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Abstract—This paper explores the block-based singular-value-
decomposition (SVD) with applications to image compression and
processing in both static and dynamic cases. Results include a
comprehensive performance study of rank-1 asymmetric block
sizes in comparison to conventional uniform square blocks for
static image compression. In addition, a method of movement
detection for video streaming applications are presented and
discussed in this paper. We show that by tracking the Frobenius
norm of the derivatives of sequential images, represented as a
time series matrix, allows one to infer change points in varying
lighting conditions and foreground movement in video sequences.
We show that by combining SVD background subtraction we
can create clearer distinction between movements and changes
in lighting intensity. It is also demonstrated that one can maintain
the original derivative feature after re-scaling the images of the
video stream to a fraction of their original resolution via local
averaging.

I. INTRODUCTION

Singular value decomposition (SVD) has numerous ap-
plications in image processing, including compression, face
recognition, motion detection, etc. However, SVD is com-
putationally demanding in the presences of large matrices.
In addition, global implementations offer little flexibility for
instances where regions or time varying features are of interest.
In this study we investigate the application of block-based
SVD in static image compression and dynamic background
subtraction for enhanced movement detection in video streams.
In section II, theoretical metrics are proposed to evaluate the
compression performance of different block sizes in terms of
peak-signal-to-noise-ratio (PSNR), time complexity (TC), and
compression factor (CF). We empirically investigate various
implementation settings to compress a gray scale image and
compare the corresponding performances. We find that block
based approaches with adaptive sizes offer more options to
balance the quality and amount of compression, particularly
for applications which require one to uniquely partition a ma-
trix to accommodate select features of interests [1]. In section
III, we study the derivatives of image sequences represented as
time series matrices and propose a method to detect streaming
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movements by evaluating the Frobenius norms of its derivative.
SVD background subtraction is employed to remove static
artifacts and illumination changes in the time series data to
improve detection estimates and change point characterization.
We test several cases which included periodic and abrupt
movement in the presences of varying illumination. We find
that by combing SVD background subtraction we can create
a clearer distinction of movements and changes in lighting
intensity. It is also demonstrated that one can maintain the
original derivative feature after re-scaling the images of the
video stream to fraction of there original resolution via local
averaging. [2] [3]

II. SINGULAR VALUE DECOMPOSITION

A. Block Based Compression
Singular value decomposition is a robust matrix decom-

position method which can be preformed on any arbitrary
shape of matrix [4], [5]. Common SVD compression schemes
generally entail block based implementations, which often
yield better compression performance and reduce processing
time. Block based approaches also give rise to more adaptive
implementations, particularly for applications which require
one to uniquely partition a matrix to accommodate select
features. For global SVD factors such as image reconstruction
quality and compression rates depended on the estimated
rank used to represent a given image matrix, hence in a
block based implementation the compression performance is
contingent upon the series of rank estimates used to describe
the approximation of the image matrix as a whole. A global
SVD implementation takes O(M2N) , M > N floating
operations as the computation complexity [6]. For block-
based implementations, evaluation of time cost (TCb) and
compression factor (CF b) of a block-based approach are
assessed using Equation (1) and Equation (2), respectively.

TCb =
∑
bi

[
max (mbi , nbi)

2 ·min (mbi , nbi)
] M

mbi

× N

nbi

(1)
and

CF b =
∑
bi

MN[
ks (1 +mbs + nbs)×

(
M
mbi
× N

nbi

)] (2)
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where M×N , is the original matrix dimensions and mbi×nbi ,
is a collection of smaller matrices.

B. A Rank-1 Approach for block SVD Compression

We fix the truncated rank kbi ≡ k = 1 for each sub-block
and divide the image matrix into a series of block matrices.
In this setting, an emphasis is placed on the identification of
optimal block dimensions mbi , nbi , rather than the rank of
the image as a whole. Figure 1 represents examples of image
reconstruction quality for a rank-1 update using commonly
employed block sizes of 16 × 16 and 8 × 8, versus different
divisible factors to compress the gray scale image.

Fig. 1. Compressed images of Barbara using various rank-1 sub-matrix
approximations. Block-size is denoted as (BS), compression Factor CF b,
peak-signal-to-noise-ratio (PSNR), and theoretical time complexity is TCb.
Source image adapted from [7].

Among different block size options, the second option, that
is 2×512, is seen to reduce the image by a factor of 1.99, with-
out an apparent loss in reconstruction quality. From Figure 1,
it is observed that 16 × 16 is the worst from human’s point
of view, when compared to a block-size of 8× 512. Figure 2
reports the recorded compression performance vs PSNR using
all divisible factors to compress the image of Barbra given in
Figure 1. We provide Figures 2 as one of our contributions to
the block SVD analysis for image compression. Our results
contribute a numerical experiment in which one can create
a reference to find a suitable block size for an application
interest, whether that interest be compression, reconstruction

quality, real-time performance, or a combination of the three.
PSNR is a positively correlated with image quality. Using
Figure 2 and 3, a suitable block-size should correspond to
a high PSNR value, Low TC, and high CF . Note that the
intermediate block sizes on each graph follow the sequence
m× 2,m× 4,m× 8,m× 16,m× 32,m× 64,m× 128,m×
256,m× 512.

Fig. 2. Compression factor CF b% vs PSNR for compressed the image of
Barbara using rank-1 update for evenly divisible block-sizes BS.

Fig. 3. Compression factor CF b% vs PSNR for compressed the image of
Barbara using rank-1 update for evenly divisible block-sizes BS.

We find that block-based SVD offers more options to
accommodate ’feature’ partitions in static cases. However, in
the next section, we also find it interesting that in dynamic
cases where movement is considered to be a feature and the
illumination changes are considered to be interruptions, SVD
can repress data disruptions due to abrupt changes in lighting
conditions, thus creating a more distinct and reliable signal for
detecting movement.

III. TIME SERIES ANALYSIS

Time series data analysis is a topic of interest for a wide
variety of industries, ranging from health sciences and weather
forecasts to video streams, time dependent data is ubiquitous
[8]. In many cases the decomposition of time series into a
sequence of components, each having a meaningful interpre-
tation, can be used to uncover trends, slowly varying com-
ponent(s), in addition to periodicity, movement, activity and
anomaly detection [9]. In the application of video processing,
one could be less interested in every detail related to movement
in a particular video, instead information related to sudden
changes which have occurred in the video are more useful
[10]. Although, in deriving these related details it is import
that the applied method can differentiate between illumination
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changes and explicit movement in the observable scene, as the
inability to make this distinction increases the likely hood of
false-positive detection.

A. Representation of the Time Series Matrix

We consider the representation of a time series matrix Ã
in a discrete-time setting with t ∈ Z as the time index of a
sequential image matrix A(t), each with dimensions M × N
captured by a static camera. To do so, we first convert A(t)

into its column vector representation ~A(t), as shown in (3).

A(t) =

a11 a12
a21 a22
a31 a32


M×N

→ ~A(t) =


a11
a21
a31
a12
a22
a32


(M∗N)×1

(3)

Next, we can collect all these column vectors ~A(t) to get the
time series representation of Ã, described by (4).

Ã =
[
~At=0

~At=1 ... ~At=T

]
(M∗N)×T

(4)

Suppose that a portion of the entries ~A(t) ∈ T describe a
particular feature which is time variant. Without having prior
knowledge of the attributes associated with the feature of
interest in Ã, the question becomes how do we detect this
feature or infer characteristics of how the feature varies with
respect to time? Naturally, the first step of approaching this
problem would to be to remove any static information in the
times series, a process commonly referred to as background
subtraction.

B. Background Subtraction

Background subtraction is a basic problem for movement
detection in videos and also the first step of high-level com-
puter vision applications [11]. If we know that Ã is likely
to be of low-rank, this infers we can preform a background
removal operation on the time series matrix Ã, to obtain
a sparser representation without loss of the primary signal
of interest. Figure 4 compares three versions of the times
series Ã, Ãc, Ãcm. Where Ã is the original time series matrix
containing a non processed video stream of a cylindrical object
moving periodically from the left to right for t ∈ [30, 270],
increasing in frequency and decreasing amplitude. Ãc contains
the same video sequence but block SVD background subtrac-
tion is applied, and Ãcm is the sparse representation of Ã
which is obtained using global SVD background subtraction
given by (5).

Ãcm = Ã− Ãk; (k ≤ T ≤M ×N ∈ Z) (5)

Where Ãk is the rank-k = 1 approximation of the original
time series matrix Ã. For Ãc a block size of 307200 x 4, is
used to remove background information and obtain a sparser
representation of a time series without loss of the primary
signal of interest.
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Fig. 4. Comparison of global and block based background subtraction
processes for removing static redundancy in the ground space of a time series.
Foreground motion occurring t ∈ [30, 270]. Processing time for global and
block SVD 10.1 and 4.0 seconds, respectively.

From Figure 4, we see that by preforming background sub-
traction on the original times series matrix, we obtain a sparser
representation without loss of the information describing the
objects movement. Using a block based approach enables
a higher removal rate of redundant data in comparison to
global SVD. Specifically, on the interval t ∈ [0, 30], where
the foreground object is stationary, block SVD background
subtraction is able to remove this data from the time series,
where global SVD does not.

C. Derivative Norm Trajectories

Consequently, we compute the forward difference to eval-
uate the change in the time series ~A at some time t and the
previous frame at t− 1 by (6).

d ~A(t) := ~At − ~At−1 (6)

Because d ~A(t) for each t = 1, . . . , T is a column vector,
we can compute its norm S(t) and get a trajectory of the
forward difference norm at each time t. Notice that, we can
also compute the forward difference of a period by considering
several time grids as a whole, in both cases, we employ the
Frobenius norm for computational efficiency.

S(t) =
√
d ~AT d ~A =

∥∥∥d ~A(t)
∥∥∥
2
=
∥∥∥d ~A(t)

∥∥∥
F

(7)

D. Step 1 - Identifying Matrix Scale

We downsize the original observations stored in Ã, to con-
vert its dimensions from (M ∗N)×T to (M ∗N)/Sfactor×T ,
where T is the total amount of samples, M ∗N is the length
of the image vector, and Sfactor is the scaling factor we apply
to each sample in the set T . The potential space savings can
be evaluated as SS = (1 − 1/S2

factor) ∗ 100%. In Figure
4, we shown that one can obtain the same norm trajectory
of the times series, just on a different scale, regardless of the
selected resizing factor. We believe this dissection is important,
as downsizing the times series matrix aids computational
efficiency, and may be required to implement in real-time
settings on limited hardware.
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Fig. 5. Comparison of norm trajectories obtained from original times matrix
and after scaling the times series matrix to 75% of original size.

From Figure 5, notice that the norm of each forward differ-
ence allows one to infer change points in lighting conditions,
in addition to the periodicity of stochastic movements in the
time series data.

E. Step 2 - Threshold Determination

In Figure 6 we compare a static background with illumina-
tion changes only, before and after global SVD background
subtraction is applied. From Figure 6, we see that norm signal
of Ãcm is less sensitive to sudden changes in illumination.
Hence, we can decrease the chances of a false detection of
motion in the scene by utilizing the norm trajectory of Ãcm,
rather than Ã.

Fig. 6. Determination of a minimum detection threshold by comparison of
time series matrix derivative norms under illumination changes before and
after global SVD background subtraction is applied.

F. Step 3 - Benchmark of Movement Detection

Figure 7 demonstrates an example where one may encounter
a false reading of motion due to periodic changes in luminous
intensity. Based on the norm detection threshold of 1000,
determined in step 2, 6 false readings are identified for the
norm trajectory of Ã. Whereas the time interval in which
physical change has occurred is accurately captured by the
norm signal of Ãcm, the sparse foreground approximation of
Ã obtained by (5).

Fig. 7. Evaluation of movement detection performance given by norm
trajectories of a time series matrix with and without global SVD background
subtraction. Original times series consist of periodic illumination changes with
a single instance of foreground movement between the interval t ∈ [97, 103].

IV. CONCLUSION AND FUTURE SCOPE

A set of base-line metrics for SVD image block-truncation
compression have been presented. We also introduced a move-
ment detection scheme for video streams involving time series
analysis. In such cases we used SVD to repress data disrup-
tions and tracked the norm trajectory of a forward difference
matrix to measure information changes at any particular point
in time. A fast decomposition of a time series which results
in a scalar component of instantaneous changes within the
data can find use in many real time imaging applications.
Periodicity and change detection could be used in surveil-
lance, signal processing, and industrial applications involving
imaging inspection and analysis. Future work aims to learn
a mapping enabling concurrent localization and segmentation
of selected features from the ground space. We believe this
method could be useful as a dimensions reduction technique to
effectively reduce the size of times series data and improve the
learning efficiency of some high-level computer vision model.
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