ∆x) − 1
)

+ λ2

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
) (

2 cos(θ∆x) − 2
)
.

(6.2)

• Case III Local: for xi > δ, the growth factor is

g(θ ) = 1 + λ2
(
2 cos(θ∆x) − 2

)
. (6.3)

Proof. Performing Von Neumann analysis for stability we substitute un
i = (g(θ ))n e

√
−1θxi

ase I:

un+1
i − un

i

∆t
=

r∑
j=1

un
i+j − 2un

i + un
i−j

(j∆x)2

∫ j∆x

(j−1)∆x
s2γδ(s)ds (6.4)

ubstituting un
i = (g(θ ))n e

√
−1θxi gives

g(θ )ne
√

−1θxi (g(θ ) − 1) = λ2

r∑
j=1

g(θ )ne
√

−1θxi
(
e
√

−1θ∆x
− 2 + e−

√
−1θ∆x

)
j2

∫ j∆x

(j−1)∆x
s2γδ(s)ds. (6.5)

herefore, we can conclude the growth factor for the nonlocal region is

g(θ ) = 1 + λ2

r∑
j=1

2
(
cos(θ j∆x) − 1

)
j2

∫ j∆x

(j−1)∆x
s2γδ(s)ds. (6.6)

ase II:

un+1
i − un

i

∆t
=

r∑
j= xi

∆x +1

un
i+j−1 − 2un

i + un
i−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x
sγδ(s)ds

−

r∑
j= xi

∆x +1

un
i+j−1 − un

i−j+1

2(j − 1)∆x

∫ j∆x

(j−1)∆x
sγδ(s)ds

+

(∫ δ

xi

sγδ(s)ds
)
un
i+1 − un

i

∆x

+

(∫ xi
s2γδ(s)ds + xi

∫ δ

sγδ(s)ds
)
un
i+1 − 2un

i + ui−1
2 . (6.7)
0 xi (∆x)
12
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Similarly to the nonlocal region substituting un
i = (g(θ ))n e

√
−1θxi gives

g(θ )ne
√

−1θxi (g(θ ) − 1) =

λ1

r∑
j= xi

∆x +1

1
2(j − 1)

(
g(θ )ne

√
−1θxi

(
e
√

−1θ (j−1)∆x
− 2 + e−

√
−1θ (j−1)∆x)) ∫ j∆x

(j−1)∆x
sγδ(s)ds

− λ1

r∑
j= xi

∆x +1

1
2(j − 1)

(
g(θ )ne

√
−1θxi

(
e
√

−1θ (j−1)∆x
− e−

√
−1θ (j−1)∆x)) ∫ j∆x

(j−1)∆x
sγδ(s)ds

+ λ1

(∫ δ

xi

sγδ(s)ds
)(

g(θ )ne
√

−1θxi
(
e
√

−1k∆x
− 1

))
+ λ2

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
)(

g(θ )ne
√

−1θxi
(
e
√

−1θ∆x
− 2 + e−

√
−1θ∆x)). (6.8)

Therefore, we can conclude the growth factor for the transitional region is

g(θ ) =1 + λ1

r∑
j= xi

∆x +1

(
cos(θ (j − 1)∆x) − 1

)
(j − 1)

∫ j∆x

(j−1)∆x
sγδ(s)ds

− λ1

r∑
j= xi

∆x +1

√
−1 sin(θ (j − 1)∆x)

(j − 1)

∫ j∆x

(j−1)∆x
sγδ(s)ds

+ λ1

(∫ δ

xi

sγδ(s)ds
)(

cos(θ∆x) +
√

−1 sin(k∆x) − 1
)

+ λ2

(∫ xi

0
s2γδ(s)ds + xi

∫ δ

xi

sγδ(s)ds
) (

2 cos(θ∆x) − 2
)
. (6.9)

Case III:
un+1
i − un

i

∆t
=

un
i+1 − 2un

i + un
i−1

(∆x)2
(6.10)

Finally, substituting un
i = (g(θ ))n e

√
−1θxi gives

g(θ )ne
√

−1θxi (g(θ ) − 1) = λ2

(
g(θ )ne

√
−1θxi

(
e
√

−1θ∆x
− 2 + e−

√
−1k∆x)). (6.11)

Therefore, we can conclude the growth factor for the local region is

g(θ ) = 1 + λ2
(
2 cos(θ∆x) − 2

)
. (6.12)

Clearly, we have λ2 = ∆xλ1, so once we get the CFL constraint on λ1, the CFL condition for λ2 will be satisfied when
x is sufficiently small. Because it is very difficult to analytically find this upper bound we implement the growth factor
(θ ) numerically to identify restrictions on λ1 and λ2 to ensure |g(θ )| ≤ 1. □

For linear local diffusion models with the explicit Euler and middle point finite difference discretization, the CFL is
estricted by CFL =

∆t
∆x2

≤ 0.5. This provides the largest step size in time to reduce computational cost while preserves
tability. By numerically analyzing the growth factor in Fig. 3, we found that the nonlocal and local regions match the
ypical restrictions for stability, but the transitional region is slightly less than 0.5. This factor needs to be considered for
tability restrictions to the CFL on the whole coupling system. On the other hand, compared with the original FDM scheme
roposed in [20], the new FDM discretization can afford larger CFL condition, which suggests that the new scheme is more
table.

. Numerical examples

In this section, we test several numerical examples to confirm the stability and convergence results.
We fix the nonlocal diffusion kernel to be a constant kernel

γδ(s) =
3
δ3

χ[−δ, δ](s).
13
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Fig. 3. Maximum Growth Rate of (6.1)–(6.3) for the new finite difference method versus that of (2.5) for the original finite difference method.

Table 1
L∞

Ω×[0,T ]
differences between the local continuous solution uℓ and discrete solution uqnl

δ,∆x .
We fix δ = 3∆x, and the kernel is γδ(s) =

3
δ3

χ[−δ,δ](s). The termination time T = 1 and
∆t = 0.2∆x.

∆x ||uℓ(xi, tn) − uqnl
δ,∆x(xi, t

n)||L∞
Ω×[0,T ]

Order
1
50 0.1422 –
1

100 7.168e−2 0.988
1

200 3.614e−2 0.988
1

400 1.820e−2 0.990
1

800 9.151e−3 0.992
1

1600 4.594e−3 0.994

1. For the first example, we consider the asymptotic compatibility (AC) of the discretized operator Lqnl
δ,∆x to the local

diffusion problem as the horizon δ and spatial discretization ∆x go to zero at the same time.
We consider the external force f as

f (x, t) = 30x4e−t
+ e−t (x6 − 1) + 2. (7.1)

Then, the exact solution to the local diffusion uℓ
t = uℓ

xx + f with uℓ(−1, t) = uℓ(1, t) = 0 and uℓ(x, 0) =

(1 − x2) − (x6 − 1) is

uℓ(x, t) = (1 − x2) − e−t (x6 − 1). (7.2)

To test the AC convergence, we fix δ = r∆ with r = 3 and set the CFL to be CFL = 0.45, that is ∆t = 0.2∆x, and
the termination time is chosen to be T = 1.
First order convergence with respect to ∆x is observed. The convergence order and L∞

Ω×[0,T ]
differences between

uℓ(x, t) and discrete solution of uqnl
δ,∆x are listed in Table 1. Also the visual comparison of the two solutions at t = 0

and t = T are displayed in Fig. 4 with a nice agreement.
2. In the following example, we compare the original scheme L̃qnl

δ (2.5) proposed in [20] with the new proposed
scheme Lqnl

δ,∆x in (2.3).
We are going to compare the AC convergence between (2.3) and (2.5). The exact local continuous solution is chosen
to be

uℓ(x, t) = e−t (1 − x)2(1 + x)2x2 (7.3)

and the corresponding external force is

f (x, t) =uℓ
t − uℓ

xx

= − e−t ((x − x3)2 + (2 − 24x2 + 30x4)
)
.

(7.4)

Again the kernel used is γδ(s) =
3
δ3

with δ = 3∆x. We denote the solution obtained by Lqnl
δ,∆x by uqnl

δ,∆x and the
solution obtained by L̃qnl by ũqnl .
δ,∆x δ,∆x

14
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a

Fig. 4. Plots of solutions to the approximate and actual solutions. The kernel function was chosen as γδ(s) =

3
δ3

χ[−δ,δ](s). The coupling inference is
t x∗

= 0, and the mesh size is ∆x =
1

400 with a horizon as δ =
3

400 , the temporal step size is ∆t = 0.45∆x.

Table 2
L∞

Ω×[0,T ]
differences between the local continuous solution uℓ and two discrete solutions uqnl

δ,∆x , ũqnl
δ,∆x

using the FDM schemes (2.3) and (2.5), respectively. We fix δ = 3∆x, and the kernel is γδ(s) =
3
δ3
. The

termination time is T = 1 and ∆t = 0.2∆x.

∆x ||uℓ(xi, tn) − ũqnl
δ,∆x(xi, t

n)||L∞ Order ||uℓ(xi, tn) − uqnl
δ,∆x(xi, t

n)||L∞ Order
1
50 9.255e−3 – 7.200e−3 –
1

100 4.692e−3 0.980 1.698e−3 2.08
1

200 2.356e−3 0.994 4.121e−4 1.09
1

400 1.179e−3 0.998 1.931e−4 1.09
1

800 5.900e−4 0.999 9.628e−5 1.00
1

1600 2.951e−4 1.00 4.806e−5 1.00

First order AC convergence with respect to ∆x are observed in Table 2 for both schemes (2.3) and (2.5), respectively.
The approximation using scheme (2.3) at larger step size has second order convergence rate, and at smaller step
size tends to be of first order.
Next, we compare the three solutions obtained from (1) new scheme; (2) exact local continuous solution and (3)
the original scheme visually in Fig. 5. Notice that the exact local continuous solution uℓ(x, t) should remain non-
negative throughout the entire computational domain Ω × [0, T ], however, both uqnl

δ,∆x and ũqnl
δ,∆x become slightly

negative around the interface x∗
= 0. This does not contract the discrete maximum principle of Lqnl

δ,∆x as the external
force f (x, t) defined in (7.4) does not retain negative on [−1, 1] as required in the assumption of Theorem 4.2. On
the other hand, because Lqnl

δ,∆x satisfies the discrete maximum principle, consequently, uqnl
δ,∆x provides less artificial

negativity than ũqnl
δ,∆x around the interface of coupling.

8. Conclusion

We propose a new scheme to discretize the quasi-nonlocal (QNL) coupling operator introduced in [20] for the nonlocal-
to-local diffusion problem. This new finite difference approximation preserves the properties of continuous equation on
a discrete level. Consistency, stability, the maximum principle and the global convergence analysis of the scheme are
proved rigorously. We analytically find the CFL conditions through the Von Neumann stability analysis and numerically
calculate the CFL values for a given spatial discretization. The numerical calculations of the CFL provide us addition alert
around the interface when considering the temporal step size for an explicit time integrator, as the CFL restrictions on the
transitional region was discovered to be slightly less than 1

2 with explicit Euler method employed in a diffusion problem.
Multiple numerical examples are then provided and summarized to verify the theoretical findings. A comparison with the
original scheme used in [20] is also provided which confirmed the improvements of the new scheme.
15
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D

a

A

a

R

Fig. 5. Numerical comparison between the new scheme (2.3) and original scheme (2.5) used to approximate (7.3) with external force given by (7.4).
The spatial step size is ∆x =

1
200 and ∆t = 0.25∆x.
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