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ABstracT. Efficient simulation of SDEs is essential in many applications, par-
ticularly for ergodic systems that demand efficient simulation of both short-
time dynamics and large-time statistics. However, locally Lipschitz SDEs of-
ten require special treatments such as implicit schemes with small time-steps
to accurately simulate the ergodic measures. We introduce a framework to
construct inference-based schemes adaptive to large time-steps (ISALT) from
data, achieving a reduction in time by several orders of magnitudes. The
key is the statistical learning of an approximation to the infinite-dimensional
discrete-time flow map. We explore the use of numerical schemes (such as the
Euler-Maruyama, the hybrid RK4, and an implicit scheme) to derive informed
basis functions, leading to a parameter inference problem. We introduce a
scalable algorithm to estimate the parameters by least squares, and we prove
the convergence of the estimators as data size increases.

We test the ISALT on three non-globally Lipschitz SDEs: the 1D double-
well potential, a 2D multiscale gradient system, and the 3D stochastic Lorenz
equation with a degenerate noise. Numerical results show that ISALT can
tolerate time-step magnitudes larger than plain numerical schemes. It reaches
optimal accuracy in reproducing the invariant measure when the time-step is
medium-large.

1. Introduction. Efficient and accurate simulation of SDEs is important in many
applications such as Monte Carlo sampling, data assimilation and predictive mod-
eling (see e.g., [3,4,16,17,19,31]). In particular, ergodic stochastic systems often
demand efficient and accurate simulation of both short-time dynamics and large-
time statistics [34]. Explicit schemes, while efficient and accurate for short-time,
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tend to miss the invariant measure in large-time simulations because of the accu-
mulation of numerical error. In particular, for locally Lipschitz SDEs, they tend
to be numerical unstable and may miss the invariant measure even for the small
time-step (for example, the Euler-Maruyama scheme, because it destroys the Lya-
punov structure [34,36]) and require special treatments such as taming schemes
under small time-step size [11,12]. Implicit schemes, on the other hand, are numer-
ically stable and can accurately simulate the invariant measure when the time-step
is small. However, they are computationally inefficient due to the limited time-step
size and the costly implicit step.

We introduce ISALT, inference-based schemes adaptive to large time-stepping,
a statistical learning framework to construct explicit schemes with large time-steps
that can exceed the accuracy or stability threshold of classical numerical schemes,
particularly for non-globally Lipschitz systems. ISALT infers parametric explicit
schemes from data generated by implicit schemes, thus it inherits the implicit
schemes’ accuracy in producing the invariant measure while maintaining the ef-
ficiency of explicit schemes. The inference is done once for all and the inferred
scheme can be used for general purpose simulations, either a long trajectory or en-
sembles of short trajectories with different initial distributions, in applications such
as data assimilation and uncertainty quantification [3,18].

More specifically, we seek large time-step approximations of the ergodic SDE
with additive noise

dXt = f(Xt)dt + O'dBt, (11)

where the drift f : R? — R? is local-Lipschitz. Here B is a standard m-dimensional
Brownian motion with m < d, the diffusion matrix ¢ € R?**™ has linearly inde-
pendent columns, and they represent a degenerate noise when m < d. Our goal is
to design an explicit scheme with large time-stepping so that it can efficiently and
accurately simulate both short-time dynamics and long-time statistics such as the
invariant measure.

We infer such explicit schemes with large time-stepping from offline data gener-
ated by an implicit scheme. Figure 1 shows the schematic plot of the procedure.
The essential task is to approximate the infinite-dimensional discrete-time flow map.
A major difficulty in a statistical learning approach is the curse of dimensionality
(COD) when using generic basis functions. Our key contribution is to approximate
the flow map by parametrization of numerical schemes, which provides informed
basis functions, thus avoiding the COD by harnessing the rich information and
structure in classical numerical schemes. We also introduce a scalable algorithm to
compute the maximal likelihood estimator by least squares, which is asymptotically
normal as the data size increases (see Theorem 3.5). Furthermore, we show that
the inferred scheme, when it is a parametrization of an explicit scheme and when
the data size is large, has the same 1-step strong order as the explicit scheme.

In this study, we focus on learning approximate flow maps that use only the
increments of the Brownian motion on each time interval (that is, the function
F%(X;,,AB;,) in Figure 1). We explore the derivation of informed-basis functions
from three types of classical numerical schemes: the Euler-Maruyama (EM) [17], the
hybrid RK4 (fourth-order Runge-Kutta) [7], and the implicit stochastic split back-
ward Euler (SSBE) [34], and we denote the inferred schemes by IS-EM, IS-RK4 and
IS-SSBE. We test them on three non-globally Lipschitz SDEs: the 1D double-well
potential, a 2D multiscale gradient system, and the 3D stochastic Lorenz equation
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FIGURE 1. Schematic plot of inferring explicit scheme with a large
time-step.

with degenerate noise. Numerical results show that the inferred schemes can toler-
ate time-steps ten to hundreds times larger than the plain numerical schemes, and
they reach optimal accuracy in reproducing the invariant measures at medium large
time-steps (see Figures 2, 4, 7, and 8). Overall, IS-RK4 produces the most accurate
invariant measures in all examples, particularly when the dynamics is dominated
by the drift (e.g., the Lorentz system) because the RK4 provides a higher order
approximation to the drift.

Discretization with large time-stepping for differential equations (SDEs, ODEs
and PDEs) is a model reduction in time, part of the general problems of space-time
model reduction (see e.g., [2,4,10,16,19,21,26,32]). Since the large time-step pre-
vents classical numerical approximations based on Taylor expansions, data-driven
approaches have been the primary efforts and have witnessed many successes, in-
cluding the time series approaches (see e.g., [2,24,28|) and deep learning methods
that can efficiently solve high-dimensional PDEs and SDEs on rough space-time
meshes (see e.g., [1,6,25,38,39]), to name just a few. In these approaches, the
discrete-time models account for the effects of the unresolved dynamics in an av-
eraged fashion through inference, which lead to computationally efficient models
for the effective dynamics [2,19,20,27]. The contribution of our ISALT is to pro-
vide a simple yet effective approach to achieve large time-stepping by combining
inference with classical numerical schemes. In particular, the explicit parametric
form in ISALT clearly identifies the connection between classical numerical scheme
and the model inferred from data. It provides a ground for further understanding
the fundamental issues of data-based reduced models, such as quantification of the
approximation and optimality of the reduction in time or in space-time.

The exposition of our study proceeds as follows. We first summarize the notations
in Table 1. After introducing a flow map view for numerical schemes, we introduce
in Section 2 the ISALT framework, that is, the procedure and algorithm for inferring
schemes adaptive to the large time-step from data. Section 3 presents the theoretical
results on the convergence of the estimators. In Section 4, we test ISALT on the
three typical non-globally Lipschitz SDEs. Section 5 concludes our main findings
with an outlook of future research.

2. Inference of explicit schemes from data. Throughout this study, we assume
that the SDE (1.1) is ergodic. Roughly speaking, a sufficient condition (see [15,34])
for the SDE to be ergodic) is when (i) there is a Lyapunov function ensuring global
stability and (ii) the SDE satisfies a minority condition that ensures recurrence.
Our goal is to design a numerical scheme with a large time-step, which can
exceed the accuracy or stability threshold of classical numerical schemes, so that
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TABLE 1. Notations
Notation Description
X; and By true state process and original stochastic force

f(Xt), o e Rdxm
dt

local-Lipschitz drift and diffusion matrix
time-step generating data

0 = Gap x dt time-step for inferred scheme, Gap € {1, 2,4, 10, 20, 40, ...}
t; =10 discrete time instants of data

{Xgnt) ,B§§?2 }M_ Data: M independent paths of X and B at discrete-times
F (X4, Bty t,,,))  true flow map representing (Xy,,, — Xy,)/0

F(X;,,ABy,)
F(S (C(S, th y ABt")

approximate flow map using only X;,, AB;, = B;,., — By,
parametric approximate flow map
parameters to be estimated for the inferred scheme

iid N(0, 1) and covariance, representing regression residual

A =(ch,...,ch)
N and af]
EM and IS-EM

HRK4 and IS-RK4
SSBE and IS-SSBE

Euler-Maruyama and inferred scheme (IS) parametrizing it
hybrid RK4 and inferred scheme parametrizing RK4
split-step stochastic backward Euler and IS parametrizing it

it can efficiently and accurately simulate both short-time dynamics and long-time
statistics such as invariant measures. This is of particular interest for SDEs with
non-globally Lipschitz drift, because explicit schemes such as Euler-Maruyama often
blow up or miss the invariant measures even if they are stable [34,36] and implicit
schemes are computationally costly while being accurate in long-time statistics.
We obtain explicit schemes with large time-steps through inference from offline
data generated by an implicit scheme. The key is to approximate the flow map by
parametrization of numerical schemes, instead of using a generic basis, to avoid the
curse of dimensionality in the statistical learning of the flow map. Toward the goal,
we will first introduce the view that numerical schemes are approximations of the
flow map, then we outline the framework of statistical learning of the flow map.

2.1. A flow map view of numerical schemes. A numerical scheme aims to
approximate the discrete-time flow map of the stochastic process. More precisely,
for a time-step § > 0, let ¢; = ¢J and denote (X;,,7 > 0) the process defined in
(1.1) at discrete times. Based on the Markov property of (X;), a numerical scheme
approximates the flow map

tit1 tit1
Xt,iJrl — Xt,i = f f(Xb)dS + f O'st = 6F(th, B[ti,ti+1]7ti7ti+1) (2 1)
t t; .

~ 0F°%(X,,, ABy,),

i

where F is a functional depending on Xy, the continuous trajectory B, .1
t;, and t;y1. The simplest scheme approximates the functional by a function
F°(X;,,AB;,) on R?? in which one represents By, t,,,] by its increment on the
time interval ABy, = By,,, — By, ~ N(0,015). Among many such schemes, for ex-
ample ( [9,17,22,33,34]), we consider three simple and representative examples: the
explicit Euler-Maruyama scheme (EM) scheme [17], the hybrid RK4 (HRK4) [7],
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and the split-step stochastic backward Euler (SSBE) [34]
EM Xpt1 =X, + f(Xp)6 + cAB,,

HRK4 X1 =X, + ¢iF*(X,,,0AB,)d + cAB,, (2.2)
SSBE X, 11 = X, +0AB,,, with X, = X,, + f(X4)9,
where the term ¢f*5* is a standard RK4 step with the stochastic force treated as a

constant input:
TEYX,,,0AB,) : = (ki + 2k + 2k3 + k4)/6, with
ki = f(X,) + cAB, /4,
ko= f(Xpn +k1-6/2) + cAB, /4,
ks = f(X,, + k2-9/2) + cAB,, /4,
ks = f(X, +k3-9/2) + cAB, /4.
Correspondingly, they approximate the flow map F(X¢,, By, +,,,1: i, ti+1) by
EM Fpu(Xe,, ABy,) = f(X4,) + 0ABy, /5,
HRK4 Fpy(Xy,, ABy,) = 754X, ,0ABy,) + 0ABy, /0, (2.3)
SSBE  Flgpp(X:,, AB;,) = (X4 — X4,)/d + cABy, /6,

where X, = X, + f(X4)9.

For short time simulation, these schemes are of strong order 1, i.e., the discrete
approximations converge to the true solution trajectory-wisely in probability at
order O(9) as the time-step vanishes, since the noise is additive [9,17,34,37]. For
large time simulation aiming to approximate the invariant measure, the explicit
schemes can be problematic for local Lipschitz drifts and degenerate noises, for
instance, the EM scheme may destroy the Lyapunov structure and fail to be ergodic
for any choice of time-step [34, Lemma 6.3]. The implicit scheme SSBE, on the
other hand, is ergodic and produces accurate invariant measure when the time-step
is sufficiently small [34, Section 6.

In many applications, it is desirable to have an efficient numerical scheme being
accurate in both short-time and large-time. A drawback of an implicit scheme is
its inefficiency: it has to solve a fixed point problem in the implicit step, which is
computationally costly and limits the time-step size. Taking advantage of implicit
schemes, we use them to generate data and learn efficient explicit schemes with
large time-steps from the data.

2.2. Inference of a scheme from data. We infer from data an explicit scheme
that is accurate in both short-time dynamics and large-time statistics. It maintains
the efficiency of explicit schemes while preserving the invariant measure as implicit
schemes. The key idea is to learn an approximation of the flow map from data. To
avoid the curse of dimensionality in the learning of the flow map, which is often
high-dimensional and nonlinear, we derive parametric functions from the system
and its numerical schemes. Roughly, the inference consists of four parts:

1. Generation of faithful data by an implicit scheme with a small time-step;

2. Derivation of a parametric form to approximate the flow map, by extracting
basis functions from the system and its numerical approximations;

3. Parameter estimation by maximal likelihood methods, which leads to a least-
squares problem when the parametric form is linear in the parameters;
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4. Model selection: by cross-validation and convergence criteria.

Data generation. We generate faithful data, consisting of trajectories of the process
at discrete times {t; = id}, by an accurate implicit scheme. That is, we first solve
the system by an implicit scheme with a small time-step At < ¢§, then we down-
sample the solution at the discrete times. We also save the trajectory data of the
stochastic force (By). Denote these trajectories by

Data: {X!™) B{™) yM_ (2.4)

to:tn “toitn
where N denotes the number of observing time grids and M denotes the number of
independent trajectories.

The initial conditions {Xign) }M_ | are samples from either a long trajectory, which

represents the invariant measure, or an initial distribution that helps to explore the
distribution of the process.
Derivation of parametric form. The major difficulty in inference is the approxi-
mation of the flow map F(Xy,, By, +,,,], tis ti+1), which is an infinite-dimensional
functional. When using a non-parametric approach with the generic dictionary or
basis functions, one encounters the well-known curse-of-dimensionality (COD): the
size of the dictionary or basis functions increases exponentially as the dimension
increases. Recent efforts on overcoming the COD include selecting adaptive-to-
data basis functions in a nonparametric fashion [14], assuming a low-dimensional
interaction between the components of the state variable in the spirit of parti-
cle interactions [30], or deep learning methods that approximate high dimensional
functions through compositions of simple functions [1, 6,25, 38, 39].

We take a semi-parametric approach: we avoid the COD by deriving paramet-
ric functions from the full system and its numerical schemes, which provide rich
information about the flow map. In particular, we aim for parametric functions
depending linearly on the parameters, so that the parameters can be estimated by
least squares and our algorithm is scalable.

We focus on approximating the flow map F(X¢,, By,
functions F°(X;,, ABy,), in a parametric form

t;,ti+1) by the simplest

tiv1]>

P
Fo(5w,6) = ) il €), (2.5)
=0

with ¢ having the same distribution as ABy,. Here ¢; : R?? — R? are basis func-
tions to be extracted from numerical schemes (see Section 2.3), and {c{} are the
parameters to be estimated from data. That is, with (X,,&,) corresponding to
(X4,,ABy, ), we infer the following scheme

p
Xn+1 = Xn + 5F6(06; Xnagn) + 60—77”71 = Xn +9 Z Cfd)z(xnagn) + 50’277717 (26)
1=0

where we add {agnn} to account for the residual of the regression. This additional
noise term can be important for the reproduction of the invariant measure. For
convenience, we assume that {n,} is a sequence of iid Gaussian N(0,I;) random
variables and is independent of {£,}, and o’fl is a diagonal matrix. In general, this
residual term can be colored noise or multiplicative noise.

In view of statistical learning, the function (2.5) approximates the flow map in
the function space H = span{¢;(z,&)},_, which is a subspace of L?(R*!, 1 ® v)
with p being the invariant measure of X and v ~ N (0,814) being the distribution
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of & (which represents ABy,). We refer {¢;(x,&)} as basis functions and will extract
them from numerical schemes (see Section 2.3).

Here we focus on using only AB, , but one can use more sample points of the
trajectory By, ¢,,,] and extract terms from high-order approximations based on
multiple stochastic integral [9]. We postpone this as future work.

Parameter estimation. We estimate the parameters by maximizing the likelihood
for the model in (2.6) with the data {X("TL) B{™) M

to:tn ) “toitn Im=1"
(m) (m) 5
cO:p M Z l Xto tN7Bto tN ‘ O:p)

with l(X(m) B{") | cg:p) denoting the likelihood of the m-th trajectory:

toitn —toitn

Z(Xtoth ) Bto:tN ‘ Cg:p)

d Xk — Xk —6F§ CS,XWAB ’ 1
| b 2( t; t)] _ 510g(27r(01g,5)2) )

tn41

2
k=1 n=0 20k é

where F} is the k-th entry of the R%valued function F° defined in (2.5):

p
Flg(cév Xti ) ABtn) = Z Cg,kqﬁi’ﬁ (th’ ABtn)'

i=0
Noticing that the likelihood function is quadratic in the parameters {cz k}z 0 e
estimate them by least squares:
SN M =N, M~+7TN,M
Cop e = (4, )+bk )
N-1|xk k 2 (2.7)
X - X S
5,N, M tn, tn
(On:k, )2 = N Z +1 Flg(cé7N7M7XtivABtn) 9

where AT denotes the pseudo-inverse of A, and the normal matrix flfCV’M and vector
EQLM are given by

1 M N-1 . . .
AMGg) = 55 2 2 ob ™ ABy Mgk (xp ™, ABy ™),
m=1 n=0
N 1 M N1 Xf’(m)—Xk ,(m) k( ) (2:8)
b = — Tt e k(X AB m
bk (Z) MN n;l et 5 ¢( )

fori,j =0,...,p. Here 05 N.M , the square root of the regression’s residuals, provides
the diagonal entries of an.

The above least square regression is based on the assumption that the residual
o%n,, defined in (2.6) is Gaussian with uncorrelated entries. The entry-wise re-
gression aims to reflect the dynamical scale difference between entries. One may
improve the approximation by considering correlated entries or other distributions

for the residual.

Model selection. The parametric form in Eq.(2.6) has many degrees of freedom
underdetermined, particularly when we have multiple options for the parametric
form, along with possible overfitting and redundancy in these options. We select
the estimated scheme by the following criteria:
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e Cross validation: the estimated scheme should be stable and can reproduce
the distribution of the process, particularly the main statistics. We consider
the marginal invariant densities and temporal correlations (of (XF)) :

M,N
1 - k,(m
Pe(2)dz = B[1G o (XEDT > 2 D) Liaaran(XE™),
NM m,n=1
’ (2.9)
1 s (m) -k, (m)
Culm = BIXE L XE] >y D) XETXE

fork=1,...,d.

e Convergence of the estimators. If the model is perfect and the data are ei-
ther independent trajectories or a long trajectory of a stationary process, the
estimators converge to the true values when the data size increases (see The-
orem 3.2). While our parametric model is not perfect, the estimators also
converge when the data size increases (see Theorem 3.5).

2.3. Parametrization of numerical schemes. We derive parametric forms to
approximate the flow map from numerical schemes. The numerical schemes provide
informed basis functions for inference because of their error-controlled approxima-
tions to the flow map F(X¢,, By, 1,1, ti>tiv1) in (2.1). These basis functions can
either be simply the terms in an explicit scheme or terms approximating the implicit
schemes. One may view this approach as a parametrization of numerical schemes.

We focus on using only ABy,, the increment of By, ;.. ., and seek paramet-
ric functions F9(c?,X;,, AB;,) (as in (2.5)) to approximate the flow map. This
constraint has two advantages: first, it makes the inferred-scheme computation-
ally efficient, because the inferred scheme will generate only two random numbers
(&,m; in (2.6)) in each time step to represent the stochastic forces and residuals;
second, it significantly reduces the function space of inference, from a functional
depending on the path By, ;,,,] to a function depending only on the increments.
By starting from this simple setting, we hope to provide insight on the future design
of schemes using multi-point noise by parametrizing high-order stochastic schemes
(see e.g. [9,13,17]).

The flow maps (2.3) of the numerical schemes in (2.2) provide three representative
candidates for a parametric function F4(c®, X,,, ABy,). The EM is an explicit one-
step scheme, the RK4 is an explicit multi-step scheme, and the SSBE is an implicit
one-step scheme. Linearly parametrizing them or their It6-Taylor expansions, i.e.,
adding coefficients to the terms, we obtain parametric flow maps:

EM ﬁ‘g]M (CJ; th‘ s ABti) = ngti + ctlsf(xti) + ch’ABti/&
HRK4  Fuy (¢ Xy, ABy,) = Xy, + BN (X, 0ABy,) + 50 ABy, /6,
SSBE ﬁgSBE (06; Xti’ABti) = ngti + C(ls¢fSBE (XtL) + C%O’ABti/d

(2.10)
where the function ¢f*%* is introduced in (2.2) and ¢7°5¥ is given by

¢ PF (X)) = (Ia = 0V (X)) " f(Xe). (2.11)
These terms are derived as follows.
e The parametric flow maps ﬁ‘gM (c®; Xy, ABy,) and ﬁgK4(c‘s; X¢,, ABy,) come

simply by adding coefficients to each term in F§,;, and F3., of the Euler and
RK4 schemes in (2.3).
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e We introduced an extra linear term c¢jX;,. When f is nonlinear, it serves as a
linear basis function, and it helps to data-adaptively adjust the linear stability
of the inferred scheme. N

e The parametric flow maps Flgpp(c®; Xy, ABy,) comes from parametrizing
the terms in an approximation of Fsp 5 (Xy,, ABy,) in (2.3). More precisely,
by the mean-value theorem, there exists a state f(t depending on X, and X,
such that

f(X*) = f(th) + vf(th)(X* - th)
(2.12)
= f(th) + vf(Xt;)(X* - th) + R(X*axtmvf)v

where R(Xy4,Xy,,Vf) = [Vf(Xy,) — Vf(X:,)](Xs — X4,). Then, by the
definition of X, in the SSBE in (2.3), we have

Xy =Xy, +0f(Xs) = Xy, +0[f(Xe,) + VF(Xe,) (X = Xo))] + R(Xs, Xy, V)

= (X — X4,) = (Ia = 0V (X)) 710 f(Xe,) + R(Xs, Xi,, V).
Thus, we have
FgSBE(Xti’ABti) = (Id - 5Vf(Xt7))71f(Xt1) + UABt7/5 + R(X*a Xtmvf)

Assuming that R(Xy,Xy,, Vf) is negligible, parametrizing the other terms,
and adding ¢ X;,, we obtain ﬁgSBE with ¢7°BF above. Note that when f is
globally Lipschitz (thus |V f| is bounded above), we have E[|R(X 4, X¢,, V)]
< CE[|Xy — X4, )], ie., R(X4,Xy,, Vf) is an order smaller than X, — X,.
However, when f is non-globally Lipschitz (that means |V f| is unbounded ),
R(X4,Xy,, Vf) may be non-negligible and require additional terms to account
for its effect.

Putting the parametric flow maps in the form in (2.6), the corresponding inferred
schemes (IS) with these parametrized flow maps in (2.10) are

IS-EM (Xi,, — X4,)/6 = Xy, + S F(Xy,) + SaABy, /6 + o,

i+1

IS-RK4: (X4, — Xy,)/0 = Xy, + S oRENXy,, 0ABy,) + S0 ABy, /6 + oy,

IS-SSBE  (Xy,,, — X4,)/0 = §Xy, + ¢79BE (Xy,) + o ABy, /6 + oy
(2.13)
We point out that there are many other options for the parametric form. These
three to-be-inferred schemes are typical: IS-EM and IS-RK4 are explicit schemes,
and they will improve the statistical accuracy of the plain EM or RK4 by design
(see Section 3.2). IS-RK4 is based on a multi-step scheme which provides a high-
order approximation of the drift, so it tends to perform better than IS-EM when it
is stable. The IS-SSBE comes from an implicit scheme, so it is likely to inherit the
stability.

2.4. Algorithm. The following algorithm 1 summarizes the above procedure for
the inference of a scheme.

3. Convergence of estimators. We consider the convergence of the estimators in
sample size in two settings: perfect model and imperfect model. The perfect model
setting aims to validate our algorithm, in the sense that the algorithm can yield
consistent and asymptotically normal estimators. The imperfect model setting is
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Input: Full model; a high fidelity solver preserving the invariant measure.
Output: Estimated parametric scheme
1: Generate data: solve the system with the high fidelity solver, which has a small
time-step dt; down sample to get time series with § = Gap x dt. Denote the data,
consisting of M independent trajectories on [0, N§], by {XtO tN’Bg’(')ntN M_1 with
t; = 9.
2: Pick a parametric form approximating the flow map (2.1) as in (2.5)—(2.6).
: Estimate parameters cj., and o, as in (2.7).
4: Model selection: run the inferred scheme for cross-validation, and test the consis-
tency of the estimators.

w

ALGORITHM 1. Inference-based schemes adaptive to large
time-stepping (ISALT): detailed algorithm.

what we have in practice, and we show that our estimator converges to the (optimal)
projection.

For simplicity of notation, we assume that d = 1 throughout this section. But
the results also hold true entry-wisely for the system with d > 1.

3.1. Convergence of estimator for perfect model. We denote the expectation
of AN:M and VM in (2.8) by A and b:

- 1 & (m m (m m
A=E[AYM] = & 3 (B[@iXE, ABI), 6,(XEY, ABIY e )
B 1 ;zj x(m _x(m (3.)
bR = 5 3 (BU—=st g (X AB )i
n=0

Here the expectation is with respect to the filtration generated by the initial distri-
bution and the Brownian motion.

Assumption 3.1. (a) Suppose that the data {Xto tN,Bgomt)N}M
trajectories of the system (2.6) with {X }M 1 sampled from the ergodic measure
of X. (b) Suppose that the normal matriz ANM in (2.8) and its expectation in

(3.1) are invertible. (c) Suppose that the flow map F° in (2.1) is square integrable.

1 are independent

Theorem 3.2 (Consistency and asymptotic normality for perfect model). Under
Assumption 3.1, the estimator in (2.7) converges to ¢ (the true parameter value)
almost surely, and is asymptotically normal, when either M — o0 or N — oo:

\/M(cm — )L N, i02/1),
- (3.2)
\/N(Cé,N,JW ) LN N0, A)

Proof. By definition of 8™ in (2.8) and the equation (2.6), we have

M N-1

TN 2 <2 o, (X, AB™) + 0y, ¢i(X™, AB{™) )

m=1 n= O] 0

M (4)
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where in the second equality we used the definition of AV'M in (2.8), and we denote

M
_ 1 m
SN = g ith gV = — Z (ogmi™, ¢ (XM, AB™ ) dga.

m=1
Note that 7, is standard Gaussian and is independent of By, and X, . Then,
SN-(m) has mean zero and its covariance is

COV(SN’(m))

1 m
ol D) B[l X ABI DranY 61(X(7) ABY ) |

Thus, when M — o0, we have by the Central Limit Theorem,

1 ¥ 1
VM > gNm iN(o,NagA). (3.3)

m=1

Furthermore, S™:("™) is a martingale with respect to the filtration generated by
{Xt,,Bt,,nn}, and when N — oo, we have by martingale Central Limit Theorem [5,
Theorem 3.2]

1 N d 1
,(m) 2
vVN-— mil S — N(0, —JWA). (3.4)

We show first that, when M — o0 and for each fixed N, the estimator is consis-
tent and asymptotically normal. Note that by the strong Law of Large Numbers,
ANM A and bVM — b as. as M — oo, Thus, (AVM)~1 — A~1 almost surely
(using the fact that A=! — B~1 = A7Y(B — A)B™1, see |29, page 22|). Then,
SNM — (ANMY=IpNM . A=1h a5, (almost surely), i.e. the estimator is consis-
tent. Combining (3.3) and the almost sure convergence of (AY:»)~! we obtain the
asymptotic normality by noticing that

Cm _ (AN,M)AEN,M — (AN,M)ASYN,M'

When N — o and M fixed, we obtain ANM — A and b¥™ — b as. by the
ergodicity of the process. The consistency and asymptotic normality follow similarly
by using (3.4). O

3.2. Convergence of estimator for imperfect model. In practice, the model
is imperfect in our inferred scheme because we can rarely parameterize the flow
map exactly. We show next that for an imperfect proposed model, the estimator
converges to the projected coefficients of the flow map onto the function space
spanned by the proposed basis in the ambient L? space. Furthermore, we show
that the inferred scheme improves the statistical accuracy of the explicit scheme
that it parameterizes.

Assumption 3.3. (a) Suppose that the data {XE(’)’?N,Bg’?N YM_ are independent
trajectories of the system (1.1) with {X _1 sampled from the ergodic measure
of X. (b) Suppose that the normal matriz ANM in (2.8) and its expectation in
(3.1) are invertible. (c) Suppose that the flow map F° in (2.1) is square integrable.
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The invertibility of the normal matrices AN'™ and A is crucial for our theory,
and they lead to constraints on the basis functions. In practice, we can use it to
guide the selection of basis functions and we recommend using pseudo-inverse and
regularization when the normal matrix is close to singular.

With the notation A and b in (3.1), and assuming that A is invertible, we define

OProl = A1, (3.5)
The next lemma shows that ¢?P™J is the projection coefficients of the flow map F°.

Lemma 3.4. Under Assumption 3.3, the vector ¢®P™ in (3.5) is the projection
coefficients of the flow map F° in (2.1) onto the space span{¢p;};_, in L*(R? x
Q0. n@v) with p being the invariant measure of X and (Q°, B, v) being the canonical
probability space for the Brownian motion (By,t € [0,0]).

X("’/) _X("L)

Xt

-X
Proof. Note that F{ = =22 Denote F," = —=+L =" By the definition

of bin (3.1), we have

N—-1
b(i) = + ZMM,@(XW AB; gt = B, 6i(Xe,, AB, g,

where the second equality follows from the fact that (X;,, AB; ) is stationary (so
does ]-"f").

Denote by ¢ = (cg,c1,...,¢p)" the projection coefficients of }“fn to span{¢; }¥_,
and write Fp = >?_ ;¢ + F with F satisfying E[(F, ¢;)ra] = 0 for each i =
0,1,...,p. Then

E[(F;,, ral = ), ¢E[6s, dira] = (Ac) ().
§=0

Combining the above two equations, we obtain that ¢?P™I = A=1p = ¢. O

We remark that because -FJ(Xt“B[ti,tiﬂ]’ t;,ti+1) is a functional depending on
the trajectory By, +,.,], the function space of projection, L2(R? x Q, n® v), has
an infinite dimensional state space for (Xi,, B[, +,,,1). When ]-'t‘sn depends only
on (X, ,ABy, ) (for instance, in the case of perfect model discussed in the previ-

ous section), the state space becomes finite dimensional and the function space is
simplified to L2(R2?, p ® v) with v ~ N(0,51,).

Theorem 3.5 (Convergence of the estimator). In addition to Assumption 3.3,
assume that E[|F Y] < o0 and E[|¢;(Xy,, ABy,)|*] < o for each i = 0,...,p.
Then, we have

e when M — o and N fized, the estimator in (2.7) converges to the projection
coefficients c>P™1 in (3.5) a.s. and is asymptotically normal:

VM(SNI - Svroiy 4 (0, AT RN (AT, (3.6)

where the matriz LN is the covariance of

| N- (m) 5 (m)
bNm _ N Z nm’ with ™ =< tnt1 p tn 7¢z( B(m)>>Rd
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e when N — o and M fized, the estimator in (2.7) also converges and is
asymptotically normal

V(S #wol) s N(0, L ATS(AT)T), (3.7)

with ¥ = limy_c NEV, provided that for each m,

Z [b™ME[b*™ | Mo]] converges for each k =0 and

0

A}im E[b*ME[LN™ | Mo]] = 0 uniformly in K,
—00
k=K

where My denotes the filtration generated by the extended stationary process
up to time tg.
Proof. When M — o, by the strong Law of Large Numbers, we have ANM — A
and bV'M — b a.s. when M — co. Thus, ANM — (ANMY=IpN M, A=1] = (d.pro]
a.s. according to Lemma 3.4. To prove the asymptotic normality, note that for each
m, the random vector BN with entries

TA( :f2<f“m,¢z(x<m AB}))z

has mean E[bN™] = b and covariance 2V with entries 2N = E[bN™ (i)bN ™ (5)] —
b(i)b(j). Here the covariance exists because

B[OV (05 ()] < max B[[BN " ()] < max E[KFL", 6i(X{", ABJ™ ) gal?]
< (B[IF), [ max(E[|¢i(Xe,, ABy,)[4)2.

Then, b™M is the average of M iid samples {EN 1 each of which has covariance
YV, Hence, by the Central Limit Theorem, we have

VMGNM —b) L A0, 2N).

Combining with the fact that AN"™ — A a.s. and that these matrices are invertible,
we obtain (3.6).

When N — o0, we obtain the convergence and asymptotic normality by ergodic-
iMirst, by ergodicity, we have AN — A and bVM — b a.s. as M — co. Thus,
SNM = (ANMY=IpNM A=1p = cOPro) a5 (almost surely). Next, to prove
the asymptotic normality, note that by the Central Limit Theorem for stationary
processes [8, Theorem 1], we have ¥ = limy_,,, NYV and

1
M
Then we obtain (3.7) by noting that AN'M — A a.s. as above. O

VNOYM —b) L N (0, —X).

We show next that when the inferred scheme is a parametrization of an explicit
scheme, it leads to improvements in the sense that the inferred schemes’s 1-step
numerical error, which depends on the residual of regression, is bounded above by
the explicit scheme’s.
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Theorem 3.6 (Bounds for residual). Assume that an inferred scheme (2.6) param-
eterizes an explicit scheme, e.g., the ISSEM or IS-RK4 in (2.13) from its explicit
scheme in (2.3). Then, with Assumption 3.3, we have

e (Bounds for residual) the regression residual in (2.7) satisfies

E(OWQ < EE[|X%+15_ th

: - F'(X,,, ABy,)2]. (3:8)

where F%(X;, ,ABy, ) denotes the flow map of the explicit scheme, such as
Foo or Fopey in (2.3).

o (convergence of residual deviation) Furthermore, assuming the conditions in
Theorem 3.5, we have

(O'N7M)2 - WE|th+1 - th, - 5F5(C57PTOJ’th7ABtn)|2 a.s.

if either N — o0 or M — oo, for each §.

Proof. We write the flow map of the explicit scheme in a parametric form, that is,
F°(X;,,ABy,) = FO(c*, Xy, ,ABy,) as in (2.5). Then, since the estimator c&N-M
n (2.7) is the minimizer of the likelihood, we have

M N-—
1 m SN m m
(T = 2 i 2 Z o =X = 6 (N X, AB{T)
m=1 n=0
S Vi (3.9)
<N X Z =X — 5 (e, X, AB{Y)2,
Since the process (X, , ABy, ), is stationary, we have
E(oNM)2 = d62IE|thH — X, — 6F°(cSNM X, ABy,)|? (3.10)
2_ X - X
< 8H«:|% — F(¢*, X, ABy, )|

Recalling that F°(X;, ,AB;,) = F°(c*,X;,,AB;,), we have (3.8).

Next, consider the convergence of (oV:M)2. To simplify the notations, let

AX{ =X =X FO(e) = Fo(e, X[V, AB{Y),

tnt1

AFmM — g )(Cé,N,M) — Fm)(dproiy,

Note that as either N — o or M — o0, we have AF("™) — 0 as. for each m
according to Theorem 3.5; hence,

AX{ =GP0 (@ENI[2 — |AX[™ — § (PO (ol - AFOD ) 2
—|AX{™) — §F(m) ((dproi) |2
— 25(AX{™) — R (SProi)) AR ((SPrody 4 62| AR (|2
—>|AX£T) — SFM)(HProd)2 g,
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Then, from the equation in (3.9), we have,

M
(N M)2 == Z Z |AX§T) — SF (M) ((ON.M)) |2

2 X, — X j 2
‘ Dorr Z 2 @O0 X, AB,,)|  a.s.

by the Law of Large Numbers. This completes the proof. O

Remark 3.7 (Order of residuals for IS-RK4 and IS-EM). As § — 0, the resid-
ual for an inferred scheme converges to zero at the order of the explicit scheme
that it parameterizes. Recall that either Euler-Maruyama scheme or the HRK4
schemes has E[|M — F(c*, Xy, ABy,)|?] = O(8), which follows from the
Ito formula. Thus, for the inferred schemes IS-EM and IS-RK4 in (2.3), we have
E[(oN:M)2] = O(4). Furthermore, by the strong Law of Large Numbers, we have
(cN:M)2 — E(aN:M)2 a.5. when either M — o or N — 0. Thus, the estima-
tor oN-M = O(6'/2) a.s. for large N or M. However, IS-SSBE’s residual may not
converge to zero, because SSBE is not in the parametric family of IS-SSBE and
the neglected term R in (2.12) can prevent the residual from decaying to zero (see
Figure 5(b)).

Corollary 3.8 (Error of the inferred scheme). The inferred scheme has the same
strong order as the explicit scheme that it parameterizes. More precisely, consider

the inferred scheme with parameters ¢>N-M gnd oN-M :
Yo —Y, =0F°(c5NM Y, ABy, ) + 6o N:My, |

where 1, is N(0,14) and is independent of {B: }n>1. Assume that it is a
parametrization of an explicit scheme with flow map F‘S(th,ABtn). Suppose that

the parameters satisfy |c5>N-M — cOProl| < e and
2_ 2

dé?
with € € (0,1) (which exists by Theorem 3.5-3.6). Then, with Y, = X, , the 1-step
error satisfies

|(ﬁ) EIX, - X, — 5F6(057pmjaxtn»ABtn)|2 <é

n+1

]E|th,+1 n+1

2
= Yoii? € ZE[[Xu — X, —0F (X, ABy, 2] + 6%

In other words, the inferred scheme’s 1-step error is smaller than the explicit
scheme’s, provided that the error in the estimator of parameters is negligible.

Proof. With Y,, = Xy, , the 1-step error is
— X, — GF(ANM X, AB, ) — doNMp,.

Thus, taking expectation (conditional on the parameters given), we have

Xtpor = Yoy = Xy

n+1 n+1

— —2
E‘th+1 - Yn+1 |2 gE‘th{»l - th - 6F6 (cé,N7M’ X'tn ? ABt'n)|2 + 620-N7M N

Note that we cannot apply (3.10) to bound the first term, because the above expec-
tation is conditional on the parameters, whereas (3.10) is not. To control the first
term, again denoting

AX, =X, . —X., F(c)=FcX,, AB;), AF=F(@NM)_ [(Pri)

n+1 n
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we can write |X;, ., — X3, — 5F5(cm, Xy,,ABy,)|? as

n+1
IAX, — 6F(ANM)2 = |AX, — 6F(cPPro)) — SAF|?
< 2|AX;, — 6F(cPP9) 2 4 252 AF|2.

Note that E|AF|? < \c‘s/va\M — ¢%ProJ|2 < €2, Thus, we have
E‘th+1 - Yn+1|2 S E|Ax'tn - 6F(Cé’proj)|2 + 5.

Meanwhile, note that by combining the two items of Theorem 3.6, we have

: 2
E|AX;, - 6F (™) < ZE[Xs,., = Xi, — 6F (X, ABy, )2,

This completes the proof. O

Remark 3.9. The idea of inference-based scheme also applies to non-ergodic sys-
tems to obtain reduced-in-time models. The convergence of the parameters in The-
orem 3.5 and Theorem 3.6 remains true when the sample size M goes to infinity.
Furthermore, one may accelerate the simulation of slowly converging ergodic sys-
tems by training inference-based schemes iteratively in time. In this study, we focus
on non-globally Lipschitz ergodic systems to highlight the ability of the inferred-
scheme in reproducing long-term statistics.

Remark 3.10 (Optimal reduction in time). We emphasize that our goal is to
infer an explicit scheme with a relative large time-step for efficient simulation of
non-globally Lipschitz ergodic systems. Corollary 3.8 indicates that the inferred
scheme’s 1-step error (i.e., the approximate error of the flow map F? in (2.1)) de-
cays with improved speed as the time-step decreases. But a smaller 1-step error due
to a smaller time-step does not necessarily imply a better inferred scheme, because
the 1-step error from the residual can be accumulated in more iterations (e.g., the
EM scheme can have a wrong invariant measure). To improve the inferred scheme,
we seek an optimal time-step that balances the 1-step error and the accumulated
residual into the invariant measure. In our examples in the next section, the inferred
scheme performs the best (at reproducing the invariant measure and temporal cor-
relation) when the time-step is moderately large. This is similar to the parameter
estimation for homogenization of multiscale process [35], where the sub-sampling
rate must be between the two characteristic time scales of the SDEs.

4. Examples. In this section, we test and compare three benchmark examples
for each inference-based scheme proposed in (2.13) using two different parametric
settings: ¢y excluded vs ¢g included, so as to distinct the contribution of the linear
term parameterized by c¢g. Three non-globally Lipschitz examples are: a 1D system
with the double-well potential; a 2D gradient system; and a 3D stochastic Lorenz
system with degenerate noises.

In each of the examples, we generate data for inference by the Split Step Back-
ward Euler (SSBE) scheme with a fine time-step At. We infer schemes for dif-
ferent time step-sizes 6 = Gap x At with 10 options for the time gap: Gap €
{1,2,4,10, 20,40, 80, 120, 160, 200}, which will be used to select optimal time gap
and demonstrate the convergence order of the residual in Theorem 3.6. The com-
putations of inference include 5 options: (1) IS-EM with ¢ excluded; (2) IS-RK4
with ¢g excluded; (3) IS-RK4 with ¢o included; (4) IS-SSBE with ¢y excluded; and
(5) IS-SSBE with ¢y included.
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We assess the performance of these schemes by the accuracy of the reproduced
invariant density (PDF) and the auto-correlations function (ACF), which are em-
pirically computed from a long trajectory. The accuracy of PDF is measured by
the total variation distance (TVD) from the reference PDF of data.

Once we identify the best performing scheme for each example, we fix the infer-
ence settings and present the convergence of the estimators and the residuals with
respect to the time Gap as well as the number of trajectories M.

In summary, we find from the examples that

e The inferred scheme has significantly stronger numerical stability than the
plain schemes. The IS-RK4 and IS-SSBE exhibit better stability than IS-EM.
In particular, they can tolerate time-steps that are significantly larger than the
plain RK4 or SSBE. Specifically, we find the plain RK4 and SSBE always blow
up even when Gap = 20, whereas the inferred schemes are still stable when
Gap is larger than 200, which improves the efficiency by an order of more than
10. We summarize the time gaps of blow-up for plain verse inferred schemes
for each example in the following table.

1D double-well | 2D gradient system | 3D Lorenz system
Plain RK4 Gap = 20 Gap = 20 Gap =10
IS-RK4 Gap > 200 Gap > 200 Gap > 400
Plain SSBE Gap = 40 Gap = 40 Gap = 20
IS-SSBE Gap > 200 Gap > 200 Gap > 400

TABLE 2. Time gap of blow-up for each scheme: plain verse in-
ferred.

e The inferred scheme can reproduce the invariant measure accurately. Both
IS-RK4 and IS-SSBE perform well when the stochastic force dominates the
dynamics. But when the drift dominates the dynamics in the example of
Lorenz system, IS-RK4 performs better than IS-SSBE, because it provides a
better approximation to the drift than IS-SSBE.

e The inferred scheme reproduces the invariant density the best when the time-
step is medium large (with a time gap between Gap = 80 and Gap = 160),
suggesting a balance between the approximation error of the flow map and
the numerical error in simulating the invariant density. It is open to have an
a-priori estimate of the optimal time gap.

4.1. 1D double-well potential. First consider a 1D SDE with a double-well po-
tential [34]

dX; = =V'(X})dt + A/2/Bd By, (4.1)
7
Z being the normalizing constant Z := SR exp PV (@) dz. We set yu=2and 3 = 1.
We generate data by SSBE with a fine time-step At = 1le — 3. We first simulate
a long trajectory on an interval [0,T] with Xy = 1/2 and T = 2000 (i.e., two
million time steps), which is found to be long enough to represent the invariant
density (PDF). This long trajectory will also provide us the reference PDF and
ACF, which are referred as the true values to be approximated. Then we generate
M = 1000 trajectories on the time interval [0,40] with initial conditions sampled

with V(z) = £(22—1)2. The corresponding invariant measure is - exp~?"(®) where
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from the long trajectory. The data are the M trajectories of the Brownian motion
and the process (X;) observed at discrete times {t,, = nd = nGap x At}, as in (2.4).

The parameters of the schemes in (2.13) are then estimated by Algorithm 1 for
each 6 = Gap x At.

Figure 2(a) shows the TVD of the five inferred schemes with coarse verse fine
Gap € {10,20,40,80,120,160,200}. Note that for every scheme, the TVD first
decreases and then increases, reaching the smallest TVD when Gap = 80. This
suggests that when the gap is small, the approximation error of the flow map (recall
that the data are from an implicit scheme while the inferred schemes are explicit
schemes) dominates the error in the invariant measure; when the gap is large, the
numerical error of the inferred schemes dominates the TVD. A balance between the
two errors is reached at the medium large time-step.

We first select the scheme that reproduces the invariant density with the smallest
TVD. Overall, the IS-RK4 schemes perform the best and the inclusion of ¢y brings in
negligible improvement. Thus, we select IS-RK4 without ¢y to demonstrate further
results.

- —-True
——15-RK4 gap 10
= 1S-RK4 c0 excluded 1S-RK4 gap 80
—o-IS-EMcOexcluded | " 1S-RK4 gap 200
—A—1S-RK4 c0 included ——Plain RK4 gap10]jl
1S-SSBE c0 excluded /
—0—1S-SSBE c0 included

1 ——-True
——IS-RK4 gap 10

o
2

IS-RK4 gap 80
——-IS-RK4 gap 120
s |S-RK4 gap 200
——Plain RK4 gap 10

o
=

=)
o
PPy

o
w

Optimal gap 80

Total variation distance

- 0o x4 2 0 2 Timglagt g 8 10

(a) TVD (b) PDF (c) ACF

FIGURE 2. Large-time statistics for 1D double-well potential. (a)
TVD between the empirical invariant densities (PDF) of the in-
ferred schemes and the reference PDF from data. (b) and (c):
PDFs and ACFs comparison between the IS-RK4 with ¢y excluded
and the reference data.

Figure 2 (b-c) show the PDFs and auto-correlation functions (ACFs) of IS-RK4
with ¢ excluded at three representative time gaps Gap € {10, 80,200}, in compari-
son with those of the reference data and the plain RK4 with Gap = 10. When Gap
is small, that is Gap = 10, the IS-RK4 is close to the plain RK4, and both produce
PDFs and ACFs with large errors. The PDF and ACF generated by IS-RK4 with
Gap = 80 is the best among all used gaps, fitting the true PDF and ACF almost
perfectly. Furthermore, when time gap is as large as Gap = 200, the IS-RK4 can
still produce qualitative results with the feature of PDF (that is the double-well
feature), whereas the plain RK4 scheme blows up when Gap = 20.

We also test the convergence of the estimators in sample size and their depen-
dence on the time-step, as well as the order of residual, aim’illg\to confirm the theory

in Section 3. Figure 3(a) shows that the relative error of c(l;’N’M converges at a rate

about (M N)~'/2 as the sample size N or M increases. Here we take the estimator
from the largest sample size as the projection coefficient, and compute the relative

error to it. Note that the estimator of ¢; is close to 1. Thus, the estimator ci’N’M

converges at a rate about (M N )_1/ 2 matching Theorem 3.5. The convergence of
the estimator of ¢, has similar convergence rate.
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FI1GURE 3. 1D double-well potential: Convergence of estimators in
IS-RK4 with ¢ excluded. (a) The relative error of the estimator

SNM with § = 80 x At converges at an order about (MN)~Y/2,
matching Theorem 3.5. (b) Left column: The coefficients depend
on the time-step § = Gap x At, with ¢; being almost 1 and ¢ being
close to linear in ¢ until § > 0.08. The error bars, which are too nar-
row to be seen, are the standard deviations of the single-trajectory
estimators from the M-trajectory estimator. Right column: The
residual decays at an order 0(51/ 2), matching Theorem 3.6.

Figure 3(b) shows the dependence of the estimators on the time-step 6 = Gap x
At. The coefficient ¢y is almost 1, while ¢ is close to being linear in §. Furthermore,
it also shows that the estimators from each single trajectory are close to the M-
trajectory estimator, with small standard deviations represented by error bars that
are too narrow to be seen. The residual decays at an order about 0.49 with respect
to J, closely matching the rate stated in Theorem 3.6.

4.2. A 2D gradient system. Consider a 2D dissipative gradient system [34]
dX; = —VV(Xy)dt + 4/2/5dBy, (4.2)

with V/(X) = V(z1,22) = exp (427 + £223). The corresponding invariant measure

is %exp_ﬁv(wl’“) where Z being the normalizing constant that is computed by
Z = S]R2 expfﬁv(“"l’“)d;z:ldzg. We set uy = 0.1, uo = 1 and 8 = 2. Because
po = 10uq, so z; is a slowly evolving variable compared to z2 and the resulting
dynamics displays a multi-scale feature. Consequently, we estimate parameters
entry-wisely and we focus on the marginal invariant density of x;.

We generate data by the SSBE scheme with At = 2e — 3 and time interval
[0,2000] with total time steps tN = le6. The rest setting and procedure are the
same as the 1D double-well potential case.

Figure 4(a) shows that IS-RK4 and IS-SSBE schemes have comparable TVD,
and they reach the minimal TVD when Gap = 120, where IS-EM blows up. They
produce similar PDFs and ACFs, so we only present those of IS-SSBE with c¢g
excluded. Figure 4(b-c) show the PDFs and ACFs at representative time gaps
Gap € {10, 80,120,200}. The findings are similar to those for the 1D double-well
potential: (i) the performance of IS-SSBE first improves and then deteriorates as
Gap increases; (ii) IS-SSBE can tolerate significantly larger time-step than the plain
SSBE, where the plain SSBE blows up due to the Newton-Raphson method used as
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the implicit solver, which can only tolerate a small time-step limited by the inversion
(similar to (2.11)) in the Newton-Raphson method in the implicit solver.
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IS-SSBE gap 80
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0.045

ot
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o
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et
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o
o
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o

o

o
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FIGURE 4. Large-time statistics for the 2D gradient system. (a)
TVD between the z; marginal invariant densities (PDF) of the
inferred schemes and the reference PDF from data. (b) and (c):
PDFs and ACFs comparison between IS-SSBE with ¢y excluded
and the reference data.

The convergence of the estimators in sample size is roughly of order (M N )_1/ 2,

as shown in Figure 5(a). Figure 5(b) shows that the estimators of ¢; and ¢y depend
almost linearly on §. Also, ¢1’s single-trajectory estimators have negligible standard
deviations from the M-trajectory estimator, while c3’s estimators have a persistent
noticeable standard deviation. This suggests that IS-SSBE has large uncertainties
in the stochastic force term (recall that ¢; and ¢y being the coefficients of the scaled
drift and the stochastic force, see (2.13)). In the right column, the residual of IS-
SSBE remains little changed when § decreases, far from a decay rate 0.5. This
does not violate Theorem 3.6, which is for parametrizations of explicit schemes.
Instead, this highlights that the IS-SSBE is not a parametrization of the SSBE
implicit scheme, and it has a flow map F gs pg With distance to the true flow map
E[|M - ﬁ‘SSSBE(c, X;,,ABy, )| depending little on §. Such a feature can
be helpful for further improving the parametric form.

Figure 6 shows the convergence of the estimator for IS-RK4. Similar to the 1D
case, we observe a convergence rate (M N)~'/2 in Figure 6(a). Also, in Figure 6(b),
we observe almost ¢ independent estimators and the expected decay rate O(§'/2) of
residuals proved in Theorem 3.6.

4.3. Stochastic Lorenz system with degenerate noise. Consider next the 3D
stochastic Lorenz system with degenerate noise [34]

dxy = o(xg — x1)dt +/2/BdBy,

dzy = (a:l(fy — x3) — m2)dt + /2/BdBs, (4.3)

dll?g = (xleQ - bl‘g)dt
We set o = 10, v = 28, b = 8/3 and § = 1. This stochastic chaotic system is
exponentially ergodic with a regular invariant measure because it is dissipative and
hypoelliptic.

As before, we generate data by SSBE with At = 5e — 4 and a reference long
trajectory with tN = 6e6 time steps (or equivalently, on the time interval [0, 3000]).
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(b) Coeflicients and residuals

FIGURE 5. 2D gradient system: Convergence of estimators in IS-
SSBE with ¢o excluded. (a) The relative error of the estimator

ANM with § = 120At converges at an order about (MN)~%/2,
matching Theorem 3.5. (b) Left column: The estimators of ¢, o
are almost linear in 4. Right column: The residual changes little
as 0 decreases, due to that IS-SSBE is not a parametrization of an
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FIGURE 6. 2D gradient system: Convergence of estimators in IS-
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RK4 with ¢g excluded.

c‘;’N’M with § = 120At converges at an order about (MN)~'/2
matching Theorem 3.5. (b) Left column: The estimators of ¢y, ¢2
are constant for all 6. Right column: The residual decays at an

order O(6%/?), matching Theorem 3.6.

We consider time gaps Gap € {20,40, 80, 160, 240, 320,400}, so the maximal time-

step is still 0.2.

Figure 7(a) shows the TVD of the inferred schemes. This time, the IS-RK4
scheme performs significantly better than IS-SSBE schemes, with relatively small
TVD for most time gaps. This is due to the high-order approximation of RK4 to



768

XINGJIE HELEN LI, FEI LU AND FELIX X.-F. YE

1 ——-True 1
0.06 —IS-RK4 gap 20 i — — True
%03 /\e\ - = 1S-RK4 gap 240 08l — ISRK4 gap 20
c|© 0.05 1S-RK4 gap 320 I ~ —-IS-RK4 gap 240
@ A~ =[S EMgap 20 o6 e IS-RK4 gap 320
’g 0.6 -7 IS-RK4 ¢0 excluded W 0.04 L AN X H ——IS-EM gap 20
0o -©-IS-EM c0 excluded ) R S o4l
T ~A-1S-RK4 0 included L 003 N W
§04 1S-SSBE c0 excluded / L b3 i
= ~-15-SSBE c0 included 0.02 Vi 0.2/
< I
,9 02 Optimal gap 240 0.01 0 e
0 - 2 02
0 0.05 0.1 0.15 02 -20 -10 0 10 20 0 2 4 6 8 10
d x1 Time Lag t
(a) TVD (b) PDF (c) ACF

FIGURE 7. Large-time statistics of 1 for the stochastic Lorenz sys-
tem. (a) TVD between the x; marginal invariant densities (PDF)
of the inferred schemes and the reference PDF from data. (b) and
(c): PDFs and ACFs comparison between IS-RK4 with ¢q included
and the reference data.

the drift, particularly when the drift dominates the dynamics (note that the state
variable x; is at a scale of magnitude larger than the degenerate noise). The IS-
RK4 with ¢y included performs the best and we select it for further demonstration
of results.

Figure 7(b-c) show the PDFs and ACFs at representative time gaps Gap €
{20,240, 320}. Since the plain RK4 blows up at Gap = 10, so we display the
results from IS-EM instead. The findings are similar to those for the 1D double-
well potential: (i) the performance of IS-RK4 first improves and then deteriorates
as Gap increases; (ii) IS-RK4 can tolerate significantly larger time-step than the
plain RK4.
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FI1GURE 8. ACF and PDF of x3 in the stochastic Lorenz system.
Similar to the other examples, IS-RK4 (with ¢q included) repro-
duces the PDF and the ACF the best when the time-step is medium
large, while plain RK4 and IS-EM blow up even when Gap = 20.

Moreover, we also plot the PDF and ACF of x3 in Figure 8. The dynamics of
x3 is the most challenging because there is no diffusive stochastic force acting on
it and its ACF is highly oscillatory. As usual, the IS-RK4 can reproduce the PDF
and ACF well, whereas the plain RK4 and IS-EM blow up even when the time-step
is small. In particular, the IS-RK4 produces the periodic and decay feature of x3’s
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ACF when the time-step is medium large, that is Gap = 240. We expect the best
performance to be achieved at a gap between 120 to 240, and we plan to further
study the optimal time gap and other improvements.

The IS-RK4 has convergence results mostly as expected. Figure 9(a) shows that
the estimators of ¢; for each entry of (x1,x2,x3) converge at an almost perfect rate
(NM)~/2. Figure 9(b) shows that the estimator of co,cy,co remains little varied
until § = 0.12 (i.e., Gap > 240) for each entry. It also shows that the residuals of
all three entries decay at a rate slightly higher than O(5'/?).
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FIGURE 9. The 3D stochastic Lorenz system: Convergence of es-
timators in IS-RK4 with ¢y included. (a) The relative error of the

estimator cf’N’M with 6 = 240At = 0.12 converges at order about

(MN)~'/2, matching Theorem 3.5. (b) Left column: The estima-
tors of ¢, c1, o are varies little until 6 > 0.12. The vertical dash
line is the optimal time gap. Right column: The residuals decay at
orders slightly higher than O(5%/2).

5. Conclusions and outlook. We have introduced a general framework to infer
schemes adaptive to large time-stepping (ISALT) from data for locally Lipschitz
ergodic SDEs. We formulate it as a statistical learning problem, in which we learn
an approximation to the infinite-dimensional discrete-time flow map. By deriv-
ing informed basis functions from classical numerical schemes, we obtain a low-
dimensional parameter estimation problem, avoiding the curse of dimensionality in
statistical learning.

Under mild conditions, we show that the estimator converges as the data size
increases, and the inferred scheme has the same 1-step strong order as the ex-
plicit scheme it parameterizes. Thus, the inferred scheme comes with improved
performance guaranteed. Numerical tests on three non-globally Lipschitz examples
confirm the theory. The inferred scheme can tolerate large time-steps and efficiently
reproduce the invariant measure.

Many fronts are left open for further investigation. (1) The optimal time-step.
We have observed that the inferred schemes perform the best (at reproducing the
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invariant measure) when the time-step is medium-large. This observation suggests
a trade-off between the 1-step approximation error of the flow map and the accumu-
lated numerical error in the invariant measure. Similar optimality in the medium
range was observed in space-time model reduction [26] and in parameter estimation
for multiscale diffusion [35]. It is crucial to have a universal a priori estimate on
the optimal time-step, which can guide general data-driven model reduction ap-
proaches. (2) Multi-step noise. We focused on approximate flow maps that use
only the increments of the Brownian motion. This limits the performance of the in-
ferred scheme because we omit the details of the stochastic force. A multi-step noise
provides the necessary information for further improvements, particularly when the
noise is non-stationary [23]. (3) Non-ergodic systems and/or space-time reduction.
We expect to extend the framework of ISALT to simulate non-ergodic systems or
achieve space-time reduction for high-dimensional nonlinear systems by extracting
informed basis functions from the classical numerical schemes.
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